1
|
Yu S, Rao Y, Lu J, Li J, Wang B, Gou K. Trans 10, cis 12-conjugated linoleic acid alleviates vascular fibrosis in obese mice. Prostaglandins Leukot Essent Fatty Acids 2025; 204:102669. [PMID: 40007340 DOI: 10.1016/j.plefa.2025.102669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/31/2025] [Accepted: 02/20/2025] [Indexed: 02/27/2025]
Abstract
Controlling food intake and improving fat distribution are crucial for preventing and treating cardiovascular disease. Trans-10, cis-12 conjugated linoleic acid (t10c12-CLA) can inhibit fat deposition and facilitate bodyweight reduction, suggesting its potential to safeguard against cardiovascular disease. The transgenic (tg) mice, which inserted Pai expression cassette into the Rosa26 locus, can produce endogenous t10c12-CLA. In the present study, we used tg mice to evaluate whether the long-term existence of t10c12-CLA has a protective effect on the vascular fibrosis phenotype. The male wild-type (wt) and tg mice were marked as wt+chow, tg+chow, wt+HFD and tg+HFD groups with 24 weeks feeding the chow diet or high-fat diet (HFD). Compared with wt+chow and tg+chow mice, wt+HFD mice showed a significant (P < 0.05) increase in bodyweight and circulating lipid levels. The arterial blood vessels of wt+HFD mice displayed obvious lipid streaks and disorganization of collagen fibers. While compared with wt+HFD mice, tg+HFD mice showed a significant (P < 0.05) decrease in body weight and circulating lipid levels. The arterial blood vessels of tg+HFD mice displayed slight foam cells, predicting that t10c12-CLA can alleviates vascular fibrosis degree caused by HFD. The RNA and protein expression of proinflammatory factors in arterial blood vessels of tg+HFD mice were significantly (P < 0.05) decreased than those of wt+HFD mice. In conclusion, long-term existence of t10c12-CLA can improve lipid metabolism and circulating lipid levels and inhibit vascular inflammation and vascular fibrosis degree in obese mice, thereby preventing the further development of cardiovascular disease.
Collapse
Affiliation(s)
- Shuai Yu
- Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Yu Rao
- Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaqi Lu
- Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Jiarun Li
- Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Baozhu Wang
- Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China
| | - Kemian Gou
- Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
2
|
Li S, Li J, Cheng W, He W, Dai SS. Independent and Interactive Roles of Immunity and Metabolism in Aortic Dissection. Int J Mol Sci 2023; 24:15908. [PMID: 37958896 PMCID: PMC10647240 DOI: 10.3390/ijms242115908] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aortic dissection (AD) is a cardiovascular disease that seriously endangers the lives of patients. The mortality rate of this disease is high, and the incidence is increasing annually, but the pathogenesis of AD is complicated. In recent years, an increasing number of studies have shown that immune cell infiltration in the media and adventitia of the aorta is a novel hallmark of AD. These cells contribute to changes in the immune microenvironment, which can affect their own metabolism and that of parenchymal cells in the aortic wall, which are essential factors that induce degeneration and remodeling of the vascular wall and play important roles in the formation and development of AD. Accordingly, this review focuses on the independent and interactive roles of immunity and metabolism in AD to provide further insights into the pathogenesis, novel ideas for diagnosis and new strategies for treatment or early prevention of AD.
Collapse
Affiliation(s)
- Siyu Li
- School of Medicine, Chongqing University, Chongqing 400044, China
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Li
- Department of Cardiac Surgery, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Cheng
- Department of Cardiac Surgery, The First Affiliated Hospital of Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wenhui He
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Shuang-Shuang Dai
- School of Medicine, Chongqing University, Chongqing 400044, China
- Department of Biochemistry and Molecular Biology, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
3
|
Amalia M, Puteri MU, Saputri FC, Sauriasari R, Widyantoro B. Platelet Glycoprotein-Ib (GPIb) May Serve as a Bridge between Type 2 Diabetes Mellitus (T2DM) and Atherosclerosis, Making It a Potential Target for Antiplatelet Agents in T2DM Patients. Life (Basel) 2023; 13:1473. [PMID: 37511848 PMCID: PMC10381765 DOI: 10.3390/life13071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a persistent metabolic condition that contributes to the development of cardiovascular diseases. Numerous studies have provided evidence that individuals with T2DM are at a greater risk of developing cardiovascular diseases, typically two to four times more likely than those without T2DM, mainly due to an increased risk of atherosclerosis. The rupture of an atherosclerotic plaque leading to pathological thrombosis is commonly recognized as a significant factor in advancing cardiovascular diseases caused by TD2M, with platelets inducing the impact of plaque rupture in established atherosclerosis and predisposing to the primary expansion of atherosclerosis. Studies suggest that individuals with T2DM have platelets that display higher baseline activation and reactivity than those without the condition. The expression enhancement of several platelet receptors is known to regulate platelet activation signaling, including platelet glycoprotein-Ib (GPIb). Furthermore, the high expression of platelet GP1b has been reported to increase the risk of platelet adhesion, platelet-leucocyte interaction, and thrombo-inflammatory pathology. However, the study exploring the role of GP1b in promoting platelet activation-induced cardiovascular diseases in T2DM patients is still limited. Therefore, we summarize the important findings regarding pathophysiological continuity between T2DM, platelet GPIb, and atherosclerosis and highlight the potential therapy targeting GPIb as a novel antiplatelet agent for preventing further cardiovascular incidents in TD2M patients.
