1
|
Bekhbat M, Block AM, Dickinson SY, Tharp GK, Bosinger SE, Felger JC. Neurotransmitter and metabolic effects of interferon-alpha in association with decreased striatal dopamine in a non-human primate model of cytokine-Induced depression. Brain Behav Immun 2025; 125:308-318. [PMID: 39826580 PMCID: PMC11903159 DOI: 10.1016/j.bbi.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/13/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Inflammatory stimuli administered to humans and laboratory animals affect mesolimbic and nigrostriatal dopaminergic pathways in association with impaired motivation and motor activity. Alterations in dopaminergic corticostriatal reward and motor circuits have also been observed in depressed patients with increased peripheral inflammatory markers. The effects of peripheral inflammation on dopaminergic pathways and associated neurobiologic mechanisms and consequences have been difficult to measure in patients. Postmortem tissue (n = 11) from an established, translationally-relevant non-human primate model of cytokine-induced depressive behavior involving chronic interferon-alpha (IFN-a) administration was utilized herein to explore the molecular mechanisms of peripheral cytokine effects on striatal dopamine. Dopamine (but not serotonin or norepinephrine) was decreased in the nucleus accumbens (NAcc) and putamen of IFN-a-treated animals (p < 0.05). IFN-a had no effect on number of striatal neurons or dopamine terminal density, suggesting no overt neurodegenerative changes. RNA sequencing examined in the caudate, putamen, substantia nigra, and prefrontal cortical subregions revealed that while IFN-a nominally up-regulated limited numbers of genes enriching inflammatory signaling pathways in all regions, robust, whole genome-significant effects of IFN-a were observed specifically in putamen. Genes upregulated in the putamen primarily enriched synaptic signaling, glutamate receptor signaling, and inflammatory/metabolic pathways downstream of IFN-a, including MAPK and PI3K/AKT cascades. Conversely, gene transcripts reduced by IFN-a enriched oxidative phosphorylation (OXPHOS), protein translation, and pathways regulated by dopamine receptors. Unsupervised clustering identified a gene co-expression module in the putamen that was associated with both IFN-a treatment and low dopamine levels, which enriched similar inflammatory, metabolic, and synaptic signaling pathways. IFN-a-induced reductions in dopamine further correlated with genes related to excitotoxic glutamate, kynurenine, and altered dopamine receptor signaling (r = 0.78-97, p < 0.05). These findings provide insight into the immunologic mechanisms and neurobiological consequences of peripheral inflammation effects on dopamine, which may inform novel treatment strategies targeting inflammatory, metabolic or neurotransmitter systems in depressed patients with high inflammation.
Collapse
Affiliation(s)
- Mandakh Bekhbat
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Andrew M Block
- Department of Orthopaedic Surgery, University of Connecticut, Farmington, CT 06030, USA
| | - Sarah Y Dickinson
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gregory K Tharp
- Emory Nonhuman Primate Genomics Core, Division of Microbiology and Immunology, Emory National Primate Research Center (EPC), Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Steven E Bosinger
- Emory Nonhuman Primate Genomics Core, Division of Microbiology and Immunology, Emory National Primate Research Center (EPC), Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Jennifer C Felger
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
2
|
Kim S, Kang Y, Shin H, Lee EB, Ham BJ, Choi Y. Liquid Biopsy-Based Detection and Response Prediction for Depression. ACS NANO 2024; 18:32498-32507. [PMID: 39501510 PMCID: PMC11604100 DOI: 10.1021/acsnano.4c08233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/27/2024]
Abstract
Proactively predicting antidepressant treatment response before medication failures is crucial, as it reduces unsuccessful attempts and facilitates the development of personalized therapeutic strategies, ultimately enhancing treatment efficacy. The current decision-making process, which heavily depends on subjective indicators, underscores the need for an objective, indicator-based approach. This study developed a method for detecting depression and predicting treatment response through deep learning-based spectroscopic analysis of extracellular vesicles (EVs) from plasma. EVs were isolated from the plasma of both nondepressed and depressed groups, followed by Raman signal acquisition, which was used for AI algorithm development. The algorithm successfully distinguished depression patients from healthy individuals and those with panic disorder, achieving an AUC accuracy of 0.95. This demonstrates the model's capability to selectively diagnose depression within a nondepressed group, including those with other mental health disorders. Furthermore, the algorithm identified depression-diagnosed patients likely to respond to antidepressants, classifying responders and nonresponders with an AUC accuracy of 0.91. To establish a diagnostic foundation, the algorithm applied explainable AI (XAI), enabling personalized medicine for companion diagnostics and highlighting its potential for the development of liquid biopsy-based mental disorder diagnosis.
