1
|
Wang H, Li Y, Li H, Yan X, Jiang Z, Feng L, Hu W, Fan Y, Lin S, Li G. T cell related osteoimmunology in fracture healing: Potential targets for augmenting bone regeneration. J Orthop Translat 2025; 51:82-93. [PMID: 39991456 PMCID: PMC11847249 DOI: 10.1016/j.jot.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/15/2024] [Accepted: 12/01/2024] [Indexed: 02/25/2025] Open
Abstract
UNLABELLED Last decade has witnessed increasing evidence which highlights the roles of immune cells in bone regeneration. Numerous immune cell types, including macrophages, T cells, and neutrophils are involved in fracture healing by orchestrating a series of events that modulate bone formation and remodeling. In this review, the role of T cell immunity in fracture healing has been summarized, and the modulatory effects of T cell immunity in inflammation, bone formation and remodeling have been highlighted. The review also summarizes the specific roles of different T cell subsets, including CD4+ T cells, CD8+ T cells, regulatory T cells, T helper 17 cells, and γδ T cells in modulating fracture healing. The current therapeutics targeting T cell immunity to enhance fracture healing have also been reviewed, aiming to provide insights from a translational standpoint. Overall, this work discusses recent advances and challenges in the interdisciplinary research field of T cell related osteoimmunology and its implications in fracture healing. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE Delayed unions or non-unions of bone fractures remain a challenge in clinical practice. Developing a deep understanding of the roles of immune cells, including T cells, in fracture healing will facilitate the advancement of novel therapeutics of fracture nonunion. This review summarizes the current understanding of different T cell subsets involved in various phases of fracture healing, providing insights for targeting T cells as an alternative strategy to enhance bone regeneration.
Collapse
Affiliation(s)
- Haixing Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yashi Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haoxin Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xu Yan
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhaowei Jiang
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lu Feng
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| | - Wenhui Hu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yinuo Fan
- The Third Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Sien Lin
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong Province, China
- Department of Orthopaedics & Traumatology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Chudek J, Pośpiech M, Chudek A, Holecki M, Puzianowska-Kuźnicka M. Osteoprotegerin as an Emerging Biomarker of Carotid Artery Stenosis? A Scoping Review with Meta-Analysis. Diagnostics (Basel) 2025; 15:219. [PMID: 39857103 PMCID: PMC11764218 DOI: 10.3390/diagnostics15020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Objective: In developed countries, stroke is the fifth cause of death, with a high mortality rate, and with recovery to normal neurological function in one-third of survivors. Atherosclerotic occlusive disease of the extracranial part of the internal carotid artery and related embolic complications are common preventable causes of ischemic stroke (IS), attributable to 7-18% of all first-time cases. Osteoprotegerin (OPG), a soluble member of the tumor necrosis factor receptor (TNFR) superfamily, is considered a modulator of vascular calcification linked to vascular smooth muscle cell proliferation and collagen production in atherosclerotic plaques. Therefore, OPG emerges as a potential biomarker (BM) of calcified carotid plaques and carotid artery stenosis (CAS). Methods: We performed a literature search of PubMed on OPG in CAS and atherosclerosis published until 2024. Results: Increased levels of serum OPG were reported in both patients with symptomatic and asymptomatic CAS, and higher values were observed in those with unstable atherosclerotic plaques. Notably, increased OPG levels were observed regardless of the location of atherosclerosis, including coronary and other peripheral arteries. In addition, chronic kidney disease, the most significant confounder disturbing the association between vascular damage and circulating OPG levels, decreases the usefulness of OPG as a BM in CAS. Conclusions: Osteoprotegerin may be considered an emerging BM of global rather than cerebrovascular atherosclerosis. Its diagnostic significance in identifying patients with asymptomatic CAS and their monitoring is limited.
Collapse
Affiliation(s)
- Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Medical Faculty in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Marta Pośpiech
- Department of Internal Medicine and Oncological Chemotherapy, Medical Faculty in Katowice, Medical University of Silesia, 40-027 Katowice, Poland;
| | - Anna Chudek
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Michał Holecki
- Department of Internal, Autoimmune and Metabolic Diseases, School of Medicine, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Monika Puzianowska-Kuźnicka
- Department of Human Epigenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Department of Geriatrics and Gerontology, Medical Centre of Postgraduate Education, 01-813 Warsaw, Poland
| |
Collapse
|
3
|
Paoletti I, Coccurello R. Irisin: A Multifaceted Hormone Bridging Exercise and Disease Pathophysiology. Int J Mol Sci 2024; 25:13480. [PMID: 39769243 PMCID: PMC11676223 DOI: 10.3390/ijms252413480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/03/2025] Open
Abstract
The fibronectin domain-containing protein 5 (FNDC5), or irisin, is an adipo-myokine hormone produced during exercise, which shows therapeutic potential for conditions like metabolic disorders, osteoporosis, sarcopenia, obesity, type 2 diabetes, and neurodegenerative diseases, including Alzheimer's disease (AD). This review explores its potential across various pathophysiological processes that are often considered independent. Elevated in healthy states but reduced in diseases, irisin improves muscle-adipose communication, insulin sensitivity, and metabolic balance by enhancing mitochondrial function and reducing oxidative stress. It promotes osteogenesis and mitigates bone loss in osteoporosis and sarcopenia. Irisin exhibits anti-inflammatory effects by inhibiting NF-κB signaling and countering insulin resistance. In the brain, it reduces amyloid-β toxicity, inflammation, and oxidative stress, enhancing brain-derived neurotrophic factor (BDNF) signaling, which improves cognition and synaptic health in AD models. It also regulates dopamine pathways, potentially alleviating neuropsychiatric symptoms like depression and apathy. By linking physical activity to systemic health, irisin emphasizes its role in the muscle-bone-brain axis. Its multifaceted benefits highlight its potential as a therapeutic target for AD and related disorders, with applications in prevention, in treatment, and as a complement to exercise strategies.
Collapse
Affiliation(s)
- Ilaria Paoletti
- IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy;
| | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, European Center for Brain Research, 00143 Rome, Italy;
- Institute for Complex Systems (ISC), National Research Council (C.N.R.), 00185 Rome, Italy
| |
Collapse
|
4
|
Dardari D, Segurens B. Rapid correction of chronic hyperglycemia and bone remodeling, warning against overdoing. World J Diabetes 2024; 15:1858-1861. [PMID: 39280185 PMCID: PMC11372633 DOI: 10.4239/wjd.v15.i9.1858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
It is widely recognized that chronic hyperglycemia decreases bone quality, although little is known about the impact of the rapid correction of chronic hyperglycemia on the quality of bone remodeling. This spotlight article explores this correlation by focusing on the stages of bone remodeling linked to glucose levels.
Collapse
Affiliation(s)
- Dured Dardari
- Department of Diabetology, Centre Hospitalier Sud Francilien, Corbeil Essonne 91100, France
| | - Beatrice Segurens
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), Evry Courcouronnes, France
| |
Collapse
|
5
|
Huang B, Yang M, Kou Y, Jiang B. Absorbable implants in sport medicine and arthroscopic surgery: A narrative review of recent development. Bioact Mater 2024; 31:272-283. [PMID: 37637087 PMCID: PMC10457691 DOI: 10.1016/j.bioactmat.2023.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023] Open
Abstract
Over the past two decades, advances in arthroscopic and minimally invasive surgical techniques have led to significant growth in sports medicine surgery. Implants such as suture anchors, interference screws, and endo-buttons are commonly used in these procedures. However, traditional implants made of metal or inert materials are not absorbable, leading to complications that affect treatment outcomes. To address this issue, absorbable materials with excellent mechanical properties, good biocompatibility, and controlled degradation rates have been developed and applied in clinical practice. These materials include absorbable polymers, absorbable bioceramics, and absorbable metals. In this paper, we will provide a comprehensive summary of these absorbable materials from the perspective of clinicians, and discuss their clinical applications and related research in sport medicine.
Collapse
Affiliation(s)
- Boxuan Huang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Ming Yang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Yuhui Kou
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
| | - Baoguo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Beijing, 100044, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), Ministry of Education, Beijing, 100044, China
- National Center for Trauma Medicine, Beijing, 100044, China
- Medical School, Shenzhen University, Shenzhen, 518060, Guangdong, China
- Shenzhen University General Hospital, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
6
|
Akyay OZ, Canturk Z, Selek A, Cetinarslan B, Tarkun İ, Cakmak Y, Baydemir C. The effects of exenatide and insulin glargine treatments on bone turnover markers and bone mineral density in postmenopausal patients with type 2 diabetes mellitus. Medicine (Baltimore) 2023; 102:e35394. [PMID: 37773814 PMCID: PMC10545322 DOI: 10.1097/md.0000000000035394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) related bone fracture. The effects of glucagon-like peptide-1 receptor analogs for the treatment of T2DM on bone are controversial in human studies. This study aimed to compare the effects of GLP-1 receptor analogs exenatide and insulin glargine treatment on bone turnover marker levels and bone mineral density (BMD) in postmenopausal female patients with T2DM. Thirty female patients with T2DM who were naive to insulin and incretin-based treatments, with spontaneous postmenopause, were randomized to exenatide or insulin glargine arms and were followed up for 24 weeks. BMD was evaluated using dual-energy X-ray absorptiometry and bone turnover markers by serum enzyme-linked immunosorbent assay. The body mass index significantly decreased in the exenatide group compared to the glargine group (P < .001). Receptor activator of nuclear factor kappa-B (RANK) and RANK ligand (RANKL) levels were significantly decreased with exenatide treatment (P = .009 and P = .015, respectively). Osteoprotegerin (OPG) level significantly increased with exenatide treatment (P = .02). OPG, RANK, RANKL levels did not change with insulin glargine treatment. No statistically significant difference was found between the pre- and posttreatment BMD, alkaline phosphatase, bone-specific alkaline phosphatase, and type 1 crosslinked N-telopeptide levels in both treatment arms. Despite significant weight loss with exenatide treatment, BMD did not decrease, OPG increased, and the resorption markers of RANK and RANKL decreased, which may reflect early antiresorptive effects of exenatide via the OPG/RANK/RANKL pathway.