Collapse
Affiliation(s)
- Muttia Amalia
- Doctoral Program, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Meidi Utami Puteri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Fadlina Chany Saputri
- Laboratory of Pharmacology-Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Rani Sauriasari
- Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Bambang Widyantoro
- National Cardiovascular Center Harapan Kita, Department of Cardiology and Vascular Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta 11420, Indonesia
| |
Collapse
|
4
|
Maurya P, Ture SK, Li C, Scheible KM, McGrath KE, Palis J, Morrell CN. Transfusion of Adult, but Not Neonatal, Platelets Promotes Monocyte Trafficking in Neonatal Mice. Arterioscler Thromb Vasc Biol 2023; 43:873-885. [PMID: 36951062 PMCID: PMC11419309 DOI: 10.1161/atvbaha.122.318162] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
BACKGROUND Thrombocytopenia is common in preterm neonates. Platelet transfusions are sometimes given to thrombocytopenic neonates with the hope of reducing the bleeding risk, however, there are little clinical data to support this practice, and platelet transfusions may increase the bleeding risk or lead to adverse complications. Our group previously reported that fetal platelets expressed lower levels of immune-related mRNA compared with adult platelets. In this study, we focused on the effects of adult versus neonatal platelets on monocyte immune functions that may have an impact on neonatal immune function and transfusion complications. METHODS Using RNA sequencing of postnatal day 7 and adult platelets, we determined age-dependent platelet gene expression. Platelets and naive bone marrow-isolated monocytes were cocultured and monocyte phenotypes determined by RNA sequencing and flow cytometry. An in vivo model of platelet transfusion in neonatal thrombocytopenic mice was used in which platelet-deficient TPOR (thrombopoietin receptor) mutant mice were transfused with adult or postnatal day 7 platelets and monocyte phenotypes and trafficking were determined. RESULTS Adult and neonatal platelets had differential immune molecule expression, including Selp. Monocytes incubated with adult or neonatal mouse platelets had similar inflammatory (Ly6Chi) but different trafficking phenotypes, as defined by CCR2 and CCR5 mRNA and surface expression. Blocking P-sel (P-selectin) interactions with its PSGL-1 (P-sel glycoprotein ligand-1) receptor on monocytes limited the adult platelet-induced monocyte trafficking phenotype, as well as adult platelet-induced monocyte migration in vitro. Similar results were seen in vivo, when thrombocytopenic neonatal mice were transfused with adult or postnatal day 7 platelets; adult platelets increased monocyte CCR2 and CCR5, as well as monocyte chemokine migration, whereas postnatal day 7 platelets did not. CONCLUSIONS These data provide comparative insights into adult and neonatal platelet transfusion-regulated monocyte functions. The transfusion of adult platelets to neonatal mice was associated with an acute inflammatory and trafficking monocyte phenotype that was platelet P-sel dependent and may have an impact on complications associated with neonatal platelet transfusions.
Collapse
Affiliation(s)
- Preeti Maurya
- Aab Cardiovascular Research Institute (P.M., S.K.T., C.L., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
- Department of Pediatrics (P.M., K.M.S., K.E.M., J.P.), University of Rochester School of Medicine and Dentistry, NY
| | - Sara K Ture
- Aab Cardiovascular Research Institute (P.M., S.K.T., C.L., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| | - Chen Li
- Aab Cardiovascular Research Institute (P.M., S.K.T., C.L., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| | - Kristin M Scheible
- Department of Pediatrics (P.M., K.M.S., K.E.M., J.P.), University of Rochester School of Medicine and Dentistry, NY
| | - Kathleen E McGrath
- Department of Pediatrics (P.M., K.M.S., K.E.M., J.P.), University of Rochester School of Medicine and Dentistry, NY
| | - James Palis
- Department of Pediatrics (P.M., K.M.S., K.E.M., J.P.), University of Rochester School of Medicine and Dentistry, NY
- Department of Pathology and Laboratory Medicine (J.P., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| | - Craig N Morrell
- Aab Cardiovascular Research Institute (P.M., S.K.T., C.L., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
- Department of Medicine (C.N.M.), University of Rochester School of Medicine and Dentistry, NY
- Department of Microbiology and Immunology (C.N.M.), University of Rochester School of Medicine and Dentistry, NY
- Department of Pathology and Laboratory Medicine (J.P., C.N.M.), University of Rochester School of Medicine and Dentistry, NY
| |
Collapse
|
5
|
Gbotosho OT, Gollamudi J, Hyacinth HI. The Role of Inflammation in The Cellular and Molecular Mechanisms of Cardiopulmonary Complications of Sickle Cell Disease. Biomolecules 2023; 13:381. [PMID: 36830749 PMCID: PMC9953727 DOI: 10.3390/biom13020381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Cardiopulmonary complications remain the major cause of mortality despite newer therapies and improvements in the lifespan of patients with sickle cell disease (SCD). Inflammation has been identified as a major risk modifier in the pathogenesis of SCD-associated cardiopulmonary complications in recent mechanistic and observational studies. In this review, we discuss recent cellular and molecular mechanisms of cardiopulmonary complications in SCD and summarize the most recent evidence from clinical and laboratory studies. We emphasize the role of inflammation in the onset and progression of these complications to better understand the underlying pathobiological processes. We also discuss future basic and translational research in addressing questions about the complex role of inflammation in the development of SCD cardiopulmonary complications, which may lead to promising therapies and reduce morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
- Oluwabukola T. Gbotosho
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267-0525, USA
| | - Jahnavi Gollamudi
- Division of Hematology & Oncology, Department of Internal Medicine, 3125 Eden Avenue, ML 0562, Cincinnati, OH 45219-0562, USA
| | - Hyacinth I. Hyacinth
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267-0525, USA
| |
Collapse
|
6
|
Christophel-Plathier E, Costanza M, Kirsch M, Dulguerov F, Chapuis-Bernasconi C, Bisig B, Verdy F, Mendes V, Rancati V, Alberio L, Marcucci C, Scala E. Perioperative Management of a Patient With Combined Bernard Soulier syndrome and Storage Pool Disease During On-Pump Cardiac Surgery. J Cardiothorac Vasc Anesth 2023; 37:90-95. [PMID: 36266157 DOI: 10.1053/j.jvca.2022.09.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022]
Affiliation(s)
| | - Mariangela Costanza
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Matthias Kirsch
- Department of Cardiac Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Faculty of biology and medicine, University of Lausanne, Lausanne, Switzerland
| | - Filip Dulguerov
- Department of Cardiac Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | | | - Bettina Bisig
- Faculty of biology and medicine, University of Lausanne, Lausanne, Switzerland; Department of Pathology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - François Verdy
- Department of Cardiac Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Vitor Mendes
- Department of Cardiac Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Valentina Rancati
- Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Lorenzo Alberio
- Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Faculty of biology and medicine, University of Lausanne, Lausanne, Switzerland
| | - Carlo Marcucci
- Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Faculty of biology and medicine, University of Lausanne, Lausanne, Switzerland
| | - Emmanuelle Scala
- Department of Anesthesiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
7
|
Deng ZL, Zhou DZ, Cao SJ, Li Q, Zhang JF, Xie H. Development and Validation of an Inflammatory Response-Related Gene Signature for Predicting the Prognosis of Pancreatic Adenocarcinoma. Inflammation 2022; 45:1732-1751. [PMID: 35322324 DOI: 10.1007/s10753-022-01657-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/05/2022]
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly dangerous malignant tumor of the digestive tract, and difficult to diagnose, treat, and predict the prognosis. As we all know, tumor and inflammation can affect each other, and thus the inflammatory response in the microenvironment can be used to affect the prognosis. So far, the prognostic value of inflammatory response-related genes in PAAD is still unclear. Therefore, this study aimed to explore the inflammatory response-related genes for predicting the prognosis of PAAD. In this study, the mRNA expression profiles of PAAD patients and the corresponding clinical characteristics data of PAAD patients were downloaded from the public database. The least absolute shrinkage and selection operator (LASSO) Cox analysis model was used to identify and construct the prognostic gene signature in The Cancer Genome Atlas (TCGA) cohort. The PAAD patients used for verification are from the International Cancer Genome Consortium (ICGC) cohort. The Kaplan-Meier method was used to compare the overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox analyses were performed to identify the independent predictors of OS. Gene set enrichment analysis (GSEA) was performed to obtain gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and the correlation between gene expression and immune infiltrates was investigated via single sample gene set enrichment analysis (ssGSEA). The GEPIA database was performed to examine prognostic genes in PAAD. LASSO Cox regression analysis was used to construct a model of inflammatory response-related gene signature. Compared with the low-risk group, patients in the high-risk group had significantly lower OS. The receiver operating characteristic curve (ROC) analysis confirmed the signature's predictive capacity. Multivariate Cox analysis showed that risk score is an independent predictor of OS. Functional analysis shows that the immune status between the two risk groups is significantly different, and the cancer-related pathways were abundant in the high-risk group. Moreover, the risk score is significantly related to tumor grade, stage, and immune infiltration types. It was also obtained that the expression level of prognostic genes was significantly correlated with the sensitivity of cancer cells to anti-tumor drugs. In addition, there are significant differences in the expression of PAAD tissues and adjacent non-tumor tissues. The novel signature constructed from five inflammatory response-related genes can be used to predict prognosis and affect the immune status of PAAD. In addition, suppressing these genes may be a treatment option.
Collapse
Affiliation(s)
- Zu-Liang Deng
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Ding-Zhong Zhou
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Su-Juan Cao
- Department of Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Qing Li
- Department of Interventional Vascular Surgery, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China
| | - Jian-Fang Zhang
- Department of Physical Examination, Beihu Centers for Disease Control and Prevention, Chenzhou, 423000, People's Republic of China
| | - Hui Xie
- Department of Radiation Oncology, Affiliated Hospital (Clinical College) of Xiangnan University, Chenzhou, 423000, People's Republic of China.
| |
Collapse
|
8
|
Characterization of zebrafish gp1ba mutant and modelling Bernard Soulier syndrome. Blood Coagul Fibrinolysis 2022; 33:272-279. [PMID: 35802508 DOI: 10.1097/mbc.0000000000001135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The aim of this study is to model classical Bernard Soulier Syndrome in the zebrafish by targeting Gp1ba. We obtained gp1ba mutant embryos from Zebrafish International Resource Center and grew them to adulthood. The tail clips from these fish were used to prepare DNA and sequenced to identify heterozygotes. They were then bred to obtain homozygotes. The mutation was confirmed by DNA sequencing as a termination codon UAA in place of AAA codon at position 886 in the gp1ba transcript. Thus, at the Pro-295, the Gp1ba protein could be terminated. The blood from gp1ba homozygous and heterozygous mutants showed decreased ristocetin-mediated agglutination in the whole blood agglutination assay. The gp1ba heterozygous and homozygous larvae were subjected to a laser-assisted arterial thrombosis assay, and the results showed the prolonged occlusion in the caudal artery. These results suggested that the gp1ba mutant had a bleeding phenotype. The blood smears from the adult gp1ba, heterozygous and homozygous mutants, showed macrothrombocytes, similar to the human GP1BA deficiency that showed giant platelets. The bleeding assay on these heterozygous and homozygous mutants showed greater bleeding than wildtype, confirming the above findings. Taken together, the characterization of gp1ba zebrafish mutant suggested an autosomal dominant mode of inheritance. The zebrafish gp1ba mutant models classical Bernard Soulier Syndrome and could be used for reversing this phenotype to identify novel factors by the genome-wide piggyback knockdown method.
Collapse
|
9
|
Chen W, Wilson MS, Wang Y, Bergmeier W, Lanza F, Li R. Fast clearance of platelets in a commonly used mouse model for GPIbα is impeded by an anti-GPIbβ antibody derivative. J Thromb Haemost 2022; 20:1451-1463. [PMID: 35305057 PMCID: PMC9133214 DOI: 10.1111/jth.15702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Glycoprotein (GP)Ibα plays a critical role in regulating platelet clearance. Recently, we identified the mechanosensory domain (MSD) in GPIbα and reported evidence to suggest that unfolding of the GPIbα MSD induces exposure of the Trigger sequence therein and subsequent GPIb-IX signaling that accelerates platelet clearance. In a commonly used transgenic mouse model, IL4R-IbαTg, where the Trigger sequence is constitutively exposed, constitutive GPIb-IX-mediated cellular signals are present. Clearance of their platelets is also significantly faster than that of wild-type mice. Previously, an anti-GPIbβ antibody RAM.1 was developed. RAM.1 inhibits GPIbα-dependent platelet signaling and activation. Further, RAM.1 also inhibits anti-GPIbα antibody-mediated filopodia formation. OBJECTIVE To investigate whether RAM.1 can ameliorate trigger sequence exposure-mediated platelet clearance. METHODS Spontaneous filopodia were measured by confocal microscopy. Other platelet signaling events were measured by flow cytometry. Endogenous platelet life span was tracked by Alexa 488-labeled anti-mouse GPIX antibody. RESULT Transfected Chinese hamster ovary cells stably expressing the same chimeric IL4R-Ibα protein complex as in IL4R-IbαTg mice also constitutively exhibit filopodia, and that such filopodia could be abolished by treatment of RAM.1. Further, transfusion of a recombinant RAM.1 derivative that is devoid of its Fc portion significantly extends the endogenous life span of IL4R-IbαTg platelets. CONCLUSION These results provide the key evidence supporting the causative link of Trigger sequence exposure to accelerated platelet clearance, and suggest that a RAM.1 derivative may be therapeutically developed to treat GPIb-IX-mediated thrombocytopenia.
