1
|
Ferrucci L, Guerra F, Bucci C, Marzetti E, Picca A. Mitochondria break free: Mitochondria-derived vesicles in aging and associated conditions. Ageing Res Rev 2024; 102:102549. [PMID: 39427885 DOI: 10.1016/j.arr.2024.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
Mitophagy is the intracellular recycling system that disposes damaged/inefficient mitochondria and allows biogenesis of new organelles to ensure mitochondrial quality is optimized. Dysfunctional mitophagy has been implicated in human aging and diseases. Multiple evolutionarily selected, redundant mechanisms of mitophagy have been identified, but their specific roles in human health and their potential exploitation as therapeutic targets are unclear. Recently, the characterization of the endosomal-lysosomal system has revealed additional mechanisms of mitophagy and mitochondrial quality control that operate via the production of mitochondria-derived vesicles (MDVs). Circulating MDVs can be isolated and characterized to provide an unprecedented opportunity to study this type of mitochondrial recycling in vivo and to relate it to human physiology and pathology. Defining the role of MDVs in human physiology, pathology, and aging is hampered by the lack of standardized methods to isolate, validate, and characterize these vesicles. Hence, some basic questions about MDVs remain unanswered. While MDVs are generated directly through the extrusion of mitochondrial membranes within the cell, a set of circulating extracellular vesicles leaking from the endosomal-lysosomal system and containing mitochondrial portions have also been identified and warrant investigation. Preliminary research indicates that MDV generation serves multiple biological roles and contributes to restoring cell homeostasis. However, studies have shown that MDVs may also be involved in pathological conditions. Therefore, further research is warranted to establish when/whether MDVs are supporting disease progression and/or are extracting damaged mitochondrial components to alleviate cellular oxidative burden and restore redox homeoastasis. This information will be relevant for exploiting these vesicles for therapeutic purpose. Herein, we provide an overview of preclinical and clinical studies on MDVs in aging and associated conditions and discuss the interplay between MDVs and some of the hallmarks of aging (mitophagy, inflammation, and proteostasis). We also outline open questions on MDV research that should be prioritized by future investigations.
Collapse
Affiliation(s)
- Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Cecilia Bucci
- Department of Experimental Medicine, Università del Salento, Lecce, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Anna Picca
- Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy; Department of Medicine and Surgery, LUM University, Casamassima, Italy.
| |
Collapse
|
2
|
Wohlfert AJ, Phares J, Granholm AC. The mTOR Pathway: A Common Link Between Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:6183. [PMID: 39458132 PMCID: PMC11508835 DOI: 10.3390/jcm13206183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Down syndrome (DS) is a chromosomal condition that causes many systemic dysregulations, leading to several possible age-related diseases including Alzheimer's disease (AD). This may be due to the triplication of the Amyloid precursor protein (APP) gene or other alterations in mechanistic pathways, such as the mTOR pathway. Impairments to upstream regulators of mTOR, such as insulin, PI3K/AKT, AMPK, and amino acid signaling, have been linked to amyloid beta plaques (Aβ) and neurofibrillary tangles (NFT), the most common AD pathologies. However, the mechanisms involved in the progression of pathology in human DS-related AD (DS-AD) are not fully investigated to date. Recent advancements in omics platforms are uncovering new insights into neurodegeneration. Genomics, spatial transcriptomics, proteomics, and metabolomics are novel methodologies that provide more data in greater detail than ever before; however, these methods have not been used to analyze the mTOR pathways in connection to DS-AD. Using these new techniques can unveil unexpected insights into pathological cellular mechanisms through an unbiased approach.
Collapse
Affiliation(s)
- Abigail J. Wohlfert
- Department of Modern Human Anatomy and Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Jeremiah Phares
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| |
Collapse
|
3
|
Granholm AC, Hamlett ED. The Role of Tau Pathology in Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:1338. [PMID: 38592182 PMCID: PMC10932364 DOI: 10.3390/jcm13051338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.
