1
|
Khavandegar A, Ahmadi NS, Mousavi MA, Ramezani Z, Khodadoust E, Hasan Zadeh Tabatabaei MS, Hasanpour Segherlou Z, Zeinaddini-Meymand A, Nasehi F, Moafi M, RayatSanati K, Masoomi R, Hamidi S, Pourkhodadad S, Rahimi-Movaghar V. The potential role of RhoA/ROCK-inhibition on locomotor recovery after spinal cord injury: a systematic review of in-vivo studies. Spinal Cord 2025; 63:95-126. [PMID: 39956860 DOI: 10.1038/s41393-025-01064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
STUDY DESIGN Systematic Review. OBJECTIVES To thoroughly assess the existing literature regarding the impact of anti-RhoA/ROCK agents or procedures on functional recovery in animal models of SCI. SETTING Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences. METHODS A comprehensive search was conducted in Ovid MEDLINE, Embase, Scopus, and Web of Science Core Collection utilizing a combination of keywords. All in-vivo animal studies of acute or chronic SCI that evaluated the pharmacological effects of Rho/ROCK inhibitors in English literature were included in this study. RESULTS Totally, 2320 articles were identified, of which, 60 papers were included for further analysis. A total of 47 (78%) studies were conducted merely on rats, 9 (15%) on mice, 3 (5%) used both, and the remaining used other animals. Y-27632, Fasudil, C3 Transferase and its derivatives (C3-05/PEP-C3/CT04/C3bot154-182/C3bot26mer(156-181)), Ibuprofen, Electroacupuncture (EA), SiRhoA, miR-133b, miR-135-5p, miR-381, miR-30b, Statins, 17β-estradiol, β-elemene, Lentivirus-mediated PGC-1a, Repulsive guidance molecule (RGMa), Local profound hypothermia, Jisuikang (JSK), Hyperbaric oxygen (HBO), Lv-shRhoA (Notch-1 inhibitor), Anti-Ryk antibody, LINGO-antagonist, BA-210, p21Cip1/WAF1, ORL-1 antagonist, Epigallocatechin-3-gallate (EGCG), Tamsulosin, AAV.ULK1.DN, and Indomethacin were the 28 reported agents/procedures with anti-RhoA/ROCK effects. The pooled SMD for BBB scores was 0.41 (p = 0.048) in the first week, 0.85 (p < 0.001) in the second week, 1.22 (p = 0.010) in the third week, and 1.53 (p = 0.001) in the fourth week. CONCLUSION Of the 28 identified anti-RhoA/ROCK agents, all but two (C3bot and its derivatives and EGCG) demonstrated promising results. The results of the meta-analysis cautiously indicate a significant increase in BBB scores over time after SCI.
Collapse
Affiliation(s)
- Armin Khavandegar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Sadat Ahmadi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Alsadat Mousavi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Ramezani
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elaheh Khodadoust
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Fatemeh Nasehi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maral Moafi
- Cell Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia RayatSanati
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasool Masoomi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sorour Hamidi
- Department of Neurosurgery, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soheila Pourkhodadad
- Department of Pharmacy and Chemical Biology, Emory University, School of Medicine, Atlanta, GA, USA
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Kwon J, Kim MS, Blagojevic C, Mailloux J, Medwid S, Tirona RG, Wang R, Schwarz UI. Differential effects of OATP2B1 on statin accumulation and toxicity in a beta cell model. Toxicol Mech Methods 2024; 34:130-147. [PMID: 37771097 DOI: 10.1080/15376516.2023.2262568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
An increased risk of new-onset diabetes mellitus has been recently reported for statin therapy, and experimental studies have shown reduced glucose-stimulated insulin secretion (GSIS) and mitochondrial dysfunction in beta cells with effects differing among agents. Organic anion transporting polypeptide (OATP) 2B1 contributes to hepatic uptake of rosuvastatin, atorvastatin and pravastatin, three known substrates. Since OATP2B1 is present in beta cells of the human pancreas, we investigated if OATP2B1 facilitates the local accumulation of statins in a rat beta cell model INS-1 832/13 (INS-1) thereby amplifying statin-induced toxicity. OATP2B1 overexpression in INS-1 cells via adenoviral transduction showed 2.5-, 1.8- and 1.4-fold higher cellular