Collapse
Affiliation(s)
- Seungmin Kim
- Department
of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary
Program in Precision Public Health, Korea
University, Seoul 02841, Republic of Korea
| | - Youbin Kang
- Department
of Biomedical Sciences, Korea University
College of Medicine, Seoul 02841, Republic
of Korea
| | - Hyunku Shin
- Exopert
Corporation, Seoul 02841, Republic of Korea
| | - Eun Byul Lee
- Exopert
Corporation, Seoul 02841, Republic of Korea
| | - Byung-Joo Ham
- Department
of Biomedical Sciences, Korea University
College of Medicine, Seoul 02841, Republic
of Korea
| | - Yeonho Choi
- Department
of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
- Interdisciplinary
Program in Precision Public Health, Korea
University, Seoul 02841, Republic of Korea
- Exopert
Corporation, Seoul 02841, Republic of Korea
- School
of Bioengineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Pintori N, Mostallino R, Spano E, Orrù V, Piras MG, Castelli MP, De Luca MA. Immune and glial cell alterations in the rat brain after repeated exposure to the synthetic cannabinoid JWH-018. J Neuroimmunol 2024; 389:578325. [PMID: 38432046 DOI: 10.1016/j.jneuroim.2024.578325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/26/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
The use of synthetic cannabinoid receptor agonists (SCRAs) poses major psychiatric risks. We previously showed that repeated exposure to the prototypical SCRA JWH-018 induces alterations in dopamine (DA) transmission, abnormalities in the emotional state, and glial cell activation in the mesocorticolimbic DA circuits of rats. Despite growing evidence suggesting the relationship between substance use disorders (SUD) and neuroinflammation, little is known about the impact of SCRAs on the neuroimmune system. Here, we investigated whether repeated JWH-018 exposure altered neuroimmune signaling, which could be linked with previously reported central effects. Adult male Sprague-Dawley (SD) rats were exposed to JWH-018 (0.25 mg/kg, i.p.) for fourteen consecutive days, and the expression of cytokines, chemokines, and growth factors was measured seven days after treatment discontinuation in the striatum, cortex, and hippocampus. Moreover, microglial (ionized calcium-binding adaptor molecule 1, IBA-1) and astrocyte (glial fibrillary acidic protein, GFAP) activation markers were evaluated in the caudate-putamen (CPu). Repeated JWH-018 exposure induces a perturbation of neuroimmune signaling specifically in the striatum, as shown by increased levels of cytokines [interleukins (IL) -2, -4, -12p70, -13, interferon (IFN) γ], chemokines [macrophage inflammatory protein (MIP) -1α, -3α], and growth factors [macrophage colony-stimulating factor (M-CSF), vascular endothelial growth factor (VEGF)], together with increased IBA-1 and GFAP expression in the CPu. JWH-018 exposure induces persistant brain region-specific immune alterations up to seven days after drug discontinuation, which may contribute to the behavioral and neurochemical dysregulations in striatal areas that play a role in the reward-related processes that are frequently impaired in SUD.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Enrica Spano
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Valeria Orrù
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Lanusei, Italy
| | - Maria Grazia Piras
- Institute for Genetic and Biomedical Research, National Research Council (CNR), Lanusei, Italy
| | - Maria Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy
| | - Maria Antonietta De Luca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
4
|
Cai Y, Deng Z, Yang Q, Pan G, Liang Z, Yang X, Song J, Xiao X, Li S. Metabolomics profiling reveals low blood tyrosine levels as a metabolic feature of newborns from systemic lupus erythematosus pregnancies. Front Immunol 2024; 15:1335042. [PMID: 38357540 PMCID: PMC10864668 DOI: 10.3389/fimmu.2024.1335042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Pregnancy outcomes of patients with systemic lupus erythematosus (SLE) have improved over the past four decades, leading to an increased desire for pregnancy among this cohort. However, the offspring of patients with SLE still face the risks of preterm birth, low birth weight, learning disabilities, and neurological disorders, while the causes underlying these risks remain unclear. Methods In this study, we analyzed the blood metabolic features of neonates born to 30 SLE patients and 52 healthy control mothers by employing tandem mass spectrometry with the dual aims of identifying the etiology of metabolic features specific to infants born from mothers with SLE and providing new insights into the clinical management of such infants. Results We found significant differences in serum metabolite levels between infants born from mothers with SLE and those born from mothers without SLE, including 15 metabolites with reduced serum levels. Further analysis revealed a disrupted tyrosine metabolism pathway in the offspring of mothers with SLE. Discussion By constructing a composite model incorporating various factors, such as serum tyrosine levels, gestational age, and birth weight, we were able to accurately differentiate between newborns of SLE and non-SLE pregnancies. Our data reveal significant differences in serum concentrations of amino acids and acylcarnitines in newborns born to mothers with SLE. We conclude that the reduction of blood L-tyrosine levels is a feature that is characteristic of adverse neurological outcomes in infants born from mothers with SLE.