Collapse
Affiliation(s)
- Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| |
Collapse
|
4
|
Siegel AE, Bianchi DW, Guedj F. Visual discrimination and inhibitory control deficits in mouse models of Down syndrome: A pilot study using rodent touchscreen technology. J Neurosci Res 2023; 101:492-507. [PMID: 36602162 PMCID: PMC10068543 DOI: 10.1002/jnr.25160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 01/06/2023]
Abstract
Several non-verbal cognitive and behavioral tests have been developed to assess learning deficits in humans with Down syndrome (DS). Here we used rodent touchscreen paradigms in adult male mice to investigate visual discrimination (VD) learning and inhibitory control in the Dp(16)1/Yey (C57BL/6J genetic background), Ts65Dn (mixed B6 X C3H genetic background) and Ts1Cje (C57BL/6J genetic background) mouse models of DS. Dp(16)1/Yey and Ts1Cje models did not exhibit motivation or learning deficits during early pre-training, however, Ts1Cje mice showed a significant learning delay after the introduction of the incorrect stimulus (late pre-training), suggesting prefrontal cortex defects in this model. Dp(16)1/Yey and Ts1Cje mice display learning deficits in VD but these deficits were more pronounced in the Dp(16)1/Yey model. Both models also exhibited compulsive behavior and abnormal cortical inhibitory control during Extinction compared to WT littermates. Finally, Ts65Dn mice outperformed WT littermates in pre-training stages by initiating a significantly higher number of trials due to their hyperactive behavior. Both Ts65Dn and WT littermates showed poor performance during late pre-training and were not tested in VD. These studies demonstrate significant learning deficits and compulsive behavior in the Ts1Cje and Dp(16)1/Yey mouse models of DS. They also demonstrate that the mouse genetic background (C57BL/6J vs. mixed B6 X C3H) and the absence of hyperactive behavior are key determinants of successful learning in touchscreen behavioral testing. These data will be used to select the mouse model that best mimics cognitive deficits in humans with DS and evaluate the effects of future therapeutic interventions.
Collapse
Affiliation(s)
- Ashley Emily Siegel
- Prenatal Genomics and Therapy (PGT) Section, Center for Precision Health Research (CPHR), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Mother Infant Research Institute (MIRI), Tufts Medical Center (TMC), Boston, Massachusetts, USA
| | - Diana W. Bianchi
- Prenatal Genomics and Therapy (PGT) Section, Center for Precision Health Research (CPHR), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Mother Infant Research Institute (MIRI), Tufts Medical Center (TMC), Boston, Massachusetts, USA
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Faycal Guedj
- Prenatal Genomics and Therapy (PGT) Section, Center for Precision Health Research (CPHR), National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA
- Mother Infant Research Institute (MIRI), Tufts Medical Center (TMC), Boston, Massachusetts, USA
| |
Collapse
|
5
|
Nakamya MF, Sil S, Buch S, Hakami RM. Mitochondrial Extracellular Vesicles in CNS Disorders: New Frontiers in Understanding the Neurological Disorders of the Brain. Front Mol Biosci 2022; 9:840364. [PMID: 35433837 PMCID: PMC9005996 DOI: 10.3389/fmolb.2022.840364] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Recent findings have highlighted potential diagnostic and prognostic values of extracellular vesicles (EVs) that contain mitochondrial derived components for neurological disorders. Furthermore, functional influences of vesicles carrying mitochondrial components have been reported. In particular, this includes indications of crosstalk with mitophagy to influence progression of various CNS disorders. In this mini-review, we discuss the current state of knowledge about this intriguing class of vesicles in neurological disorders of the CNS, and outline the lacunae and thus scope of further development in this fascinating field of study.