retention of rosuvastatin, atorvastatin and pravastatin, respectively, relative to LacZ control, while absolute intracellular concentration was about twice as high for the lipophilic atorvastatin compared to the more hydrophilic rosuvastatin and pravastatin. After 24 h statin treatment at high concentrations, OATP2B1 enhanced statin toxicity involving activation of intrinsic apoptosis (caspase 3/7 activation) and mitochondrial dysfunction (NADH dehydrogenase activity) following rosuvastatin and atorvastatin, which was partly reversed by isoprenoids. OATP2B1 had no effect on statin-induced reduction in GSIS, mitochondrial electron transport chain complex expression or caspase 9 activation. We confirmed a dose-dependent reduction in insulin secretion by rosuvastatin and atorvastatin in native INS-1 with a modest change in cellular ATP. Collectively, our results indicate a role of OATP2B1, which is abundant in human beta cells, in statin accumulation and statin-induced toxicity but not insulin secretion of rosuvastatin and atorvastatin in INS-1 cells.
Collapse
Affiliation(s)
- Jihoon Kwon
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michelle S Kim
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Christina Blagojevic
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jaymie Mailloux
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Samantha Medwid
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rommel G Tirona
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Rennian Wang
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ute I Schwarz
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
3
|
Budu O, Mioc A, Soica C, Caruntu F, Milan A, Oprean C, Lighezan D, Rotunjanu S, Ivan V, Banciu C. Lactiplantibacillus plantarum Induces Apoptosis in Melanoma and Breast Cancer Cells. Microorganisms 2024; 12:182. [PMID: 38258008 PMCID: PMC10819835 DOI: 10.3390/microorganisms12010182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Despite the notable advancements witnessed in the past decade in medical and health research domain, cancer remains a prominent global cause of mortality. Moreover, the conventional treatments employed to combat this disease have been found to considerably compromise the quality of life experienced by patients due to its severe side effects. Recent in vitro studies revealed encouraging findings on the potential beneficial effects of probiotics as adjuvants of anticancer therapy, and even as possible agents for the prevention and treatment of various types of malignancies. From this standpoint, the primary objective of this work was to investigate the anticancer properties of Lactiplantibacillus plantarum (LP) and elucidate its underlying mechanism of action. In order to investigate this matter, several doses of LP (ranging from 105 to 1010 CFU/mL) were examined in relation to melanoma cancer cell lines (A375) and breast cancer cell line (MCF-7). The cell viability findings, which were substantiated by morphological investigations and annexin V/PI assay, indicated that LP exerted inhibitory effects on cellular activity and triggered apoptosis. Additionally, upon further investigation into its mechanism, it was observed through the apoptosis assay and Western blot analysis that the administration of LP resulted in an elevation of pro-apoptotic BAX protein levels and an upregulation of cleaved poly-ADP-ribose polymerase (PARP) protein expression. Conversely, the levels of anti-apoptotic Bcl-2 protein were found to decrease in the A375 and MCF-7 cell lines. These findings provide insight into the pro-apoptotic mechanism of action of LP in these specific cell lines.
Collapse
Affiliation(s)
- Oana Budu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (O.B.); (F.C.); (D.L.); (V.I.); (C.B.)
| | - Alexandra Mioc
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (C.S.); (A.M.); (C.O.); (S.R.)
| | - Codruta Soica
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (C.S.); (A.M.); (C.O.); (S.R.)
| | - Florina Caruntu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (O.B.); (F.C.); (D.L.); (V.I.); (C.B.)
| | - Andreea Milan
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (C.S.); (A.M.); (C.O.); (S.R.)
| | - Camelia Oprean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (C.S.); (A.M.); (C.O.); (S.R.)