Collapse
Affiliation(s)
- Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Deng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiuping Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guixian Pan
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zao Liang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ximei Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Song
- Department of Pediatrics, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Irmak-Yazicioglu MB, Arslan A. Navigating the Intersection of Technology and Depression Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:401-426. [PMID: 39261440 DOI: 10.1007/978-981-97-4402-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
This chapter primarily focuses on the progress in depression precision medicine with specific emphasis on the integrative approaches that include artificial intelligence and other data, tools, and technologies. After the description of the concept of precision medicine and a comparative introduction to depression precision medicine with cancer and epilepsy, new avenues of depression precision medicine derived from integrated artificial intelligence and other sources will be presented. Additionally, less advanced areas, such as comorbidity between depression and cancer, will be examined.
Collapse
Affiliation(s)
| | - Ayla Arslan
- Department of Molecular Biology and Genetics, Üsküdar University, İstanbul, Türkiye.
| |
Collapse
|
6
|
Asantewaa G, Anabire NG, Bauer M, Weis S, Neugebauer S, Quaye O, Helegbe GK. Serum Metabolome Signatures Characterizing Co-Infection of Plasmodium falciparum and HBV in Pregnant Women. Diseases 2023; 11:94. [PMID: 37489446 PMCID: PMC10366841 DOI: 10.3390/diseases11030094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 07/26/2023] Open
Abstract
Plasmodium falciparum (P. falciparum) and hepatitis B virus (HBV) co-infection is on the rise among pregnant women in northern Ghana. Mono-infection with either of these two pathogens results in unique metabolic alterations. Thus, we aimed to explicate the effects of this co-infection on the metabolome signatures of pregnant women, which would indicate the impacted metabolic pathways and provide useful prognostic or diagnostic markers. Using an MS/MS-based targeted metabolomic approach, we determined the serum metabolome in pregnant women with P. falciparum mono-infection, HBV mono-infection, P. falciparum, and HBV co-infection and in uninfected (control) women. We observed significantly decreased sphingolipid concentrations in subjects with P. falciparum mono-infection, whereas amino acids and phospholipids were decreased in subjects with HBV mono-infection. Co-infections were found to be characterized distinctively by reduced concentrations of phospholipids and hexoses (mostly glucose) as well as altered pathways that contribute to redox homeostasis. Overall, PC ae C40:1 was found to be a good discriminatory metabolite for the co-infection group. PC ae C40:1 can further be explored for use in the diagnosis and treatment of malaria and chronic hepatitis B co-morbidity as well as to distinguish co-infections from cases of mono-infections.
Collapse
Affiliation(s)
- Gloria Asantewaa
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Accra P.O. Box LG54, Ghana; (G.A.); (N.G.A.); (O.Q.)
| | - Nsoh Godwin Anabire
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Accra P.O. Box LG54, Ghana; (G.A.); (N.G.A.); (O.Q.)
- Department of Biochemistry & Molecular Biology, School of Medicine, University for Development Studies, Tamale P.O. Box TL1350, Ghana
| | - Michael Bauer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University, 07747 Jena, Germany; (M.B.); (S.W.)