Collapse
Affiliation(s)
- Ozlem Zeynep Akyay
- University of Health Sciences Sanliurfa Mehmet Akif İnan Education and Research Hospital, Department of Endocrinology and Metabolism, Sanliurfa, Turkey
| | - Zeynep Canturk
- Kocaeli University School of Medicine, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - Alev Selek
- Kocaeli University School of Medicine, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - Berrin Cetinarslan
- Kocaeli University School of Medicine, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - İlhan Tarkun
- Anadolu Medical Center, Department of Endocrinology and Metabolism, Kocaeli, Turkey
| | - Yagmur Cakmak
- Kocaeli University School of Medicine, Department of Oncology, Kocaeli, Turkey
| | - Canan Baydemir
- Kocaeli University School of Medicine, Department of Biostatistics and Medical Informatics, Kocaeli, Turkey
| |
Collapse
|
7
|
Wang Z, Wu J, Li L, Wang K, Wu X, Chen H, Shi J, Zhou C, Zhang W, Hang K, Xue D, Pan Z. Eicosapentaenoic acid supplementation modulates the osteoblast/osteoclast balance in inflammatory environments and protects against estrogen deficiency-induced bone loss in mice. Clin Nutr 2023; 42:1715-1727. [PMID: 37542949 DOI: 10.1016/j.clnu.2023.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/13/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND An imbalance of osteoblasts (OBs) and osteoclasts (OCs) in a chronic inflammatory microenvironment is an important pathological factor leading to osteoporosis. Eicosapentaenoic acid (EPA) has been shown to suppress inflammation in macrophages and adipocytes. However, the effect of EPA on OBs and OCs has yet to be fully elucidated. AIMS We explored the roles of EPA in the differentiation of OBs and OCs, as well as the coupling between OBs and OCs in an inflammatory microenvironment. The effects of EPA on estrogen deficiency-induced osteoporosis were also evaluated. METHODS Mouse bone marrow mesenchymal stem cells (mBMSCs) and mouse bone marrow-derived macrophages (mBMMs) were used for in vitro OBs and OCs differentiation. TNF-α was used to create an inflammatory microenvironment. We examined the effects of EPA on osteoblastogenesis in the absence or presence of TNF-α and collect OBs' culture medium as the conditioned medium (CM). Then we examined the effects of EPA and CM on RANKL-induced osteoclastogenesis. The in vivo effects of EPA were determined using an ovariectomized (OVX) mouse model treated with EPA or vehicle. RESULTS High-dose EPA was shown to promote osteoblastogenesis in an inflammatory environment in vitro, as well as upregulate expression of OBs-specific proteins and genes. ARS and ALP staining also showed that high-dose EPA-treated groups restored mBMSCs' impaired osteogenic capacity caused by TNFa. Mechanistically, EPA suppressed the NF-κB pathway activated by TNF-α in mBMSCs and rescued TNF-α-mediated inhibition of osteoblastogenesis. EPA was also shown to inhibit expression of RANKL and decrease the RANKL/OPG ratio in OBs in an inflammatory environment. CM from TNF-α-stimulated OBs promoted osteoclastogenesis of mBMMs; EPA-treated CM prevented this. In the OVX mouse model, EPA supplementation prevented bone loss in an estrogen deficiency-induced inflammatory environment. CONCLUSIONS EPA was demonstrated for the first time to restore mBMSCs' impaired osteogenic capacity caused by TNFa-induced inflammation and rescue the OBs/OCs balance via regulation of RANKL and OPG expression in OBs. EPA showed a remarkable ability to prevent bone loss in OVX mice, suggesting a potential application of EPA in postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhongxiang Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China
| | - Jiaqi Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China
| | - Lijun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China
| | - Kanbin Wang
- Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China; Department of Orthopedic Surgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, 322000 Yiwu, Zhejiang Province, PR China
| | - Xiaoyong Wu
- Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China
| | - Hongyu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China
| | - Jiujun Shi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China
| | - Chengwei Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, 310000 Hangzhou, Zhejiang Province, PR China
| | - Weijun Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China
| | - Kai Hang
- Department of Orthopedic Surgery, The Children's Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China
| | - Deting Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China.
| | - Zhijun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang Province, PR China; Orthopedics Research Institute of Zhejiang University, 310000 Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
8
|
Moretti A, Iolascon G. Sclerostin: clinical insights in muscle-bone crosstalk. J Int Med Res 2023; 51:3000605231193293. [PMID: 37632438 PMCID: PMC10467411 DOI: 10.1177/03000605231193293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/21/2023] [Indexed: 08/28/2023] Open
Abstract
Sclerostin, a protein encoded by the sclerostin (SOST) gene, is mostly expressed in osteocytes. First described in the pathogenesis of three disorders, sclerosteosis, van Buchem's disease, and craniodiaphyseal dysplasia, sclerostin has been identified as an important regulator of bone homeostasis, controlling bone formation by osteoblasts through inhibition of the canonical Wnt signaling pathway. Recent studies have highlighted a hypothetical role of sclerostin in myogenesis, thus modulating the interaction between bone and muscle. This narrative review provides an overview of the clinical implications of sclerostin modulation on skeletal muscle mass and function, and bone metabolism. Improving knowledge about muscle-bone crosstalk may represent a turning point in the development of therapeutic strategies for musculoskeletal disorders, particularly osteosarcopenia.
Collapse
Affiliation(s)
- Antimo Moretti
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| |
Collapse
|
9
|
Nardella E, Biscetti F, Rando MM, Cecchini AL, Nicolazzi MA, Rossini E, Angelini F, Iezzi R, Eraso LH, Dimuzio PJ, Pitocco D, Massetti M, Gasbarrini A, Flex A. Development of a biomarker panel for assessing cardiovascular risk in diabetic patients with chronic limb-threatening ischemia (CLTI): a prospective study. Cardiovasc Diabetol 2023; 22:136. [PMID: 37308885 DOI: 10.1186/s12933-023-01872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Lower-extremity endovascular revascularization (LER) is often required for diabetic patients with chronic limb threatening ischemia (CLTI). During the post-revascularization period patients may unpredictably experience major adverse cardiac events (MACE) and major adverse limb events (MALE). Several families of cytokines are involved in the inflammatory process that underlies the progression of atherosclerosis. According to current evidence, we have identified a panel of possible biomarkers related with the risk of developing MACE and MALE after LER. The aim was to study the relationship between a panel of biomarkers - Interleukin-1 (IL-1) and 6 (IL-6), C-Reactive Protein (CRP), Tumor Necrosis Factor-α (TNF-α), High-Mobility Group Box-1 (HMGB-1), Osteoprotegerin (OPG), Sortilin and Omentin-1- at baseline, with cardiovascular outcomes (MACE and MALE) after LER in diabetic patients with CLTI. METHODS In this prospective non-randomized study, 264 diabetic patients with CLTI undergoing endovascular revascularization were enrolled. Serum levels of each biomarker were collected before revascularization and outcomes' incidence was evaluated after 1, 3, 6 and 12 months. RESULTS During the follow-up period, 42 cases of MACE and 81 cases of MALE occurred. There was a linear association for each biomarker at baseline and incident MACE and MALE, except Omentin-1 levels that were inversely related to the presence of MACE or MALE. After adjusting for traditional cardiovascular risk factors, the association between each biomarker baseline level and outcomes remained significant in multivariable analysis. Receiver operating characteristics (ROC) models were constructed using traditional clinical and laboratory risk factors and the inclusion of biomarkers significantly improved the prediction of incident events. CONCLUSIONS Elevated IL-1, IL-6, CRP, TNF-α, HMGB-1, OPG and Sortilin levels and low Omentin-1 levels at baseline correlate with worse vascular outcomes in diabetic patients with CLTI undergoing LER. Assessment of the inflammatory state with this panel of biomarkers may support physicians to identify a subset of patients more susceptible to the procedure failure and to develop cardiovascular adverse events after LER.
Collapse
Affiliation(s)
- Elisabetta Nardella
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italy
| | - Federico Biscetti
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italy.
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italy.
| | - Maria Margherita Rando
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italy
| | | | - Maria Anna Nicolazzi
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italy
| | - Enrica Rossini
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italy
| | - Flavia Angelini
- Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Roma, 00168, Italy
| | - Roberto Iezzi
- Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Roma, 00168, Italy
- Radiology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Luis H Eraso
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paul J Dimuzio
- Division of Vascular and Endovascular Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Dario Pitocco
- Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Roma, 00168, Italy
- Diabetology Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Roma, Italy
| | - Massimo Massetti
- Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Roma, 00168, Italy
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italy
| | - Antonio Gasbarrini
- Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Roma, 00168, Italy
- Department of Medical and Surgical sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italy
| | - Andrea Flex
- Cardiovascular Internal Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, Roma, 00168, Italy
- Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, Roma, 00168, Italy
| |
Collapse
|
10
|
Lei WS, Rodrick EB, Belcher SL, Kelly A, Kindler JM. Bone resorption and incretin hormones following glucose ingestion in healthy emerging adults. J Clin Transl Endocrinol 2023; 31:100314. [PMID: 36845829 PMCID: PMC9950953 DOI: 10.1016/j.jcte.2023.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/28/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Background Studies in adults indicate that macronutrient ingestion yields an acute anti-resorptive effect on bone, reflected by decreases in C-terminal telopeptide (CTX), a biomarker of bone resorption, and that gut-derived incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), facilitate this response. There remain knowledge gaps relating to other biomarkers of bone turnover, and whether gut-bone cross-talk is operative during the years surrounding peak bone strength attainment. This study first, describes changes in bone resorption during oral glucose tolerance testing (OGTT), and second, tests relationships between changes in incretins and bone biomarkers during OGTT and bone micro-structure. Methods We conducted a cross-sectional study in 10 healthy emerging adults ages 18-25 years. During a multi-sample 2-hour 75 g OGTT, glucose, insulin, GIP, GLP-1, CTX, bone-specific alkaline phosphatase (BSAP), osteocalcin, osteoprotegerin (OPG), receptor activator of nuclear factor kappa-β ligand (RANKL), sclerostin, and parathyroid hormone (PTH) were assayed at mins 0, 30, 60, and 120. Incremental areas under the curve (iAUC) were computed from mins 0-30 and mins 0-120. Tibia bone micro-structure was assessed using second generation high resolution peripheral quantitative computed tomography. Results During OGTT, glucose, insulin, GIP, and GLP-1 increased significantly. CTX at min 30, 60, and 120 was significantly lower than min 0, with a maximum decrease of about 53 % by min 120. Glucose-iAUC0-30 inversely correlated with CTX-iAUC0-120 (rho = -0.91, P < 0.001), and GLP-1-iAUC0-30 positively correlated with BSAP-iAUC0-120 (rho = 0.83, P = 0.005), RANKL-iAUC0-120 (rho = 0.86, P = 0.007), and cortical volumetric bone mineral density (rho = 0.93, P < 0.001). Conclusions Glucose ingestion yields an anti-resorptive effect on bone metabolism during the years surrounding peak bone strength. Cross-talk between the gut and bone during this pivotal life stage requires further attention.