- OncoGen Centre, County Hospital ‘Pius Branzeu’, Blvd. Liviu Rebreanu 156, 300736 Timisoara, Romania
| | - Daniel Lighezan
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (O.B.); (F.C.); (D.L.); (V.I.); (C.B.)
| | - Slavita Rotunjanu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (C.S.); (A.M.); (C.O.); (S.R.)
| | - Viviana Ivan
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (O.B.); (F.C.); (D.L.); (V.I.); (C.B.)
| | - Christian Banciu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, 2 Eftimie Murgu, 300041 Timisoara, Romania; (O.B.); (F.C.); (D.L.); (V.I.); (C.B.)
| |
Collapse
|
4
|
Li J, Li X, Song S, Sun Z, Li Y, Yang L, Xie Z, Cai Y, Zhao Y. Mitochondria spatially and temporally modulate VSMC phenotypes via interacting with cytoskeleton in cardiovascular diseases. Redox Biol 2023; 64:102778. [PMID: 37321061 DOI: 10.1016/j.redox.2023.102778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
Cardiovascular diseases caused by atherosclerosis (AS) seriously endanger human health, which is closely related to vascular smooth muscle cell (VSMC) phenotypes. VSMC phenotypic transformation is marked by the alteration of phenotypic marker expression and cellular behaviour. Intriguingly, the mitochondrial metabolism and dynamics altered during VSMC phenotypic transformation. Firstly, this review combs VSMC mitochondrial metabolism in three aspects: mitochondrial ROS generation, mutated mitochondrial DNA (mtDNA) and calcium metabolism respectively. Secondly, we summarized the role of mitochondrial dynamics in regulating VSMC phenotypes. We further emphasized the association between mitochondria and cytoskelton via presenting cytoskeletal support during mitochondrial dynamics process, and discussed its impact on their respective dynamics. Finally, considering that both mitochondria and cytoskeleton are mechano-sensitive organelles, we demonstrated their direct and indirect interaction under extracellular mechanical stimuli through several mechano-sensitive signaling pathways. We additionally discussed related researches in other cell types in order to inspire deeper thinking and reasonable speculation of potential regulatory mechanism in VSMC phenotypic transformation.
Collapse
Affiliation(s)
- Jingwen Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Xinyue Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Sijie Song
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Zhengwen Sun
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yuanzhu Li
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Long Yang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Zhenhong Xie
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yikui Cai
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yinping Zhao
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, NO.1 Medical College Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
5
|
Elleithi YA, El-Gayar AM, Amin MN. Simvastatin Induces Apoptosis And Suppresses Hepatocellular Carcinoma Induced In Rats. Appl Biochem Biotechnol 2023; 195:1656-1674. [PMID: 36367620 PMCID: PMC9928804 DOI: 10.1007/s12010-022-04203-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a frequent primary aggressive cancer, a crucial cause of cancer-related mortality globally. Simvastatin is a well-known safe cholesterol-lowering medication that has been recently shown to suppress cancer progression. Apoptosis is a well-organized and controlled cellular process that happens both physiologically and pathologically leading to executing cell death. Apoptosis is frequently downregulated in cancer cells. In the present study, we aimed to test the effect of simvastatin on HCC progression. HCC was induced in experimental rats by means of diethylnitrose amine (DEN) and thioacetamide (TAA) injections. Gross examination and liver index along with biochemical analysis of hepatic function were evaluated. Serum alpha-feto protein (AFP) concentration was measured by ELISA. Histopathological examination was used for assessing necroinflammatory scores and fibrosis degree. Apoptosis was assessed using immunohistochemistry (IHC) and quantitative PCR (qPCR). Simvastatin was found to induce apoptosis successfully in HCC and improve liver fibrosis, overall hepatic function, and necroinflammatory score. Simvastatin, therefore, may be a potential adjunctive therapeutic option in clinical settings of treating HCC.
