1
|
Zhao JJ, Tian SN, Li X, Peng ZY, Li GH, Zhang F, Zhao M, Zhang JP, Zhang XB. Enhancing hemophilia A gene therapy by strategic F8 deletions in AAV vectors. BLOOD SCIENCE 2025; 7:e00217. [PMID: 39949501 PMCID: PMC11822342 DOI: 10.1097/bs9.0000000000000217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/06/2024] [Indexed: 02/16/2025] Open
Abstract
Hemophilia A, caused by a deficiency in factor VIII (F8), is a promising target for gene therapy. This study aims to enhance the efficacy of adeno-associated virus serotype 8 (AAV8) vectors, specifically those encoding B-domain-deleted F8 (BDDF8), to treat the condition. We focused on improving therapeutic outcomes by strategically deleting amino acids at the furin cleavage site (RHQR), a modification that is crucial for increasing F8 expression and reducing capsid stress during vector packaging. Using computational modeling with AlphaFold2, combined with western blotting and in vivo clotting assays, we developed and tested several AAV8-BDDF8 variants in a hemophilia A mouse model. The AAV8-BDDF8-ΔRHQR10 variant, which includes a 10-amino acid deletion at the RHQR site, demonstrated a 2- to 3-fold increase in F8 activity, with sustained expression and no hepatotoxicity. This variant also showed reduced capsid stress and enhanced protein expression. However, the observed decline in long-term efficacy highlights the ongoing challenges in AAV-F8 gene therapy, emphasizing the need for continuous improvements. Our findings offer valuable insights for refining AAV-mediated gene therapy in hemophilia A, showing that targeted molecular modifications can significantly enhance therapeutic performance while ensuring safety.
Collapse
Affiliation(s)
- Juan-Juan Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Sai-Ning Tian
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Xiang Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Zu-Yi Peng
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| | - Guo-Hua Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Feng Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Mei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jian-Ping Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Sekar R, Mimoun A, Bou-Jaoudeh M, Loyau S, Delignat S, Daventure V, Bonilla P, Bhale AS, Venkataraman K, Rayes J, Boulaftali Y, Jandrot-Perrus M, Proulle V, Lacroix-Desmazes S. High factor VIII concentrations interfere with glycoprotein VI-mediated platelet activation in vitro. J Thromb Haemost 2024; 22:1489-1495. [PMID: 38325597 DOI: 10.1016/j.jtha.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND The recruitment of activated factor VIII (FVIII) at the surface of activated platelets is a key step toward the burst of thrombin and fibrin generation during thrombus formation at the site of vascular injury. It involves binding to phosphatidylserine and, possibly, to fibrin-bound αIIbβ3. Seminal work had shown the binding of FVIII to resting platelets, yet without a clear understanding of a putative physiological relevance. OBJECTIVES To characterize the effects of FVIII-platelet interaction and its potential modulation of platelet function. METHODS FVIII was incubated with washed platelets. The effects on platelet activation (spontaneously or triggered by collagen and thrombin) were studied by flow cytometry and light transmission aggregometry. We explored the involvement of downstream pathways by studying phosphorylation profiles (Western blot). The FVIII-glycoprotein (GP) VI interaction was investigated by ELISA, confocal microscopy, and proximity ligation assay. RESULTS FVIII bound to the surface of resting and activated platelets in a dose-dependent manner. FVIII at supraphysiological concentrations did not induce platelet activation but rather specifically inhibited collagen-induced platelet aggregation and altered glycoprotein VI (GPVI)-dependent phosphorylation. FVIII, freed of its chaperone protein von Willebrand factor (VWF), interacted in close proximity with GPVI at the platelet surface. CONCLUSION We showed that VWF-free FVIII binding to, or close to, GPVI modulates platelet activation in vitro. This may represent an uncharacterized negative feedback loop to control overt platelet activation. Whether locally activated FVIII concentrations achieved during platelet accumulation and thrombus formation at the site of vascular injury in vivo are compatible with such a function remains to be determined.