Collapse
Affiliation(s)
- Wang Shin Lei
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | - Eugene B. Rodrick
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | - Staci L. Belcher
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA
| | - Andrea Kelly
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, PA, USA,Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph M. Kindler
- Department of Nutritional Sciences, The University of Georgia, Athens, GA, USA,Corresponding author.
| |
Collapse
|
11
|
Kim Y, Kim GT. Positive Effects of Biologics on Osteoporosis in Rheumatoid Arthritis. JOURNAL OF RHEUMATIC DISEASES 2023; 30:3-17. [PMID: 37476528 PMCID: PMC10351356 DOI: 10.4078/jrd.22.0046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/10/2022] [Indexed: 07/22/2023]
Abstract
Osteoporosis is a systemic skeletal disorder that causes vulnerability of bones to fracture owing to reduction in bone density and deterioration of the bone tissue microstructure. The prevalence of osteoporosis is higher in patients with autoimmune inflammatory rheumatic diseases, including rheumatoid arthritis (RA), than in those of the general population. In this autoimmune inflammatory rheumatic disease, in addition to known risk factors for osteoporosis, various factors such as chronic inflammation, autoantibodies, metabolic disorders, drugs, and decreased physical activity contribute to additional risk. In RA, disease-related inflammation plays an important role in local or systemic bone loss, and active treatment for inflammation can help prevent osteoporosis. In addition to conventional synthetic disease-modifying anti-rheumatic drugs that have been traditionally used for treatment of RA, biologic DMARDs and targeted synthetic DMARDs have been widely used. These agents can be employed more selectively and precisely based on disease pathogenesis. It has been reported that these drugs can inhibit bone loss by not only reducing inflammation in RA, but also by inhibiting bone resorption and promoting bone formation. In this review, the pathogenesis and research results of the increase in osteoporosis in RA are reviewed, and the effects of biological agents on osteoporosis are discussed.
Collapse
Affiliation(s)
- Yunkyung Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| | - Geun-Tae Kim
- Division of Rheumatology, Department of Internal Medicine, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan, Korea
| |
Collapse
|
12
|
Meneses CCB, Diogenes A, Sipert CR. Endocannabinoids modulate production of osteoclastogenic factors by stem cells of the apical papilla in vitro. J Endod 2022; 48:1511-1516. [PMID: 36174776 DOI: 10.1016/j.joen.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Many mediators are produced during pulp inflammation and necrosis, including endocannabinoids (ECbs), which might affect the function of stem cells of the apical papilla (SCAP), cells of paramount importance for root formation and regenerative endodontic treatment (RET). The aim of this study was to evaluate the production of osteoclastogenesis-related mediators by SCAP, modulated by ECbs and lipopolysaccharide (LPS) in vitro. METHODS SCAP were cultured and treated with ECbs anandamide (AEA), 2-A arachidonoylglycerol or N-arachidonoylaminophenol (AM404). All groups were incubated in the presence of vehicle or LPS and the antagonist of transient receptor potential cation channel subfamily V member 1 (TRPV-1), capsazepine (CPZ). After 24 h, the culture medium supernatants were collected for further quantification of tumor necrosis factor (TNF)-α, CCL2, macrophage colony-stimulating factor (M-CSF), osteoprotegerin (OPG), and receptor activator of nuclear factor kappa-Β ligand (RANKL). RESULTS Small amounts of TNF-α and RANKL were detected in SCAP supernatants, and none of the experimental conditions altered their production. A downregulation in constitutive CCL2 production was observed in the AEA group compared to that in the LPS group. The production of M-CSF was significantly increased in all groups treated with AEA compared to the control and LPS-treated groups. OPG was significantly increased by AEA alone and by 2AG and AM404 in presence of LPS and CPZ. CONCLUSIONS AEA modulate some of the osteoclastogenic factors produced by SCAP in a bone resorption-protective fashion.
Collapse
Affiliation(s)
- C C B Meneses
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil
| | - A Diogenes
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - C R Sipert
- Department of Restorative Dentistry, School of Dentistry, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Nasiri-Ansari N, Spilioti E, Kyrou I, Kalotychou V, Chatzigeorgiou A, Sanoudou D, Dahlman-Wright K, Randeva HS, Papavassiliou AG, Moutsatsou P, Kassi E. Estrogen Receptor Subtypes Elicit a Distinct Gene Expression Profile of Endothelial-Derived Factors Implicated in Atherosclerotic Plaque Vulnerability. Int J Mol Sci 2022; 23:10960. [PMID: 36142876 PMCID: PMC9506323 DOI: 10.3390/ijms231810960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
In the presence of established atherosclerosis, estrogens are potentially harmful. MMP-2 and MMP-9, their inhibitors (TIMP-2 and TIMP-1), RANK, RANKL, OPG, MCP-1, lysyl oxidase (LOX), PDGF-β, and ADAMTS-4 play critical roles in plaque instability/rupture. We aimed to investigate (i) the effect of estradiol on the expression of the abovementioned molecules in endothelial cells, (ii) which type(s) of estrogen receptors mediate these effects, and (iii) the role of p21 in the estrogen-mediated regulation of the aforementioned factors. Human aortic endothelial cells (HAECs) were cultured with estradiol in the presence or absence of TNF-α. The expression of the aforementioned molecules was assessed by qRT-PCR and ELISA. Zymography was also performed. The experiments were repeated in either ERα- or ERβ-transfected HAECs and after silencing p21. HAECs expressed only the GPR-30 estrogen receptor. Estradiol, at low concentrations, decreased MMP-2 activity by 15-fold, increased LOX expression by 2-fold via GPR-30, and reduced MCP-1 expression by 3.5-fold via ERβ. The overexpression of ERα increased MCP-1 mRNA expression by 2.5-fold. In a low-grade inflammation state, lower concentrations of estradiol induced the mRNA expression of MCP-1 (3.4-fold) and MMP-9 (7.5-fold) and increased the activity of MMP-2 (1.7-fold) via GPR-30. Moreover, p21 silencing resulted in equivocal effects on the expression of the abovementioned molecules. Estradiol induced different effects regarding atherogenic plaque instability through different ERs. The balance of the expression of the various ER subtypes may play an important role in the paradoxical characterization of estrogens as both beneficial and harmful.
Collapse
Affiliation(s)
- Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eliana Spilioti
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute, 14561 Athens, Greece
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
- Centre for Sport, Exercise and Life Sciences, Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
| | - Vassiliki Kalotychou
- Department of Internal Medicine, Laikon General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Karin Dahlman-Wright
- Department of Biosciences and Nutrition, Novum, Karolinska Institute, SE-14183 Huddinge, Sweden
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Paraskevi Moutsatsou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Endocrine Unit, 1st Department of Propaedeutic Internal Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
14
|
Wei W, Li J, Liu X, Pan W, Wang M, Li J, Yue Y, Hao L. Inhibition of RGS10 Aggravates Periapical Periodontitis via Upregulation of the NF-κB Pathway. J Endod 2022; 48:1308-1318.e5. [PMID: 36041584 DOI: 10.1016/j.joen.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 10/15/2022]
Abstract
INTRODUCTION Periapical periodontitis develops due to the interplay between root canal microorganisms and host defenses. The mechanism underlying the pathogenesis of periapical periodontitis remains unclear. Regulator of G protein signaling protein 10 (RGS10) has been suggested to play a role in regulating inflammation. This study explored the potential regulatory effects of RGS10 on periapical periodontitis and the pro-inflammatory pathway of NF-κB. METHODS Disease models of periapical inflammation in mice were established, and adenovirus-associated virus (AAV) was used to inhibit RGS10 expression. Periapical lesions were detected using microcomputed tomography. Quantitative real-time PCR (qRT-PCR), western blotting (WB), enzyme-linked immunosorbent assay (ELISA), enzyme activity staining of tartrate-resistant acid phosphatase, and immunohistochemistry were conducted to assess the role of RGS10 expression on NF-κB pro-inflammatory signaling, OPG, RANKL, and osteoclasts in the periapical regions of each group. TNFα was used to stimulate L929 cells alone or with small interfering RNA (siRNA). To assess the expression of associated molecules, WB, immunofluorescence, qRT-PCR, and ELISA were performed. RESULTS RGS10 inhibition increased alveolar bone destruction in periapical periodontitis lesions and substantially enhanced the NF-κB pro-inflammatory signaling pathway activation level. Furthermore, RGS10 inhibition upregulated the ratio of OPG/RANKL and the maturation of osteoclasts during alveolar bone resorption. L929 cell TNFα stimulation and siRNA transfection confirmed these in vivo results. CONCLUSION RGS10 negatively regulates NF-κB pro-inflammatory signaling in periapical periodontitis and participates in bone remodeling. Therefore, RGS10 is a promising treatment option for long-term chronic periapical inflammation and may be a new target for the artificial regulation of inflammation.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Jiaxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Xinran Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Min Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Jinle Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China
| | - Yuan Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China.
| | - Liang Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Sichuan, People's Republic of China.
| |
Collapse
|
15
|
Osteoprotegerin Gene Polymorphisms Are Associated with Subclinical Atherosclerosis in the Mexican Mestizo Population. Diagnostics (Basel) 2022; 12:diagnostics12061433. [PMID: 35741244 PMCID: PMC9221599 DOI: 10.3390/diagnostics12061433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Subclinical atherosclerosis (SA) is the presence of coronary calcification in the absence of cardiovascular symptoms, and it usually progresses to atherosclerotic disease. Studies have shown an association of osteoprotegerin gene (OPG) variants with calcification process in cardiovascular diseases; however, to this day there are no studies that evaluate individuals in the asymptomatic stage of atherosclerotic disease. Therefore, the purpose of this study was to analyze the association of four genetic variants and haplotypes of the OPG gene with the development of SA, through TaqMan genotyping assays. We also aimed to identify potential response elements for transcription factors in these genetic variants. The study included 1413 asymptomatic participants (1041 were controls and 372 were individuals with SA). The rs3102735 polymorphism appeared as a protective marker (OR = 0.693; 95% CI = 0.493−0.974; pheterozygote = 0.035; OR = 0.699; 95% CI = 0.496−0.985; pcodominant 1 = 0.040) and two haplotypes were associated with SA, one as a decreased risk: GACC (OR = 0.641, 95% CI = 0.414−0.990, p = 0.045) and another as an increased risk: GACT (OR = 1.208, 95% CI = 1.020−1.431, p = 0.029). Our data suggest a lower risk of SA in rs3102735 C carriers in a representative sample of Mexican mestizo population.
Collapse
|
16
|
Clinical study evaluating β-blockers use and fracture risk in patients with primary osteoporosis Running title. Int J Health Sci (Qassim) 2022. [DOI: 10.53730/ijhs.v6ns4.6194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background and objectives: In osteoporosis, low bone mass and growing fragility are main symptoms. BB users had greater BMD and/or decreased fracture risk, according to observational studies. Other studies found no effect of BB on fracture risk and osteoporosis disease. In this study, the effect of selective and non-selective BB on fracture risk in osteoporotic individuals was studied. Methods: A total of fifty osteoporotic patients of both genders were included in this randomized controlled, parallel, and prospective trial. Osteoporotic subjects were divided into three groups: a control group (CG), a non-selective beta-blocker group (NSBB), and a cardio-selective beta-blocker group (CSBB). T-score, fracture risk (FR), bone mineral density (BMD), and bone turnover markers were studied as a result of this investigation. Results: After six months of follow-up, it was discovered that the T-score mean values of the three groups varied significantly. BMD was significantly higher in the group receiving non-selective beta-blockers (NSBB) than in the control group (CG). In the three categories of fracture risk region, the fracture risk was statistically decreased in both the NSBB and CSBB groups. Additionally, both the NSBB and CSBB groups demonstrated a decrease in bone turnover markers (BTM), as contrasted to the control group.