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller University, 07747 Jena, Germany
| | - Sebastian Weis
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Friedrich-Schiller University, 07747 Jena, Germany; (M.B.); (S.W.)
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller University, 07747 Jena, Germany
- Institute for Infectious Disease and Infection Control, Leibniz Institute for Infection Biology and Natural Product Research, Hans-Knöll Institute (HKI), 07745 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll Institute (HKI), 07745 Jena, Germany
| | - Sophie Neugebauer
- Institute of Clinical Chemistry and Laboratory Diagnostics, Jena University Hospital, 07747 Jena, Germany;
| | - Osbourne Quaye
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Accra P.O. Box LG54, Ghana; (G.A.); (N.G.A.); (O.Q.)
| | - Gideon Kofi Helegbe
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell & Molecular Biology, University of Ghana, Accra P.O. Box LG54, Ghana; (G.A.); (N.G.A.); (O.Q.)
- Department of Biochemistry & Molecular Biology, School of Medicine, University for Development Studies, Tamale P.O. Box TL1350, Ghana
| |
Collapse
|
7
|
Mancini M, Natoli S, Gardoni F, Di Luca M, Pisani A. Dopamine Transmission Imbalance in Neuroinflammation: Perspectives on Long-Term COVID-19. Int J Mol Sci 2023; 24:ijms24065618. [PMID: 36982693 PMCID: PMC10056044 DOI: 10.3390/ijms24065618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Dopamine (DA) is a key neurotransmitter in the basal ganglia, implicated in the control of movement and motivation. Alteration of DA levels is central in Parkinson’s disease (PD), a common neurodegenerative disorder characterized by motor and non-motor manifestations and deposition of alpha-synuclein (α-syn) aggregates. Previous studies have hypothesized a link between PD and viral infections. Indeed, different cases of parkinsonism have been reported following COVID-19. However, whether SARS-CoV-2 may trigger a neurodegenerative process is still a matter of debate. Interestingly, evidence of brain inflammation has been described in postmortem samples of patients infected by SARS-CoV-2, which suggests immune-mediated mechanisms triggering the neurological sequelae. In this review, we discuss the role of proinflammatory molecules such as cytokines, chemokines, and oxygen reactive species in modulating DA homeostasis. Moreover, we review the existing literature on the possible mechanistic interplay between SARS-CoV-2-mediated neuroinflammation and nigrostriatal DAergic impairment, and the cross-talk with aberrant α-syn metabolism.
Collapse
Affiliation(s)
- Maria Mancini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Silvia Natoli
- Department of Clinical Science and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
- IRCCS Maugeri Pavia, 27100 Pavia, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Monica Di Luca
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, University of Milan, 20133 Milan, Italy; (F.G.); (M.D.L.)
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
- IRCCS Mondino Foundation, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-380-247
| |
Collapse
|
8
|
Oliva D, Andersson BÅ, Lewin F, Jensen LD. Opposing inflammatory biomarker responses to sleep disruption in cancer patients before and during oncological therapy. Front Neurosci 2022; 16:945784. [PMID: 36213755 PMCID: PMC9534604 DOI: 10.3389/fnins.2022.945784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/25/2022] [Indexed: 01/08/2023] Open
Abstract
BackgroundSleep disruption is known to be highly prevalent in cancer patients, aggravated during oncological treatment and closely associated with reduced quality of life, therapeutic outcome and survival. Inflammatory factors are associated with sleep disruption in healthy individuals and cancer patients, but heterogeneity and robustness of inflammatory factors associated with sleep disruption and how these are affected by oncological therapy remain poorly understood. Furthermore, due to the complex crosstalk between sleep-, and therapy-associated factors, including inflammatory factors, there are currently no established biomarkers for predicting sleep disruption in patients undergoing oncological therapy.MethodsWe performed a broad screen of circulating biomarkers with immune-modulating or endocrine functions and coupled these to self-reported sleep quality using the Medical Outcomes Study (MOS) sleep scale. Ninety cancer patients with gastrointestinal, urothelial, breast, brain and tonsillar cancers, aged between 32 and 86 years, and scheduled for adjuvant or palliative oncological therapy were included. Of these, 71 patients were evaluable. Data was collected immediately before and again 3 months after onset of oncological therapy.ResultsSeventeen among a total of 45 investigated plasma proteins were found to be suppressed in cancer patients exhibiting sleep disruption prior to treatment onset, but this association was lost following the first treatment cycle. Patients whose sleep quality was reduced during the treatment period exhibited significantly increased plasma levels of six pro-inflammatory biomarkers (IL-2, IL-6, IL-12, TNF-a, IFN-g, and GM-CSF) 3 months after the start of treatment, whereas biomarkers with anti-inflammatory, growth factor, immune-modulatory, or chemokine functions were unchanged.ConclusionOur work suggests that biomarkers of sleep quality are not valid for cancer patients undergoing oncological therapy if analyzed only at a single timepoint. On the other hand, therapy-associated increases in circulating inflammatory biomarkers are closely coupled to reduced sleep quality in cancer patients. These findings indicate a need for testing of inflammatory and other biomarkers as well as sleep quality at multiple times during the patient treatment and care process.