Collapse
Affiliation(s)
- Mary F. Nakamya
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Center for Infectious Disease Research, George Mason University, Manassas, VA, United States
| | - Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ramin M. Hakami
- School of Systems Biology, George Mason University, Manassas, VA, United States
- Center for Infectious Disease Research, George Mason University, Manassas, VA, United States
- *Correspondence: Ramin M. Hakami,
| |
Collapse
|
6
|
Drug-Targeted Genomes: Mutability of Ion Channels and GPCRs. Biomedicines 2022; 10:biomedicines10030594. [PMID: 35327396 PMCID: PMC8945769 DOI: 10.3390/biomedicines10030594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Mutations of ion channels and G-protein-coupled receptors (GPCRs) are not uncommon and can lead to cardiovascular diseases. Given previously reported multiple factors associated with high mutation rates, we sorted the relative mutability of multiple human genes by (i) proximity to telomeres and/or (ii) high adenine and thymine (A+T) content. We extracted genomic information using the genome data viewer and examined the mutability of 118 ion channel and 143 GPCR genes based on their association with factors (i) and (ii). We then assessed these two factors with 31 genes encoding ion channels or GPCRs that are targeted by the United States Food and Drug Administration (FDA)-approved drugs. Out of the 118 ion channel genes studied, 80 met either factor (i) or (ii), resulting in a 68% match. In contrast, a 78% match was found for the 143 GPCR genes. We also found that the GPCR genes (n = 20) targeted by FDA-approved drugs have a relatively lower mutability than those genes encoding ion channels (n = 11), where targeted genes encoding GPCRs were shorter in length. The result of this study suggests that the use of matching rate analysis on factor-druggable genome is feasible to systematically compare the relative mutability of GPCRs and ion channels. The analysis on chromosomes by two factors identified a unique characteristic of GPCRs, which have a significant relationship between their nucleotide sizes and proximity to telomeres, unlike most genetic loci susceptible to human diseases.
Collapse
|
7
|
Alldred MJ, Martini AC, Patterson D, Hendrix J, Granholm AC. Aging with Down Syndrome-Where Are We Now and Where Are We Going? J Clin Med 2021; 10:4687. [PMID: 34682809 PMCID: PMC8539670 DOI: 10.3390/jcm10204687] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS) is a form of accelerated aging, and people with DS are highly prone to aging-related conditions that include vascular and neurological disorders. Due to the overexpression of several genes on Chromosome 21, for example genes encoding amyloid precursor protein (APP), superoxide dismutase (SOD), and some of the interferon receptors, those with DS exhibit significant accumulation of amyloid, phospho-tau, oxidative stress, neuronal loss, and neuroinflammation in the brain as they age. In this review, we will summarize the major strides in this research field that have been made in the last few decades, as well as discuss where we are now, and which research areas are considered essential for the field in the future. We examine the scientific history of DS bridging these milestones in research to current efforts in the field. We extrapolate on comorbidities associated with this phenotype and highlight clinical networks in the USA and Europe pursuing clinical research, concluding with funding efforts and recent recommendations to the NIH regarding DS research.
Collapse
Affiliation(s)
- Melissa J. Alldred
- Nathan Kline Institute, NYU Grossman Medical School, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA;
| | - Alessandra C. Martini
- Department of Pathology and Lab. Medicine, University of California Irvine, Irvine, CA 92697, USA;
| | - David Patterson
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA;
| | - James Hendrix
- LuMind IDSC Foundation, 20 Mall Road, Suite 200, Burlington, MA 01801, USA;
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA;
- Department of Neurosurgery, CU Anschutz, 12631 East 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Ledreux A, Thomas S, Hamlett ED, Trautman C, Gilmore A, Rickman Hager E, Paredes DA, Margittai M, Fortea J, Granholm AC. Small Neuron-Derived Extracellular Vesicles from Individuals with Down Syndrome Propagate Tau Pathology in the Wildtype Mouse Brain. J Clin Med 2021; 10:3931. [PMID: 34501378 PMCID: PMC8432237 DOI: 10.3390/jcm10173931] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Individuals with Down syndrome (DS) exhibit Alzheimer's disease (AD) pathology at a young age, including amyloid plaques and neurofibrillary tangles (NFTs). Tau pathology can spread via extracellular vesicles, such as exosomes. The cargo of neuron-derived small extracellular vesicles (NDEVs) from individuals with DS contains p-Tau at an early age. The goal of the study was to investigate whether NDEVs isolated from the blood of individuals with DS can spread Tau pathology in the brain of wildtype mice. We purified NDEVs from the plasma of patients with DS-AD and controls and injected small quantities using stereotaxic surgery into the dorsal hippocampus of adult wildtype mice. Seeding competent Tau conformers were amplified in vitro from DS-AD NDEVs but not NDEVs from controls. One month or 4 months post-injection, we examined Tau pathology in mouse brains. We found abundant p-Tau immunostaining in the hippocampus of the mice injected with DS-AD NDEVs compared to injections of age-matched control NDEVs. Double labeling with neuronal and glial markers showed that p-Tau staining was largely found in neurons and, to a lesser extent, in glial cells and that p-Tau immunostaining was spreading along the corpus callosum and the medio-lateral axis of the hippocampus. These studies demonstrate that NDEVs from DS-AD patients exhibit Tau seeding capacity and give rise to tangle-like intracellular inclusions.