Collapse
|
17
|
Li B, Wang P, Jiao J, Wei H, Xu W, Zhou P. Roles of the RANKL-RANK Axis in Immunity-Implications for Pathogenesis and Treatment of Bone Metastasis. Front Immunol 2022; 13:824117. [PMID: 35386705 PMCID: PMC8977491 DOI: 10.3389/fimmu.2022.824117] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
A substantial amount patients with cancer will develop bone metastases, with 70% of metastatic prostate and breast cancer patients harboring bone metastasis. Despite advancements in systemic therapies for advanced cancer, survival remains poor for those with bone metastases. The interaction between bone cells and the immune system contributes to a better understanding of the role that the immune system plays in the bone metastasis of cancer. The immune and bone systems share various molecules, including transcription factors, signaling molecules, and membrane receptors, which can stimulate the differentiation and activation of bone-resorbing osteoclasts. The process of cancer metastasis to bone, which deregulates bone turnover and results in bone loss and skeletal-related events (SREs), is also controlled by primary cancer-related factors that modulate the intratumoral microenvironment as well as cellular immune process. The nuclear factor kappa B ligand (RANKL) and the receptor activator of nuclear factor kappa B (RANK) are key regulators of osteoclast development, bone metabolism, lymph node development, and T-cell/dendritic cell communication. RANKL is an osteoclastogenic cytokine that links the bone and the immune system. In this review, we highlight the role of RANKL and RANK in the immune microenvironment and bone metastases and review data on the role of the regulatory mechanism of immunity in bone metastases, which could be verified through clinical efficacy of RANKL inhibitors for cancer patients with bone metastases. With the discovery of the specific role of RANK signaling in osteoclastogenesis, the humanized monoclonal antibody against RANKL, such as denosumab, was available to prevent bone loss, SREs, and bone metastases, providing a unique opportunity to target RANKL/RANK as a future strategy to prevent bone metastases.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pengru Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Jiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Angel SL, Samrit VD, Kharbanda OP, Duggal R, Kumar V, Chauhan SS, Coshic P. Effects of submucosally administered platelet-rich plasma on the rate of tooth movement. Angle Orthod 2022; 92:73-79. [PMID: 34491291 DOI: 10.2319/011221-40.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 07/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To evaluate the effects of submucosally administered platelet-rich plasma (PRP) on the rate of maxillary canine retraction. Levels of soluble receptor activator of nuclear factor-κb ligand (sRANKL) and osteoprotegerin (OPG) in the gingival crevicular fluid (GCF) were also measured over 2 months. MATERIALS AND METHODS This split-mouth trial involved 20 sites in 10 subjects randomly assigned to PRP (experimental) side and control side. After alignment, the freshly prepared PRP was injected submucosally distal to the experimental side maxillary canine, and retraction was performed using NiTi closed-coil springs (150 g) on 0.019 × 0.025-inch stainless steel wire. The rate of canine movement was assessed using digital model superimposition at 0, 30, and 60 days. The OPG and sRANKL were assayed using enzyme-linked immunosorbent assay from GCF collected at 0, 1, 7, 21, 30, and 60 days. RESULTS Twenty sites were analyzed using paired t test. The rate of tooth movement increased significantly by 35% on the PRP side compared with the control side in the first month (P = .0001) and by 14% at the end of the second month (P = .015). Using the Mann-Whitney U test, OPG levels were found to be significantly decreased on the 7th (P = .003) and 30th day on the PRP side (P = .01), while sRANKL became detectable by the third week postinjection on the PRP side (P = .069). CONCLUSIONS Submucosal injection of platelet-rich plasma significantly increased tooth movement during the 60-day observation period. Local injection of PRP significantly altered the levels of OPG and sRANKL in GCF.
Collapse
|
19
|
Tomaszewska E, Rudyk H, Świetlicka I, Hułas-Stasiak M, Donaldson J, Arczewska M, Muszyński S, Dobrowolski P, Puzio I, Kushnir V, Brezvyn O, Muzyka V, Kotsyumbas I. The Influence of Prenatal Fumonisin Exposure on Bone Properties, as well as OPG and RANKL Expression and Immunolocalization, in Newborn Offspring Is Sex and Dose Dependent. Int J Mol Sci 2021; 22:ijms222413234. [PMID: 34948030 PMCID: PMC8705866 DOI: 10.3390/ijms222413234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023] Open
Abstract
The current study examined the effects of exposure of pregnant dams to fumonisins (FBs; FB1 and FB2), from the seventh day of pregnancy to parturition, on offspring bone metabolism and properties. The rats were randomly divided into three groups intoxicated with FBs at either 0, 60, or 90 mg/kg b.w. Body weight and bone length were affected by fumonisin exposure, irrespective of sex or dose, while the negative and harmful effects of maternal FBs’ exposure on bone mechanical resistance were sex and dose dependent. The immunolocalization of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa-Β ligand (RANKL), in bone and articular cartilage, indicated that the observed bone effects resulted from the FB-induced alterations in bone metabolism, which were confirmed by the changes observed in the Western blot expression of OPG and RANKL. It was concluded that the negative effects of prenatal FB exposure on the general growth and morphometry of the offspring bones, as a result of the altered expression of proteins responsible for bone metabolism, were dose and sex dependent.
Collapse
Affiliation(s)
- Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
- Correspondence: (E.T.); (I.Ś.)
| | - Halyna Rudyk
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Izabela Świetlicka
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (M.A.); (S.M.)
- Correspondence: (E.T.); (I.Ś.)
| | - Monika Hułas-Stasiak
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland; (M.H.-S.); (P.D.)
| | - Janine Donaldson
- Faculty of Health Sciences, School of Physiology, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa;
| | - Marta Arczewska
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (M.A.); (S.M.)
| | - Siemowit Muszyński
- Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland; (M.A.); (S.M.)
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland; (M.H.-S.); (P.D.)
| | - Iwona Puzio
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland;
| | - Volodymyr Kushnir
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Oksana Brezvyn
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Viktor Muzyka
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| | - Ihor Kotsyumbas
- State Scientific Research Control Institute of Veterinary Medicinal Products and Feed Additives, Donetska St. 11, 79000 Lviv, Ukraine; (H.R.); (V.K.); (O.B.); (V.M.); (I.K.)
| |
Collapse
|
20
|
Cottin Y, Issa R, Benalia M, Mouhat B, Meloux A, Tribouillard L, Bichat F, Rochette L, Vergely C, Zeller M. Association between Serum Osteoprotegerin Levels and Severity of Coronary Artery Disease in Patients with Acute Myocardial Infarction. J Clin Med 2021; 10:4326. [PMID: 34640343 PMCID: PMC8509596 DOI: 10.3390/jcm10194326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Osteoprotegerin (OPG), a glycoprotein of the tumour necrosis factor (TNF) superfamily, is one of the main biomarkers for vascular calcification. AIM We aimed to evaluate the association between serum OPG levels and extent of coronary lesions in patients with acute myocardial infarction (MI). METHODS Consecutive patients hospitalized for an acute MI who underwent coronary angiography were included. SYNTAX score was calculated to assess the severity of coronary artery disease. The population was analysed in low (5 (3-6)), medium (11 (9-13)) and high (20 (18-23)) tertiles of SYNTAX score. RESULTS Among the 378 patients included, there was a gradual increase in age, rate of diabetes, anterior wall location, and a reduction in left ventricular ejection fraction across the SYNTAX tertiles. OPG levels significantly increased across the tertiles (962 (782-1497), 1240 (870-1707), and 1464 (1011-2129) pg/mL, respectively (p < 0.001)). In multivariate analysis, OPG [OR(CI95%): 2.10 (1.29-3.49) 0.003], were associated with the high SYNTAX group, beyond hypercholesterolemia, CV history and reduced glomerular filtration rate. CONCLUSION We found an association between OPG levels and coronary lesions complexity patients with acute MI.
Collapse
Affiliation(s)
- Yves Cottin
- Cardiology Department, CHU Dijon Bourgogne, 21000 Dijon, France; (Y.C.); (R.I.); (M.B.); (B.M.); (L.T.); (F.B.)
| | - Rany Issa
- Cardiology Department, CHU Dijon Bourgogne, 21000 Dijon, France; (Y.C.); (R.I.); (M.B.); (B.M.); (L.T.); (F.B.)
| | - Mourad Benalia
- Cardiology Department, CHU Dijon Bourgogne, 21000 Dijon, France; (Y.C.); (R.I.); (M.B.); (B.M.); (L.T.); (F.B.)
| | - Basile Mouhat
- Cardiology Department, CHU Dijon Bourgogne, 21000 Dijon, France; (Y.C.); (R.I.); (M.B.); (B.M.); (L.T.); (F.B.)
| | - Alexandre Meloux
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (C.V.)
| | - Laura Tribouillard
- Cardiology Department, CHU Dijon Bourgogne, 21000 Dijon, France; (Y.C.); (R.I.); (M.B.); (B.M.); (L.T.); (F.B.)
| | - Florence Bichat
- Cardiology Department, CHU Dijon Bourgogne, 21000 Dijon, France; (Y.C.); (R.I.); (M.B.); (B.M.); (L.T.); (F.B.)
| | - Luc Rochette
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (C.V.)
| | - Catherine Vergely
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (C.V.)
| | - Marianne Zeller
- Equipe d’Accueil (EA 7460), Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Faculté des Sciences de Santé Université de Bourgogne—Franche Comté, 7 Bd Jeanne d’Arc, 21000 Dijon, France; (A.M.); (L.R.); (C.V.)
| |
Collapse
|
21
|
High levels of osteoprotegerin are associated with coronary artery calcification in patients suspected of a chronic coronary syndrome. Sci Rep 2021; 11:18946. [PMID: 34556709 PMCID: PMC8460823 DOI: 10.1038/s41598-021-98177-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/08/2022] Open
Abstract
Plasma osteoprotegerin (OPG) and vascular smooth muscle cell (VSMC) derived extracellular vesicles (EVs) are important regulators in the process of vascular calcification (VC). In population studies, high levels of OPG are associated with events. In animal studies, however, high OPG levels result in reduction of VC. VSMC-derived EVs are assumed to be responsible for OPG transport and VC but this role has not been studied. For this, we investigated the association between OPG in plasma and circulating EVs with coronary artery calcium (CAC) as surrogate for VC in symptomatic patients. We retrospectively assessed 742 patients undergoing myocardial perfusion imaging (MPI). CAC scores were determined on the MPI-CT images using a previously developed automated algorithm. Levels of OPG were quantified in plasma and two EV-subpopulations (LDL and TEX), using an electrochemiluminescence immunoassay. Circulating levels of OPG were independently associated with CAC scores in plasma; OR 1.39 (95% CI 1.17–1.65), and both EV populations; EV-LDL; OR 1.51 (95% CI 1.27–1.80) and EV-TEX; OR 1.21 (95% CI 1.02–1.42). High levels of OPG in plasma were independently associated with CAC scores in this symptomatic patient cohort. High levels of EV-derived OPG showed the same positive association with CAC scores, suggesting that EV-derived OPG mirrors the same pathophysiological process as plasma OPG.