Collapse
Affiliation(s)
- Yomna A. Elleithi
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 3551 Egypt
| | - Amal M. El-Gayar
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 3551 Egypt
| | - Mohamed N. Amin
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 3551 Egypt ,Biochemistry Department, Faculty of Pharmacy, King Salman International University, Ras Sedr, South Sinai Egypt
| |
Collapse
|
6
|
Sawma T, Shaito A, Najm N, Sidani M, Orekhov A, El-Yazbi AF, Iratni R, Eid AH. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function. Atherosclerosis 2022; 358:12-28. [DOI: 10.1016/j.atherosclerosis.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
|
7
|
Yin Q, Zang G, Li N, Sun C, Du R. Agonist-induced Piezo1 activation promote mitochondrial-dependent apoptosis in vascular smooth muscle cells. BMC Cardiovasc Disord 2022; 22:287. [PMID: 35751027 PMCID: PMC9233385 DOI: 10.1186/s12872-022-02726-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Mechanical damage plays an essential role in the progression of atherosclerosis. Piezo1 is a new mechanically sensitive ion channel. The present study investigated the vascular smooth muscle cells (VSMCs) apoptosis induced by Piezo1 activation and explored its underlying mechanism. METHODS We evaluated cell viability and apoptosis rate with cell counting kit-8 (CCK-8) and Annexin V-FITC/PI flow cytometry assay, respectively. And then Western blot was performed to measure the relative protein. Reactive oxygen species (ROS) and intracellular Ca2+ were assessed via fluorescence microscope, and the mitochondrial transmembrane potential was monitored by JC-10 staining. RESULTS Our in vitro study revealed that mice in the ApoE-/- group compared with control mice showed higher Piezo1 expression(P < 0.05). Besides, Yoda1, a Piezo1 agonist, triggered Ca2+ overload, mitochondrial damage, accumulation of ROS, and VSMCs apoptosis in a dose-depend manner. Furthermore, BAPT-AM (an intracellular Ca2+ chelator) and NAC (an antioxidant) suppressed the mitochondrial damage and attenuated the VSMCs apoptosis. CONCLUSION Our study suggested that Piezo1 induced VSMCs apoptosis because of Ca2+ overload, excessive ROS generation, and mitochondrial dysfunction, which indicated that Piezo1 has potential value in treating vascular diseases.
Collapse
Affiliation(s)
- Qing Yin
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China.,School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Guangyao Zang
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Nannan Li
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Chenchen Sun
- School of Medicine, Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China
| | - Rongzeng Du
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, Jiangsu Province, China.
| |
Collapse
|
8
|
Ren W, Zhao W, Cao L, Huang J. Involvement of the Actin Machinery in Programmed Cell Death. Front Cell Dev Biol 2021; 8:634849. [PMID: 33634110 PMCID: PMC7900405 DOI: 10.3389/fcell.2020.634849] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Programmed cell death (PCD) depicts a genetically encoded and an orderly mode of cellular mortality. When triggered by internal or external stimuli, cells initiate PCDs through evolutionary conserved regulatory mechanisms. Actin, as a multifunctional cytoskeleton protein that forms microfilament, its integrity and dynamics are essential for a variety of cellular processes (e.g., morphogenesis, membrane blebbing and intracellular transport). Decades of work have broadened our knowledge about different types of PCDs and their distinguished signaling pathways. However, an ever-increasing pool of evidences indicate that the delicate relationship between PCDs and the actin cytoskeleton is beginning to be elucidated. The purpose of this article is to review the current understanding of the relationships between different PCDs and the actin machinery (actin, actin-binding proteins and proteins involved in different actin signaling pathways), in the hope that this attempt can shed light on ensuing studies and the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Weida Ren
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wanyu Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lingbo Cao
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junqi Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Juarez D, Fruman DA. Targeting the Mevalonate Pathway in Cancer. Trends Cancer 2021; 7:525-540. [PMID: 33358111 DOI: 10.1016/j.trecan.2020.11.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
The mevalonate synthesis inhibitors, statins, are mainstay therapeutics for cholesterol management and cardiovascular health. Thirty years of research have uncovered supportive roles for the mevalonate pathway in numerous cellular processes that support oncogenesis, most recently macropinocytosis. Central to the diverse mechanisms of statin sensitivity is an acquired dependence on one mevalonate pathway output, protein geranylgeranylation. New chemical prenylation probes and the discovery of a novel geranylgeranyl transferase hold promise to deepen our understanding of statin mechanisms of action. Further, insights into statin selection and the counterproductive role of dietary geranylgeraniol highlight how we should assess statins in the clinic. Lastly, rational combination strategies preview how statins will enter the oncology toolbox.
