1
|
Bjørklund G, Wallace DR, Hangan T, Butnariu M, Gurgas L, Peana M. Cerebral iron accumulation in multiple sclerosis: Pathophysiology and therapeutic implications. Autoimmun Rev 2025; 24:103741. [PMID: 39756528 DOI: 10.1016/j.autrev.2025.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system characterized by demyelination, neuroinflammation, and neurodegeneration. Recent studies highlight the role of cerebral iron (Fe) accumulation in exacerbating MS pathophysiology. Fe, essential for neural function, contributes to oxidative stress and inflammation when dysregulated, particularly in the brain's gray matter and demyelinated lesions. Advanced imaging techniques, including susceptibility-weighted and quantitative susceptibility mapping, have revealed abnormal Fe deposition patterns in MS patients, suggesting its involvement in disease progression. Iron's interaction with immune cells, such as microglia, releases pro-inflammatory cytokines, further amplifying neuroinflammation and neuronal damage. These findings implicate Fe dysregulation as a significant factor in MS progression, contributing to clinical manifestations like cognitive impairment. Therapeutic strategies targeting Fe metabolism, including Fe chelation therapies, show promise in reducing Fe-related damage, instilling optimism about the future of MS treatment. However, challenges such as crossing the blood-brain barrier and maintaining Fe homeostasis remain. Emerging approaches, such as Fe-targeted nanotherapeutics and biologics, offer new possibilities for personalized treatments. However, the journey is far from over. Continued research into the molecular mechanisms of Fe-induced neuroinflammation and oxidative damage is essential. Through this research, we can develop effective interventions that could slow MS progression and improve patient outcomes.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| | - David R Wallace
- Department of Pharmacology, Oklahoma State University Center for Health Sciences, Tulsa, OK, United States
| | - Tony Hangan
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Monica Butnariu
- University of Life Sciences "King Mihai I" from Timisoara, Timis, Romania; CONEM Romania Biotechnology and Environmental Sciences Group, University of Life Sciences "King Mihai I" from Timisoara, Timis, Romania
| | - Leonard Gurgas
- Faculty of Medicine, Ovidius University of Constanta, Constanta, Romania
| | - Massimiliano Peana
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Italy
| |
Collapse
|
2
|
Jian J, Wei J. Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis. FRONT BIOSCI-LANDMRK 2025; 30:26265. [PMID: 39862079 DOI: 10.31083/fbl26265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS. Concurrently, the gut microbiota, known to affect systemic immunity and neurological health, emerges as an important regulator of iron homeostasis and inflammatory responses, thereby influencing ferroptotic pathways. This review investigates how gut microbiota dysbiosis and ferroptosis impact MS, emphasizing their potential as therapeutic targets. Through an integrated examination of mechanistic pathways and clinical evidence, we discuss how targeting these interactions could lead to novel interventions that not only modulate disease progression but also offer personalized treatment strategies based on gut microbiota profiling. This synthesis aims at deepening insights into the microbial contributions to ferroptosis and their implications in MS, setting the stage for future research and therapeutic exploration.
Collapse
Affiliation(s)
- Junjie Jian
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| | - Jun Wei
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| |
Collapse
|
3
|
Fan CH, Zeng XQ, Feng RM, Yi HW, Xia R. Comprehensive review of perioperative factors influencing ferroptosis. Biomed Pharmacother 2024; 179:117375. [PMID: 39278186 DOI: 10.1016/j.biopha.2024.117375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/18/2024] Open
Abstract
The perioperative period encompasses all phases of patient care from the decision to perform surgery until full recovery. Ferroptosis, a newly identified type of regulated cell death, influences a wide array of diseases, including those affecting the prognosis and regression of surgical patients, such as ischemia-reperfusion injury and perioperative cognitive dysfunction. This review systematically examines perioperative factors impacting ferroptosis such as surgical trauma-induced stress, tissue hypoxia, anesthetics, hypothermia, and blood transfusion. By analyzing their intrinsic relationships, we aim to improve intraoperative management, enhance perioperative safety, prevent complications, and support high-quality postoperative recovery, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Cheng-Hui Fan
- Department of Anaesthesiology, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China
| | - Xiao-Qin Zeng
- Department of Anaesthesiology, The Second People's Hospital of Jingzhou, Jingzhou 434020, PR China
| | - Rui-Min Feng
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China
| | - Hua-Wei Yi
- Laboratory Department, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China.
| | - Rui Xia
- Department of Anaesthesiology, the First Affiliated Hospital of Yangtze University, Jingzhou 434000, PR China.
| |
Collapse
|
4
|
Khan S, Bano N, Ahamad S, John U, Dar NJ, Bhat SA. Excitotoxicity, Oxytosis/Ferroptosis, and Neurodegeneration: Emerging Insights into Mitochondrial Mechanisms. Aging Dis 2024:AD.2024.0125-1. [PMID: 39122453 DOI: 10.14336/ad.2024.0125-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Mitochondrial dysfunction plays a pivotal role in the development of age-related diseases, particularly neurodegenerative disorders. The etiology of mitochondrial dysfunction involves a multitude of factors that remain elusive. This review centers on elucidating the role(s) of excitotoxicity, oxytosis/ferroptosis and neurodegeneration within the context of mitochondrial bioenergetics, biogenesis, mitophagy and oxidative stress and explores their intricate interplay in the pathogenesis of neurodegenerative diseases. The effective coordination of mitochondrial turnover processes, notably mitophagy and biogenesis, is assumed to be critically important for cellular resilience and longevity. However, the age-associated decrease in mitophagy impedes the elimination of dysfunctional mitochondria, consequently impairing mitochondrial biogenesis. This deleterious cascade results in the accumulation of damaged mitochondria and deterioration of cellular functions. Both excitotoxicity and oxytosis/ferroptosis have been demonstrated to contribute significantly to the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's Disease (HD), Amyotrophic Lateral Sclerosis (ALS) and Multiple Sclerosis (MS). Excitotoxicity, characterized by excessive glutamate signaling, initiates a cascade of events involving calcium dysregulation, energy depletion, and oxidative stress and is intricately linked to mitochondrial dysfunction. Furthermore, emerging concepts surrounding oxytosis/ferroptosis underscore the importance of iron-dependent lipid peroxidation and mitochondrial engagement in the pathogenesis of neurodegeneration. This review not only discusses the individual contributions of excitotoxicity and ferroptosis but also emphasizes their convergence with mitochondrial dysfunction, a key driver of neurodegenerative diseases. Understanding the intricate crosstalk between excitotoxicity, oxytosis/ferroptosis, and mitochondrial dysfunction holds potential to pave the way for mitochondrion-targeted therapeutic strategies. Such strategies, with a focus on bioenergetics, biogenesis, mitophagy, and oxidative stress, emerge as promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Sameera Khan
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Nargis Bano
- Department of Zoology, Aligarh Muslim University, Aligarh-202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India
| | - Urmilla John
- School of Studies in Neuroscience, Jiwaji University, Gwalior, India; School of Studies in Zoology, Jiwaji University, Gwalior, India
| | - Nawab John Dar
- CNB, SALK Institute of Biological Sciences, La Jolla, CA 92037, USA
| | | |
Collapse
|
5
|
Hu Y, Wang X, Niu Y, He K, Tang M. Application of quantum dots in brain diseases and their neurotoxic mechanism. NANOSCALE ADVANCES 2024; 6:3733-3746. [PMID: 39050959 PMCID: PMC11265591 DOI: 10.1039/d4na00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/01/2024] [Indexed: 07/27/2024]
Abstract
The early-stage diagnosis and therapy of brain diseases pose a persistent challenge in the field of biomedicine. Quantum dots (QDs), nano-luminescent materials known for their small size and fluorescence imaging capabilities, present promising capabilities for diagnosing, monitoring, and treating brain diseases. Although some investigations about QDs have been conducted in clinical trials, the concerns about the toxicity of QDs have continued. In addition, the lack of effective toxicity evaluation methods and systems and the difference between in vivo and in vitro toxicity evaluation hinder QDs application. The primary objective of this paper is to introduce the neurotoxic effects and mechanisms attributable to QDs. First, we elucidate the utilization of QDs in brain disorders. Second, we sketch out three pathways through which QDs traverse into brain tissue. Ultimately, expound upon the adverse consequences of QDs on the brain and the mechanism of neurotoxicity in depth. Finally, we provide a comprehensive summary and outlook on the potential development of quantum dots in neurotoxicity and the difficulties to be overcome.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Xiaoli Wang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Yiru Niu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| | - Keyu He
- Blood Transfusion Department, Clinical Laboratory, Zhongda Hospital, Southeast University Nanjing Jiangsu 210009 China
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University Nanjing Jiangsu 210009 China
| |
Collapse
|
6
|
Soni P, Ammal Kaidery N, Sharma SM, Gazaryan I, Nikulin SV, Hushpulian DM, Thomas B. A critical appraisal of ferroptosis in Alzheimer's and Parkinson's disease: new insights into emerging mechanisms and therapeutic targets. Front Pharmacol 2024; 15:1390798. [PMID: 39040474 PMCID: PMC11260649 DOI: 10.3389/fphar.2024.1390798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Neurodegenerative diseases represent a pressing global health challenge, and the identification of novel mechanisms underlying their pathogenesis is of utmost importance. Ferroptosis, a non-apoptotic form of regulated cell death characterized by iron-dependent lipid peroxidation, has emerged as a pivotal player in the pathogenesis of neurodegenerative diseases. This review delves into the discovery of ferroptosis, the critical players involved, and their intricate role in the underlying mechanisms of neurodegeneration, with an emphasis on Alzheimer's and Parkinson's diseases. We critically appraise unsolved mechanistic links involved in the initiation and propagation of ferroptosis, such as a signaling cascade resulting in the de-repression of lipoxygenase translation and the role played by mitochondrial voltage-dependent anionic channels in iron homeostasis. Particular attention is given to the dual role of heme oxygenase in ferroptosis, which may be linked to the non-specific activity of P450 reductase in the endoplasmic reticulum. Despite the limited knowledge of ferroptosis initiation and progression in neurodegeneration, Nrf2/Bach1 target genes have emerged as crucial defenders in anti-ferroptotic pathways. The activation of Nrf2 and the inhibition of Bach1 can counteract ferroptosis and present a promising avenue for future therapeutic interventions targeting ferroptosis in neurodegenerative diseases.