Collapse
|
22
|
Sagris M, Theofilis P, Antonopoulos AS, Tsioufis C, Oikonomou E, Antoniades C, Crea F, Kaski JC, Tousoulis D. Inflammatory Mechanisms in COVID-19 and Atherosclerosis: Current Pharmaceutical Perspectives. Int J Mol Sci 2021; 22:6607. [PMID: 34205487 PMCID: PMC8234423 DOI: 10.3390/ijms22126607] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with excess mortality worldwide. The cardiovascular system is the second most common target of SARS-CoV-2, which leads to severe complications, including acute myocardial injury, myocarditis, arrhythmias, and venous thromboembolism, as well as other major thrombotic events because of direct endothelial injury and an excessive systemic inflammatory response. This review focuses on the similarities and the differences of inflammatory pathways involved in COVID-19 and atherosclerosis. Anti-inflammatory agents and immunomodulators have recently been assessed, which may constitute rational treatments for the reduction of cardiovascular events in both COVID-19 and atherosclerotic heart disease.
Collapse
Affiliation(s)
- Marios Sagris
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| | - Panagiotis Theofilis
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| | - Alexios S. Antonopoulos
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| | - Costas Tsioufis
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| | - Evangelos Oikonomou
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| | - Charalambos Antoniades
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 9DU, UK;
- Oxford Centre of Research Excellence, British Heart Foundation, Oxford OX3 9DU, UK
- Oxford Biomedical Research Centre, National Institute of Health Research, Oxford OX3 9DU, UK
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Catholic University, 00168 Rome, Italy;
| | - Juan Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London SW17 0RE, UK;
| | - Dimitris Tousoulis
- 1st Cardiology Department, ‘Hippokration’ General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece; (M.S.); (P.T.); (A.S.A.); (C.T.); (E.O.)
| |
Collapse
|
23
|
Efendioğlu M, Şanli E, Türkoğlu C, Balak N. Reduced Serum sRANKL and sTREM2 Levels in High-Grade Gliomas: Association with Prognosis. Noro Psikiyatr Ars 2021; 58:133-136. [PMID: 34188596 PMCID: PMC8214753 DOI: 10.29399/npa.27536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION High-grade gliomas (HGG), including Glioblastoma multiforme (GBM), account for the majority of primary brain tumors. Nevertheless, prognostic and diagnostic biomarkers are quite limited for HGG. The objective of this study was to investigate the prognostic value of sRANKL and sTREM2 levels in HGG patients. METHODS Twelve consecutive patients with HGG, 14 patients with non-glial tumors (non-GT) and 20 age and gender-matched healthy controls were recruited. Overall survival duration of the patients was recorded. Pre-operative serum levels of sRANKL and sTREM2 were measured by ELISA. Tumors of HGG patients were analyzed by immunohistochemical staining for p53 and Ki67 and percentage scores were calculated. RESULTS Patients with HGG and non-GT showed lower serum sRANKL and sTREM2 levels than healthy individuals. Levels of sRANKL were inversely correlated with the overall survival of patients (p=0.002, R=0.787), while sTREM2 levels were inversely correlated with p53 score (p=0.018, R=-0.666) but not survival. CONCLUSION Brain tumor patients show suppressed levels of glial activity biomarkers in the peripheral circulation. Serum sRANKL levels may serve as a potential prognostic biomarker for HGG.
Collapse
Affiliation(s)
- Mustafa Efendioğlu
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Elif Şanli
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | | | - Naci Balak
- Department of Neurosurgery, Istanbul Medeniyet University, Göztepe Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
24
|
Carrillo-López N, Martínez-Arias L, Fernández-Villabrille S, Ruiz-Torres MP, Dusso A, Cannata-Andía JB, Naves-Díaz M, Panizo S. Role of the RANK/RANKL/OPG and Wnt/β-Catenin Systems in CKD Bone and Cardiovascular Disorders. Calcif Tissue Int 2021; 108:439-451. [PMID: 33586001 DOI: 10.1007/s00223-020-00803-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/19/2020] [Indexed: 12/23/2022]
Abstract
In the course of chronic kidney disease (CKD), alterations in the bone-vascular axis augment the risk of bone loss, fractures, vascular and soft tissue calcification, left ventricular hypertrophy, renal and myocardial fibrosis, which markedly increase morbidity and mortality rates. A major challenge to improve skeletal and cardiovascular outcomes in CKD patients requires a better understanding of the increasing complex interactions among the main modulators of the bone-vascular axis. Serum parathyroid hormone (PTH), phosphorus (P), calcium (Ca), fibroblast growth factor 23 (FGF23), calcidiol, calcitriol and Klotho are involved in this axis interact with RANK/RANKL/OPG system and the Wnt/β-catenin pathway. The RANK/RANKL/OPG system controls bone remodeling by inducing osteoblast synthesis of RANKL and downregulating OPG production and it is also implicated in vascular calcification. The complexity of this system has recently increased due the discovery of LGR4, a novel RANKL receptor involved in bone formation, but possibly also in vascular calcification. The Wnt/β-catenin pathway plays a key role in bone formation: when this pathway is activated, bone is formed, but when it is inhibited, bone formation is stopped. In the progression of CKD, a downregulation of the Wnt/β-catenin pathway has been described which occurs mainly through the not coincident elevations of sclerostin, Dickkopf1 (Dkk1) and the secreted Frizzled Related Proteins (sFRPs). This review analyzes the interactions of PTH, P, Ca, FGF23, calcidiol, calcitriol and Klotho with the RANKL/RANKL/OPG system and the Wnt/β-catenin, pathway and their implications in bone and cardiovascular disorders in CKD.
Collapse
Affiliation(s)
- Natalia Carrillo-López
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Laura Martínez-Arias
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Sara Fernández-Villabrille
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - María Piedad Ruiz-Torres
- Department of System Biology, Universidad de Alcalá, Retic REDinREN-ISCIII, Alcalá de Henares, Spain
| | - Adriana Dusso
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Jorge B Cannata-Andía
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain.
| | - Manuel Naves-Díaz
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain
| | - Sara Panizo
- Bone and Mineral Research Unit, Hospital Universitario Central de Asturias, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, Retic REDinREN-ISCIII, Avda. Roma, sn., 33011, Oviedo, Spain.
| | | |
Collapse
|
25
|
Galler KM, Grätz EM, Widbiller M, Buchalla W, Knüttel H. Pathophysiological mechanisms of root resorption after dental trauma: a systematic scoping review. BMC Oral Health 2021; 21:163. [PMID: 33771147 PMCID: PMC7995728 DOI: 10.1186/s12903-021-01510-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The objective of this scoping review was to systematically explore the current knowledge of cellular and molecular processes that drive and control trauma-associated root resorption, to identify research gaps and to provide a basis for improved prevention and therapy. METHODS Four major bibliographic databases were searched according to the research question up to February 2021 and supplemented manually. Reports on physiologic, histologic, anatomic and clinical aspects of root resorption following dental trauma were included. Duplicates were removed, the collected material was screened by title/abstract and assessed for eligibility based on the full text. Relevant aspects were extracted, organized and summarized. RESULTS 846 papers were identified as relevant for a qualitative summary. Consideration of pathophysiological mechanisms concerning trauma-related root resorption in the literature is sparse. Whereas some forms of resorption have been explored thoroughly, the etiology of others, particularly invasive cervical resorption, is still under debate, resulting in inadequate diagnostics and heterogeneous clinical recommendations. Effective therapies for progressive replacement resorptions have not been established. Whereas the discovery of the RANKL/RANK/OPG system is essential to our understanding of resorptive processes, many questions regarding the functional regulation of osteo-/odontoclasts remain unanswered. CONCLUSIONS This scoping review provides an overview of existing evidence, but also identifies knowledge gaps that need to be addressed by continued laboratory and clinical research.
Collapse
Affiliation(s)
- Kerstin M Galler
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany.
| | - Eva-Maria Grätz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Matthias Widbiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß Allee 11, 93053, Regensburg, Germany
| | - Helge Knüttel
- University Library, University of Regensburg, Regensburg, Germany
| |
Collapse
|
26
|
Kashtanova EV, Polonskaya YV, Ragino YI. [Calcification and atherosclerosis of the coronary arteries]. TERAPEVT ARKH 2021; 93:84-86. [PMID: 33720631 DOI: 10.26442/00403660.2021.01.200598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Calcification is a very common phenomenon in the coronary arteries, which is part of the atherosclerotic process, and the degree of calcification can predict clinical outcomes in patients at high risk of coronary events. Both the degree of calcification and the patterns of its distribution are of prognostic importance, but the relationship of coronary artery calcification with atherosclerotic plaque instability is extremely complex and not fully understood. This article is devoted to the study of calcification markers and their influence on the development of atherosclerotic foci.
Collapse
Affiliation(s)
- E V Kashtanova
- Research Institute of Internal and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics
| | - Y V Polonskaya
- Research Institute of Internal and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics
| | - Y I Ragino
- Research Institute of Internal and Preventive Medicine - branch of the Federal Research Center Institute of Cytology and Genetics
| |
Collapse
|
27
|
Yu Z, Ling Z, Lu L, Zhao J, Chen X, Xu P, Zou X. Regulatory Roles of Bone in Neurodegenerative Diseases. Front Aging Neurosci 2020; 12:610581. [PMID: 33408628 PMCID: PMC7779400 DOI: 10.3389/fnagi.2020.610581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis and neurodegenerative diseases are two kinds of common disorders of the elderly, which often co-occur. Previous studies have shown the skeletal and central nervous systems are closely related to pathophysiology. As the main structural scaffold of the body, the bone is also a reservoir for stem cells, a primary lymphoid organ, and an important endocrine organ. It can interact with the brain through various bone-derived cells, mostly the mesenchymal and hematopoietic stem cells (HSCs). The bone marrow is also a place for generating immune cells, which could greatly influence brain functions. Finally, the proteins secreted by bones (osteokines) also play important roles in the growth and function of the brain. This article reviews the latest research studying the impact of bone-derived cells, bone-controlled immune system, and bone-secreted proteins on the brain, and evaluates how these factors are implicated in the progress of neurodegenerative diseases and their potential use in the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhengran Yu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zemin Ling
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jin Zhao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
28
|
Stompór T. An Overview of the Pathophysiology of Vascular Calcification in Chronic Kidney Disease. Perit Dial Int 2020. [DOI: 10.1177/089686080702702s37] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abnormalities of calcium–phosphate balance, with subsequent bone metabolism disorders, are among the key and earliest features of chronic kidney disease (CKD). Recently, another consequence of these abnormalities was brought to light—namely, vascular calcification. Most studies performed in patients on dialysis suggest that their vascular calcification is more advanced than that seen in the general population. Furthermore, the progression of vessel wall mineralization is much more dynamic in patients with CKD. Apart from the commonly assessed factors that promote vascular calcification, such as age, duration of dialysis, or poor control of calcium–phosphate status, several other factors have recently been identified. In the spectrum of substances involved in the regulation of the process of soft-tissue calcification, the most extensively studied in the nephrology literature are bone morphogenetic protein 7, osteoprotegerin, matrix Gla protein, fetuin-A, and the phosphatonins. Better understanding of the mechanisms underlying excess vascular mineralization have led to the development of promising new therapies.