Collapse
Affiliation(s)
- Rohini Sekar
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Cité, Paris, France
| | - Angelina Mimoun
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Cité, Paris, France
| | - Melissa Bou-Jaoudeh
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Cité, Paris, France
| | - Stéphane Loyau
- Laboratoire de recherche vasculaire translationnelle, Institut National de la Santé et de la Recherche Médicale U1148, Université Paris Cité, Paris, France
| | - Sandrine Delignat
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Cité, Paris, France
| | - Victoria Daventure
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Cité, Paris, France
| | - Perrine Bonilla
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Cité, Paris, France
| | - Aishwarya Sudam Bhale
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Krishnan Venkataraman
- Centre for Bio-Separation Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Julie Rayes
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Yacine Boulaftali
- Laboratoire de recherche vasculaire translationnelle, Institut National de la Santé et de la Recherche Médicale U1148, Université Paris Cité, Paris, France
| | - Martine Jandrot-Perrus
- Laboratoire de recherche vasculaire translationnelle, Institut National de la Santé et de la Recherche Médicale U1148, Université Paris Cité, Paris, France
| | - Valérie Proulle
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Cité, Paris, France; Service d'Hématologie Biologique, Hôpital Cochin, Assistance Publique-Hôptiaux de Paris Centre, Paris, France.
| | - Sébastien Lacroix-Desmazes
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Cité, Paris, France.
| |
Collapse
|
3
|
Li F, He L, Chen G, Lu Y, Li R, Zhang Y, Jing X, Ling R, Li D, Liao C. Variant spectrum of F8 and F9 in hemophilia patients from southern China and 26 novel variants. Front Genet 2023; 14:1254265. [PMID: 38196513 PMCID: PMC10775173 DOI: 10.3389/fgene.2023.1254265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024] Open
Abstract
Hemophilia, an X-linked recessive disorder, is characterized by spontaneous or trauma-induced prolonged bleeding. It is classified as hemophilia A when caused by variants in the F8 gene, and hemophilia B when caused by F9 variants. Few studies have described hemophilia variants in the Chinese population. This study aimed to investigate the clinical and genetic profiles of 193 hemophilia patients from southern China. Utilizing Sanger sequencing, multiplex ligation-dependent probe amplification, gap detection, long-range PCR, and multiplex PCR, we identified both F8 and F9 gene variants. Pregnant women with a history of hemophilia A offspring underwent amniocentesis or villus sampling for the variant detection. Variants in F8 and F9 were pinpointed in 183 patients, with 26 being novel discoveries. Notably, genetic testing was absent in the initial evaluation of 133 out of 161 patients, leading to a protracted average definitive diagnosis timeline of 2 years. Remarkably, two hemophilia A cases with anticipated severe phenotypes due to protein-truncating variants presented with only moderate or mild clinical manifestations. Among the 40 fetuses tested, 34 were males, with 17 exhibiting hemizygous variants in the F8 gene. Our results contribute to the broader understanding of F8 and F9 variant spectrum and highlight the underuse of genetic analyses in southern China.
Collapse
Affiliation(s)
- Fucheng Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Liya He
- Hematology Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guilan Chen
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan Lu
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ru Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongling Zhang
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiangyi Jing
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rujuan Ling
- Department of Internal Medicine, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongzhi Li
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Can Liao
- Department of Prenatal Diagnostic Center, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Jiang N, Xiao Y, Liu Y, Liu W, Liu S. Blood coagulation factor VIII D1241E polymorphism leads to a weak malectin interaction and reduction of factor VIII posttranslational modification and secretion. Exp Cell Res 2020; 397:112334. [PMID: 33144078 DOI: 10.1016/j.yexcr.2020.112334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022]
Abstract
Blood coagulation factor VIII (FVIII) is a key cofactor in regulation of blood coagulation. This study investigated the mechanism by which FVIII is translated and transported into the endoplasmic reticulum (ER) and processed in the Golgi apparatus before secretion using an in vitro cell model. HEK-293T cells were transfected with vectors carrying wild-type (WT) FVIII or polymorphic FVIII D1241E for coexpression with ER lectins and treatment with tunicamycin (an N-linked glycosylation inhibitor), 1-deoxynojirimycin (an alpha-glucosidase inhibitor), endoglycosidase H, or MG132 (Cbz-Leu-Leu-leucinal; a proteasome inhibitor). The data showed that the minor allele of FVIII D1241E was able to reduce FVIII secretion into the conditioned medium but maintain a normal level of procoagulation ability, although both FVIII WT and the minor allele of FVIII D1241E showed similar levels of transcription and translation capacities. Functionally, the D1241E polymorphism led to a reduced level of FVIII in the Golgi apparatus because of its reduced association with malectin, which interacts with newly synthesized glycoproteins in the ER for FVIII folding and trafficking, leading to degradation of the minor allele of FVIII D1241E in the cytosol. This study demonstrated that malectin is important for regulation of the FVIII posttranslational process and that the minor allele of FVIII D1241E had a reduced association with malectin but an increased capacity for proteasomal FVIII degradation. These data imply the role of the ER quality control in future recombinant FVIII development.