Collapse
Affiliation(s)
- Priyanka Soni
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Navneet Ammal Kaidery
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
| | - Sudarshana M. Sharma
- Department of Biochemistry and Molecular Biology and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Irina Gazaryan
- Department of Chemical Enzymology, School of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russia
- Department of Chemistry and Physical Sciences, Dyson College of Arts and Sciences, Pace University, Pleasantville, NY, United States
| | - Sergey V. Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
| | - Dmitry M. Hushpulian
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia
- A.N.Bach Institute of Biochemistry, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, Moscow, Russia
| | - Bobby Thomas
- Darby Children’s Research Institute, Medical University of South Carolina, Charleston, SC, United States
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
- Department of Drug Discovery, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
7
|
Shen J, Xie P, Wang J, Yang F, Li S, Jiang H, Wu X, Zhou F, Li J. Nlrp6 protects from corticosterone-induced NSPC ferroptosis by modulating RIG-1/MAVS-mediated mitophagy. Redox Biol 2024; 73:103196. [PMID: 38772149 PMCID: PMC11134915 DOI: 10.1016/j.redox.2024.103196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
Hippocampal neural stem/progenitor cells (NSPCs) are highly vulnerable to different stress stimuli, resulting in adult neurogenesis decline and eventual cognitive defects. Our previous study demonstrated that NOD-like receptor family pyrin domain-containing 6 (Nlrp6) highly expressed in NSPCs played a critical role in sustaining hippocampal neurogenesis to resist stress-induced depression, but the underlying mechnistms are still unclear. Here, we found that Nlrp6 depletion led to cognitive defects and hippocampal NSPC loss in mice. RNA-sequencing analysis of the primary NSPCs revealed that Nlrp6 deficiency altered gene expression profiles of mitochondrial energy generation and ferroptotic process. Upon siNlrp6 transfection, as well as corticosterone (CORT) exposure, downregulation of Nlrp6 suppressed retinoic acid-inducible gene I (RIG-1)/mitochondrial antiviral signaling proteins (MAVS)-mediated autophagy, but drove NSPC ferroptotic death. More interesting, short chain fatty acids (SCFAs) upregulated Nlrp6 expression and promoted RIG-1/MAVS-mediated mitophagy, preventing CORT-induced NSPC ferroptosis. Our study further demonstrates that Nlrp6 should be a sensor for RIG-1/MAVS-mediated mitophagy and play a critical role in maintain mitochondrial homeostasis of hippocampal NSPCs. These results suggests that Nlrp6 should be a potential drug target to combat neurodegenerative diseases relative with chronic stress.
Collapse
Affiliation(s)
- Jingyan Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Pengfei Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Junhan Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shengjie Li
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Haitao Jiang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, 211171, China.
| | - Jianmei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
8
|
Su Y, Jiao Y, Cai S, Xu Y, Wang Q, Chen X. The molecular mechanism of ferroptosis and its relationship with Parkinson's disease. Brain Res Bull 2024; 213:110991. [PMID: 38823725 DOI: 10.1016/j.brainresbull.2024.110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease (PD) have complex pathogenetic mechanisms. Genetic, age, and environmental factors are all related to PD. Due to the unclear pathogenesis of PD and the lack of effective cure methods, it is urgent to find new targets for treating PD patients. Ferroptosis is a form of cell death that is reliant on iron and exhibits distinct morphological and mechanistic characteristics compared to other types of cell death. It encompasses a range of biological processes, including iron/lipid metabolism and oxidative stress. In recent years, research has found that ferroptosis plays a crucial role in the pathophysiological processes of neurodegenerative diseases and stroke. Therefore, ferroptosis is also closely related to PD, This article reviews the core mechanisms of ferroptosis and elucidates the correlation between PD and ferroptosis. In addition, new compounds that have emerged in recent years to exert anti PD effects by inhibiting the ferroptosis signaling pathway were summarized. I hope to further elaborate the relationship between ferroptosis and PD through the review of this article, and provide new strategies for developing PD treatments targeting ferroptosis.
Collapse
Affiliation(s)
- Yan Su
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yue Jiao
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Sheng Cai
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Yang Xu
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Qi Wang
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China
| | - Xianwen Chen
- Department of neurology, The First Affiliated hospital of Anhui Medical University, Hefei, Anhui, 230001, China.
| |
Collapse
|
9
|
Chen YL, Xiong LA, Ma LF, Fang L, Zhan ZJ. Natural product-derived ferroptosis mediators. PHYTOCHEMISTRY 2024; 219:114002. [PMID: 38286199 DOI: 10.1016/j.phytochem.2024.114002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024]
Abstract
It has been 11 years since ferroptosis, a new mode of programmed cell death, was first proposed. Natural products are an important source of drug discovery. In the past five years, natural product-derived ferroptosis regulators have been discovered in an endless stream. Herein, 178 natural products discovered so far to trigger or resist ferroptosis are classified into 6 structural classes based on skeleton type, and the mechanisms of action that have been reported are elaborated upon. If pharmacodynamic data are sufficient, the structure and bioactivity relationship is also presented. This review will provide medicinal chemists with some effective ferroptosis regulators, which will promote the research of natural product-based treatment of ferroptosis-related diseases in the future.