Collapse
Affiliation(s)
- Dennis Juarez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
10
|
Simvastatin attenuates lung functional and vascular effects of hyperoxia in preterm rabbits. Pediatr Res 2020; 87:1193-1200. [PMID: 31816623 DOI: 10.1038/s41390-019-0711-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/01/2019] [Accepted: 10/30/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Bronchopulmonary dysplasia (BPD) remains a frequent complication following preterm birth, affecting respiratory health throughout life. Transcriptome analysis in a preterm rabbit model for BPD revealed dysregulation of key genes for inflammation, vascular growth and lung development in animals exposed to hyperoxia, which could be prevented by simvastatin. METHODS Preterm rabbits were randomized to either normoxia (21% O2) or hyperoxia (95% O2) and within each condition to treatment with 5 mg/kg simvastatin daily or control. Lung function, structure and mRNA-expression was assessed on day 7. RESULTS Simvastatin partially prevented the effect of hyperoxia on lung function, without altering alveolar structure or inflammation. A trend towards a less fibrotic phenotype was noted in simvastatin-treated pups, and airways were less muscularized. Most importantly, simvastatin completely prevented hyperoxia-induced arterial remodeling, in association with partial restoration of VEGFA and VEGF receptor 2 (VEGFR2) expression. Simvastatin however decreased survival in pups exposed to normoxia, but not to hyperoxia. CONCLUSION Repurposing of simvastatin could be an advantageous therapeutic strategy for bronchopulmonary dysplasia and other developmental lung diseases with pulmonary vascular disease. The increased mortality in the treated normoxia group however limits the translational value at this dose and administration route.
Collapse
|
11
|
Sanyour HJ, Li N, Rickel AP, Torres HM, Anderson RH, Miles MR, Childs JD, Francis KR, Tao J, Hong Z. Statin-mediated cholesterol depletion exerts coordinated effects on the alterations in rat vascular smooth muscle cell biomechanics and migration. J Physiol 2020; 598:1505-1522. [PMID: 32083311 DOI: 10.1113/jp279528] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/18/2020] [Indexed: 12/28/2022] Open
Abstract
KEY POINTS This study demonstrates and evaluates the changes in rat vascular smooth muscle cell biomechanics following statin-mediated cholesterol depletion. Evidence is presented to show correlated changes in migration and adhesion of vascular smooth muscle cells to extracellular matrix proteins fibronectin and collagen. Concurrently, integrin α5 expression was enhanced but not integrin α2. Atomic force microscopy analysis provides compelling evidence of coordinated reduction in vascular smooth muscle cell stiffness and actin cytoskeletal orientation in response to statin-mediated cholesterol depletion. Proof is provided that statin-mediated cholesterol depletion remodels total vascular smooth muscle cell cytoskeletal orientation that may additionally participate in altering ex vivo aortic vessel function. It is concluded that statin-mediated cholesterol depletion may coordinate vascular smooth muscle cell migration and adhesion to different extracellular matrix proteins and regulate cellular stiffness and cytoskeletal orientation, thus impacting the biomechanics of the cell. ABSTRACT Not only does cholesterol induce an inflammatory response and deposits in foam cells at the atherosclerotic plaque, it also regulates cellular mechanics, proliferation and migration in atherosclerosis progression. Statins are HMG-CoA reductase inhibitors that are known to inhibit cellular cholesterol biosynthesis and are clinically prescribed to patients with hypercholesterolemia or related cardiovascular conditions. Nonetheless, the effect of statin-mediated cholesterol management on cellular biomechanics is not fully understood. In this study, we aimed to assess the effect of fluvastatin-mediated cholesterol management on primary rat vascular smooth muscle cell (VSMC) biomechanics. Real-time measurement of cell adhesion, stiffness, and imaging were performed using atomic force microscopy (AFM). Cellular migration on extra cellular