Collapse
Affiliation(s)
- Wenchun Chen
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| | - Moriah S. Wilson
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| | - Yingchun Wang
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Francois Lanza
- Université de Strasbourg, INSERM, BPPS UMR-S1255, Strasbourg, France
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Departments of Pediatrics, Emory University School of Medicine Atlanta, GA
| |
Collapse
|
10
|
Luo S, Clarke SLN, Ramanan AV, Thompson SD, Langefeld CD, Marion MC, Grom AA, Schooling CM, Gaunt TR, Yeung SLA, Zheng J. Platelet Glycoprotein Ib α-Chain as a Putative Therapeutic Target for Juvenile Idiopathic Arthritis: A Mendelian Randomization Study. Arthritis Rheumatol 2021; 73:693-701. [PMID: 33079445 PMCID: PMC8048917 DOI: 10.1002/art.41561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/15/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To ascertain the role of platelet glycoprotein Ib α-chain (GPIbα) plasma protein levels in cardiovascular, autoimmune, and autoinflammatory diseases and whether its effects are mediated by platelet count. METHODS We performed a two-sample Mendelian randomization (MR) study, using both a cis-acting protein quantitative trait locus (cis-pQTL) and trans-pQTL near the GP1BA and BRAP genes as instruments. To assess if platelet count mediated the effect, we then performed a two-step MR study. Putative associations (GPIbα/platelet count/disease) detected by MR analyses were subsequently assessed using multiple-trait colocalization analyses. RESULTS After correction for multiple testing (Bonferroni-corrected threshold P ≤ 2 × 10-3 ), GPIbα, instrumented by either cis-pQTL or trans-pQTL, was causally implicated with an increased risk of oligoarticular and rheumatoid factor (RF)-negative polyarticular juvenile idiopathic arthritis (JIA). These effects of GPIbα appeared to be mediated by platelet count and were supported by strong evidence of colocalization (probability of all 3 traits sharing a common causal variant ≥0.80). GPIbα instrumented by cis-pQTL did not appear to affect cardiovascular risk, although the GPIbα trans-pQTL was associated with an increased risk of cardiovascular diseases and autoimmune diseases but a decreased risk of autoinflammatory diseases, suggesting that this trans-acting instrument operates through other pathways. CONCLUSION The role of platelets in thrombosis is well-established; however, our findings provide some novel genetic evidence that platelets may be causally implicated in the development of oligoarticular and RF-negative polyarticular JIA, and indicate that GPIbα may serve as a putative therapeutic target for these JIA subtypes.
Collapse
Affiliation(s)
- Shan Luo
- The University of Hong Kong, Hong Kong, China, and University of BristolBristolUK
| | - Sarah L. N. Clarke
- University of Bristol and University Hospitals Bristol NHS Foundation TrustBristolUK
| | | | - Susan D. Thompson
- University of Cincinnati College of Medicine and Cincinnati Children’s Hospital Medical CentreCincinnatiOhio
| | | | | | - Alexei A. Grom
- Cincinnati Children’s Hospital Medical CentreCincinnatiOhio
| | - C. Mary Schooling
- The University of Hong Kong, Hong Kong, China, and The City University of New York School of Public Health and Health PolicyNew York
| | - Tom R. Gaunt
- University of Bristol and NIHR Bristol Biomedical Research CentreBristolUK
| | | | | |
Collapse
|
11
|
Wang L, Tang C. Targeting Platelet in Atherosclerosis Plaque Formation: Current Knowledge and Future Perspectives. Int J Mol Sci 2020; 21:ijms21249760. [PMID: 33371312 PMCID: PMC7767086 DOI: 10.3390/ijms21249760] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 12/23/2022] Open
Abstract
Besides their role in hemostasis and thrombosis, it has become increasingly clear that platelets are also involved in many other pathological processes of the vascular system, such as atherosclerotic plaque formation. Atherosclerosis is a chronic vascular inflammatory disease, which preferentially develops at sites under disturbed blood flow with low speeds and chaotic directions. Hyperglycemia, hyperlipidemia, and hypertension are all risk factors for atherosclerosis. When the vascular microenvironment changes, platelets can respond quickly to interact with endothelial cells and leukocytes, participating in atherosclerosis. This review discusses the important roles of platelets in the plaque formation under pro-atherogenic factors. Specifically, we discussed the platelet behaviors under disturbed flow, hyperglycemia, and hyperlipidemia conditions. We also summarized the molecular mechanisms involved in vascular inflammation during atherogenesis based on platelet receptors and secretion of inflammatory factors. Finally, we highlighted the studies of platelet migration in atherogenesis. In general, we elaborated an atherogenic role of platelets and the aspects that should be further studied in the future.
Collapse
Affiliation(s)
- Lei Wang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou 215123, China;
- Collaborative Innovation Center of Hematology of Jiangsu Province, Soochow University, Suzhou 215123, China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou 215123, China
- Correspondence: ; Tel.: +86-512-6588-0899
| |
Collapse
|
12
|
Ozawa K, Muller MA, Varlamov O, Tavori H, Packwood W, Mueller PA, Xie A, Ruggeri Z, Chung D, López JA, Lindner JR. Proteolysis of Von Willebrand Factor Influences Inflammatory Endothelial Activation and Vascular Compliance in Atherosclerosis. ACTA ACUST UNITED AC 2020; 5:1017-1028. [PMID: 33145464 PMCID: PMC7591934 DOI: 10.1016/j.jacbts.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
In murine models of atherosclerosis, excess endothelial-associated vWF results not only in platelet adhesion, but also endothelial expression of leukocyte adhesion molecules, indicating a role of platelets in endothelial activation. The events triggered by excess endothelial-associated vWF lead to accelerated plaque growth and abnormal arterial mechanical properties. The cellular and molecular events described herein can be assessed noninvasively through molecular imaging.
This study used in vivo molecular imaging to characterize endotheliall activation attributable to von Willebrand factor (vWF)-mediated platelet adhesion in atherosclerosis. In atherosclerotic mice lacking the low-density lipoprotein receptor on Western diet, the additional genetic deletion of the ADAMTS13, which cleaves endothelial-associated vWF, produced greater aortic molecular imaging signal for not only vWF and platelets, but also for endothelial adhesion molecules VCAM1 and P-selectin, larger plaque size, and lower aortic distensibility. Sustained ADAMTS13 therapy reduced signal for all 4 molecular targets and plaque size. We conclude that excess endothelial-associated vWF contributes to not only platelet adhesion, but also to up-regulation of endothelial cell adhesion molecules.