Collapse
Affiliation(s)
- Yi-Li Chen
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lin-An Xiong
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Lie-Feng Ma
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Luo Fang
- Department of Pharmacy, Zhejiang Cancer Hospital, PR China.
| | - Zha-Jun Zhan
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, PR China.
| |
Collapse
|
10
|
Günther M, Dabare S, Fuchs J, Gunesch S, Hofmann J, Decker M, Culmsee C. Flavonoid-Phenolic Acid Hybrids Are Potent Inhibitors of Ferroptosis via Attenuation of Mitochondrial Impairment. Antioxidants (Basel) 2023; 13:44. [PMID: 38247469 PMCID: PMC10812788 DOI: 10.3390/antiox13010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Cinnamic acid, ferulic acid, and the flavonoids quercetin and taxifolin (dihydroquercetin) are naturally occurring compounds found in plants. They are often referred to as polyphenols and are known, among others, for their pharmacological effects supporting health through the inhibition of aging processes and oxidative stress. To improve their bioavailability, pharmacological activities, and safety, the creation of novel flavonoid-phenolic acid hybrids is an area of active research. Previous work showed that such hybridization products of phenolic acids and flavonoids enhanced the resilience of neuronal cells against oxidative stress in vitro, and attenuated cognitive impairment in a mouse model of Alzheimer's disease (AD) in vivo. Notably, the therapeutic effects of the hybrid compounds we obtained were more pronounced than the protective activities of the respective individual components. The underlying mechanisms mediated by the flavonoid-phenolic acid hybrids, however, remained unclear and may differ from the signaling pathways activated by the originating structures of the respective individual phenolic acids or flavonoids. In this study, we characterized the effects of four previously described potent flavonoid-phenolic acid hybrids in models of oxidative cell death through ferroptosis. Ferroptosis is a type of iron-dependent regulated cell death characterized by lipid peroxidation and mitochondrial ROS generation and has been linked to neurodegenerative conditions. In models of ferroptosis induced by erastin or RSL3, we analyzed mitochondrial (lipid) peroxidation, mitochondrial membrane integrity, and Ca2+ regulation. Our results demonstrate the strong protective effects of the hybrid compounds against ROS formation in the cytosol and mitochondria. Importantly, these protective effects against ferroptosis were not mediated by radical scavenging activities of the phenolic hybrid compounds but through inhibition of mitochondrial complex I activity and reduced mitochondrial respiration. Our data highlight the effects of flavonoid-phenolic acid hybrids on mitochondrial metabolism and further important mitochondrial parameters that collectively determine the health and functionality of mitochondria with a high impact on the integrity and survival of the neuronal cells.
Collapse
Affiliation(s)
- Madeline Günther
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
| | - Samentha Dabare
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Jennifer Fuchs
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Sandra Gunesch
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Julian Hofmann
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Michael Decker
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany (M.D.)
| | - Carsten Culmsee
- Institute of Pharmacology and Clinical Pharmacy, Philipps-University Marburg, Karl-von-Frisch-Str. 2, 35043 Marburg, Germany;
- Marburg Center of Mind, Brain, and Behavior—CMBB, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| |
Collapse
|
11
|
Yadav VK, Choudhary N, Gacem A, Verma RK, Abul Hasan M, Tarique Imam M, Almalki ZS, Yadav KK, Park HK, Ghosh T, Kumar P, Patel A, Kalasariya H, Jeon BH, Ali AlMubarak H. Deeper insight into ferroptosis: association with Alzheimer's, Parkinson's disease, and brain tumors and their possible treatment by nanomaterials induced ferroptosis. Redox Rep 2023; 28:2269331. [PMID: 38010378 PMCID: PMC11001282 DOI: 10.1080/13510002.2023.2269331] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Ferroptosis is an emerging and novel type of iron-dependent programmed cell death which is mainly caused by the excessive deposition of free intracellular iron in the brain cells. This deposited free iron exerts a ferroptosis pathway, resulting in lipid peroxidation (LiPr). There are mainly three ferroptosis pathways viz. iron metabolism-mediated cysteine/glutamate, and LiPr-mediated. Iron is required by the brain as a redox metal for several physiological activities. Due to the iron homeostasis balance disruption, the brain gets adversely affected which further causes neurodegenerative diseases (NDDs) like Parkinson's and Alzheimer's disease, strokes, and brain tumors like glioblastoma (GBS), and glioma. Nanotechnology has played an important role in the prevention and treatment of these NDDs. A synergistic effect of nanomaterials and ferroptosis could prove to be an effective and efficient approach in the field of nanomedicine. In the current review, the authors have highlighted all the latest research in the field of ferroptosis, specifically emphasizing on the role of major molecular key players and various mechanisms involved in the ferroptosis pathway. Moreover, here the authors have also addressed the correlation of ferroptosis with the pathophysiology of NDDs and theragnostic effect of ferroptosis and nanomaterials for the prevention and treatment of NDDs.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Nisha Choudhary
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Mohd Abul Hasan
- Civil Engineering Department, College of Engineering, King Khalid University, Abha, Kingdom of Saudi Arabia (KSA)
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Ziyad Saeed Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Iraq
| | - Hyun-Kyung Park
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Tathagata Ghosh
- Department of Arts, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, India
| | - Haresh Kalasariya
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hassan Ali AlMubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University (KKU), Abha, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Zhang Y, Tian X, Teng A, Li Y, Jiao Y, Zhao K, Wang Y, Li R, Yang N, Wang W. Polyphenols and polyphenols-based biopolymer materials: Regulating iron absorption and availability from spontaneous to controllable. Crit Rev Food Sci Nutr 2023; 63:12341-12359. [PMID: 35852177 DOI: 10.1080/10408398.2022.2101092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Iron is an important trace element in the body, and it will seriously affect the body's normal operation if it is taken too much or too little. A large number of patients around the world are suffering from iron disorders. However, there are many problems using drugs to treat iron overload and causing prolonged and unbearable suffering for patients. Controlling iron absorption and utilization through diet is becoming the acceptable, safe and healthy method. At present, many literatures have reported that polyphenols can interact with iron ions and can be expected to chelate iron ions, depending on their types and structures. Besides, polyphenols often interact with other macromolecules in the diet, which may complicate this phenols-Fe behavior and give rise to the necessity of building phenolic based biopolymer materials. The biopolymer materials, constructed by self-assembly (non-covalent) or chemical modification (covalent), show excellent properties such as good permeability, targeting, biocompatibility, and high chelation ability. It is believed that this review can greatly facilitate the development of polyphenols-based biopolymer materials construction for regulating iron and improving the well-being of patients.
Collapse
Affiliation(s)
- Yafei Zhang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Anguo Teng
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuzhen Jiao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Kaixuan Zhao
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ruonan Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
13
|
Tian C, Zheng M, Lan X, Liu L, Ye Z, Li C. Silencing LCN2 enhances RSL3-induced ferroptosis in T cell acute lymphoblastic leukemia. Gene 2023:147597. [PMID: 37390872 DOI: 10.1016/j.gene.2023.147597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND T-cell acute lymphoblastic leukemia (T-ALL) is a life-threatening malignancy and therapeutic toxicity remains a huge challenge for survival rates. A novel iron-dependent form of cell death, ferroptosis, shows potentials in cancer therapy. This study aimed to identify ferroptosis-associated hub genes within a proteinprotein interaction (PPI) network. METHODS We screened differential expressed genes (DEGs) in GSE46170 dataset and obtained ferroptosis-related genes from FerrDb database. Through overlapping between DEGs and ferroptosis-related genes, ferroptosis-associated DEGs were identified for further PPI network construction. Molecular complex detection (MCODE) algorithm in Cytoscape was employed to determine tightly connected protein clusters. Chord diagram of Gene Ontology (GO) was generated to reveal the potential biological process of hub genes. Through transfection with siRNA of lipocalin 2 (LCN2) into TALL cells, the regulatory role of LCN2 in ferroptosis was investigated. RESULTS Venn diagram identified a total of 37 ferroptosis-associated DEGs between GSE46170 and ferroptosis-associated genes, which were mainly enriched in ferroptosis and necroptosis. Based on PPI network analysis, 5 hub genes (LCN2, LTF, HP, SLC40A1 and TFRC) were found. These hub genes were involved in iron ion transport and could distinguish T-ALL from normal individuals. Further experimental studies demonstrated that LCN2 was highly expressed in T-ALL, while silencing LCN2 promoted RSL3-induced ferroptotic cell death in T-ALL cells. CONCLUSION This study identified novel ferroptosis-associated hub genes, which shed new insights into the underlying mechanism of ferroptosis in T-ALL and also provide promising therapeutic targets for T-ALL.