matrix (ECM) protein surfaces was studied by time-lapse imaging. The effect of changes in VSMC biomechanics on aortic function was assessed using an ex vivo myograph system. Fluvastatin-mediated cholesterol depletion (-27.8%) lowered VSMC migration distance on a fibronectin (FN)-coated surface (-14.8%) but not on a type 1 collagen (COL1)-coated surface. VSMC adhesion force to FN (+33%) and integrin α5 expression were enhanced but COL1 adhesion and integrin α2 expression were unchanged upon cholesterol depletion. In addition, VSMC stiffness (-46.6%) and ex vivo aortic ring contraction force (-40.1%) were lowered and VSMC actin cytoskeletal orientation was reduced (-24.5%) following statin-mediated cholesterol depletion. Altogether, it is concluded that statin-mediated cholesterol depletion may coordinate VSMC migration and adhesion to different ECM proteins and regulate cellular stiffness and cytoskeletal orientation, thus impacting the biomechanics of the cell and aortic function.
Collapse
Affiliation(s)
- Hanna J Sanyour
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Na Li
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Alex P Rickel
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Haydee M Torres
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Ruthellen H Anderson
- Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Miranda R Miles
- BioSNTR, Sioux Falls, SD, 57107, USA.,Mechanical Engineering Department, South Dakota State University, Brookings, SD, 57007, USA
| | - Josh D Childs
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| | - Kevin R Francis
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,Cellular Therapies and Stem Cell Biology Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA
| | - Jianning Tao
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD, 57104, USA.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA.,Department of Chemistry and Biochemistry, South Dakota State University, Brookings, SD, 57007, USA
| | - Zhongkui Hong
- Department of Biomedical Engineering, University of South Dakota, Sioux Falls, SD, 57107, USA.,BioSNTR, Sioux Falls, SD, 57107, USA
| |
Collapse
|
12
|
Irwin JC, Fenning AS, Vella RK. Geranylgeraniol prevents statin-induced skeletal muscle fatigue without causing adverse effects in cardiac or vascular smooth muscle performance. Transl Res 2020; 215:17-30. [PMID: 31491372 DOI: 10.1016/j.trsl.2019.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/01/2019] [Accepted: 08/13/2019] [Indexed: 12/26/2022]
Abstract
The administration of geranylgeranyl pyrophosphate (GGPP) (or its precursor, geranylgeraniol [GGOH]) has been shown by several in vitro studies to be capable of abrogating statin-induced myotoxicity. Nonetheless, the potential of GGPP repletion to prevent statin-associated muscle symptoms (SAMS) in vivo is yet to be investigated. Therefore, this study aimed to evaluate the ability of GGOH to prevent SAMS in rodents. Female Wistar rats (12 weeks of age) were randomised to 1 of 4 treatment groups: control, control with GGOH, simvastatin or simvastatin with GGOH. Ex vivo assessment of force production was conducted in skeletal muscles of varying fiber composition. Ex vivo left ventricular performance and blood vessel function was also assessed to determine if the administration of GGOH caused adverse changes in these parameters. Statin administration was associated with reduced force production in fast-twitch glycolytic muscle, but coadministration with GGOH completely abrogated this effect. Additionally, GGOH improved the performance of muscles not adversely affected by simvastatin (ie, those with a greater proportion of slow-twitch oxidative fibers), and increased force production in the control animals. Neither control nor statin-treated rodents given GGOH exhibited adverse changes in cardiac function. Vascular relaxation was also maintained following treatment with GGOH. The findings of this study demonstrate that GGOH can prevent statin-induced skeletal muscle fatigue in rodents without causing adverse changes in cardiovascular function. Further studies to elucidate the exact mechanisms underlying the effects observed in this investigation are warranted.