Collapse
Affiliation(s)
- Ning Jiang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, China.
| | - Yuesheng Liu
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, China
| | - Weihua Liu
- Department of Pediatrics, Xi'an first people's Hospital, China
| | - Shanxi Liu
- Shaanxi Yida Haemophilia Institute, China
| |
Collapse
|
5
|
Jun Z, Ming-Ming L, Qian-Qing Z, Yun-Hong W, Chong-Yang Z, Xin L. Functional identification of factor VIII B domain regions in hepatocyte cells. Biochem Biophys Res Commun 2020; 526:633-640. [PMID: 32248973 DOI: 10.1016/j.bbrc.2020.03.132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 11/15/2022]
Abstract
Factor VIII (FVIII) functions as a cofactor within the intrinsic pathway of blood coagulation in process of FX activation by FIXa, for which deficiency results in the bleeding disorder hemophilia A. The gene of FVIII contains 26 exons that code for a 19 amino acid signal peptide and a 2332 amino acid polypeptide with a domain structure designated A1-A2-B-A3-C1-C2, of which the A domains are homologous with each other, as are the C domains. It has been well-documented that both the domains are the necessary elements for FVIII activities. The B domain is highly glycosylated and has a variable sequence, even among FVIIIs from different species. The B domain plays versatile roles in FVIII lifespan except for coagulation activity, but the functional characteristics of its specific regions remain still obscure. A series of recombinant FVIIIs (rFVIIIs) with B domain truncated were constructed and transiently expressed in hepatocyte cells. Media and cell lysates were collected after 72 h for the analyses of FVIII biosynthesis, secretion, activity and stability in ex vivo plasma relative to the full length wild-type FVIII. Unexpectedly, various regions in B domain exhibited different contribution to these functionalities. The discovery might facilitate the bioengineered rFVIIIs and gene therapeutics.
Collapse
Affiliation(s)
- Zhang Jun
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China.
| | - Lin Ming-Ming
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhang Qian-Qing
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China
| | - Wang Yun-Hong
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China
| | - Zhu Chong-Yang
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China
| | - Li Xin
- Institute of Molecular Medicine and Oncology, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
6
|
Pezeshkpoor B, Schreck U, Biswas A, Driesen J, Berkemeier AC, Pavlova A, Müller J, Oldenburg J. An in silico and in vitro approach to elucidate the impact of residues flanking the cleavage scissile bonds of FVIII. PLoS One 2017; 12:e0180456. [PMID: 28683085 PMCID: PMC5500338 DOI: 10.1371/journal.pone.0180456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/15/2017] [Indexed: 11/19/2022] Open
Abstract
Coagulation Factor VIII is activated by an ordered limited thrombin proteolysis with different catalytic efficiency at three P1 Arginine residues: Arg759> Arg1708>Arg391, indicating the flanking residues of the latter to be less optimal. This study aimed to investigate, in silico and in vitro, the impact of possessing hypothetically optimized residues at these three catalytic cleavage sites. The structural impact of the residues flanking Arginine cleavage sites was studied by in silico analysis through comparing the cleavage cleft of the native site with a hypothetically optimized sequence at each site. Moreover, recombinant FVIII proteins were prepared by replacing the sequences flanking native thrombin cleavage sites with the proposed cleavage-optimized sequence. FVIII specific activity was determined by assessing the FVIII activity levels in relation to FVIII antigen levels. We further investigated whether thrombin generation could reflect the haemostatic potential of the variants. Our in silico results show the impact of the residues directly in the cleavage bond, and their neighboring residues on the insertion efficiency of the loop into the thrombin cleavage cleft. Moreover, the in vitro analysis shows that the sequences flanking the Arg1708 cleavage site seem to be the most close to optimal residues for achieving the maximal proteolytic activation and profactor activity of FVIII. The residues flanking the scissile bonds of FVIIII affect the cleavage rates and modulate the profactor activation. We were able to provide insights into the mechanisms of the specificity of thrombin for the P1 cleavage sites of FVIII. Thus, the P4-P2´ residues surrounding Arg1708 of FVIII have the highest impact on rates of thrombin proteolysis which contributes to thrombin activation of the profactor and eventually to the thrombin generation potential.