Collapse
Affiliation(s)
- Chuan Tian
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang City, Guangdong Province, 524001, China
| | - Min Zheng
- Department of Obstetrics, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang City, Guangdong Province, 524001, China
| | - Xiang Lan
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang City, Guangdong Province, 524001, China
| | - Lili Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang City, Guangdong Province, 524001, China
| | - Zhonglv Ye
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang City, Guangdong Province, 524001, China
| | - Chengyan Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, No. 57, South Renmin Avenue, Zhanjiang City, Guangdong Province, 524001, China.
| |
Collapse
|
14
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
15
|
Bowen DR, Pathak S, Nadar RM, Parise RD, Ramesh S, Govindarajulu M, Moore A, Ren J, Moore T, Dhanasekaran M. Oxidative stress and COVID-19-associated neuronal dysfunction: mechanisms and therapeutic implications. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1153-1167. [PMID: 37357527 PMCID: PMC10465323 DOI: 10.3724/abbs.2023085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 06/27/2023] Open
Abstract
Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19), and there is a possible role for oxidative stress in the pathophysiology of neurological diseases associated with COVID-19. Excessive oxidative stress could be responsible for the thrombosis and other neuronal dysfunctions observed in COVID-19. This review discusses the role of oxidative stress associated with SARS-CoV-2 and the mechanisms involved. Furthermore, the various therapeutics implicated in treating COVID-19 and the oxidative stress that contributes to the etiology and pathogenesis of COVID-19-induced neuronal dysfunction are discussed. Further mechanistic and clinical research to combat COVID-19 is warranted to understand the exact mechanisms, and its true clinical effects need to be investigated to minimize neurological complications from COVID-19.
Collapse
Affiliation(s)
- Dylan R. Bowen
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Suhrud Pathak
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rishi M. Nadar
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Rachel D. Parise
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Sindhu Ramesh
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Austin Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | - Jun Ren
- Department of CardiologyZhongshan Hospital Fudan UniversityShanghai200032China
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWA98195USA
| | - Timothy Moore
- Department of Drug Discovery and DevelopmentHarrison College of PharmacyAuburn UniversityAuburn-AL36849USA
| | | |
Collapse
|
16
|
Zhao F, Peng C, Li H, Chen H, Yang Y, Ai Q, Chen N, Liu F. Paeoniae Radix Rubra extract attenuates cerebral ischemia injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023:116567. [PMID: 37172921 DOI: 10.1016/j.jep.2023.116567] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paeoniae Radix Rubra (PRR), the root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, has been widely used to promote blood circulation and eliminate blood stasis in Chinese clinical practice, but its effect on cerebral ischemia is still rarely reported. AIM OF THE STUDY The present study aimed to assess the potential therapeutic possibilities of the extract of PRR (PRRE) on cerebral ischemia, further exploring the underlying mechanism, and preliminary screening of the corresponding active components. MATERIALS AND METHODS The neuroprotective effects of PRRE in Sprague-Dawley (SD) rats with middle cerebral artery occlusion (MCAO) injury and mouse hippocampal neuronal cells (HT22 cell line) following oxidative stress were confirmed. The mechanism was investigated using immunohistochemical staining, western blotting, transmission electron microscopy (TEM), and immunofluorescence. The active components of PRRE were analysed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and molecular docking. RESULTS The in vivo study showed that PRRE reduced infarct volume and improved neurological deficits in rats, and the expression of GPX4, FTH1, Beclin1, LC3 II, and p-Akt was upregulated in the rat hippocampi. In addition, the vitro research indicated that PRRE can also alleviate H2O2-induced HT22 cell damage by regulating cytokines such as malondialdehyde (MDA), reduced glutathione (GSH) and reactive oxygen species (ROS), and the expressions of GPX4 and Beclin1 were observed to be elevated. The PI3K/Akt signalling pathway was inhibited by LY294002, an inhibitor of phosphoinositide 3-kinase (PI3K). Furthermore, the effective components of PRRE in regulating ferroptosis and autophagy are mainly defined as albiflorin, paeoniflorin, benzoyl paeoniflorin, oleanolic acid, and hederagenin. CONCLUSION PRRE exerts neuroprotective effects against cerebral ischaemic injury by inhibiting ferroptosis and activating autophagy through the PI3K/Akt signalling pathway. This study provides an experimental basis for the potential application of PRRE as a novel therapeutic drug, and PI3K/Akt-associated ferroptosis and autophagy as therapeutic targets for cerebral ischemia.
Collapse
Affiliation(s)
- Fengyan Zhao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Caiwang Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Hengli Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China
| | - Haodong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Yantao Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Qidi Ai
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China
| | - Naihong Chen
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Fang Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, China; Center for Standardization and Functional Engineering of Traditional Chinese Medicine in Hunan Province, Changsha, 410208, China; Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Changsha, 410208, China.
| |
Collapse
|
17
|
Costa I, Barbosa DJ, Silva V, Benfeito S, Borges F, Remião F, Silva R. Research Models to Study Ferroptosis's Impact in Neurodegenerative Diseases. Pharmaceutics 2023; 15:pharmaceutics15051369. [PMID: 37242612 DOI: 10.3390/pharmaceutics15051369] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Ferroptosis is a type of regulated cell death promoted by the appearance of oxidative perturbations in the intracellular microenvironment constitutively controlled by glutathione peroxidase 4 (GPX4). It is characterized by increased production of reactive oxygen species, intracellular iron accumulation, lipid peroxidation, inhibition of system Xc-, glutathione depletion, and decreased GPX4 activity. Several pieces of evidence support the involvement of ferroptosis in distinct neurodegenerative diseases. In vitro and in vivo models allow a reliable transition to clinical studies. Several in vitro models, including differentiated SH-SY5Y and PC12 cells, among others, have been used to investigate the pathophysiological mechanisms of distinct neurodegenerative diseases, including ferroptosis. In addition, they can be useful in the development of potential ferroptosis inhibitors that can be used as disease-modifying drugs for the treatment of such diseases. On the other hand, in vivo models based on the manipulation of rodents and invertebrate animals, such as Drosophila melanogaster, Caenorhabditis elegans, and zebrafish, have been increasingly used for research in neurodegeneration. This work provides an up-to-date review of the main in vitro and in vivo models that can be used to evaluate ferroptosis in the most prevalent neurodegenerative diseases, and to explore potential new drug targets and novel drug candidates for effective disease-modifying therapies.
Collapse
Affiliation(s)
- Inês Costa
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- TOXRUN-Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Vera Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
18
|
Costa I, Barbosa DJ, Benfeito S, Silva V, Chavarria D, Borges F, Remião F, Silva R. Molecular mechanisms of ferroptosis and their involvement in brain diseases. Pharmacol Ther 2023; 244:108373. [PMID: 36894028 DOI: 10.1016/j.pharmthera.2023.108373] [Citation(s) in RCA: 147] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Ferroptosis is a type of regulated cell death characterized by intracellular accumulation of iron and reactive oxygen species, inhibition of system Xc-, glutathione depletion, nicotinamide adenine dinucleotide phosphate oxidation and lipid peroxidation. Since its discovery and characterization in 2012, many efforts have been made to reveal the underlying mechanisms, modulating compounds, and its involvement in disease pathways. Ferroptosis inducers include erastin, sorafenib, sulfasalazine and glutamate, which, by inhibiting system Xc-, prevent the import of cysteine into the cells. RSL3, statins, Ml162 and Ml210 induce ferroptosis by inhibiting glutathione peroxidase 4 (GPX4), which is responsible for preventing the formation of lipid peroxides, and FIN56 and withaferin trigger GPX4 degradation. On the other side, ferroptosis inhibitors include ferrostatin-1, liproxstatin-1, α-tocopherol, zileuton, FSP1, CoQ10 and BH4, which interrupt the lipid peroxidation cascade. Additionally, deferoxamine, deferiprone and N-acetylcysteine, by targeting other cellular pathways, have also been classified as ferroptosis inhibitors. Increased evidence has established the involvement of ferroptosis in distinct brain diseases, including Alzheimer's, Parkinson's and Huntington's diseases, amyotrophic lateral sclerosis, multiple sclerosis, and Friedreich's ataxia. Thus, a deep understanding of how ferroptosis contributes to these diseases, and how it can be modulated, can open a new window of opportunities for novel therapeutic strategies and targets. Other studies have shown a sensitivity of cancer cells with mutated RAS to ferroptosis induction and that chemotherapeutic agents and ferroptosis inducers synergize in tumor treatment. Thus, it is tempting to consider that ferroptosis may arise as a target mechanistic pathway for the treatment of brain tumors. Therefore, this work provides an up-to-date review on the molecular and cellular mechanisms of ferroptosis and their involvement in brain diseases. In addition, information on the main ferroptosis inducers and inhibitors and their molecular targets is also provided.