Collapse
Affiliation(s)
- Jordon C Irwin
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia.
| | - Andrew S Fenning
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| | - Rebecca K Vella
- School of Health, Medical and Applied Sciences, Central Queensland University, North Rockhampton, Queensland, Australia
| |
Collapse
|
13
|
Lee H, Lee H, Na CB, Park JB. Effects of Simvastatin on the Viability and Secretion of Vascular Endothelial Growth Factor of Cell Spheroids Cultured in Growth Media. IMPLANT DENT 2018; 27:480-487. [PMID: 29846274 DOI: 10.1097/id.0000000000000774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE This study evaluates the effects of simvastatin on the morphology, viability, secretion of vascular endothelial growth factor (VEGF) and expression of stemness markers and messenger RNA of cell spheroids cultured in growth media. MATERIALS AND METHODS Three-dimensional cell spheroids with stem cells and osteoblast-like cells were fabricated using concave, silicon, elastomer-based microwells in the presence of simvastatin at concentrations of 1 and 10 μM. Qualitative cellular viability was determined with a confocal microscope, and quantitative cellular viability was evaluated using a Cell Counting Kit-8 assay. The expression of stem cell surface markers was tested, and a quantitative real-time polymerase chain reaction was performed to evaluate the expression of collagen I and Runx2. RESULTS The cell spheroids were well formed in the microwells, but the addition of simvastatin produced significant changes in the morphology of spheroids. No significant changes in cellular viability were noted with the addition of simvastatin on day 1, but the addition of simvastatin significantly decreased cellular viability on day 5. The addition of simvastatin significantly increased the secretion of VEGF. The expression of the CD90 surface marker was seen regardless of whether simvastatin was added. The addition of simvastatin significantly decreased the expression of collagen I. CONCLUSIONS Based on these findings, the application of simvastatin clearly decreased the cellular viability of the cell spheroids made with stem cells and osteoblast-like cells but increased the secretion of VEGF by the cell spheroids.
Collapse
Affiliation(s)
- Hyunjin Lee
- Researcher, Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuna Lee
- Researcher, Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chae-Bin Na
- Researcher, Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jun-Beom Park
- Associate Professor, Department of Periodontics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
14
|
Antoniellis Silveira AA, Dominical VM, Morelli Vital D, Alves Ferreira W, Trindade Maranhão Costa F, Werneck CC, Ferreira Costa F, Conran N. Attenuation of TNF-induced neutrophil adhesion by simvastatin is associated with the inhibition of Rho-GTPase activity, p50 activity and morphological changes. Int Immunopharmacol 2018; 58:160-165. [PMID: 29604489 DOI: 10.1016/j.intimp.2018.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/22/2018] [Accepted: 03/24/2018] [Indexed: 12/19/2022]
Abstract
Neutrophil adhesion to the vasculature in response to potent inflammatory stimuli, such as TNF-α (TNF), can contribute to atheroprogression amongst other pathophysiological mechanisms. Previous studies have shown that simvastatin, a statin with known pleiotropic anti-inflammatory properties, can partially abrogate the effects of TNF-induced neutrophil adhesion, in association with the modulation of β2-integrin expression. We aimed to further characterize the effects of this statin on neutrophil and leukocyte adhesive mechanisms in vitro and in vivo. A microfluidic assay confirmed the ability of simvastatin to inhibit TNF-induced human neutrophil adhesion to fibronectin ligand under conditions of shear stress, while intravital imaging microscopy demonstrated an abrogation of leukocyte recruitment by simvastatin in the microvasculature of mice that had received a TNF stimulus. This inhibition of neutrophil adhesion was accompanied by the inhibition of TNF-induced