Collapse
Affiliation(s)
- Behnaz Pezeshkpoor
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - Ursula Schreck
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - Arijit Biswas
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - Julia Driesen
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
| | - Ann-Cristin Berkemeier
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - Anna Pavlova
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - Jens Müller
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
| | - Johannes Oldenburg
- Institute of Experimental Hematology and Transfusion Medicine, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University Clinic Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
7
|
Guo Z, Yang L, Qin X, Liu X, Zhang Y. Spectrum of Molecular Defects in 216 Chinese Families With Hemophilia A: Identification of Noninversion Mutation Hot Spots and 42 Novel Mutations. Clin Appl Thromb Hemost 2017; 24:70-78. [PMID: 28056528 DOI: 10.1177/1076029616687848] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hemophilia A (HA) is an X-linked bleeding disorder caused by heterogeneous mutations in the factor VIII gene ( F8). Our aim is to identify the causative mutations in a large HA cohort from China. We studied 216 unrelated HA families. Molecular analyses of F8 were performed using a combination of molecular techniques, including polymerase chain reaction, direct sequencing, and multiplex ligation-dependent probe amplification. The deleterious consequences of the unreported missense mutations were evaluated using various bioinformatics approaches. Causative mutations in F8 were identified in 209 families, intron 22 inversion (Inv22) was identified in 89 severe families, and intron 1 inversion (Inv1) was positive in 5 severe families; 95 mutations were detected among 115 noninversion families, of which 42 were novel, including 29 null variations and 13 missense mutations for which causality was demonstrated via bioinformatics. Among the 53 previously reported mutations, more nonsense (5 of 9) and missense (10 of 26) mutation sites were found to occur at Arginine (Arg) sites and multiple small deletions/insertions (5 of 10) located within the poly-A runs of the B domain. The majority of these sequence variants frequently recurred in the database. The odds ratios for the likelihood of developing inhibitors significantly increased in the presence of nonsense mutation. Our F8 defect spectrum was heterogeneous. Small deletions/insertions in the poly-A runs of the B domain and nonsense and missense mutations at Arg sites were identified as mutation hot spots. Nonsense mutation increased the risk of developing inhibitors.
Collapse
Affiliation(s)
- Zhiping Guo
- 1 Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Linhua Yang
- 1 Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiuyu Qin
- 1 Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Xiue Liu
- 1 Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| | - Yaofang Zhang
- 1 Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China
| |
Collapse
|
8
|
Jourdy Y, Nougier C, Roualdes O, Fretigny M, Durand B, Negrier C, Vinciguerra C. Characterization of five associations ofF8missense mutations containing FVIII B domain mutations. Haemophilia 2016; 22:583-9. [DOI: 10.1111/hae.12906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/30/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Y. Jourdy
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon1; Université de Lyon; Lyon France
| | - C. Nougier
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon1; Université de Lyon; Lyon France
| | - O. Roualdes
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon1; Université de Lyon; Lyon France
| | - M. Fretigny
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
| | - B. Durand
- Hospices Civils de Lyon; Hôpital de la Croix Rousse; Service d'hématologie Biologique; Lyon France
| | - C. Negrier
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon1; Université de Lyon; Lyon France
| | - C. Vinciguerra
- Hospices Civils de Lyon; Hôpital Edouard Herriot; Service d'hématologie Biologique; Lyon France
- EAM 4174 Hémostase; Inflammation et Sepsis; Université Claude Bernard Lyon1; Université de Lyon; Lyon France
| |
Collapse
|