Collapse
Affiliation(s)
- Inês Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- TOXRUN - Toxicology Research Unit, Department of Sciences, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Vera Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS - Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
19
|
Hu Y, Wang Y, Liu S, Wang H. The Potential Roles of Ferroptosis in Pathophysiology and Treatment of Musculoskeletal Diseases—Opportunities, Challenges, and Perspectives. J Clin Med 2023; 12:jcm12062125. [PMID: 36983130 PMCID: PMC10051297 DOI: 10.3390/jcm12062125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
Ferroptosis is different from other forms of cell death, such as apoptosis, autophagy, pyroptosis, and cuproptosis, mainly involving iron metabolism and lipid peroxidation. Ferroptosis plays an important role in various disease, such as malignant tumors, neuron-degenerative diseases, and cardiovascular diseases, and has become the focus of current research. Both iron overload and lipid peroxide accumulation contribute to the occurrence, development, and treatment of musculoskeletal diseases, such as osteoporosis, osteoarthritis, osteosarcoma, intervertebral disc degeneration, and spinal cord injury. For a better understanding of the potential roles ferroptosis may play in pathophysiology and treatment of common musculoskeletal disorders, this article briefly reviewed the relationship and possible mechanisms. Through an investigation of ferroptosis’ role in musculoskeletal diseases’ occurrence, development, and treatment, ferroptosis could offer new opportunities for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Yunxiang Hu
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, No. 826, Southwestern Road, Shahekou District, Dalian 116021, China
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian 116044, China
| | - Yufei Wang
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian 116044, China
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 110623, China
| | - Sanmao Liu
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, No. 826, Southwestern Road, Shahekou District, Dalian 116021, China
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian 116044, China
| | - Hong Wang
- Department of Orthopedics, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, No. 826, Southwestern Road, Shahekou District, Dalian 116021, China
- School of Graduates, Dalian Medical University, No. 9, West Section of South Lvshun Road, Dalian 116044, China
- Correspondence:
| |
Collapse
|
20
|
Wang Y, Wang C. Quantitative reactive cysteinome profiling reveals a functional link between ferroptosis and proteasome-mediated degradation. Cell Death Differ 2023; 30:125-136. [PMID: 35974250 PMCID: PMC9883465 DOI: 10.1038/s41418-022-01050-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/01/2023] Open
Abstract
Ferroptosis is a unique type of cell death that is hallmarked with the imbalanced redox homeostasis as triggered by iron-dependent lipid peroxidation. Cysteines often play critical roles in proteins to help maintain a healthy cellular environment by dynamically switching between their reduced and oxidized forms, however, how the global redox landscape of cysteinome is perturbed upon ferroptosis remains unknown to date. By using a quantitative chemical proteomic strategy, we systematically profiled the dynamic changes of cysteinome in ferroptotic cells and identified a list of candidate sites whose redox states are precisely regulated under ferroptosis-inducing and rescuing conditions. In particular, C106 of the protein/nucleic acid deglycase DJ-1 acts as an intriguing sensor switch for the ferroptotic condition, whose oxidation results in the disruption of its interaction with the 20S proteasome and leads to a marked activation in the proteasome system. Our chemoproteomic profiling and associated functional studies reveal a novel functional link between ferroptosis and the proteasome-mediated protein degradation. It also suggests proteasome as a promising target for developing treatment strategies for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Yankun Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
21
|
Iron Metabolism and Ferroptosis in Peripheral Nerve Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5918218. [PMID: 36506935 PMCID: PMC9733998 DOI: 10.1155/2022/5918218] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022]
Abstract
Peripheral nerve injury (PNI) is a major clinical problem that may lead to different levels of sensory and motor dysfunction including paralysis. Due to the high disability rate and unsatisfactory prognosis, the exploration and revealment of the mechanisms involved in the PNI are urgently required. Ferroptosis, a recently identified novel form of cell death, is an iron-dependent process. It is a unique modality of cell death, closely associated with iron concentrations, generation of reactive oxygen species, and accumulation of the lipid reactive oxygen species. These processes are regulated by multiple cellular metabolic pathways, including iron overloading, lipid peroxidation, and the glutathione/glutathione peroxidase 4 pathway. Furthermore, ferroptosis is accompanied by morphological changes in the mitochondria, such as increased membrane density and shrunken mitochondria; this association between ferroptosis and mitochondrial damage has been detected in various diseases, including spinal cord injury and PNI. The inhibition of ferroptosis can promote the repair of damaged peripheral nerves, reduce mitochondrial damage, and promote the recovery of neurological function. In this review, we intend to discuss the detailed mechanisms of ferroptosis and summarize the current researches on ferroptosis with respect to nerve injury. This review also aims at providing new insights on targeting ferroptosis for PNI treatment.
Collapse
|
22
|
Mushroom Polysaccharides as Potential Candidates for Alleviating Neurodegenerative Diseases. Nutrients 2022; 14:nu14224833. [PMID: 36432520 PMCID: PMC9696021 DOI: 10.3390/nu14224833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Neurodegenerative diseases (NDs) are a widespread and serious global public health burden, particularly among the older population. At present, effective therapies do not exist, despite the increasing understanding of the different mechanisms of NDs. In recent years, some drugs, such as galantamine, entacapone, riluzole, and edaravone, have been proposed for the treatment of different NDs; however, they mainly concentrate on symptom management and confer undesirable side effects and adverse reactions. Therefore, there is an urgent need to find novel drugs with fewer disadvantages and higher efficacy for the treatment of NDs. Mushroom polysaccharides are macromolecular complexes with multi-targeting bioactivities, low toxicity, and high safety. Some have been demonstrated to exhibit neuroprotective effects via their antioxidant, anti-amyloidogenic, anti-neuroinflammatory, anticholinesterase, anti-apoptotic, and anti-neurotoxicity activities, which have potential in the treatment of NDs. This review focuses on the different processes involved in ND development and progression, highlighting the neuroprotective activities and potential role of mushroom polysaccharides and summarizing the limitations and future perspectives of mushroom polysaccharides in the prevention and treatment of NDs.
Collapse
|
23
|
Guo J, Zhou Y, Liu D, Wang M, Wu Y, Tang D, Liu X. Mitochondria as multifaceted regulators of ferroptosis. LIFE METABOLISM 2022; 1:134-148. [PMID: 39872359 PMCID: PMC11749789 DOI: 10.1093/lifemeta/loac035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/30/2025]
Abstract
Mitochondria are well known to be "energy factories" of the cell as they provide intracellular ATP via oxidative phosphorylation. Interestingly, they also function as a "cellular suicidal weapon store" by acting as a key mediator of various forms of regulated cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis. Ferroptosis, distinct from the other types of regulated cell death, is characterized by iron-dependent lipid peroxidation and subsequent plasma membrane rupture. Growing evidence suggests that an impaired ferroptotic response is implicated in various diseases and pathological conditions, and this impaired response is associated with dramatic changes in mitochondrial morphology and function. Mitochondria are the center of iron metabolism and energy production, leading to altered lipid peroxidation sensitivity. Although a growing number of studies have explored the inextricable link between mitochondria and ferroptosis, the role of this organelle in regulating ferroptosis remains unclear. Here, we review recent advances in our understanding of the role of mitochondria in ferroptosis and summarize the characteristics of this novel iron-based cellular suicide weapon and its arsenal. We also discuss the importance of ferroptosis in pathophysiology, including the need for further understanding of the relationship between mitochondria and ferroptosis to identify combinatorial targets that are essential for the development of successful drug discovery.