Collapse
Affiliation(s)
- Tomasz Stompór
- Chair and Department of Nephrology, Medical Faculty, Jagiellonian University, Cracow, Poland
| |
Collapse
|
29
|
Ma X, Yang J, Liu T, Li J, Lan Y, Wang Y, Wang A, Tian Y, Li Y. Gukang Capsule Promotes Fracture Healing by Activating BMP/SMAD and Wnt/ β-Catenin Signaling Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:7184502. [PMID: 33062020 PMCID: PMC7545469 DOI: 10.1155/2020/7184502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Gukang capsule (GKC) is a traditional Chinese medicine formulation which has been used extensively in the clinical treatment of bone fractures. However, the mechanisms underlying its effects on fracture healing remain unclear. METHODS In this study we used a rabbit radius fracture model, and we measured the serum content of bone alkaline phosphatase (ALP), calcium, and phosphorus and examined pathology of the fracture site as indicators of the fracture healing effects of GKC. SaOS-2 human osteosarcoma cells were used to measure (i) ALP activity, (ii) ornithine transcarbamylase (OTC), calcium, and mineralization levels, (iii) the expression of osteogenic-related genes, that is, runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2), collagen I (COL-I), osteopontin (OPN), OTC, and osterix (Osx), and (iv) the expression of key proteins in the Wnt/β-catenin and BMP/SMAD signaling pathways to study the mechanisms by which GKC promotes fracture healing. RESULTS We found that GKC effectively promotes radius fracture healing in rabbits and enhances ALP activity, increases OTC and calcium levels, and stimulates the formation of mineralized nodules in SaOS-2 cells. Moreover, COL-I, OTC, Osx, BMP2, and OPN expression levels were higher in SaOS-2 cells treated with GKC than control cells. GKC upregulates glycogen synthase kinase 3β (GSK3β) phosphorylation and Smad1/5 and β-catenin protein levels, thereby activating Wnt/β-catenin and BMP/Smad signaling pathways. Inhibitors of the Wnt/β-catenin and BMP/Smad signaling pathways (DKK1 and Noggin, respectively) suppress the osteogenic effects of GKC. CONCLUSIONS GKC promotes fracture healing by activating the Wnt/β-catenin and BMP/Smad signaling pathways and increasing osteoprotegerin (OPG) secretion by osteoblasts (OBs), which prevents receptor activator of nuclear factor kappa B ligand (RANKL) binding to RANK.
Collapse
Affiliation(s)
- Xue Ma
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Applications of Ethnic Medicines and TCM (Ministry of Education), Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Jian Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Applications of Ethnic Medicines and TCM (Ministry of Education), Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Ting Liu
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
| | - Jing Li
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yanyu Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Applications of Ethnic Medicines and TCM (Ministry of Education), Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yonglin Wang
- Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang 550004, China
| | - Aimin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Applications of Ethnic Medicines and TCM (Ministry of Education), Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Ye Tian
- School of Pharmacy, Guizhou Medical University, Guiyang 550004, China
| | - Yongjun Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Applications of Ethnic Medicines and TCM (Ministry of Education), Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
30
|
Nacaroglu HT, Büke Ö, Gayret ÖB, Erol M, Zengi O. Serum osteoprotegerin levels in school-aged children with asthma. Allergol Immunopathol (Madr) 2020; 48:484-489. [PMID: 32284263 DOI: 10.1016/j.aller.2019.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 11/12/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Various inflammatory biomarkers have been used in asthma cases for evaluating inflammation, however it has been determined that the majority of these biomarkers are insufficient for putting forth the course and severity of the disease. Osteoprotegerin is a glycoprotein mediator in the lung and macrophages. As far as we know, there are no studies about the role played by osteoprotegerin in child patients with asthma. OBJECTIVE It was planned to examine the relationship between osteoprotegerin levels in childhood asthma and respiratory functions and airway inflammation and to assess its use as a biomarker. METHODS The study included patients aged 6-16 years who were diagnosed with asthma at the pediatric allergy outpatient clinic of Bagcilar Training and Research Hospital in Turkey. The correlation analyses for the osteoprotegerin levels of asthma patients and their respiratory functions were examined. RESULTS The age average of asthma cases was 10.61±3.04 years and 51.2 % were female. No statistically significant difference was observed between the osteoprotegerin levels of the groups (p>0.05). A negative and statistically significant correlation was observed between the FEV1 and FVC values and osteoprotegerin levels (p=0.015, p=0.003). CONCLUSIONS This was the first study to examine the relationship between osteoprotegerin levels and airway inflammation in children with asthma. We believe that there is a need for wider scale studies in which clinical symptoms and more parameters are evaluated for defining the role played by osteoprotegerin level in children with asthma and for determining its usability as a biomarker.
Collapse
|
31
|
Migacz M, Janoska-Gawrońska A, Holecki M, Chudek J. The role of osteoprotegerin in the development, progression and management of abdominal aortic aneurysms. Open Med (Wars) 2020; 15:457-463. [PMID: 33336003 PMCID: PMC7712403 DOI: 10.1515/med-2020-0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 01/16/2023] Open
Abstract
Osteoprotegerin (OPG) appears to be a very promising marker both in the diagnosis of abdominal aortic aneurysms (AAAs) and as a potential target in its treatment. This article presents an overview of the current literature that discusses the role of OPG in the pathogenesis of atherosclerosis and its potential value as a prognostic factor in AAA. Pharmacological modulation of OPG expression has been considered. In conclusion, it seems that further research designed to assess the relationship between OPG and AAA is needed as this may contribute to improved AAA monitoring and more effective treatment of patients with AAA.
Collapse
Affiliation(s)
- Maciej Migacz
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Agata Janoska-Gawrońska
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Michał Holecki
- Department and Clinic of Internal, Autoimmune and Metabolic Diseases, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| | - Jerzy Chudek
- Department and Clinic of Internal Medicine and Cancer Chemotherapy, Faculty of Medicine, Medical University of Silesia in Katowice, Poland
| |
Collapse
|
32
|
Luan F, Li X, Cheng X, Huangfu L, Han J, Guo T, Du H, Wen X, Ji J. TNFRSF11B activates Wnt/β-catenin signaling and promotes gastric cancer progression. Int J Biol Sci 2020; 16:1956-1971. [PMID: 32398963 PMCID: PMC7211174 DOI: 10.7150/ijbs.43630] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/23/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor necrosis factor receptor superfamily member 11B (TNFRSF11B) has been studied to be involved in the development and progression of several human malignancies. However, little is unveiled regarding the complex mechanisms of TNFRSF11B in human gastric cancer (GC). The clinical significance of TNFRSF11B was assessed in 70 and 160 GC tissues using immunohistochemistry method and gene microarray analysis, respectively. The biological function of TNFRSF11B was studied in vitro and in vivo assays. Immunofluorescence assay was used to evaluate the expression of β-catenin in the nucleus. The expression of β-catenin and related protein was determined by Western blot. The interaction between TNFRSF11B and GSK3β was detected by co-immunoprecipitation. We demonstrated that TNFRSF11B was highly expressed in the cytoplasm of GC and associated with the patient poor outcome. Our studies showed that TNFRSF11B in GC cells significantly promoted cell proliferation, migration, invasion in vitro and tumorigenic ability in vitro and in vivo. Meanwhile, TNFRSF11B inhibited GC cell apoptosis. The proportion of nuclear active β-catenin showed positively correlation with TNFRSF11B expression. TNFRSF11B directly combined with GSK-3β upregulating its phosphorylation, and increased expression of β-catenin and its downstream effectors. Collectively, these findings demonstrate that TNFRSF11B promote the aggressive phenotypes of GC cells and activated Wnt/β-catenin signaling. Accordingly, TNFRSF11B had potential as a biomarker and inhibition of TNFRSF11B expression might offer a new therapeutic target for GC patients.
Collapse
Affiliation(s)
- Fengming Luan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
- Department of gastrointestinal surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaomei Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaojing Cheng
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Longtao Huangfu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jing Han
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ting Guo
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hong Du
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xianzi Wen
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Jiafu Ji
- Key laboratory of Carcinogenesis and Translational Research (Ministry of education), Division of gastrointestinal Cancer Translational Research laboratory, Peking University Cancer Hospital & Institute, Beijing, China
- Department of gastrointestinal surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
33
|
Pathophysiological and Genetic Aspects of Vascular Calcification. Cardiol Res Pract 2020; 2020:5169069. [PMID: 32411445 PMCID: PMC7201852 DOI: 10.1155/2020/5169069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/17/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
Recent evidence suggests that vascular calcification is an independent cardiovascular risk factor (CRF) of morbidity and mortality. New studies point out the existence of a complex physiopathological mechanism that involves inflammation, oxidation, the release of chemical mediators, and genetic factors that promote the osteochondrogenic differentiation of vascular smooth muscle cells (VSMC). This review will evaluate the main mechanisms involved in the pathophysiology and genetics modulation of the process of vascular calcification. Objective. A systematic review of the pathophysiology factors involved in vascular calcification and its genetic influence was performed. Methods. A systematic review was conducted in the Medline and PubMed databases and were searched for studies concerning vascular calcification using the keywords and studies published until 2020/01 in English. Inclusion Criteria. Studies in vitro, animal models, and humans. These include cohort (both retrospective and prospective cohort studies), case-control, cross-sectional, and systematic reviews. Exclusion Criteria. Studies before 2003 of the existing literature.