RhoA activity in human neutrophils, and alterations in cell morphology and β2-integrin activity. Additionally, TNF augmented the activity of the p50 NFκB subunit in human neutrophils and TNF-induced neutrophil adhesion and β2-integrin activity could be abolished using pharmacological inhibitors of NFκB translocation, BAY11-7082 and SC514. Accordingly, the TNF-induced elevation of neutrophil p50 activity was abolished by simvastatin. In conclusion, our data provide further evidence of the ability of simvastatin to inhibit neutrophil adhesive interactions in response to inflammatory stimuli, both in vivo and in vitro. Simvastatin appears to inhibit neutrophil adhesion by interfering in TNF-induced cytoskeletal rearrangements, in association with the inhibition of Rho A activity, NFκB translocation and, consequently, β2-integrin activity.
Collapse
Affiliation(s)
| | - Venina Marcela Dominical
- Hematology and Hemotherapy Center, School of Medicine, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Daiana Morelli Vital
- Hematology and Hemotherapy Center, School of Medicine, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Wilson Alves Ferreira
- Hematology and Hemotherapy Center, School of Medicine, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases - Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution and Bioagents, Institute of Biology (IB), University of Campinas-UNICAMP, Brazil
| | - Claudio C Werneck
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas-UNICAMP, Campinas, Brazil
| | - Fernando Ferreira Costa
- Hematology and Hemotherapy Center, School of Medicine, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil
| | - Nicola Conran
- Hematology and Hemotherapy Center, School of Medicine, University of Campinas-UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
15
|
Acute spinal cord injury: A review of pathophysiology and potential of non-steroidal anti-inflammatory drugs for pharmacological intervention. J Chem Neuroanat 2018; 87:25-31. [DOI: 10.1016/j.jchemneu.2017.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/07/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022]
|
16
|
Lycopene Ameliorates Transplant Arteriosclerosis in Vascular Allograft Transplantation by Regulating the NO/cGMP Pathways and Rho-Associated Kinases Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3128280. [PMID: 28050227 PMCID: PMC5165158 DOI: 10.1155/2016/3128280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/04/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023]
Abstract
Objective. Transplant arteriosclerosis is considered one of the major factors affecting the survival time of grafts after organ transplantation. In this study, we proposed a hypothesis of whether lycopene can protect grafted vessels through regulating key proteins expression involved in arteriosclerosis. Methods. Allogeneic aortic transplantation was performed using Brow-Norway rats as donors and Lewis rats as recipients. After transplantation, the recipients were divided into two groups: the allograft group and the lycopene group. Negative control rats (isograft group) were also established. Histopathological staining was performed to observe the pathological changes, and the expression levels of Ki-67, caspase-3, Rho-associated kinases, intercellular adhesion molecules (ICAM-1), and eNOS were assessed. Western blotting analysis and real-time PCR were also performed for quantitative analysis. Results. The histopathological staining showed that vascular stenosis and intimal thickening were not evident after lycopene treatment. The Ki-67, ROCK1, ROCK2, and ICAM-1 expression levels were significantly decreased. However, eNOS expression in grafted arteries and plasma cGMP concentration were increased after lycopene treatment. Conclusions. Lycopene could alleviate vascular arteriosclerosis in allograft transplantation via downregulating Rho-associated kinases and regulating key factor expression through the NO/cGMP pathways, which may provide a potentially effective method for transplant arteriosclerosis in clinical organ transplantation.
Collapse
|