Collapse
Affiliation(s)
- Jingyi Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yunhao Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Dingfei Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| |
Collapse
|
24
|
New Players in Neuronal Iron Homeostasis: Insights from CRISPRi Studies. Antioxidants (Basel) 2022; 11:antiox11091807. [PMID: 36139881 PMCID: PMC9495848 DOI: 10.3390/antiox11091807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Selective regional iron accumulation is a hallmark of several neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. The underlying mechanisms of neuronal iron dyshomeostasis have been studied, mainly in a gene-by-gene approach. However, recent high-content phenotypic screens using CRISPR/Cas9-based gene perturbations allow for the identification of new pathways that contribute to iron accumulation in neuronal cells. Herein, we perform a bioinformatic analysis of a CRISPR-based screening of lysosomal iron accumulation and the functional genomics of human neurons derived from induced pluripotent stem cells (iPSCs). Consistent with previous studies, we identified mitochondrial electron transport chain dysfunction as one of the main mechanisms triggering iron accumulation, although we substantially expanded the gene set causing this phenomenon, encompassing mitochondrial complexes I to IV, several associated assembly factors, and coenzyme Q biosynthetic enzymes. Similarly, the loss of numerous genes participating through the complete macroautophagic process elicit iron accumulation. As a novelty, we found that the impaired synthesis of glycophosphatidylinositol (GPI) and GPI-anchored protein trafficking also trigger iron accumulation in a cell-autonomous manner. Finally, the loss of critical components of the iron transporters trafficking machinery, including MON2 and PD-associated gene VPS35, also contribute to increased neuronal levels. Our analysis suggests that neuronal iron accumulation can arise from the dysfunction of an expanded, previously uncharacterized array of molecular pathways.
Collapse
|
25
|
Lin ZH, Liu Y, Xue NJ, Zheng R, Yan YQ, Wang ZX, Li YL, Ying CZ, Song Z, Tian J, Pu JL, Zhang BR. Quercetin Protects against MPP +/MPTP-Induced Dopaminergic Neuron Death in Parkinson's Disease by Inhibiting Ferroptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7769355. [PMID: 36105483 PMCID: PMC9467739 DOI: 10.1155/2022/7769355] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/17/2022]
Abstract
Ferroptosis, a novel form of regulated cell death, is caused by accumulation of lipid peroxides and excessive iron deposition. This process has been linked to the death of dopaminergic neurons in substantia nigra compacta (SNc) of Parkinson's disease (PD) patients. Quercetin (QCT), a natural flavonoid, has multiple pharmacological activities. However, it has not been established whether QCT can protect against dopaminergic neuron death by inhibiting ferroptosis. In this study, we investigated the potential antiferroptotic effects of QCT in cellular models established using specific ferroptosis inducers (Erastin and RSL-3) and MPP+. The effects were also explored using MPTP-induced PD mouse models. The cell counting kit-8 (CCK-8) assay was performed to assess cell viability. Variations in mitochondrial morphology were evaluated by transmission electron microscopy (TEM) while the mitochondrial membrane potential, mass, and ROS were measured by fluorescent probes. Lipid peroxidation levels were assayed through measurement of lipid ROS, MDA, GSH, and SOD levels. The effects of QCT on MPTP-induced behavioral disorders were examined by rotarod and open field tests. In vitro and in vivo, QCT significantly inhibited ferroptosis by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) protein. Additionally, QCT ameliorated motor behavioral impairments and protected against the loss of dopaminergic neurons in MPTP-induced PD models. Interestingly, Nrf2 knockdown alleviated the protective effects of QCT against ferroptosis. In conclusion, these results demonstrate that ferroptosis is involved in MPP+/MPTP-induced PD, and QCT inhibits ferroptosis by activating the Nrf2 protein. Therefore, QCT is a potential agent for preventing the loss of dopaminergic neurons by targeting ferroptosis.
Collapse
Affiliation(s)
- Zhi-Hao Lin
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yi Liu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Nai-Jia Xue
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Ran Zheng
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yi-Qun Yan
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Zhong-Xuan Wang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yao-Lin Li
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Chang-Zhou Ying
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Zhe Song
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jun Tian
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jia-Li Pu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Bao-Rong Zhang
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
26
|
Ferroptosis and Its Multifaceted Role in Cancer: Mechanisms and Therapeutic Approach. Antioxidants (Basel) 2022; 11:antiox11081504. [PMID: 36009223 PMCID: PMC9405274 DOI: 10.3390/antiox11081504] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Ferroptosis, a new type of non-apoptotic cell death modality, is different from other modes of cell death and has been primarily found in tumor cells. Previous studies have reported that ferroptosis can be triggered by specific modulators (e.g., drugs, nutrients, and iron chelators), leading to increased intracellular lipid reactive oxygen species (ROS) accumulation and iron overload. Recent reports have shown that ferroptosis at the cellular and organism levels can prevent an inflammatory storm and cancer development. Emerging evidence suggests potential mechanisms (e.g., system Xc-, glutathione peroxidase 4 (GPX4), lipid peroxidation, glutathione (GSH), and iron chelators) are involved in ferroptosis, which may mediate biological processes such as oxidative stress and iron overload to treat cancer. To date, there are at least three pathways that mediate ferroptosis in cancer cells: system Xc-/GSH/GPX4, FSP1/CoQ10/NAD(P)H, and ATG5/ATG7/NCOA4. Here, we summarize recent advances in the occurrence and development of ferroptosis in the context of cancer, the associations between ferroptosis and various modulators, and the potential mechanisms and therapeutic strategies targeting ferroptosis for the treatment of cancer.
Collapse
|
27
|
Song XY, Liu PC, Liu WW, Zhou J, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin inhibits ethanol- or acetaldehyde-induced ferroptosis in liver cell lines. Toxicol In Vitro 2022; 82:105388. [PMID: 35595033 DOI: 10.1016/j.tiv.2022.105388] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 01/20/2023]
Abstract
Alcoholic liver disease has become one of the main causes of liver injury, and its prevention and cure are important medical tasks. Silibinin, a natural flavonoid glycoside, is a conventional hepatic protectant. This study elucidates the modulation of ferroptosis in silibinin's protective effects on ethanol- or acetaldehyde-induced liver cell damage by using human carcinomatous liver HepG2 cells and immortalized liver HL7702 cells. Our results show that ferroptosis is induced in the cells treated with ethanol or acetaldehyde, as evidenced by the increased ROS stress and iron level. Silibinin resolves the oxidative stress and reduces iron level. Ferroptosis induced by ethanol- or acetaldehyde involving nuclear receptor co-activator 4 (NCOA4)-dependent autophagic degradation of ferritin, a protein for storing iron is rescued by silibinin. PINK1 and Parkin-mediated mitophagy is arrested in ethanol- or acetaldehyde-treated cells but reversed by silibinin. Ferritin degradation and ROS level are further increased when PINK1 or Parkin is silenced in the cells treated with ethanol or acetaldehyde. Collectively, our study reveals that silibinin inhibits ethanol- or acetaldehyde-induced ferroptosis in two liver cell lines, HepG2 and HL7702 cells, providing new therapeutic strategies for alcoholic liver injury.
Collapse
Affiliation(s)
- Xiao-Yu Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Peng-Cheng Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Wei-Wei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jia Zhou
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China; Jinan Vocational College of Nursing, Jinan, Shandong, PR China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China; Department of Chemistry and Life Science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015, Japan; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
28
|
Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. The key roles of organelles and ferroptosis in Alzheimer's disease. J Neurosci Res 2022; 100:1257-1280. [PMID: 35293012 DOI: 10.1002/jnr.25033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), an age-related neurodegenerative disease, is a striking global health problem. Ferroptosis is a newly discovered form of cell death characterized by iron-dependent lipid peroxidation products and the accumulation of lethal reactive oxygen species. Strict regulation of iron metabolism is essential to ensure neuronal homeostasis. Excess and deficiency of iron are both associated with neurodegeneration. Studies have shown that oxidative stress caused by cerebral iron metabolism disorders in the body is involved in the process of AD, ferroptosis may play an important role in the pathogenesis of AD, and regulating ferroptosis is expected to be a new direction for the treatment of AD. Various organelles are closely related to ferroptosis: mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosome are involved in the regulation of ferroptosis from the aspects of iron metabolism and redox imbalance. In this review, the relationship between AD and the dysfunction of organelles (including mitochondria, endoplasmic reticulum, lysosome, and Golgi apparatus) and the role of organelles in ferroptosis of AD were reviewed to provide insights for understanding the relationship between organelles and ferroptosis in AD and the treatment of AD.