Collapse
Key Words
- AD13−/−, deficient for ADAMTS13
- Apo-E−/−, deficient for apolipoprotein-E
- BP, blood pressure
- GPIbα, glycoprotein-Ibα
- LDL, low-density lipoprotein
- LDL-R, low-density lipoprotein receptor
- LDL-R−/−, deficient for low-density lipoprotein receptor
- MB, microbubble
- NFκB, nuclear factor κ-light-chain-enhancer of activated B cells
- WSD, Western-style diet
- atherosclerosis
- molecular imaging
- platelets
- vWF, von Willebrand factor
- von Willebrand factor
Collapse
Affiliation(s)
- Koya Ozawa
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Matthew A. Muller
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Oleg Varlamov
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon
| | - Hagai Tavori
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - William Packwood
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Paul A. Mueller
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Aris Xie
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Zaverio Ruggeri
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California
| | | | | | - Jonathan R. Lindner
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
- Oregon National Primate Research Center, Oregon Health and Science University, Portland, Oregon
- Address for correspondence: Dr. Jonathan R. Lindner, Cardiovascular Division, UHN-62, Oregon Health and Science University, 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239.
| |
Collapse
|
13
|
Diabetes and Hyperglycemia Affect Platelet GPIIIa Expression. Effects on Adhesion Potential of Blood Platelets from Diabetic Patients under In Vitro Flow Conditions. Int J Mol Sci 2020; 21:ijms21093222. [PMID: 32370146 PMCID: PMC7247361 DOI: 10.3390/ijms21093222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Blood platelets play a crucial role in the early stages of atherosclerosis development. The process is believed to require firm adhesion of platelets to atherosclerosis-prone sites of the artery. However, little evidence exists regarding whether the blood platelets of individuals with pathological conditions associated with atherosclerosis have higher potential for adhesion. This process is to a large extent dependent on receptors present on the platelet membrane. Therefore, the aim of the presented study was to determine whether blood platelets from diabetic patients have higher capacity of adhesion under flow conditions and how diabetes affects one of the crucial platelet receptors involved in the process of adhesion-GPIIIa. The study compares the ability of platelets from non-diabetic and diabetic humans to interact with fibrinogen and von Willebrand factor, two proteins found in abundance on an inflamed endothelium, under flow conditions. The activation and reactivity of the blood platelets were also characterized by flow cytometry. Platelets from diabetic patients did not demonstrate enhanced adhesion to either studied protein, although they presented increased basal activation and responsiveness towards low concentrations of agonists. Platelets from diabetic patients were characterized by lower expression of GPIIIa, most likely due to an enhanced formation of platelet-derived microparticles PMPs, as supported by the observation of elevated concentration of this integrin and of GPIIIa-positive PMPs in plasma. We conclude that altered functionality of blood platelets in diabetes does not increase their adhesive potential. Increased glycation and decrease in the amount of GPIIIa on platelets may be partially responsible for this effect. Therefore, higher frequency of interactions of platelets with the endothelium, which is observed in animal models of diabetes, is caused by other factors. A primary cause may be a dysfunctional vascular wall.
Collapse
|
14
|
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and the predominant cause of heart attack and ischemic stroke. Despite the well-known sexual dimorphism in the incidence and complications of atherosclerosis, there are relatively limited data in the clinical and preclinical literature to rigorously address mechanisms underlying sex as a biological variable in atherosclerosis. In multiple histological and imaging studies, overall plaque burden and markers of inflammation appear to be greater in men than women and are predictive of cardiovascular events. However, while younger women are relatively protected from cardiovascular disease, by the seventh decade, the incidence of myocardial infarction in women ultimately surpasses that of men, suggesting an interaction between sex and age. Most preclinical studies in animal atherosclerosis models do not examine both sexes, and even in those that do, well-powered direct statistical comparisons for sex as an independent variable remain rare. This article reviews the available data. Overall, male animals appear to have more inflamed yet smaller plaques compared to female animals. Plaque inflammation is often used as a surrogate end point for plaque vulnerability in animals. The available data support the notion that rather than plaque size, plaque inflammation may be more relevant in assessing sex-specific mechanisms since the findings correlate with the sex difference in ischemic events and mortality and thus may be more reflective of the human condition. Overall, the number of preclinical studies directly comparing plaque inflammation between the sexes is extremely limited relative to the vast literature exploring atherosclerosis mechanisms. Failure to include both sexes and to address age in mechanistic atherosclerosis studies are missed opportunities to uncover underlying sex-specific mechanisms. Understanding the mechanisms driving sex as a biological variable in atherosclerotic disease is critical to future precision medicine strategies to mitigate what is still the leading cause of death of men and women worldwide.
Collapse
Affiliation(s)
- Joshua J. Man
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | - Joshua A. Beckman
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, TN
| | - Iris Z. Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| |
Collapse
|
15
|
Vats R, Tutuncuoglu E, Pradhan-Sundd T, Tejero J, Shaw GD, Sundd P. Tandem P-selectin glycoprotein ligand immunoglobulin prevents lung vaso-occlusion in sickle cell disease mice. Exp Hematol 2020; 84:1-6.e1. [PMID: 32243995 PMCID: PMC7237323 DOI: 10.1016/j.exphem.2020.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
Sickle cell disease (SCD) is a monogenic disorder estimated to affect more than three million people worldwide. Acute systemic painful vaso-occlusive episode (VOE) is the primary reason for emergency medical care among SCD patients. VOE may also progress to acute chest syndrome (ACS), a type of acute lung injury and one of the primary reasons for mortality among SCD patients. Recently, P-selectin monoclonal antibodies were found to attenuate VOE in SCD patients and lung vaso-occlusion in transgenic humanized SCD mice, highlighting the therapeutic benefit of P-selectin inhibition in SCD. Here, we use quantitative fluorescence intravital lung microscopy (qFILM) to illustrate that tandem P-selectin-glycoprotein ligand-immunoglobulin (TSGL-Ig) fusion molecule containing four P-selectin binding sites, significantly attenuated intravenous (IV) oxyhemoglobin triggered lung vaso-occlusion in SCD mice. These findings highlight the therapeutic potential of TSGL-Ig in preventing VOE and ACS in SCD.
