1
|
Maximal Exercise Improves the Levels of Endothelial Progenitor Cells in Heart Failure Patients. Curr Issues Mol Biol 2023; 45:1950-1960. [PMID: 36975495 PMCID: PMC10046939 DOI: 10.3390/cimb45030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
The impact of exercise on the levels of endothelial progenitor cells (EPCs), a marker of endothelial repair and angiogenesis, and circulating endothelial cells (CECs), an indicator of endothelial damage, in heart failure patients is largely unknown. This study aims to evaluate the effects of a single exercise bout on the circulating levels of EPCs and CECs in heart failure patients. Thirteen patients with heart failure underwent a symptom-limited maximal cardiopulmonary exercise test to assess exercise capacity. Before and after exercise testing, blood samples were collected to quantify EPCs and CECs by flow cytometry. The circulating levels of both cells were also compared to the resting levels of 13 volunteers (age-matched group). The maximal exercise bout increased the levels of EPCs by 0.5% [95% Confidence Interval, 0.07 to 0.93%], from 4.2 × 10−3 ± 1.5 × 10−3% to 4.7 × 10−3 ± 1.8 × 10−3% (p = 0.02). No changes were observed in the levels of CECs. At baseline, HF patients presented reduced levels of EPCs compared to the age-matched group (p = 0.03), but the exercise bout enhanced circulating EPCs to a level comparable to the age-matched group (4.7 × 10−3 ± 1.8 × 10−3% vs. 5.4 × 10−3 ± 1.7 × 10−3%, respectively, p = 0.14). An acute bout of exercise improves the potential of endothelial repair and angiogenesis capacity by increasing the circulating levels of EPCs in patients with heart failure.
Collapse
|
2
|
Dhindsa DS, Desai SR, Jin Q, Sandesara PB, Mehta A, Liu C, Tahhan AS, Nayak A, Ejaz K, Hooda A, Moazzami K, Islam SJ, Rogers SC, Almuwaqqat Z, Mokhtari A, Hesaroieh I, Ko YA, Sperling LS, Waller EK, Quyyumi AA. Circulating progenitor cells and outcomes in patients with coronary artery disease. Int J Cardiol 2023; 373:7-16. [PMID: 36460208 PMCID: PMC9840693 DOI: 10.1016/j.ijcard.2022.11.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Low quantities of circulating progenitor cells (CPCs), specifically CD34+ populations, reflect impairment of intrinsic regenerative capacity. This study investigates the relationship between subsets of CPCs and adverse outcomes. METHODS 1366 individuals undergoing angiography for evaluation of coronary artery disease (CAD) were enrolled into the Emory Cardiovascular Biobank. Flow cytometry identified CPCs as CD45med blood mononuclear cells expressing the CD34 epitope, with further enumeration of hematopoietic CPCs as CD133+/CXCR4+ cells and endothelial CPCs as vascular endothelial growth factor receptor-2 (VEGFR2+) cells. Adjusted Cox or Fine and Gray's sub-distribution hazard regression models analyzed the relationship between CPCs and 1) all-cause death and 2) a composite of cardiovascular death and non-fatal myocardial infarction (MI). RESULTS Over a median 3.1-year follow-up period (IQR 1.3-4.9), there were 221 (16.6%) all-cause deaths and 172 (12.9%) cardiovascular deaths/MIs. Hematopoietic CPCs were highly correlated, and the CD34+/CXCR4+ subset was the best independent predictor. Lower counts (≤median) of CD34+/CXCR4+ and CD34+/VEGFR2+ cells independently predicted all-cause mortality (HR 1.46 [95% CI 1.06-2.01], p = 0.02 and 1.59 [95% CI 1.15-2.18], p = 0.004) and cardiovascular death/MI (HR 1.50 [95% CI 1.04-2.17], p = 0.03 and 1.47 [95% CI 1.01-2.03], p = 0.04). A combination of low CD34+/CXCR4+ and CD34+/VEGFR2+ CPCs predicted all-cause death (HR 2.1, 95% CI 1.4-3.0; p = 0.0002) and cardiovascular death/MI (HR 2.0, 95% CI 1.3-3.2; p = 0.002) compared to those with both lineages above the cut-offs. CONCLUSIONS Lower levels of hematopoietic and endothelial CPCs indicate diminished endogenous regenerative capacity and independently correlate with greater mortality and cardiovascular risk in patients with CAD.