Collapse
Affiliation(s)
- Aurélie Ledreux
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Sarah Thomas
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Eric D. Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Camille Trautman
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Anah Gilmore
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Emily Rickman Hager
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (E.R.H.); (M.M.)
| | - Daniel A. Paredes
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| | - Martin Margittai
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA; (E.R.H.); (M.M.)
| | - Juan Fortea
- Hospital de la Santa Creu i Sant Pau and Catalan Down Syndrome Foundation, 08041 Barcelona, Spain;
| | - Ann-Charlotte Granholm
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA; (S.T.); (C.T.); (A.G.); (D.A.P.); (A.-C.G.)
| |
Collapse
|
9
|
Dierssen M, Herault Y, Helguera P, Martínez de Lagran M, Vazquez A, Christian B, Carmona-Iragui M, Wiseman F, Mobley W, Fisher EMC, Brault V, Esbensen A, Jacola LM, Potier MC, Hamlett ED, Abbeduto L, Del Hoyo Soriano L, Busciglio J, Iulita MF, Crispino J, Malinge S, Barone E, Perluigi M, Costanzo F, Delabar JM, Bartesaghi R, Dekker AD, De Deyn P, Fortea Ormaechea J, Shaw PA, Haydar TF, Sherman SL, Strydom A, Bhattacharyya A. Building the Future Therapies for Down Syndrome: The Third International Conference of the T21 Research Society. Mol Syndromol 2021; 12:202-218. [PMID: 34421499 DOI: 10.1159/000514437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
Research focused on Down syndrome has increased in the last several years to advance understanding of the consequences of trisomy 21 (T21) on molecular and cellular processes and, ultimately, on individuals with Down syndrome. The Trisomy 21 Research Society (T21RS) is the premier scientific organization for researchers and clinicians studying Down syndrome. The Third International Conference of T21RS, held June 6-9, 2019, in Barcelona, Spain, brought together 429 scientists, families, and industry representatives to share the latest discoveries on underlying cellular and molecular mechanisms of T21, define cognitive and behavioral challenges and better understand comorbidities associated with Down syndrome, including Alzheimer's disease and leukemia. Presentation of cutting-edge results in neuroscience, neurology, model systems, psychology, cancer, biomarkers and molecular and phar-ma-cological therapeutic approaches demonstrate the compelling interest and continuing advancement in all aspects of understanding and ameliorating conditions associated with T21.