Collapse
Affiliation(s)
- Ravi Vats
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA
| | - Egemen Tutuncuoglu
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA
| | - Tirthadipa Pradhan-Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA; Sickle Cell Center of Excellence, University of Pittsburgh, Pittsburgh, PA; Division of Hematology and Oncology, University of Pittsburgh, Pittsburgh, PA
| | - Jesus Tejero
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA
| | | | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA; Sickle Cell Center of Excellence, University of Pittsburgh, Pittsburgh, PA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
16
|
Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood 2020; 134:1859-1872. [PMID: 31481482 DOI: 10.1182/blood.2019000518] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022] Open
Abstract
Clinical observations implicate a role of eosinophils in cardiovascular diseases because markers of eosinophil activation are elevated in atherosclerosis and thrombosis. However, their contribution to atherosclerotic plaque formation and arterial thrombosis remains unclear. In these settings, we investigated how eosinophils are recruited and activated through an interplay with platelets. Here, we provide evidence for a central importance of eosinophil-platelet interactions in atherosclerosis and thrombosis. We show that eosinophils support atherosclerotic plaque formation involving enhanced von Willebrand factor exposure on endothelial cells and augmented platelet adhesion. During arterial thrombosis, eosinophils are quickly recruited in an integrin-dependent manner and engage in interactions with platelets leading to eosinophil activation as we show by intravital calcium imaging. These direct interactions induce the formation of eosinophil extracellular traps (EETs), which are present in human thrombi and constitute a substantial part of extracellular traps in murine thrombi. EETs are decorated with the granule protein major basic protein, which causes platelet activation by eosinophils. Consequently, targeting of EETs diminished thrombus formation in vivo, which identifies this approach as a novel antithrombotic concept. Finally, in our clinical analysis of coronary artery thrombi, we identified female patients with stent thrombosis as the population that might derive the greatest benefit from an eosinophil-inhibiting strategy. In summary, eosinophils contribute to atherosclerotic plaque formation and thrombosis through an interplay with platelets, resulting in mutual activation. Therefore, eosinophils are a promising new target in the prevention and therapy of atherosclerosis and thrombosis.
Collapse
|
17
|
Li J, Kim K, Jeong SY, Chiu J, Xiong B, Petukhov PA, Dai X, Li X, Andrews RK, Du X, Hogg PJ, Cho J. Platelet Protein Disulfide Isomerase Promotes Glycoprotein Ibα-Mediated Platelet-Neutrophil Interactions Under Thromboinflammatory Conditions. Circulation 2019; 139:1300-1319. [PMID: 30586735 DOI: 10.1161/circulationaha.118.036323] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Platelet-neutrophil interactions contribute to vascular occlusion and tissue damage in thromboinflammatory disease. Platelet glycoprotein Ibα (GPIbα), a key receptor for the cell-cell interaction, is believed to be constitutively active for ligand binding. Here, we established the role of platelet-derived protein disulfide isomerase (PDI) in reducing the allosteric disulfide bonds in GPIbα and enhancing the ligand-binding activity under thromboinflammatory conditions. METHODS Bioinformatic analysis identified 2 potential allosteric disulfide bonds in GPIbα. Agglutination assays, flow cytometry, surface plasmon resonance analysis, a protein-protein docking model, proximity ligation assays, and mass spectrometry were used to demonstrate a direct interaction between PDI and GPIbα and to determine a role for PDI in regulating GPIbα function and platelet-neutrophil interactions. Also, real-time microscopy and animal disease models were used to study the pathophysiological role of PDI-GPIbα signaling under thromboinflammatory conditions. RESULTS Deletion or inhibition of platelet PDI significantly reduced GPIbα-mediated platelet agglutination. Studies using PDI-null platelets and recombinant PDI or Anfibatide, a clinical-stage GPIbα inhibitor, revealed that the oxidoreductase activity of platelet surface-bound PDI was required for the ligand-binding function of GPIbα. PDI directly bound to the extracellular domain of GPIbα on the platelet surface and reduced the Cys4-Cys17 and Cys209-Cys248 disulfide bonds. Real-time microscopy with platelet-specific PDI conditional knockout and sickle cell disease mice demonstrated that PDI-regulated GPIbα function was essential for platelet-neutrophil interactions and vascular occlusion under thromboinflammatory conditions. Studies using a mouse model of ischemia/reperfusion-induced stroke indicated that PDI-GPIbα signaling played a crucial role in tissue damage. CONCLUSIONS Our results demonstrate that PDI-facilitated cleavage of the allosteric disulfide bonds tightly regulates GPIbα function, promoting platelet-neutrophil interactions, vascular occlusion, and tissue damage under thromboinflammatory conditions.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho)
| | - Kyungho Kim
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho).,Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu (K.K.)
| | - Si-Yeon Jeong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho)
| | - Joyce Chiu
- The Centenary Institute, Newtown, NSW, Australia (J. Chiu, P.J.H.).,National Health and Medical Research Council Clinical Trials Centre, University of Sydney, NSW, Australia (J. Chiu, P.J.H.)
| | - Bei Xiong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho)
| | - Pavel A Petukhov
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, Chicago (P.A.P.)
| | - Xiangrong Dai
- Lee's Pharmaceutical Holdings Ltd, Shatin, Hong Kong (X. Dai, X.L.)
| | - Xiaoyi Li
- Lee's Pharmaceutical Holdings Ltd, Shatin, Hong Kong (X. Dai, X.L.)
| | - Robert K Andrews
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC (R.K.A.)
| | - Xiaoping Du
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho)
| | - Philip J Hogg
- The Centenary Institute, Newtown, NSW, Australia (J. Chiu, P.J.H.).,National Health and Medical Research Council Clinical Trials Centre, University of Sydney, NSW, Australia (J. Chiu, P.J.H.)
| | - Jaehyung Cho
- Department of Pharmacology, University of Illinois College of Medicine, Chicago (J.L., K.K., S.-Y.J, B.X., X. Du, J. Cho)
| |
Collapse
|
18
|
Lebas H, Yahiaoui K, Martos R, Boulaftali Y. Platelets Are at the Nexus of Vascular Diseases. Front Cardiovasc Med 2019; 6:132. [PMID: 31572732 PMCID: PMC6749018 DOI: 10.3389/fcvm.2019.00132] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Platelets are important actors of cardiovascular diseases (CVD). Current antiplatelet drugs that inhibit platelet aggregation have been shown to be effective in CVD treatment. However, the management of bleeding complications is still an issue in vascular diseases. While platelets can act individually, they interact with vascular cells and leukocytes at sites of vascular injury and inflammation. The main goal remains to better understand platelet mechanisms in thrombo-inflammatory diseases and provide new lines of safe treatments. Beyond their role in hemostasis and thrombosis, recent studies have reported the role of several aspects of platelet functions in CVD progression. In this review, we will provide a comprehensive overview of platelet mechanisms involved in several vascular diseases.