Collapse
Affiliation(s)
- Devinder S Dhindsa
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Shivang R Desai
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Qingchun Jin
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Pratik B Sandesara
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Anurag Mehta
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Chang Liu
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Ayman S Tahhan
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Aditi Nayak
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Kiran Ejaz
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ananya Hooda
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Kasra Moazzami
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Shabatun J Islam
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Steven C Rogers
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Zakaria Almuwaqqat
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ali Mokhtari
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Iraj Hesaroieh
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Yi-An Ko
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Laurence S Sperling
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Arshed A Quyyumi
- Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
3
|
Kourek C, Briasoulis A, Zouganeli V, Karatzanos E, Nanas S, Dimopoulos S. Exercise Training Effects on Circulating Endothelial and Progenitor Cells in Heart Failure. J Cardiovasc Dev Dis 2022; 9:222. [PMID: 35877584 PMCID: PMC9322098 DOI: 10.3390/jcdd9070222] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) is a major public health issue worldwide with increased prevalence and a high number of hospitalizations. Patients with chronic HF and either reduced ejection fraction (HFrEF) or mildly reduced ejection fraction (HFmrEF) present vascular endothelial dysfunction and significantly decreased circulating levels of endothelial progenitor cells (EPCs). EPCs are bone marrow-derived cells involved in endothelium regeneration, homeostasis, and neovascularization. One of the unsolved issues in the field of EPCs is the lack of an established method of identification. The most widely approved method is the use of monoclonal antibodies and fluorescence-activated cell sorting (FACS) analysis via flow cytometry. The most frequently used markers are CD34, VEGFR-2, CD45, CD31, CD144, and CD146. Exercise training has demonstrated beneficial effects on EPCs by increasing their number in peripheral circulation and improving their functional capacities in patients with HFrEF or HFmrEF. There are two potential mechanisms of EPCs mobilization: shear stress and the hypoxic/ischemic stimulus. The combination of both leads to the release of EPCs in circulation promoting their repairment properties on the vascular endothelium barrier. EPCs are important therapeutic targets and one of the most promising fields in heart failure and, therefore, individualized exercise training programs should be developed in rehabilitation centers.
Collapse
Affiliation(s)
- Christos Kourek
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
- Department of Cardiology, 417 Army Share Fund Hospital of Athens (NIMTS), 11521 Athens, Greece
| | - Alexandros Briasoulis
- Department of Clinical Therapeutics, Alexandra Hospital, Faculty of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece;
- Division of Cardiovascular Medicine, Section of Heart Failure and Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Virginia Zouganeli
- Second Cardiology Department, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Eleftherios Karatzanos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
| | - Serafim Nanas
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
| | - Stavros Dimopoulos
- Clinical Ergospirometry, Exercise & Rehabilitation Laboratory, 1st Critical Care Medicine Department, Evangelismos Hospital, National and Kapodistrian University of Athens, 10676 Athens, Greece; (C.K.); (E.K.); (S.N.)
- Cardiac Surgery Intensive Care Unit, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| |
Collapse
|
4
|
Zeng L, Zhang C, Cai G, Zhang B, Huang Z, Wu M, Zhu Y, Luo L, He H, Yang Z. Aging-Related Endothelial Progenitor Cell Dysfunction and Its Association with IL-17 and IL-23 in HFmrEF Patients. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2281870. [PMID: 35795858 PMCID: PMC9251143 DOI: 10.1155/2022/2281870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Aging is an independent risk factor for heart failure (HF), and endothelial progenitor cell (EPC) function decreases with aging. Here, we further investigated whether age has a detrimental effect on circulating EPC function in HF with mildly reduced ejection fraction (HFmrEF) and its relationship with systemic inflammation. METHODS 58 HFmrEF patients were recruited. The adhesive, migrative, and proliferative activities of circulating EPCs, MAGGIC scores, and plasma interleukin (IL)-17 and IL-23 levels of these patients were assessed. RESULTS Older patients with HFmrEF had higher MAGGIC scores and lower circulating EPC adhesion, migration, and proliferation than younger patients. The similar tendency was observed in plasma IL-17 and IL-23 levels. The EPC functions were negatively associated with MAGGIC scores and plasma IL-17 or IL-23 levels. CONCLUSIONS In patients with HFmrEF, aging leads to attenuated circulating EPC function, which is correlated with disease severity and systemic inflammation. The present investigation provides some novel insights into the mechanism and intervention targets of HFmrEF.