Collapse
Affiliation(s)
- Mara Dierssen
- Centre for Genomic Regulation, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Pablo Helguera
- Instituto Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Maria Martínez de Lagran
- Centre for Genomic Regulation, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Anna Vazquez
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Bradley Christian
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Maria Carmona-Iragui
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | - Frances Wiseman
- UK Dementia Research Institute, University College London, London, United Kingdom
| | - William Mobley
- University of California-San Diego, San Diego, California, USA
| | | | - Veronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Anna Esbensen
- University of Cincinnati, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa M Jacola
- St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Marie Claude Potier
- Brain & Spine Institute (ICM), CNRS UMR7225 - INSERM U1127 - UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Eric D Hamlett
- Medical University of South Carolina, Columbia, South Carolina, USA
| | | | | | | | | | | | - Sébastien Malinge
- Telethon Kids Institute - Cancer Centre, Nedlands, Washington, Australia
| | | | | | | | - Jean Maurice Delabar
- Brain & Spine Institute (ICM), CNRS UMR7225 - INSERM U1127 - UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | | | - Alain D Dekker
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Peter De Deyn
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.,University of Antwerp, Antwerp, Belgium
| | - Juan Fortea Ormaechea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Werner HM, Miller CA, Tillman KK, Wang Y, Vorperian HK. Growth and sexual dimorphism of the hyoid bone and its relationship to the mandible from birth to 19 years: A three-dimensional computed tomography study. Anat Rec (Hoboken) 2021; 304:1901-1917. [PMID: 33580633 DOI: 10.1002/ar.24594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 11/07/2022]
Abstract
The hyoid bone and the hyomandibular complex subserve the functions of respiration, deglutition, and speech. This study quantified the growth of the hyoid bone and the hyomandibular relationships in males and females from birth to 19 years. Using 97 computed tomography (CT) scans, from a previous study (Kelly et al., 2017) on mandibular growth from 49 individuals (16 with longitudinal scans), landmarks were placed on 3D CT models and used to calculate four distance, and three angular measurements. A general increase in growth trend was observed in hyoid bone linear measurements-length, width, and depth-as well as relational mandible-to-hyoid distance, throughout the developmental ages examined in both males and females, with most variables having larger measurements for females up to age 10 years. A general decrease in all three angular measurements was observed in both males and females up to approximately age 12 years, at which time male angular measurements gradually increased with significant sexual dimorphism emerging after age 15 years. As expected, postpubertal males had greater hyoid angle than females; they also had greater hyoid angle of inclination than mandible body inclination (with inclination relative to the anterior-posterior nasal plane), likely related to hyo-laryngeal descent. This study contributes to normative data on hyoid bone and hyomandibular relational growth in typically developing individuals and provides a baseline against which structural and functional influences on anatomic growth may be examined by clinical disciplines that address the aerodigestive and speech functions, as well as the fields of anatomy, forensics, and anthropology.
Collapse
Affiliation(s)
- Helen M Werner
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biology, Beloit College, Beloit, Wisconsin, USA
| | - Courtney A Miller
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Katelyn K Tillman
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yuan Wang
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, South Carolina, USA
| | - Houri K Vorperian
- Vocal Tract Development Lab, Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
11
|
Salvi A, Vezzoli M, Busatto S, Paolini L, Faranda T, Abeni E, Caracausi M, Antonaros F, Piovesan A, Locatelli C, Cocchi G, Alvisi G, De Petro G, Ricotta D, Bergese P, Radeghieri A. Analysis of a nanoparticle‑enriched fraction of plasma reveals miRNA candidates for Down syndrome pathogenesis. Int J Mol Med 2019; 43:2303-2318. [PMID: 31017260 PMCID: PMC6488180 DOI: 10.3892/ijmm.2019.4158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/20/2019] [Indexed: 12/12/2022] Open
Abstract
Down syndrome (DS) is caused by the presence of part or all of a third copy of chromosome 21. DS is associated with several phenotypes, including intellectual disability, congenital heart disease, childhood leukemia and immune defects. Specific microRNAs (miRNAs/miR) have been described to be associated with DS, although none of them so far have been unequivocally linked to the pathology. The present study focuses to the best of our knowledge for the first time on the miRNAs contained in nanosized RNA carriers circulating in the blood. Fractions enriched in nanosized RNA-carriers were separated from the plasma of young participants with DS and their non-trisomic siblings and miRNAs were extracted. A microarray-based analysis on a small cohort of samples led to the identification of the three most abundant miRNAs, namely miR-16-5p, miR-99b-5p and miR-144-3p. These miRNAs were then profiled for 15 pairs of DS and non-trisomic sibling couples by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results identified a clear differential expression trend of these miRNAs in DS with respect to their non-trisomic siblings and gene ontology analysis pointed to their potential role in a number of typical DS features, including 'nervous system development', 'neuronal cell body' and certain forms of 'leukemia'. Finally, these expression levels were associated with certain typical quantitative and qualitative clinical features of DS. These results contribute to the efforts in defining the DS-associated pathogenic mechanisms and emphasize the importance of properly stratifying the miRNA fluid vehicles in order to probe biomolecules that are otherwise hidden and/or not accessible to (standard) analysis.