Collapse
|
34
|
Yin Y, Huang Q, Yang M, Xiao J, Wu H, Liu Y, Li Q, Huang W, Lei G, Zhou K. MgO Nanoparticles Protect against Titanium Particle-Induced Osteolysis in a Mouse Model Because of Their Positive Immunomodulatory Effect. ACS Biomater Sci Eng 2020; 6:3005-3014. [PMID: 33463269 DOI: 10.1021/acsbiomaterials.9b01852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yong Yin
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Qianli Huang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jian Xiao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
- Shenzhen Zhong Jin Ling Nan Nonfemet Co., Ltd, Shenzhen 518040, China
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yong Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Qingxiang Li
- Shenzhen Zhong Jin Ling Nan Nonfemet Co., Ltd, Shenzhen 518040, China
| | - Weidong Huang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kun Zhou
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
35
|
He M, Wu N, Leong MC, Zhang W, Ye Z, Li R, Huang J, Zhang Z, Li L, Yao X, Zhou W, Liu N, Yang Z, Dong X, Li Y, Chen L, Li Q, Wang X, Wen J, Zhao X, Lu B, Yang Y, Wang Q, Hu R. miR-145 improves metabolic inflammatory disease through multiple pathways. J Mol Cell Biol 2020; 12:152-162. [PMID: 30941422 PMCID: PMC7109608 DOI: 10.1093/jmcb/mjz015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/27/2018] [Accepted: 04/02/2019] [Indexed: 11/25/2022] Open
Abstract
Chronic inflammation plays a pivotal role in insulin resistance and type 2 diabetes, yet the mechanisms are not completely understood. Here, we demonstrated that serum LPS levels were significantly higher in newly diagnosed diabetic patients than in normal control. miR-145 level in peripheral blood mononuclear cells decreased in type 2 diabetics. LPS repressed the transcription of miR-143/145 cluster and decreased miR-145 levels. Attenuation of miR-145 activity by anti-miR-145 triggered liver inflammation and increased serum chemokines in C57BL/6 J mice. Conversely, lentivirus-mediated miR-145 overexpression inhibited macrophage infiltration, reduced body weight, and improved glucose metabolism in db/db mice. And miR-145 overexpression markedly reduced plaque size in the aorta in ApoE-/- mice. Both OPG and KLF5 were targets of miR-145. miR-145 repressed cell proliferation and induced apoptosis partially by targeting OPG and KLF5. miR-145 also suppressed NF-κB activation by targeting OPG and KLF5. Our findings provide an association of the environment with the progress of metabolic disorders. Increasing miR-145 may be a new potential therapeutic strategy in preventing and treating metabolic diseases such as type 2 diabetes and atherosclerosis.
Collapse
Affiliation(s)
- Min He
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Nan Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
- Department of Geriatrics, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Man Cheong Leong
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Weiwei Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Zi Ye
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Rumei Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Jinyang Huang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Zhaoyun Zhang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Lianxi Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Xiao Yao
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Wenbai Zhou
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Naijia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Zhihong Yang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Xuehong Dong
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Yintao Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Lili Chen
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Qin Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Xuanchun Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Jie Wen
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Xiaolong Zhao
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Yehong Yang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, University of Toronto, Ontario, Canada
| | - Renming Hu
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Institute of Endocrinology and Diabetology, Fudan University, Shanghai, China
| |
Collapse
|
36
|
Snipsøyr MG, Wiggers H, Ludvigsen M, Stensballe A, Vorum H, Poulsen SH, Rasmussen LM, Petersen E, Honoré B. Towards identification of novel putative biomarkers for infective endocarditis by serum proteomic analysis. Int J Infect Dis 2020; 96:73-81. [PMID: 32087365 DOI: 10.1016/j.ijid.2020.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Infective endocarditis (IE) has high mortality, partly due to delayed diagnosis. No biomarker can identify IE in patients with fever and clinical picture of infection. To find putative biomarkers we analyzed serum levels of two proteins found in cardiac valves, fibulin-1 (n=696) and osteoprotegerin (n=689) among patients on clinical suspicion of IE. Proteomic analyses were performed in 24 patients with bacteremia, 12 patients with definite IE and 12 patients with excluded IE. METHODS Fibulin-1 and osteoprotegerin were studied by enzyme linked immunosorbent assay (ELISA). Proteomic analyses were conducted by 2-dimensional polyacrylamid gel electrophoresis (2D-PAGE) and label-free quantitative liquid chromatography - tandem mass spectrometry (LFQ LC-MS/MS). Controls for 2D 2D-PAGE and LFQ LC-MS/MS had bacteremia and excluded IE. RESULTS Osteoprotegerin levels were significantly increased in IE patients compared with non-IE patients. Fibulin-1 showed no difference. 2D-PAGE showed significant differences of 6 proteoforms: haptoglobin, haptoglobin-related protein, α-2-macroglobulin, apolipoprotein A-I and ficolin-3. LFQ LC-MS/MS analysis revealed significant level changes of 7 proteins: apolipoprotein L1, complement C1q subcomponent B and C, leukocyte immunoglobulin-like receptor subfamily A member 3, neuropilin-2, multimerin-1 and adiponectin. CONCLUSIONS The concentration changes in a set of proteoforms/proteins suggest that stress and inflammation responses are perturbed in patients with IE compared to patients with bacteremia without IE.
Collapse
Affiliation(s)
- Magnus Giske Snipsøyr
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Cardiology, Aarhus University Hospital, Skejby, Denmark; Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
| | - Henrik Wiggers
- Department of Cardiology, Aarhus University Hospital, Skejby, Denmark
| | - Maja Ludvigsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Denmark
| | - Henrik Vorum
- Department of Clinical Medicine, Aalborg University, Denmark
| | | | - Lars Melholt Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark
| | - Eskild Petersen
- Department of Infectious Diseases, Aarhus University Hospital, Skejby, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aalborg University, Denmark.
| |
Collapse
|
37
|
Wu X, Li F, Dang L, Liang C, Lu A, Zhang G. RANKL/RANK System-Based Mechanism for Breast Cancer Bone Metastasis and Related Therapeutic Strategies. Front Cell Dev Biol 2020; 8:76. [PMID: 32117996 PMCID: PMC7026132 DOI: 10.3389/fcell.2020.00076] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/29/2020] [Indexed: 12/17/2022] Open
Abstract
Breast cancer remains one of the most life-threatening tumors affecting women. Most patients with advanced breast cancer eventually develop metastatic diseases, which cause significant morbidity and mortality. Approximately two-thirds of patients with advanced breast cancer exhibit osteolytic-type bone metastasis, which seriously reduce the quality of life. Therefore, development of novel therapeutic strategies for treating breast cancer patients with bone metastasis is urgently required. The "seed and soil" theory, which describes the interaction between the circulating breast cancer cells (seeds) and bone microenvironment (soil), is widely accepted as the mechanism underlying metastasis. Disruption of any step in this cycle might have promising anti-metastasis implications. The interaction of receptor activator of nuclear factor-κB ligand (RANKL) and its receptor RANK is fundamental in this vicious cycle and has been shown to be a novel effective therapeutic target. A series of therapeutic strategies have been developed to intervene in this cross-talk. Therefore, in this review, we have systematically introduced the functions of the RANKL/RANK signaling system in breast cancer and discussed related therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Lei Dang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.,Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Shanghai, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute of Research and Continuing Education, Shenzhen, China
| |
Collapse
|
38
|
Patel SH, Panian J, Bree K, Derweesh I, Millard F, Randall J, Mckay R. Systemic Treatment of Bone Disease in Metastatic Urinary Malignancies. Eur Urol Focus 2020; 6:17-25. [PMID: 31255618 DOI: 10.1016/j.euf.2019.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/28/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
CONTEXT Bone metastasis is a common site of metastatic disease in patients with genitourinary malignancies. Given that the presence of bone metastasis decreases survival and has a negative impact on quality of life impact, it is critical to optimize management of this patient population. OBJECTIVE To systematically review literature on the systemic treatment of bone metastasis in prostate cancer, renal cell carcinoma, urothelial carcinoma, and germ cell tumors. EVIDENCE ACQUISITION We performed a nonsystematic critical review of PubMed/Medline, clinicaltrials.gov, and the Cochrane Library from January 2001 to February 2019. Identified reports were reviewed according to the Consolidated Standards of Reporting Trials, and selected based on reporting skeletal related events and symptomatic skeletal events for patients with urologic malignancies. EVIDENCE SYNTHESIS Skeletal metastases occur frequently in genitourinary malignancies, at rates around 80% for patients with metastatic prostate cancer and 30% for patients with metastatic renal cell and urothelial carcinoma, and are uncommon in patients with germ cell tumors. Skeletal related events and symptomatic skeletal events can occur in these patients. Optimization of bone health involves dietary and lifestyle modifications, and use of osteoclast-targeted agents in select individuals. Additionally, disease-modifying agents, such as radiopharmaceutical, immunotherapy, and cMET inhibitors, which have activity in the bone, have improved outcomes for patients, including skeletal-related events and symptomatic skeletal events. CONCLUSIONS While the presence of bone metastases is associated with increased mortality and worse outcomes in patients with genitourinary malignancies, strategies have been developed to improve quality of life and survival for patients with skeletal metastases. Future studies investigating novel therapeutic options and bone supporting agents are warranted to target this patient population. PATIENT SUMMARY In this report, we reviewed the current literature and recent clinical trials involving treatment of bone metastases in urinary cancers. The use of bone-targeting agents can improve outcomes for patients, and additional lifestyle modification can optimize bone health in this population.
Collapse
|
39
|
New Concepts in the Management of Charcot Neuroarthropathy in Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:391-415. [PMID: 32124412 DOI: 10.1007/5584_2020_498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Charcot Neuroarthropathy (CN) is an uncommon, debilitating and often underdiagnosed complication of chronic diabetes mellitus though, it can also occur in other medical conditions resulting from nerve injury. Till date, the etiology of CN remains unknown, but enhanced osteoclastogenesis is believed to play a central role in the pathogenesis of CN, in the presence of neuropathy. CN compromises the overall health and quality of life. Delayed diagnosis can result in a severe deformity that can act as a gateway to ulceration, infection and in the worst case, can lead to limb loss. In an early stage of CN, immobilization with offloading plays a key role to a successful treatment. Medical therapies seem to have limited role in the treatment of CN.In case of severe deformity, proper footwear or bracing may help prevent further deterioration and development of an ulcer. In individuals with a concomitant ulcer with osteomyelitis, soft tissue infection and severe deformity, where conservative measures fall short, surgical intervention becomes the only choice of treatment. Early diagnosis and proper management at an early stage can help prevent the occurrence of CN and amputation.
Collapse
|
40
|
Karalazou P, Ntelios D, Chatzopoulou F, Fragou A, Taousani M, Mouzaki K, Galli-Tsinopoulou A, Kouidou S, Tzimagiorgis G. OPG/RANK/RANKL signaling axis in patients with type I diabetes: Associations with parathormone and vitamin D. Ital J Pediatr 2019; 45:161. [PMID: 31823791 PMCID: PMC6902340 DOI: 10.1186/s13052-019-0748-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) has been associated with a higher fracture risk due to alterations in bone structure and metabolism. On the other hand, the important role of the RANKL/OPG/RANK signaling axis in bone physiology is well established. The aim of this study was to evaluate the levels of receptor activator of nuclear factor kappa-B ligand (RANKL), receptor activator of nuclear factor kappa-B (RANK) and plasma osteoprotegerin (OPG) levels, in T1D youngsters and to investigate factors that could influence the OPG/RANK/RANKL signaling axis such as 25-hydroxy vitamin D [25(OH) D], parathormone (PTH) and age. METHODS Serum RANKL, RANK, 25(OH) D, PTH levels and plasma OPG levels, were measured in 71 youngsters with T1D and 50 healthy controls matched for age and gender. RESULTS Plasma OPG levels were significantly lower (p = 0.025) in T1D patients compared to controls. Serum RANKL levels were significantly higher (p = 0.037), while no differences were observed in serum RANK levels (p = 0.946) between the two groups. Serum 25(OH) D levels found significantly decreased (p < 0.001) while serum PTH levels were significantly elevated (p < 0.001) in T1D patients than in controls. CONCLUSIONS Our results demonstrated that OPG and RANKL may be promising biomarkers for T1D patients. However, their circulating levels were associated with several factors including PTH, 25(OH) D and therefore, may represent an integrative biomarker for a variety of endocrine signaling disturbances observed in T1D.