Collapse
Affiliation(s)
- Hui-Zhi Long
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Yan Cheng
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Zi-Wei Zhou
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Hong-Yu Luo
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Dan-Dan Wen
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Li-Chen Gao
- School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| |
Collapse
|
29
|
Kagerer SM, Schroeder C, van Bergen JMG, Schreiner SJ, Meyer R, Steininger SC, Vionnet L, Gietl AF, Treyer V, Buck A, Pruessmann KP, Hock C, Unschuld PG. Low Subicular Volume as an Indicator of Dementia-Risk Susceptibility in Old Age. Front Aging Neurosci 2022; 14:811146. [PMID: 35309894 PMCID: PMC8926841 DOI: 10.3389/fnagi.2022.811146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Hippocampal atrophy is an established Alzheimer’s Disease (AD) biomarker. Volume loss in specific subregions as measurable with ultra-high field magnetic resonance imaging (MRI) may reflect earliest pathological alterations. Methods Data from positron emission tomography (PET) for estimation of cortical amyloid β (Aβ) and high-resolution 7 Tesla T1 MRI for assessment of hippocampal subfield volumes were analyzed in 61 non-demented elderly individuals who were divided into risk-categories as defined by high levels of cortical Aβ and low performance in standardized episodic memory tasks. Results High cortical Aβ and low episodic memory interactively predicted subicular volume [F(3,57) = 5.90, p = 0.018]. The combination of high cortical Aβ and low episodic memory was associated with significantly lower subicular volumes, when compared to participants with high episodic memory (p = 0.004). Discussion Our results suggest that low subicular volume is linked to established indicators of AD risk, such as increased cortical Aβ and low episodic memory. Our data support subicular volume as a marker of dementia-risk susceptibility in old-aged non-demented persons.
Collapse
Affiliation(s)
- Sonja M. Kagerer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Clemens Schroeder
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | | | - Simon J. Schreiner
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Rafael Meyer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Stefanie C. Steininger
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Laetitia Vionnet
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Anton F. Gietl
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alfred Buck
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Klaas P. Pruessmann
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Paul G. Unschuld
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Psychogeriatric Medicine, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zürich, Zurich, Switzerland
- Geriatric Psychiatry, Department of Psychiatry, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
- *Correspondence: Paul G. Unschuld,
| |
Collapse
|
30
|
Chandra A, Johri A. A Peek into Pandora’s Box: COVID-19 and Neurodegeneration. Brain Sci 2022; 12:brainsci12020190. [PMID: 35203953 PMCID: PMC8870638 DOI: 10.3390/brainsci12020190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Ever since it was first reported in Wuhan, China, the coronavirus-induced disease of 2019 (COVID-19) has become an enigma of sorts with ever expanding reports of direct and indirect effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on almost all the vital organ systems. Along with inciting acute pulmonary complications, the virus attacks the cardiac, renal, hepatic, and gastrointestinal systems as well as the central nervous system (CNS). The person-to-person variability in susceptibility of individuals to disease severity still remains a puzzle, although the comorbidities and the age/gender of a person are believed to play a key role. SARS-CoV-2 needs angiotensin-converting enzyme 2 (ACE2) receptor for its infectivity, and the association between SARS-CoV-2 and ACE2 leads to a decline in ACE2 activity and its neuroprotective effects. Acute respiratory distress may also induce hypoxia, leading to increased oxidative stress and neurodegeneration. Infection of the neurons along with peripheral leukocytes’ activation results in proinflammatory cytokine release, rendering the brain more susceptible to neurodegenerative changes. Due to the advancement in molecular biology techniques and vaccine development programs, the world now has hope to relatively quickly study and combat the deadly virus. On the other side, however, the virus seems to be still evolving with new variants being discovered periodically. In keeping up with the pace of this virus, there has been an avalanche of studies. This review provides an update on the recent progress in adjudicating the CNS-related mechanisms of SARS-CoV-2 infection and its potential to incite or accelerate neurodegeneration in surviving patients. Current as well as emerging therapeutic opportunities and biomarker development are highlighted.
Collapse
|
31
|
Dhahri M, Alghrably M, Mohammed HA, Badshah SL, Noreen N, Mouffouk F, Rayyan S, Qureshi KA, Mahmood D, Lachowicz JI, Jaremko M, Emwas AH. Natural Polysaccharides as Preventive and Therapeutic Horizon for Neurodegenerative Diseases. Pharmaceutics 2021; 14:1. [PMID: 35056897 PMCID: PMC8777698 DOI: 10.3390/pharmaceutics14010001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/27/2021] [Accepted: 12/03/2021] [Indexed: 01/06/2023] Open
Abstract
Neurodegenerative diseases are a serious and widespread global public health burden amongst aging populations. The total estimated worldwide global cost of dementia was US$818 billion in 2015 and has been projected to rise to 2 trillion US$ by 2030. While advances have been made to understand different neurodegenerative disease mechanisms, effective therapeutic strategies do not generally exist. Several drugs have been proposed in the last two decades for the treatment of different types of neurodegenerative diseases, with little therapeutic benefit, and often with severe adverse and side effects. Thus, the search for novel drugs with higher efficacy and fewer drawbacks is an ongoing challenge in the treatment of neurodegenerative disease. Several natural compounds including polysaccharides have demonstrated neuroprotective and even therapeutic effects. Natural polysaccharides are widely distributed in plants, animals, algae, bacterial and fungal species, and have received considerable attention for their wide-ranging bioactivity, including their antioxidant, anti-neuroinflammatory, anticholinesterase and anti-amyloidogenic effects. In this review, we summarize different mechanisms involved in neurodegenerative diseases and the neuroprotective effects of natural polysaccharides, highlighting their potential role in the prevention and therapy of neurodegenerative disease.
Collapse
Affiliation(s)
- Manel Dhahri
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Hamdoon A. Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo 11371, Egypt
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Noreen Noreen
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan; (S.L.B.); (N.N.)
| | - Fouzi Mouffouk
- Department of Chemistry, Faculty of Science, Kuwait University, Safat 13060, Kuwait;
| | - Saleh Rayyan
- Chemistry Department, Birzeit University, Birzeit P627, Palestine;
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia; (M.A.); (M.J.)
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|
32
|
Lian N, Zhang Q, Chen J, Chen M, Huang J, Lin Q. The Role of Ferroptosis in Bronchoalveolar Epithelial Cell Injury Induced by Cigarette Smoke Extract. Front Physiol 2021; 12:751206. [PMID: 34658933 PMCID: PMC8511776 DOI: 10.3389/fphys.2021.751206] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/08/2021] [Indexed: 01/31/2023] Open
Abstract
Background: Cigarette smoking is a major risk factor for bronchoalveolar epithelial cell (BAEC) injury. Understanding the relevant pathogenesis is important for the treatment of cigarette smoke–related chronic airway diseases such as chronic obstructive pulmonary disease. Methods: In this study, BAECs were cultured in 5% cigarette smoke extract (CSE) or regular culture medium for 24 h. Differentially expressed genes (DEGs) were detected by next-generation RNA sequencing (RNA-seq) and validated by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bioinformatic analysis was performed on DEGs. Co-treated BAECs with 5% CSE and the ferroptosis inhibitor, ferrostatin-1 was applied to observe the role of ferroptosis. Results: In the CSE group, 210 upregulated genes and 159 downregulated genes were identified compared with the control group. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that the DEGs were related to oxidative stress and ferroptosis. Ferroptosis-related genes were further verified by qRT-PCR. The mRNA level of GPX4 decreased; the mRNA levels of ACSL4, FTH1 and SLC7A11 increased (p < 0.05). Pretreatment with the ferroptosis inhibitor ferrostatin-1 mitigated CSE-induced ROS accumulation and inflammatory mediator expression in BAECs (p < 0.05). Conclusion: CSE treatment altered ferroptosis-related gene expression patterns in cultured BAECs. Inhibition of ferroptosis reduced the inflammatory response of CSE-treated BAECs. These data provide a better understanding of the underlying molecular mechanisms of CSE-related lung injury.