Collapse
Affiliation(s)
- Delmy Oliva
- Department of Oncology, Ryhov County Hospital, Jönköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- *Correspondence: Delmy Oliva,
| | - Bengt-Åke Andersson
- Department of Natural Science and Biomedicine, School of Welfare, Jönköping University, Jönköping, Sweden
| | - Freddi Lewin
- Department of Oncology, Ryhov County Hospital, Jönköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lasse D. Jensen
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Lasse D. Jensen,
| |
Collapse
|
9
|
Gao H, Yu Z, Li Y, Wang X. miR-100-5p in human umbilical cord mesenchymal stem cell-derived exosomes mediates eosinophilic inflammation to alleviate atherosclerosis via the FZD5/Wnt/β-catenin pathway. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1166-1176. [PMID: 34254638 DOI: 10.1093/abbs/gmab093] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Indexed: 01/05/2023] Open
Abstract
Exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSC-Ex) play important roles in immune and inflammation diseases. However, the role of hUCMSC-Ex in atherosclerosis has not been elucidated. In this study, the isolated exosomes were identified by transmission electron microscopy and nanoparticle tracking analysis. Exosome marker protein levels were increased in the hUCMSC-Ex compared with those in hUCMSC suspension, indicating that exosomes were successfully isolated from hUCMSCs. Furthermore, eosinophils were treated with oxidized low-density lipoprotein (ox-LDL) to construct inflammation model and then incubated with hUCMSC-Ex derived from hUCMSCs which were transfected with miR-100-5p mimic or miR-100-5p inhibitor. We found that hUCMSC-Ex increased miR-100-5p expression, inhibited cell migration, promoted cell apoptosis, and reduced inflammatory cytokine levels in ox-LDL-treated eosinophils, and miR-100-5p overexpression in hUCMSCs enhanced these effects, while miR-100-5p inhibition reversed these effects. Moreover, frizzled 5 (FZD5) was a target gene of miR-100-5p. FZD5 overexpression reversed the inhibitory effects of hUCMSC-Ex-miR-100-5p on cell progression and inflammation in eosinophils. Additionally, hUCMSC-Ex-miR-100-5p decreased the expression of cyclin D1 and β-catenin proteins. Wnt/β-catenin pathway activator BML-284 effectively reversed the effects of hUCMSC-Ex-miR-100-5p on cell progression and inflammation in eosinophils. ApoE-/- mice were fed with high-fat diet to construct an atherosclerosis mice model, and hUCMSC-Ex was injected into mice. hUCMSC-Ex reduced atherosclerotic plaque area and inflammation response in atherosclerosis mice. This study demonstrates that hUCMSC-Ex-miR-100-5p inhibits cell progression and inflammatory response in eosinophils via the FZD5/Wnt/β-catenin pathway, thereby alleviating atherosclerosis progression.