Collapse
Affiliation(s)
- Lijin Zeng
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Cong Zhang
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Guoyi Cai
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Zhang
- Department of Cardiovascular Disease, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
- Clinical Experimental Center, Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Zixia Huang
- Department of Anesthesiology, The Second Affiliated Hospital, Nanhua University, Hengyang, China
| | - Mingyue Wu
- Department of Anesthesiology, The Second Affiliated Hospital, Nanhua University, Hengyang, China
| | - Yuanting Zhu
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| | - Liang Luo
- Department of Critical Care Medicine, Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hao He
- Department of Cardiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, China
| | - Zhen Yang
- Division of Emergency Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory on Assisted Circulation (Sun Yat-sen University), Guangzhou, China
| |
Collapse
|
5
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022. [PMID: 35022875 DOI: 10.1007/s00421-021-04876-1.pmid:35022875;pmcid:pmc8927049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
UNLABELLED Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
6
|
Ferentinos P, Tsakirides C, Swainson M, Davison A, Martyn-St James M, Ispoglou T. The impact of different forms of exercise on circulating endothelial progenitor cells in cardiovascular and metabolic disease. Eur J Appl Physiol 2022; 122:815-860. [PMID: 35022875 PMCID: PMC8927049 DOI: 10.1007/s00421-021-04876-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/14/2021] [Indexed: 12/19/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular repair and their monitoring could have prognostic clinical value. Exercise is often prescribed for the management of cardiometabolic diseases, however, it is not fully understood how it regulates EPCs. OBJECTIVES to systematically examine the acute and chronic effects of different exercise modalities on circulating EPCs in patients with cardiovascular and metabolic disease. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS six electronic databases and reference lists of eligible studies were searched to April 2021. Thirty-six trials met the inclusion criteria including 1731 participants. Acute trials: in chronic heart failure (CHF), EPC mobilisation was acutely increased after high intensity interval or moderate intensity continuous exercise training, while findings were inconclusive after a cardiopulmonary cycling exercise test. Maximal exercise tests acutely increased EPCs in ischaemic or revascularized coronary artery disease (CAD) patients. In peripheral arterial disease (PAD), EPC levels increased up to 24 h post-exercise. In patients with compromised metabolic health, EPC mobilisation was blunted after a single exercise session. Chronic trials: in CHF and acute coronary syndrome, moderate intensity continuous protocols, with or without resistance exercise or calisthenics, increased EPCs irrespective of EPC identification phenotype. Findings were equivocal in CAD regardless of exercise mode, while in severe PAD disease EPCs increased. High intensity interval training increased EPCs in hypertensive metabolic syndrome and heart failure reduced ejection fraction. CONCLUSION the clinical condition and exercise modality influence the degree of EPC mobilisation and magnitude of EPC increases in the long term.
Collapse
Affiliation(s)
| | | | - Michelle Swainson
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Adam Davison
- Flow Cytometry Facility, Leeds Institute of Cancer and Pathology St James's University Hospital, University of Leeds, Leeds, UK
- Cytec Biosciences B.V, Amsterdam, The Netherlands
| | | | | |
Collapse
|
7
|
Endothelial Progenitor Cells: An Appraisal of Relevant Data from Bench to Bedside. Int J Mol Sci 2021; 22:ijms222312874. [PMID: 34884679 PMCID: PMC8657735 DOI: 10.3390/ijms222312874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The mobilization of endothelial progenitor cells (EPCs) into circulation from bone marrow is well known to be present in several clinical settings, including acute coronary syndrome, heart failure, diabetes and peripheral vascular disease. The aim of this review was to explore the current literature focusing on the great opportunity that EPCs can have in terms of regenerative medicine.