Collapse
Affiliation(s)
- Alessandro Salvi
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Marika Vezzoli
- Unit of Biostatistics, Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Sara Busatto
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Lucia Paolini
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Teresa Faranda
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Edoardo Abeni
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Maria Caracausi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, I‑40138 Bologna, Italy
| | - Francesca Antonaros
- CSGI, Research Center for Colloids and Nanoscience, Sesto Fiorentino, I‑50019 Florence, Italy
| | - Allison Piovesan
- CSGI, Research Center for Colloids and Nanoscience, Sesto Fiorentino, I‑50019 Florence, Italy
| | - Chiara Locatelli
- Neonatology Unit, St. Orsola‑Malpighi Polyclinic, I‑40138 Bologna, Italy
| | - Guido Cocchi
- Neonatology Unit, St. Orsola‑Malpighi Polyclinic, I‑40138 Bologna, Italy
| | - Gualtiero Alvisi
- Department of Molecular Medicine, University of Padua, I‑35121 Padua, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Doris Ricotta
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| | - Annalisa Radeghieri
- Department of Molecular and Translational Medicine, University of Brescia, I‑25123 Brescia, Italy
| |
Collapse
|
12
|
Wester Oxelgren U, Westerlund J, Myrelid Å, Annerén G, Johansson L, Åberg M, Gustafsson J, Fernell E. An intervention targeting social, communication and daily activity skills in children and adolescents with Down syndrome and autism: a pilot study. Neuropsychiatr Dis Treat 2019; 15:2049-2056. [PMID: 31410008 PMCID: PMC6646048 DOI: 10.2147/ndt.s205721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To evaluate whether an intervention, targeting deficits in social communication, interaction and restricted activities in children and adolescents with Down syndrome and autism could lead to enhanced participation in family and school activities. METHODS The intervention included education for parents and school staff about autism, and workshops to identify social-communication and daily living activities that would be meaningful for the child to practice at home and at school. Thereafter, a three-month period of training for the child followed. Outcome measures comprised evaluation of goal achievement for each child, the "Family Strain Index" questionnaire and a visual scale pertaining to the parents' general opinion about the intervention. RESULTS On average, more than 90% of the goals were (to some extent or completely) achieved at home and at school. The mean scores of the "Family Strain Index" were almost identical at the follow-up to those before intervention. The evaluation supported that the use of strategies, intended to facilitate activities and communication, remained largely 18 months after start of the intervention. CONCLUSION Despite the group involved in this study being composed of older children and adolescents, most of whom had severe and profound intellectual disability, the goal achievements and parents' views on the intervention were encouraging.
Collapse
Affiliation(s)
| | - Joakim Westerlund
- Department of Psychology, Stockholm University, Stockholm, Sweden.,Gillberg Neuropsychiatry Centre, Department of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| | - Åsa Myrelid
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lotta Johansson
- Department of Health and Rehabilitation, Uppsala County, Kungsgärdet Center, Uppsala, Sweden
| | - Marie Åberg
- Department of Health and Rehabilitation, Uppsala County, Kungsgärdet Center, Uppsala, Sweden
| | - Jan Gustafsson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Elisabeth Fernell
- Gillberg Neuropsychiatry Centre, Department of Neuroscience and Physiology, Gothenburg University, Gothenburg, Sweden
| |
Collapse
|
13
|
Reeves RH, Delabar J, Potier MC, Bhattacharyya A, Head E, Lemere C, Dekker AD, De Deyn P, Caviedes P, Dierssen M, Busciglio J. Paving the Way for Therapy: The Second International Conference of the Trisomy 21 Research Society. Mol Syndromol 2018; 9:279-286. [PMID: 30800043 DOI: 10.1159/000494231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/26/2022] Open
Abstract
In the last decade, a number of important research advances in different fields have allowed Down syndrome (DS) research to flourish, creating a time of both unparalleled opportunity and considerable challenge. Building a scientific framework that distills mechanisms involved in the developmental intellectual disability of DS as well as the early-onset component of Alzheimer disease and the several other comorbidities associated with the condition is a challenge that scientists are now tackling using novel technologies and multidisciplinary approaches. The Trisomy 21 Research Society (T21RS) was founded in 2014 to address these evolving needs and challenges. In June of 2017, the T21RS held its 2nd International Conference in Chicago, USA. With more than 200 scientists, advocates, people with DS, and family members in attendance, the meeting served as a forum for the discussion of the latest research and clinical advances as well as the most compelling needs of people with DS and their families.