Collapse
Affiliation(s)
- Heng Gao
- Department of Emergency Internal Medicine, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Zhanbiao Yu
- Department of Cardiovascular Medicine, Qingyang People’s Hospital, Qingyang 745000, China
| | - Yuanyuan Li
- Department of Emergency Surgery, Shaanxi Provincial People’s Hospital, Xi’an 710068, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| |
Collapse
|
10
|
Pretreatment Effect of Inflammatory Stimuli and Characteristics of Tryptophan Transport on Brain Capillary Endothelial (TR-BBB) and Motor Neuron Like (NSC-34) Cell Lines. Biomedicines 2020; 9:biomedicines9010009. [PMID: 33374302 PMCID: PMC7823355 DOI: 10.3390/biomedicines9010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
Tryptophan plays a key role in several neurological and psychiatric disorders. In this study, we investigated the transport mechanisms of tryptophan in brain capillary endothelial (TR-BBB) cell lines and motor neuron-like (NSC-34) cell lines. The uptake of [3H]l-tryptophan was stereospecific, and concentration- and sodium-dependent in TR-BBB cell lines. Transporter inhibitors and several neuroprotective drugs inhibited [3H]l-tryptophan uptake by TR-BBB cell lines. Gabapentin and baclofen exerted a competitive inhibitory effect on [3H]l-tryptophan uptake. Additionally, l-tryptophan uptake was time- and concentration-dependent in both NSC-34 wild type (WT) and mutant type (MT) cell lines, with a lower transporter affinity and higher capacity in MT than in WT cell lines. Gene knockdown of LAT1 (l-type amino acid transporter 1) and CAT1 (cationic amino acid transporter 1) demonstrated that LAT1 is primarily involved in the transport of [3H]l-tryptophan in both TR-BBB and NSC-34 cell lines. In addition, tryptophan uptake was increased by TR-BBB cell lines but decreased by NSC-34 cell lines after pro-inflammatory cytokine pre-treatment. However, treatment with neuroprotective drugs ameliorated tryptophan uptake by NSC-34 cell lines after inflammatory cytokines pretreatment. The tryptophan transport system may provide a therapeutic target for treating or preventing neurodegenerative diseases.
Collapse
|
11
|
Khan A, O’Donovan A, Neylan T, Gross J, Cohen B. Suppression, but not reappraisal, is associated with inflammation in trauma-exposed veterans. Psychoneuroendocrinology 2020; 122:104871. [PMID: 33010600 PMCID: PMC8425342 DOI: 10.1016/j.psyneuen.2020.104871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Emotion dysregulation can elicit inflammatory activity. The current study examined whether specific maladaptive and adaptive emotion regulation strategies were associated with inflammatory markers in trauma-exposed veterans, above and beyond PTSD. METHODS In a cohort study, 606 participants exposed to a Criterion A trauma and recruited from Veteran Health Administration facilities completed fasting blood draws, the Emotion Regulation Questionnaire, and the Clinician Administered PTSD Scale-IV. Inflammation was assessed with high sensitivity C-reactive protein (hsCRP), white blood cell count (WBC), and fibrinogen levels. An inflammation index was created by summing standardized log-transformed levels of the three biomarkers. Our primary linear regression models were adjusted for sex, age, race, education, income, creatinine, and PTSD. RESULTS Suppression, but not cognitive reappraisal, was significantly associated with higher levels of the inflammatory index (β = 0.14, p = 0.001). Parallel analyses for the individual inflammatory markers also showed suppression, but not reappraisal, was significantly associated with higher hsCRP (β = 0.11, p = 0.01), WBC (β = 0.11, p = 0.01), and fibrinogen (β = 0.10, p = 0.02). CONCLUSIONS Emotional suppression is related to elevated systemic inflammation independent of PTSD. Cognitive reappraisal is unrelated to inflammation. Findings suggest over-utilization of maladaptive, rather than under-utilization of adaptive, emotion regulation strategies may be associated with systemic inflammation in trauma-exposed veterans.