Collapse
|
8
|
Chen J, Gu S, Song Y, Ji X, Zeng W, Wang X, Wang Y, Feng Q. The impact of cardiomotor rehabilitation on endothelial function in elderly patients with chronic heart failure. BMC Cardiovasc Disord 2021; 21:524. [PMID: 34724901 PMCID: PMC8561974 DOI: 10.1186/s12872-021-02327-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 09/27/2021] [Indexed: 12/19/2022] Open
Abstract
Background To explore the effects of cardiac exercise rehabilitation on peripheral blood endothelial progenitor cells (EPC) in elderly patients with chronic heart failure. Methods 80 elderly patients with chronic heart failure were selected from March 2017 to March 2019 and randomly divided into two groups (N = 40). The control group was treated routinely and walked freely for 30–60 min every day. The patients in the exercise rehabilitation group developed a cardiac exercise rehabilitation plan. Then, cardiac function and peripheral blood B-natriuretic peptide (BNP) levels in the two groups were compared. The cell viability, proliferation, apoptosis, and invasion ability of EPCs were detected. The levels of the PI3K/AKT pathway and eNOS and VEGF were compared. Results There were no significant differences in all indexes between the two groups before treatment (P > 0.05), and both improved significantly after treatment (P < 0.05). After treatment, LVEF and LVFS in the exercise rehabilitation group were significantly higher than those in the control group (P < 0.05), and LVEDD and LVESD were significantly lower than those in the control group (P < 0.05). The BNP level in the exercise rehabilitation group was significantly lower than that in the control group (P < 0.05). The cell viability, proliferation, invasion ability of EPC, and the levels of PI3K, AKT, eNOS, and VEGF mRNA and protein in the exercise rehabilitation group were significantly higher than those in the control group. Apoptosis rate was significantly lower than those in the control group (P < 0.05). Conclusions Visceral exercise rehabilitation can improve cardiac ejection and myocardial function in elderly patients with chronic heart failure, and can promote the vitality, proliferation, and invasion of peripheral blood EPC, and promote the expression of eNOS and VEGF by upregulating the PI3K/AKT pathway to promote angiogenesis and endothelial function. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-021-02327-5.
Collapse
Affiliation(s)
- Juming Chen
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Shenhong Gu
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China.
| | - Yanling Song
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Xinbo Ji
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Wangyuan Zeng
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Xiaoxi Wang
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Yachun Wang
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou City, 570102, Hainan Province, China
| | - Qingfeng Feng
- Graduate School, Hainan Medical University, China Medical University, Haikou City, 571199, Hainan Province, China
| |
Collapse
|
9
|
Topf A, Mirna M, Ohnewein B, Jirak P, Kopp K, Fejzic D, Haslinger M, Motloch LJ, Hoppe UC, Berezin A, Lichtenauer M. The Diagnostic and Therapeutic Value of Multimarker Analysis in Heart Failure. An Approach to Biomarker-Targeted Therapy. Front Cardiovasc Med 2020; 7:579567. [PMID: 33344515 PMCID: PMC7746655 DOI: 10.3389/fcvm.2020.579567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Heart failure is a pathophysiological state, which is still associated with high morbidity and mortality despite established therapies. Diverse well-known biomarkers fail to assess the variety of individual pathophysiology in the context of heart failure. Methods: An analysis of prospective, multimarker-specific therapeutic approaches to heart failure based on studies in current literature was performed. A total of 159 screened publications in the field of biomarkers in heart failure were hand-selected and found to be eligible for this study by a team of experts. Results: Established biomarkers of the inflammatory axis, matrix remodeling, fibrosis and oxidative stress axis, as well as potential therapeutic interventions were investigated. Interaction with end organs, such as cardio-hepatic, cardio-renal and cardio-gastrointestinal interactions show the complexity of the syndrome and could be of further therapeutic value. MicroRNAs are involved in a wide variety of physiologic and pathophysiologic processes in heart failure and could be useful in diagnostic as well as therapeutic setting. Conclusion: Based on our analysis by a biomarker-driven approach in heart failure therapy, patients could be treated more specifically in long term with a consideration of different aspects of heart failure. New studies evaluating a multimarker - based therapeutic approach could lead in a decrease in the morbidity and mortality of heart failure patients.