Collapse
Affiliation(s)
- Ningfang Lian
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Qiaoxian Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Jia Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Mengxue Chen
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Jiefeng Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| | - Qichang Lin
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Fujian Medical University, Institute of Respiratory Disease, Fujian Medical University, Fuzhou, China
| |
Collapse
|
33
|
Cheng H, Yang B, Ke T, Li S, Yang X, Aschner M, Chen P. Mechanisms of Metal-Induced Mitochondrial Dysfunction in Neurological Disorders. TOXICS 2021; 9:142. [PMID: 34204190 PMCID: PMC8235163 DOI: 10.3390/toxics9060142] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 01/31/2023]
Abstract
Metals are actively involved in multiple catalytic physiological activities. However, metal overload may result in neurotoxicity as it increases formation of reactive oxygen species (ROS) and elevates oxidative stress in the nervous system. Mitochondria are a key target of metal-induced toxicity, given their role in energy production. As the brain consumes a large amount of energy, mitochondrial dysfunction and the subsequent decrease in levels of ATP may significantly disrupt brain function, resulting in neuronal cell death and ensuing neurological disorders. Here, we address contemporary studies on metal-induced mitochondrial dysfunction and its impact on the nervous system.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
| | - Bobo Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China;
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning 530021, China; (H.C.); (X.Y.)
- Department of Public Health, School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (B.Y.); (T.K.)
| |
Collapse
|
34
|
Ferroptosis in Different Pathological Contexts Seen through the Eyes of Mitochondria. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5537330. [PMID: 34211625 PMCID: PMC8205588 DOI: 10.1155/2021/5537330] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022]
Abstract
Ferroptosis is a recently described form of regulated cell death characterized by intracellular iron accumulation and severe lipid peroxidation due to an impaired cysteine-glutathione-glutathione peroxidase 4 antioxidant defence axis. One of the hallmarks of ferroptosis is a specific morphological phenotype characterized by extensive ultrastructural changes of mitochondria. Increasing evidence suggests that mitochondria play a significant role in the induction and execution of ferroptosis. The present review summarizes existing knowledge about the mitochondrial impact on ferroptosis in different pathological states, primarily cancer, cardiovascular diseases, and neurodegenerative diseases. Additionally, we highlight pathologies in which the ferroptosis/mitochondria relation remains to be investigated, where the process of ferroptosis has been confirmed (such as liver- and kidney-related pathologies) and those in which ferroptosis has not been studied yet, such as diabetes. We will bring attention to avenues that could be followed in future research, based on the use of mitochondria-targeted approaches as anti- and proferroptotic strategies and directed to the improvement of existing and the development of novel therapeutic strategies.
Collapse
|
35
|
Bao Z, Hua L, Ye Y, Wang D, Li C, Xie Q, Wakimoto H, Ye G, Ji J. MEF2C silencing downregulates NF2 and E-cadherin and enhances Erastin-induced ferroptosis in meningioma. Neuro Oncol 2021; 23:2014-2027. [PMID: 33984142 DOI: 10.1093/neuonc/noab114] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ferroptosis, a programmed cell death characterized by lipid peroxidation, is implicated in various diseases including cancer. Although cell density-dependent E-cadherin and Merlin/Neurofibromin (NF2) loss can modulate ferroptosis, the role of ferroptosis and its potential link to NF2 status and E-cadherin expression in meningioma remain unknown. METHODS Relationship between ferroptosis modulators expression and NF2 mutational status was examined in 35 meningiomas (10 NF2 loss and 25 NF2 wildtype). The impact of NF2 and E-cadherin on ferroptosis were examined by LDH release, lipid peroxidation and western blot assays in IOMM-Lee, CH157 and patient-derived meningioma cell models. Luciferase reporter and chromatin immunoprecipitation assays were used to assess the ability of MEF2C (myocyte enhancer factor 2C) to drive expression of NF2 and CDH1 (E-cadherin). Therapeutic efficacy of Erastin-induced ferroptosis was tested in xenograft mouse models. RESULTS Meningioma cells with NF2 inactivation were susceptible to Erastin-induced ferroptosis. Meningioma cells grown at higher density increased expression of E-Cadherin, which suppressed Erastin-induced ferroptosis. Maintaining NF2 and E-cadherin inhibited ferroptosis-related lipid peroxidation and meningioma cell death. MEF2C was found to drive the expression of both NF2 and E-cadherin. MEF2C silencing enhanced Erastin-induced ferroptotic meningioma cell death and lipid peroxidation levels in vitro, which was limited by forced expression of MEF2C targets, NF2 and E-Cadherin. In vivo, anti-meningioma effect of Erastin was augmented by MEF2C knockdown and was counteracted by NF2 or E-Cadherin. CONCLUSIONS NF2 loss and low E-cadherin create susceptibility to ferroptosis in meningioma. MEF2C could be a new molecular target in ferroptosis-inducing therapies for meningioma.
Collapse
Affiliation(s)
- Zhongyuan Bao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lingyang Hua
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yangfan Ye
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Daijun Wang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chong Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Xie
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hiroaki Wakimoto
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Gong Ye
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Critical Care Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Liu L, Yang S, Wang H. α-Lipoic acid alleviates ferroptosis in the MPP + -induced PC12 cells via activating the PI3K/Akt/Nrf2 pathway. Cell Biol Int 2020; 45:422-431. [PMID: 33241887 DOI: 10.1002/cbin.11505] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/27/2020] [Accepted: 10/31/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a typical neurodegenerative disease. α-Lipoic acid (α-LA) can reduce the incidence of neuropathy. The present study explored the role and mechanism of α-LA in 1-methyl-4-phenylpyridinium (MPP+ )-induced cell model of PD. The PD model was induced via treating PC12 cells with MPP+ at different concentrations. MPP+ and α-LA effects on PC12 cells were assessed from cell viability and ferroptosis. Cell viability was detected using the cell counting kit-8 assay. Malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), iron, reactive xygen species (ROS), and glutathione (GSH) concentrations, and ferroptosis-related protein SLC7A11 and GPx4 expressions were used for ferroptosis evaluation. p-PI3K, p-Akt, and nuclear factor erythroid 2-related factor 2 (Nrf2) protein levels were detected. The PI3K/Akt/Nrf2 pathway inhibitors were applied to verify the role of the PI3K/Akt/Nrf2 pathway in α-LA protection against MPP+ -induced decreased cell viability and ferroptosis. MPP+ -reduced cell viability and induced ferroptosis as presented by increased MDA, 4-HNE, iron, and ROS concentrations, and reduced levels of GSH and ferroptosis marker proteins (SLC7A11 and GPx4). α-LA attenuated MPP+ -induced cell viability decline and ferroptosis. The PI3K/Akt/Nrf2 pathway was activated after α-LA treatment. Inhibiting the PI3K/Akt/Nrf2 pathway weakened the protection of α-LA against MPP+ treatment. We highlighted that α-LA alleviated MPP+ -induced cell viability decrease and ferroptosis in PC12 cells via activating the PI3K/Akt/Nrf2 pathway.
Collapse
Affiliation(s)
- Lin Liu
- Department of Neurology, Nankai University Affiliated Nankai Hospital, Changjiang Dao, Nankai, Tianjin, China
| | - Songqi Yang
- Department of Neurology, Nankai University Affiliated Nankai Hospital, Changjiang Dao, Nankai, Tianjin, China
| | - Heng Wang
- Department of Neurology, Nankai University Affiliated Nankai Hospital, Changjiang Dao, Nankai, Tianjin, China
| |
Collapse
|