Collapse
Affiliation(s)
- A.J. Khan
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States,Department of Psychiatry, University of California, San Francisco, CA, United States,Corresponding author at: San Francisco VA Health Care System 4150 Clement Street, San Francisco, CA, 94121, United States. (A.J. Khan)
| | - A. O’Donovan
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States,Department of Psychiatry, University of California, San Francisco, CA, United States
| | - T.C. Neylan
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States,School of Medicine, University of California, San Francisco, CA, United States
| | - J.J. Gross
- Department of Psychology, Stanford University, Stanford, CA, United States
| | - B.E. Cohen
- San Francisco Veterans Affairs Health Care System, San Francisco, CA, United States,School of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
12
|
Mesdom P, Colle R, Lebigot E, Trabado S, Deflesselle E, Fève B, Becquemont L, Corruble E, Verstuyft C. Human Dermal Fibroblast: A Promising Cellular Model to Study Biological Mechanisms of Major Depression and Antidepressant Drug Response. Curr Neuropharmacol 2020; 18:301-318. [PMID: 31631822 PMCID: PMC7327943 DOI: 10.2174/1570159x17666191021141057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/15/2019] [Accepted: 10/19/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human dermal fibroblasts (HDF) can be used as a cellular model relatively easily and without genetic engineering. Therefore, HDF represent an interesting tool to study several human diseases including psychiatric disorders. Despite major depressive disorder (MDD) being the second cause of disability in the world, the efficacy of antidepressant drug (AD) treatment is not sufficient and the underlying mechanisms of MDD and the mechanisms of action of AD are poorly understood. OBJECTIVE The aim of this review is to highlight the potential of HDF in the study of cellular mechanisms involved in MDD pathophysiology and in the action of AD response. METHODS The first part is a systematic review following PRISMA guidelines on the use of HDF in MDD research. The second part reports the mechanisms and molecules both present in HDF and relevant regarding MDD pathophysiology and AD mechanisms of action. RESULTS HDFs from MDD patients have been investigated in a relatively small number of works and most of them focused on the adrenergic pathway and metabolism-related gene expression as compared to HDF from healthy controls. The second part listed an important number of papers demonstrating the presence of many molecular processes in HDF, involved in MDD and AD mechanisms of action. CONCLUSION The imbalance in the number of papers between the two parts highlights the great and still underused potential of HDF, which stands out as a very promising tool in our understanding of MDD and AD mechanisms of action.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Céline Verstuyft
- Address correspondence to this author at the Laboratoire de Pharmacologie, Salle 416, Bâtiment Université, Hôpital du Kremlin Bicêtre, 78 rue du Général Leclerc, 94275 Le Kremlin-Bicêtre, France; Tel: +33145213588; E-mail:
| |
Collapse
|
13
|
De Tollenaere M, Meunier M, Scandolera A, Sandre J, Lambert C, Chapuis E, Auriol D, Reynaud R. Well-aging: A new strategy for skin homeostasis under multi-stressed conditions. J Cosmet Dermatol 2019; 19:444-455. [PMID: 31232507 PMCID: PMC7003805 DOI: 10.1111/jocd.13047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/19/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Background Several studies evidenced significant increase of cortisol is the consequence of UV or emotional stress and leads to various deleterious effects in the skin. Aim The well‐aging, a new concept of lifestyle, procures an alternative to the anti‐aging strategy. We demonstrated that Tephrosia purpurea extract is able to stimulate well‐being hormones while reducing cortisol release. Furthermore, we hypothesized that the extract could positively influence the global skin homeostasis. Method We evaluated the impact of the extract on cortisol, β‐endorphin, and dopamine, released by normal human epidermal keratinocytes (NHEKs). A gene expression study was realized on NHEKs and NHDFs. The protein over‐expression of HMOX1 and NQO1 was evidenced at cellular and tissue level. Finally, we conducted a clinical study on 21 women living in a polluted environment in order to observe the impact of the active on global skin improvement. Results The extract is able to reduce significantly the cortisol release while inducing the production of β‐endorphin and dopamine. The gene expression study revealed that Tephrosia purpurea extract up‐regulated the genes involved in antioxidant response and skin renewal. Moreover, the induction of HMOX and NQO1 expression was confirmed on NHDFs, NHEKs and in RHE. We clinically demonstrated that the extract improved significantly the skin by reducing dark circles, represented by an improvement of L*, a*, and ITA parameters. Conclusion Tephrosia purpurea extract has beneficial effects on skin homeostasis through control of the well‐being state and antioxidant defenses leading to an improvement of dark circles, a clinical features particularly impacted by emotional and environmental stress.
Collapse
Affiliation(s)
| | - Marie Meunier
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | | | - Jérôme Sandre
- Chirurgien Plasticien et Esthétique, Polyclinique de Courlancy, Reims, France
| | - Carole Lambert
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Emilie Chapuis
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Daniel Auriol
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| | - Romain Reynaud
- Givaudan France SAS Argenteuil, Research and Development, Pomacle, France
| |
Collapse
|