Collapse
Affiliation(s)
- Albert Topf
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Moritz Mirna
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Bernhard Ohnewein
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Peter Jirak
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Kristen Kopp
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Dzeneta Fejzic
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michael Haslinger
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Lukas J. Motloch
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Uta C. Hoppe
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Alexander Berezin
- Internal Medicine Department, State Medical University, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Department of Cardiology, Clinic of Internal Medicine II, Paracelsus Medical University of Salzburg, Salzburg, Austria
| |
Collapse
|
10
|
Fadini GP, Mehta A, Dhindsa DS, Bonora BM, Sreejit G, Nagareddy P, Quyyumi AA. Circulating stem cells and cardiovascular outcomes: from basic science to the clinic. Eur Heart J 2020; 41:4271-4282. [PMID: 31891403 PMCID: PMC7825095 DOI: 10.1093/eurheartj/ehz923] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 10/19/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
The cardiovascular and haematopoietic systems have fundamental inter-relationships during development, as well as in health and disease of the adult organism. Although haematopoietic stem cells (HSCs) emerge from a specialized haemogenic endothelium in the embryo, persistence of haemangioblasts in adulthood is debated. Rather, the vast majority of circulating stem cells (CSCs) is composed of bone marrow-derived HSCs and the downstream haematopoietic stem/progenitors (HSPCs). A fraction of these cells, known as endothelial progenitor cells (EPCs), has endothelial specification and vascular tropism. In general, the levels of HSCs, HSPCs, and EPCs are considered indicative of the endogenous regenerative capacity of the organism as a whole and, particularly, of the cardiovascular system. In the last two decades, the research on CSCs has focused on their physiologic role in tissue/organ homoeostasis, their potential application in cell therapies, and their use as clinical biomarkers. In this review, we provide background information on the biology of CSCs and discuss in detail the clinical implications of changing CSC levels in patients with cardiovascular risk factors or established cardiovascular disease. Of particular interest is the mounting evidence available in the literature on the close relationships between reduced levels of CSCs and adverse cardiovascular outcomes in different cohorts of patients. We also discuss potential mechanisms that explain this association. Beyond CSCs' ability to participate in cardiovascular repair, levels of CSCs need to be interpreted in the context of the broader connections between haematopoiesis and cardiovascular function, including the role of clonal haematopoiesis and inflammatory myelopoiesis.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Anurag Mehta
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| | - Devinder Singh Dhindsa
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| | | | - Gopalkrishna Sreejit
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Prabhakara Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University, Columbus, OH 43210, USA
| | - Arshed Ali Quyyumi
- Division of Cardiology, Department of Medicine, Emory Clinical Cardiovascular Research Institute, Emory University School of Medicine, 201 Dowman Drive, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Cristóvão G, Milner J, Sousa P, Ventura M, Cristóvão J, Elvas L, Paiva A, Gonçalves L, Ribeiro CF, António N. Improvement in circulating endothelial progenitor cells pool after cardiac resynchronization therapy: increasing the list of benefits. Stem Cell Res Ther 2020; 11:194. [PMID: 32448383 PMCID: PMC7245793 DOI: 10.1186/s13287-020-01713-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/16/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Background Recent studies suggest that circulating endothelial progenitor cells (EPCs) may influence the response to cardiac resynchronization therapy (CRT). The aim of this study was to evaluate the effect of CRT on EPC levels and to assess the impact of EPCs on long-term clinical outcomes. Population and methods Prospective study of 50 patients submitted to CRT. Two populations of circulating EPCs were quantified previously to CRT implantation: CD34+KDR+ and CD133+KDR+ cells. EPC levels were reassessed 6 months after CRT. Endpoints during the long-term follow-up were all-cause mortality, heart transplantation, and hospitalization for heart failure (HF) management. Results The proportion of non-responders to CRT was 42% and tended to be higher in patients with an ischemic vs non-ischemic etiology (64% vs 35%, p = 0.098). Patients with ischemic cardiomyopathy (ICM) showed significantly lower CD34+KDR+ EPC levels when compared to non-ischemic dilated cardiomyopathy patients (DCM) (0.0010 ± 0.0007 vs 0.0030 ± 0.0024 cells/100 leukocytes, p = 0.032). There were no significant differences in baseline EPC levels between survivors and non-survivors nor between patients who were rehospitalized for HF management during follow-up or not. At 6-month follow-up, circulating EPC levels were significantly higher than baseline levels (0.0024 ± 0.0023 vs 0.0047 ± 0.0041 CD34+KDR+ cells/100 leukocytes, p = 0.010 and 0.0007 ± 0.0004 vs 0.0016 vs 0.0013 CD133+/KDR+ cells/100 leukocytes, p = 0.007). Conclusions Patients with ICM showed significantly lower levels of circulating EPCs when compared to their counterparts. CRT seems to improve the pool of endogenously circulating EPCs and reduced baseline EPC levels seem not to influence long-term outcomes after CRT. Graphical abstract ![]()
Collapse
Affiliation(s)
- Gonçalo Cristóvão
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - James Milner
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Pedro Sousa
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Miguel Ventura
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - João Cristóvão
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Luís Elvas
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal
| | - Artur Paiva
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal.,Cytometry Operational Management Unit, Clinical Pathology Service, Coimbra Hospital and University Centre, Coimbra, Portugal.,Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Department Biomedical Laboratory Sciences, Coimbra, Portugal
| | - Lino Gonçalves
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
| | - Carlos Fontes Ribeiro
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal
| | - Natália António
- Cardiology Department, Coimbra Hospital and University Centre, Coimbra, Portugal. .,Faculty of Medicine, University of Coimbra, Coimbra, Portugal. .,Clinical Academic Center of Coimbra, Coimbra, Portugal. .,Coimbra Institute for Clinical and Biomedical Research (iCBR), Coimbra, Portugal.
| |
Collapse
|
12
|
Ivak P, Netuka I, Kralova-Lesna I, Wohlfahrt P, Pitha J. Changes in circulating stem cells and endothelial progenitor cells over a 12-month period after implantation of a continuous-flow left ventricular assist device. Arch Med Sci 2020; 16:1440-1443. [PMID: 33224344 PMCID: PMC7667410 DOI: 10.5114/aoms.2020.100306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 06/10/2020] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Changes in circulating CD34+CD45low stem cells (SC) and CD34+CD45low+KDR+ endothelial progenitor cells (EPC) may reflect pathological endothelial activation. Non-pulsatile/continuous-flow left ventricular assist devices (CF-LVAD) can enhance this process. The aim of this study was to analyse the impact of 12-month CF-LVAD treatment on SC and EPC. METHODS We analysed changes in SC and EPC from the pre-implantation period up until 12 months after implantation over 3-month intervals in 14 patients. Data from 12 patients with heart failure (HF) and from 13 healthy volunteers were used as controls. RESULTS Baseline EPC were significantly higher in CF-LVAD and HF patients than in healthy controls, substantially decreasing 3 months after CF-LVAD implantation and then returning to high baseline values at 12 months. CONCLUSIONS Changes in circulating SC and EPC may reflect pathological endothelial activation after CF-LVAD implantation.