Collapse
Affiliation(s)
- Héloïse Lebas
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Katia Yahiaoui
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Raphaël Martos
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| | - Yacine Boulaftali
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne Paris Cite, Univ Paris Diderot, Paris, France
| |
Collapse
|
19
|
Finsterbusch M, Schrottmaier WC, Kral-Pointner JB, Salzmann M, Assinger A. Measuring and interpreting platelet-leukocyte aggregates. Platelets 2018; 29:677-685. [PMID: 29461910 PMCID: PMC6178087 DOI: 10.1080/09537104.2018.1430358] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Platelets, besides their specialised role in haemostasis and atherothrombosis, actively modulate innate and adaptive immune responses with crucial roles in immune surveillance, inflammation and host defence during infection. An important prerequisite for platelet-mediated changes of immune functions involves direct engagement with different types of leukocytes. Indeed, increased platelet-leukocyte aggregates (PLAs) within the circulation and/or locally at the site of inflammation represent markers of many thrombo-inflammatory diseases, such as cardiovascular diseases, acute lung injury, renal and cerebral inflammation. Therefore, measurement of PLAs could provide an attractive and easily accessible prognostic and/or diagnostic tool for many diseases. To measure PLAs in different (patho-)physiological settings in human and animal models flow cytometric and microscopic approaches have been applied. These techniques represent complementary tools to study different aspects relating to the involvement of leukocyte subtypes and molecules, as well as location of PLAs within tissues, dynamics of their interactions and/or dynamic changes in leukocyte and platelet behaviour. This review summarises various approaches to measure and interpret PLAs and discusses potential experimental factors influencing platelet binding to leukocytes. Furthermore, we summarise insights gained from studies regarding the underlying mechanism of platelet-leukocyte interactions and discuss implications of these interactions in health and disease.
Collapse
Affiliation(s)
- Michaela Finsterbusch
- a Department for Vascular Biology and Thrombosis Research , Centre for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Waltraud C Schrottmaier
- a Department for Vascular Biology and Thrombosis Research , Centre for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Julia B Kral-Pointner
- a Department for Vascular Biology and Thrombosis Research , Centre for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Manuel Salzmann
- a Department for Vascular Biology and Thrombosis Research , Centre for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| | - Alice Assinger
- a Department for Vascular Biology and Thrombosis Research , Centre for Physiology and Pharmacology, Medical University of Vienna , Vienna , Austria
| |
Collapse
|
20
|
Platelets and von Willebrand factor in atherogenesis. Blood 2017; 129:1415-1419. [PMID: 28174163 DOI: 10.1182/blood-2016-07-692673] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
The role of platelet adhesion, activation, and aggregation in acute atherothrombotic events such as myocardial infarction and stroke is well established. There is increasing evidence that platelet-endothelial interactions also contribute to early atherosclerotic plaque initiation and growth. Through these interactions, platelet-derived factors can contribute to the proinflammatory and mitogenic status of resident mural cells. Among the many putative mechanisms for platelet-endothelial interactions, increased endothelial-associated von Willebrand factor, particularly in a multimerized form, which interacts with platelet glycoproteins and integrins, is a major factor and represents a therapeutic target in early atherogenesis.
Collapse
|
21
|
Bennewitz MF, Jimenez MA, Vats R, Tutuncuoglu E, Jonassaint J, Kato GJ, Gladwin MT, Sundd P. Lung vaso-occlusion in sickle cell disease mediated by arteriolar neutrophil-platelet microemboli. JCI Insight 2017; 2:e89761. [PMID: 28097236 DOI: 10.1172/jci.insight.89761] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In patients with sickle cell disease (SCD), the polymerization of intraerythrocytic hemoglobin S promotes downstream vaso-occlusive events in the microvasculature. While vaso-occlusion is known to occur in the lung, often in the context of systemic vaso-occlusive crisis and the acute chest syndrome, the pathophysiological mechanisms that incite lung injury are unknown. We used intravital microscopy of the lung in transgenic humanized SCD mice to monitor acute vaso-occlusive events following an acute dose of systemic lipopolysaccharide sufficient to trigger events in SCD but not control mice. We observed cellular microembolism of precapillary pulmonary arteriolar bottlenecks by neutrophil-platelet aggregates. Blood from SCD patients was next studied under flow in an in vitro microfluidic system. Similar to the pulmonary circulation, circulating platelets nucleated around arrested neutrophils, translating to a greater number and duration of neutrophil-platelet interactions compared with normal human blood. Inhibition of platelet P-selectin with function-blocking antibody attenuated the neutrophil-platelet interactions in SCD patient blood in vitro and resolved pulmonary arteriole microembolism in SCD mice in vivo. These results establish the relevance of neutrophil-platelet aggregate formation in lung arterioles in promoting lung vaso-occlusion in SCD and highlight the therapeutic potential of targeting platelet adhesion molecules to prevent acute chest syndrome.