Collapse
Affiliation(s)
- Roger H Reeves
- Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | | | - Elizabeth Head
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY
| | | | - Alain D Dekker
- University of Groningen and University Medical Center, Groningen, The Netherlands
| | - Peter De Deyn
- University of Groningen and University Medical Center, Groningen, The Netherlands
| | - Pablo Caviedes
- Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | |
Collapse
|
14
|
Ahmed MM, Block A, Tong S, Davisson MT, Gardiner KJ. Age exacerbates abnormal protein expression in a mouse model of Down syndrome. Neurobiol Aging 2017. [PMID: 28641136 DOI: 10.1016/j.neurobiolaging.2017.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Ts65Dn is a popular mouse model of Down syndrome (DS). It displays DS-relevant features of learning/memory deficits and age-related loss of functional markers in basal forebrain cholinergic neurons. Here we describe protein expression abnormalities in brain regions of 12-month-old male Ts65Dn mice. We show that the magnitudes of abnormalities of human chromosome 21 and non-human chromosome 21 orthologous proteins are greater at 12 months than at ∼6 months. Age-related exacerbations involve the number of components affected in the mechanistic target of rapamycin pathway, the levels of components of the mitogen-activated protein kinase pathway, and proteins associated with Alzheimer's disease. Among brain regions, the number of abnormalities in cerebellum decreased while the number in cortex greatly increased with age. The Ts65Dn is being used in preclinical evaluations of drugs for cognition in DS. Most commonly, drug evaluations are tested in ∼4- to 6-month-old mice. Data on age-related changes in magnitude and specificity of protein perturbations can be used to understand the molecular basis of changes in cognitive ability and to predict potential age-related specificities in drug efficacies.
Collapse
Affiliation(s)
| | - Aaron Block
- Linda Crnic Institute for Down Syndrome, Aurora, CO, USA
| | - Suhong Tong
- School of Public Health, University of Colorado Denver School of Medicine, Aurora, CO, USA
| | | | - Katheleen J Gardiner
- Linda Crnic Institute for Down Syndrome, Aurora, CO, USA; Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA; Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado Denver School of Medicine, Aurora, CO, USA.
| |
Collapse
|
15
|
Kirk IK, Weinhold N, Belling K, Skakkebæk NE, Jensen TS, Leffers H, Juul A, Brunak S. Chromosome-wise Protein Interaction Patterns and Their Impact on Functional Implications of Large-Scale Genomic Aberrations. Cell Syst 2017; 4:357-364.e3. [PMID: 28215527 DOI: 10.1016/j.cels.2017.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 10/23/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
Abstract
Gene copy-number changes influence phenotypes through gene-dosage alteration and subsequent changes of protein complex stoichiometry. Human trisomies where gene copy numbers are increased uniformly over entire chromosomes provide generic cases for studying these relationships. In most trisomies, gene and protein level alterations have fatal consequences. We used genome-wide protein-protein interaction data to identify chromosome-specific patterns of protein interactions. We found that some chromosomes encode proteins that interact infrequently with each other, chromosome 21 in particular. We combined the protein interaction data with transcriptome data from human brain tissue to investigate how this pattern of global interactions may affect cellular function. We identified highly connected proteins that also had coordinated gene expression. These proteins were associated with important neurological functions affecting the characteristic phenotypes for Down syndrome and have previously been validated in mouse knockout experiments. Our approach is general and applicable to other gene-dosage changes, such as arm-level amplifications in cancer.
Collapse
Affiliation(s)
- Isa Kristina Kirk
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nils Weinhold
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kirstine Belling
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Niels Erik Skakkebæk
- Department of Growth and Reproduction, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thomas Skøt Jensen
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Henrik Leffers
- Department of Growth and Reproduction, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anders Juul
- Department of Growth and Reproduction, Rigshospitalet and University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren Brunak
- Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, 2800 Lyngby, Denmark; Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|