Collapse
Affiliation(s)
- Peter Ivak
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Second Department of Surgery, Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivan Netuka
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Second Department of Surgery, Department of Cardiovascular Surgery, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ivana Kralova-Lesna
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Anesthesiology and Intensive Care Medicine, First Faculty of Medicine, Charles University and Military University Hospital, Prague, Czech Republic
| | - Peter Wohlfahrt
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Pitha
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Internal Medicine, Second Faculty of Medicine, Charles University, Czech Republic
| |
Collapse
|
13
|
Sciatti E, Dallapellegrina L, Metra M, Lombardi CM. New drugs for the treatment of chronic heart failure with a reduced ejection fraction. J Cardiovasc Med (Hagerstown) 2019; 20:650-659. [DOI: 10.2459/jcm.0000000000000850] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Djohan AH, Sia CH, Lee PS, Poh KK. Endothelial Progenitor Cells in Heart Failure: an Authentic Expectation for Potential Future Use and a Lack of Universal Definition. J Cardiovasc Transl Res 2018; 11:393-402. [PMID: 29777508 DOI: 10.1007/s12265-018-9810-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/03/2018] [Indexed: 02/08/2023]
Abstract
Congestive heart failure (CHF) is a prevalent disease (especially among the elderly) with high mortality and morbidity rates. The pathological hallmark of CHF is a loss of cardiomyocytes leading to cardiac fibrosis and dysfunctional cardiac remodeling, which culminates in organ failure. Endothelial progenitor cells (EPCs) are bone marrow-derived cells that contribute to maintenance of the integrity of endothelial wall and protect ischemic myocardium through forming new blood vessels (vasculogenesis) or proliferation of pre-existing vasculature (angiogenesis). Despite its potential, little is known about EPCs and their function in CHF. Here, we define EPC and its role in health and CHF, highlighting their contributions as a cornerstone in the maintenance of a healthy endothelium. Thereafter, we explore the behavior and relevance of EPCs in the pathophysiology of CHF, their prognostic importance, and possible utilization of EPCs as therapy for CHF. Lastly, the restrictions surrounding the use of EPCs in clinical practice will be discussed.
Collapse
Affiliation(s)
- Andie H Djohan
- Department of Medicine, National University Health System, Singapore, Singapore
| | - Ching-Hui Sia
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore
| | - Poay Sian Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kian-Keong Poh
- Department of Cardiology, National University Heart Centre Singapore, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 9, Singapore, 119228, Singapore. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
15
|
Endothelial nitric oxide synthase overexpressing human early outgrowth cells inhibit coronary artery smooth muscle cell migration through paracrine functions. Sci Rep 2018; 8:877. [PMID: 29343714 PMCID: PMC5772515 DOI: 10.1038/s41598-017-18848-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 12/19/2017] [Indexed: 12/14/2022] Open
Abstract
Cells mobilized from the bone marrow can contribute to endothelial regeneration and repair. Nevertheless, cardiovascular diseases are associated with diminished numbers and function of these cells, attenuating their healing potential. Gene transfer of endothelial nitric oxide synthase (eNOS) can restore the activity of circulating cells. Furthermore, estrogen accelerates the reendothelialization capacity of early outgrowth cells (EOCs). We hypothesized that overexpressing eNOS alone or in combination with estrogen stimulation in EOCs would potentiate the beneficial effects of these cells in regulating smooth muscle cell (SMC) function. Native human EOCs did not have any effect on human coronary artery SMC (hCASMC) proliferation or migration. Transfecting EOCs with a human eNOS plasmid and/or stimulating with 17β-estradiol (E2) increased NO production 3-fold and enhanced EOC survival. Moreover, in co-culture studies, eNOS overexpressing or E2-stimulated EOCs reduced hCASMC migration (by 23% and 56% respectively), vs. control EOCs. These effects do not implicate ERK1/2 or focal adhesion kinases. Nevertheless, NOS-EOCs had no effect on hCASMC proliferation. These results suggest that overexpressing or activating eNOS in EOCs increases their survival and enhances their capacity to regulate SMC migration through paracrine effects. These data elucidate how eNOS overexpression or activation in EOCs can prevent vascular remodeling.