Collapse
Affiliation(s)
- Margaret F Bennewitz
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Maritza A Jimenez
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ravi Vats
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Egemen Tutuncuoglu
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jude Jonassaint
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Hematology and Oncology, and
| | - Gregory J Kato
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Hematology and Oncology, and
| | - Mark T Gladwin
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prithu Sundd
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Zhou H, Ran Y, Da Q, Shaw TS, Shang D, Reddy AK, López JA, Ballantyne CM, Ware J, Wu H, Peng Y. Defective Association of the Platelet Glycoprotein Ib-IX Complex with the Glycosphingolipid-Enriched Membrane Domain Inhibits Murine Thrombus and Atheroma Formation. THE JOURNAL OF IMMUNOLOGY 2016; 197:288-95. [PMID: 27206768 DOI: 10.4049/jimmunol.1501946] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/29/2016] [Indexed: 01/13/2023]
Abstract
Localization of the platelet glycoprotein Ib-IX complex to the membrane lipid domain is essential for platelet adhesion to von Willebrand factor and subsequent platelet activation in vitro. Yet, the in vivo importance of this localization has never been addressed. We recently found that the disulfide linkage between Ibα and Ibβ is critical for the association of Ibα with the glycosphingolipid-enriched membrane domain; in this study, we established a transgenic mouse model expressing this mutant human Ibα that is also devoid of endogenous Ibα (HαSSMα(-/-)). Characterization of this model demonstrated a similar dissociation of Ibα from murine platelet glycosphingolipid-enriched membrane to that expressed in Chinese hamster ovary cells, which correlates well with the impaired adhesion of the transgenic platelets to von Willebrand factor ex vivo and in vivo. Furthermore, we bred our transgenic mice into an atherosclerosis-prone background (HαSSMα(-/-)ApoE(-/-) and HαWTMα(-/-)ApoE(-/-)). We observed that atheroma formation was significantly inhibited in mutant mice where fewer platelet-bound CD11c(+) leukocytes were circulating (CD45(+)/CD11c(+)/CD41(+)) and residing in atherosclerotic lesions (CD45(+)/CD11c(+)), suggesting that platelet-mediated adhesion and infiltration of CD11c(+) leukocytes may be one of the mechanisms. To our knowledge, these observations provide the first in vivo evidence showing that the membrane GEM is physiologically and pathophysiologically critical in the function of the glycoprotein Ib-IX complex.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Hospital Infection Management of Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yali Ran
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Qi Da
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Tanner S Shaw
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Dan Shang
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030; Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anilkumar K Reddy
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - José A López
- Puget Sound Blood Center, Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195
| | - Christie M Ballantyne
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Jerry Ware
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205
| | - Huaizhu Wu
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Yuandong Peng
- Cardiovascular Research Section, Department of Medicine, Baylor College of Medicine, Houston, TX 77030;
| |
Collapse
|
23
|
Helmke A, von Vietinghoff S. Extracellular vesicles as mediators of vascular inflammation in kidney disease. World J Nephrol 2016; 5:125-38. [PMID: 26981436 PMCID: PMC4777783 DOI: 10.5527/wjn.v5.i2.125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 12/18/2015] [Accepted: 01/08/2016] [Indexed: 02/06/2023] Open
Abstract
Vascular inflammation is a common cause of renal impairment and a major cause of morbidity and mortality of patients with kidney disease. Current studies consistently show an increase of extracellular vesicles (EVs) in acute vasculitis and in patients with atherosclerosis. Recent research has elucidated mechanisms that mediate vascular wall leukocyte accumulation and differentiation. This review addresses the role of EVs in this process. Part one of this review addresses functional roles of EVs in renal vasculitis. Most published data address anti-neutrophil cytoplasmic antibody (ANCA) associated vasculitis and indicate that the number of EVs, mostly of platelet origin, is increased in active disease. EVs generated from neutrophils by activation by ANCA can contribute to vessel damage. While EVs are also elevated in other types of autoimmune vasculitis with renal involvement such as systemic lupus erythematodes, functional consequences beyond intravascular thrombosis remain to be established. In typical hemolytic uremic syndrome secondary to infection with shiga toxin producing Escherichia coli, EV numbers are elevated and contribute to toxin distribution into the vascular wall. Part two addresses mechanisms how EVs modulate vascular inflammation in atherosclerosis, a process that is aggravated in uremia. Elevated numbers of circulating endothelial EVs were associated with atherosclerotic complications in a number of studies in patients with and without kidney disease. Uremic endothelial EVs are defective in induction of vascular relaxation. Neutrophil adhesion and transmigration and intravascular thrombus formation are critically modulated by EVs, a process that is amenable to therapeutic interventions. EVs can enhance monocyte adhesion to the endothelium and modulate macrophage differentiation and cytokine production with major influence on the local inflammatory milieu in the plaque. They significantly influence lipid phagocytosis and antigen presentation by mononuclear phagocytes. Finally, platelet, erythrocyte and monocyte EVs cooperate in shaping adaptive T cell immunity. Future research is needed to define changes in uremic EVs and their differential effects on inflammatory leukocytes in the vessel wall.
Collapse
|
24
|
Wang ZT, Wang Z, Hu YW. Possible roles of platelet-derived microparticles in atherosclerosis. Atherosclerosis 2016; 248:10-6. [PMID: 26978582 DOI: 10.1016/j.atherosclerosis.2016.03.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/25/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
Platelets and platelet-derived microparticles (PMPs) play important roles in cardiovascular diseases, especially atherosclerosis. Continued research has revealed that PMPs have numerous functions in atherosclerosis, not only in thrombosis formation, but also by induction of inflammation. PMPs also induce formation of foam cells. Recent evidence strongly indicates a significant role of PMPs in atherosclerosis. Here, current research on the function of PMPs in atherosclerosis is reviewed.
Collapse
Affiliation(s)
- Zhi-Ting Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zi Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
25
|
Platelets at the interface of thrombosis, inflammation, and cancer. Blood 2015; 126:582-8. [PMID: 26109205 DOI: 10.1182/blood-2014-08-531582] [Citation(s) in RCA: 464] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 06/18/2015] [Indexed: 12/13/2022] Open
Abstract
Although once primarily recognized for its roles in hemostasis and thrombosis, the platelet has been increasingly recognized as a multipurpose cell. Indeed, circulating platelets have the ability to influence a wide range of seemingly unrelated pathophysiologic events. Here, we highlight some of the notable observations that link platelets to inflammation, reinforcing the platelet's origin from a lower vertebrate cell type with both hemostatic and immunologic roles. In addition, we consider the relevance of platelets in cancer biology by focusing on the hallmarks of cancer and the ways platelets can influence multistep development of tumors. Beyond its traditional role in hemostasis and thrombosis, the platelet's involvement in the interplay between hemostasis, thrombosis, inflammation, and cancer is likely complex, yet extremely important in each disease process. The existence of animal models of platelet dysfunction and currently used antiplatelet therapies provide a framework for understanding mechanistic insights into a wide range of pathophysiologic events. Thus, the basic scientist studying platelet function can think beyond the traditional hemostasis and thrombosis paradigms, while the practicing hematologist must appreciate platelet relevance in a wide range of disease processes.
Collapse
|