Collapse
|
16
|
Samman Tahhan A, Hammadah M, Sandesara PB, Hayek SS, Kalogeropoulos AP, Alkhoder A, Mohamed Kelli H, Topel M, Ghasemzadeh N, Chivukula K, Ko YA, Aida H, Hesaroieh I, Mahar E, Kim JH, Wilson P, Shaw L, Vaccarino V, Waller EK, Quyyumi AA. Progenitor Cells and Clinical Outcomes in Patients With Heart Failure. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.117.004106. [PMID: 28790053 DOI: 10.1161/circheartfailure.117.004106] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Endogenous regenerative capacity, assessed as circulating progenitor cell (PC) numbers, is an independent predictor of adverse outcomes in patients with cardiovascular disease. However, their predictive role in heart failure (HF) remains controversial. We assessed the relationship between the number of circulating PCs and the pathogenesis and severity of HF and their impact on incident HF events. METHODS AND RESULTS We recruited 2049 adults of which 651 had HF diagnosis. PCs were enumerated by flow cytometry as CD45med+ blood mononuclear cells expressing CD34, CD133, vascular endothelial growth factor receptor-2, and chemokine (C-X-C motif) receptor 4 epitopes. PC subsets were lower in number in HF and after adjustment for clinical characteristics in multivariable analyses, a low CD34+ and CD34+/CXCR+ cell count remained independently associated with a diagnosis of HF (P<0.01). PC levels were not significantly different in reduced versus preserved ejection fraction patients. In 514 subjects with HF, there were 98 (19.1%) all-cause deaths during a 2.2±1.5-year follow-up. In a Cox regression model adjusting for clinical variables, hematopoietic-enriched PCs (CD34+, CD34+/CD133+, and CD34+/CXCR4+) were independent predictors of all-cause death (hazard ratio 2.0, 1.6, 1.6-fold higher mortality, respectively; P<0.03) among HF patients. Endothelial-enriched PCs (CD34+/VEGF+) were independent predictors of mortality in patients with HF with preserved ejection fraction only (hazard ratio, 5.0; P=0.001). CONCLUSIONS PC levels are lower in patients with HF, and lower PC counts are strongly and independently predictive of mortality. Strategies to increase PCs and exogenous stem cell therapies designed to improve regenerative capacity in HF, especially, in HF with preserved ejection fraction, need to be further explored.
Collapse
Affiliation(s)
- Ayman Samman Tahhan
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Muhammad Hammadah
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Pratik B Sandesara
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Salim S Hayek
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Andreas P Kalogeropoulos
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Ayman Alkhoder
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Heval Mohamed Kelli
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Matthew Topel
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Nima Ghasemzadeh
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Kaavya Chivukula
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Yi-An Ko
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Hiroshi Aida
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Iraj Hesaroieh
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Ernestine Mahar
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Jonathan H Kim
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Peter Wilson
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Leslee Shaw
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Viola Vaccarino
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Edmund K Waller
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA
| | - Arshed A Quyyumi
- From the Division of Cardiology, Emory University School of Medicine, Atlanta, GA (A.S.T., M.H., P.B.S., S.S.H., A.P.K., A.A., H.M.-K., M.T., N.G., K.C., H.A., I.H., J.H.K., P.W., L.S., V.V., A.A.Q.); and Department of Biostatistics and Bioinformatics (Y.-A.K., E.M.) and Department of Hematology and Oncology, Winship Cancer Institute (E.K.W.), Emory University, Atlanta, GA.
| |
Collapse
|
17
|
Combined Analysis of Endothelial, Hematopoietic, and Mesenchymal Stem Cell Compartments Shows Simultaneous but Independent Effects of Age and Heart Disease. Stem Cells Int 2017; 2017:5237634. [PMID: 28819363 PMCID: PMC5551513 DOI: 10.1155/2017/5237634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/24/2017] [Accepted: 06/06/2017] [Indexed: 12/22/2022] Open
Abstract
Clinical trials using stem cell therapy for heart diseases have not reproduced the initial positive results obtained with animal models. This might be explained by a decreased regenerative capacity of stem cells collected from the patients. This work aimed at the simultaneous investigation of endothelial stem/progenitor cells (EPCs), mesenchymal stem/progenitor cells (MSCs), and hematopoietic stem/progenitor cells (HSCs) in sternal bone marrow samples of patients with ischemic or valvular heart disease, using flow cytometry and colony assays. The study included 36 patients referred for coronary artery bypass grafting or valve replacement surgery. A decreased frequency of stem cells was observed in both groups of patients. Left ventricular dysfunction, diabetes, and intermediate risk in EuroSCORE and SYNTAX score were associated with lower EPCs frequency, and the use of aspirin and β-blockers correlated with a higher frequency of HSCs and EPCs, respectively. Most importantly, the distribution of frequencies in the three stem cell compartments showed independent patterns. The combined investigation of the three stem cell compartments in patients with cardiovascular diseases showed that they are independently affected by the disease, suggesting the investigation of prognostic factors that may be used to determine when autologous stem cells may be used in cell therapy.
Collapse
|