Collapse
Affiliation(s)
- Paraskevi Karalazou
- Laboratory of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Dimitrios Ntelios
- Laboratory of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Fani Chatzopoulou
- Laboratory of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Aikaterini Fragou
- Laboratory of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Maria Taousani
- Laboratory of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Konstantina Mouzaki
- 4th Department of Pediatrics, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Assimina Galli-Tsinopoulou
- 4th Department of Pediatrics, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | - Sofia Kouidou
- Laboratory of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece
| | - Georgios Tzimagiorgis
- Laboratory of Biological Chemistry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24, Thessaloniki, Greece.
| |
Collapse
|
41
|
Evenepoel P, Opdebeeck B, David K, D'Haese PC. Bone-Vascular Axis in Chronic Kidney Disease. Adv Chronic Kidney Dis 2019; 26:472-483. [PMID: 31831125 DOI: 10.1053/j.ackd.2019.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/30/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022]
Abstract
Patients with chronic kidney disease (CKD) are at increased risk of osteoporosis and vascular calcification. Bone demineralization and vascular mineralization go often hand in hand in CKD, similar to as in the general population. This contradictory association is independent of aging and is commonly referred to as the "calcification paradox" or the bone-vascular axis. Various common risk factors and mechanisms have been identified. Alternatively, calcifying vessels may release circulating factors that affect bone metabolism, while bone disease may infer conditions that favor vascular calcification. The present review focuses on emerging concepts and major mechanisms involved in the bone-vascular axis in the setting of CKD. A better understanding of these concepts and mechanisms may identify therapeutics able to target and exert beneficial effects on bone and vasculature simultaneously.
Collapse
|
42
|
Yuan Y, Duan R, Wu B, Huang W, Zhang X, Qu M, Liu T, Yu X. Gene expression profiles and bioinformatics analysis of insulin-like growth factor-1 promotion of osteogenic differentiation. Mol Genet Genomic Med 2019; 7:e00921. [PMID: 31419079 PMCID: PMC7082822 DOI: 10.1002/mgg3.921] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/20/2019] [Accepted: 07/23/2019] [Indexed: 02/04/2023] Open
Abstract
Background Insulin‐like growth factor‐1 (IGF‐1) promotes osteoblast differentiation and mineralization. The objective of this study was to investigate the effects of IGF‐1 on proliferation, mineralization, alkaline phosphatase (ALP) synthesis, and gene expression of osteoblast differentiation in MC3T3‐E1 osteoblasts cells, and to explore gene expression profiling differential genes. Methods MC3T3‐E1 osteoblasts cells were cultured in medium with or without IGF‐1. The ALP assay was employed to determine the osteoblast mineralization, and Alizarin red S to stain for calcium deposits, which were the indicators of mature osteocytes. The living cell number was assessed by the Cell Counting Kit‐8 method. RNA‐seq analysis was applied to identify genes that were differentially expressed in with or without IGF‐1 as well as genes that varied between these two groups. The expression of osteogenic marker genes was determined by quantitative real‐time polymerase chain reaction (qRT‐PCR) and western blot analysis. Result The cell number of osteoblasts exposed to IGF‐1 at 200 μg/L significantly increased compared with the control group. The ALP activity in IGF‐1‐treated cells was higher than that in the control group. IGF‐1 can increase ALP synthesis in osteoblasts in vitro. RNA‐seq analysis showed that 677 triggered differentially expressed genes by IGF, of which 383 genes were downregulated and 294 genes were upregulated. Gene ontology (GO) analysis showed that IGF‐1 caused a significant change in gene expression patterns. Conclusions This result suggested that IGF‐1 could probably promote the synthesis of organic matrix and mineralize action of bone. Osteogenic‐related genes (DMP1, PHEX, SOST, BMP2, RUNX2, OPN, and OCN) were significantly upregulated both in GO analysis and in pathway analysis to perform qRT‐PCR. Western blot analysis demonstrated that the Notch pathway was highly upregulated in MC3T3‐E1 cells.
Collapse
Affiliation(s)
- Yashuai Yuan
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ruimeng Duan
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Baolin Wu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Wei Huang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiuzhi Zhang
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Mingjia Qu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Tao Liu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiaobing Yu
- Department of Orthopaedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| |
Collapse
|
43
|
Kalkan R, Becer E. RANK/RANKL/OPG pathway is an important for the epigenetic regulation of obesity. Mol Biol Rep 2019; 46:5425-5432. [PMID: 31364017 DOI: 10.1007/s11033-019-04997-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022]
Abstract
Obesity is a complex disorder that is influenced by genetic and environmental factors. DNA methylation is an epigenetic mechanism that is involved in development of obesity and its metabolic complications. The aim of this study was to investigate the association between the RANKL and c-Fos gene methylation on obesity with body mass index (BMI), lipid parameters, homeostasis model assessment of insulin resistance (HOMA-IR), plasma leptin, adiponectin and resistin levels. The study included 68 obese and 46 non-obese subjects. Anthropometric parameters, including body weight, body mass index, waist circumference, and waist-hip ratio, were assessed. Serum glucose, triglycerides (TG), total cholesterol, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), plasma leptin, adiponectin and resistin levels were measured. Methylation status of RANKL and c-Fos gen were evaluated by MS-HRM. Statistically significant differences were observed between obese patients and the controls with respect to RANKL and c-Fos gene methylation status (p < 0.001). Also, statistically significant importance was observed RANKL gene methylation and increased level of leptin in obese subjects (p = 0.0081). At the same time, statistically significant association between methylation of c-Fos and increased level of adiponectin was observed in obese patients (p = 0.03) On the other hand, decreased level of resistin was observed where the c-Fos was unmetyladed in controls (p = 0.01). We conclude that methylation of RANKL and c-Fos genes have significant influences on obesity and adipokine levels. Based on literature this was the first study which shows the interactions between RANKL and c-Fos methylation and obesity.
Collapse
Affiliation(s)
- Rasime Kalkan
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Eda Becer
- Department of Biochemistry, Faculty of Pharmacy, Near East University, Near East Boulevard, ZIP. 99138, Nicosia, Cyprus. .,Research Center of Experimental Health Sciences (DESAM), Near East University, Nicosia, Cyprus.
| |
Collapse
|
44
|
Comparison of RANKL expression, inflammatory markers, and cardiovascular risk in patients with acute coronary syndrome with and without rheumatoid arthritis. Rheumatol Int 2019; 39:1723-1732. [PMID: 31297563 DOI: 10.1007/s00296-019-04367-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/01/2019] [Indexed: 01/07/2023]
Abstract
The mechanisms responsible for increased cardiovascular risk in patients with rheumatoid arthritis (RA) involve local and systemic inflammatory processes. We aimed to compare inflammatory markers and mortality risk in patients with acute coronary syndrome (ACS) with and without RA. The study involved 95 ACS patients (46 with RA and 49 without RA) and 40 healthy controls. Serum levels of Receptor Activator of Nuclear Factor Kappa B Ligand (sRANKL), Osteoprotegerin (sOPG), high-sensitivity C-reactive protein (hs-CRP) and high-sensitivity Tropinin I (hs-TnI) were tested in all participants. Additionally, ACS patients were assessed on RANKL expression (exRANKL) on coronary arteries and mortality risk on the Global Registry of Acute Coronary Events scale (GRACE). exRANKL was established in 35 (76%) ACS patients with RA, vs. 19 (39%) patients without RA, p < 0.001. RA patients had significantly higher levels of sRANKL and sOPG at 24 h and 48 h compared to ACS patients without RA and healthy controls (sRANKL 24 h: 121.33 vs. 51.67 vs. 36.94, p = 0.019; sRANKL 48 h: 89.21 vs. 36.95 vs. 36.94, p = 0.004; sOPG 24 h: 207.71 vs. 69.39 vs. 111.91, p < 0.001; sOPG 48 h: 143.36 vs. 69.38 vs. 111.91, p < 0.001). RA patients had significantly higher RANKL:OPG ratio at 48 h (0.062 vs. 0.53 vs. 0.33, p < 0.001), hs-CRP (28.82 vs. 23.67 vs. 2.60, p < 0.001) and hs-TnI (0.90 vs. 0.76 vs. 0.012). GRACE risk score was significantly higher in RA patients vs. those without RA (140.45 vs. 125.50, p = 0.030) and correlated with exRANKL, RANKL:OPG, hs-CRP, and hs-TnI. Our results indicate that exRANKL, inflammatory markers and mortality risk are amplified in ACS patients with RA compared to ACS patients without RA.
Collapse
|
45
|
The effect of vanillic acid on ligature-induced periodontal disease in Wistar rats. Arch Oral Biol 2019; 103:1-7. [DOI: 10.1016/j.archoralbio.2019.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/18/2019] [Accepted: 05/10/2019] [Indexed: 11/21/2022]
|
46
|
Kim JY, Kim HJ, Kim CS. Effects of 12-week combined exercise on RANKL/RANK/OPG signaling and bone-resorption cytokines in healthy college females. J Exerc Nutrition Biochem 2019; 23:13-20. [PMID: 31010270 PMCID: PMC6477823 DOI: 10.20463/jenb.2019.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/05/2019] [Indexed: 12/12/2022] Open
Abstract
[Purpose] The OPG/RANK/RANKL signaling is a new family of bone metabolism biomarkers belonging to the immune system. However, the bone metabolism response to long-term exercise in the RANKL/RANK/OPG signaling is less evident. The purpose of this study was to examine these biomarkers in healthy college females after 12-weeks combined exercise intervention. [Methods] Participants (N=22, 22.4±1.3yrs) were randomly divided in two different group: 12 in the control group and 10 in the exercise group performing combined exercise program that interventions was conducted 3 times per week for 12 weeks. The outcome measures included serum concentrations of RANKL, OPG and bone metabolic cytokines such as TNF-α and IL-6, and mRNA expressions of same variables from PBMC. VO2max and bone mineral density (BMD) were measured at before and after exercise intervention. [Results] There were no significant differences in the serum RANKL, OPG concentrations and all RANKL/RANK/OPG signaling mRNA expression on interaction effect between group and time (NS). Also no significant differences were found in the serum TNF-α and IL-6 concentrations and mRNA expression (NS). The IL-6 mRNA expression only showed significant difference in the main effect of groups (p<.05). There were also no significant differences in the VO2max and BMD on interaction effect between group and time (NS). [Conclusion] These results suggested that there were no effects on bone mineral density and RANKL/RANK/OPG signaling without the effect of 8-weeks combined exercise on cardiovascular endurance fitness.
Collapse
|
47
|
Brankovic M, Martijn Akkerhuis K, Mouthaan H, Constantinescu A, Caliskan K, van Ramshorst J, Germans T, Umans V, Kardys I. Utility of temporal profiles of new cardio-renal and pulmonary candidate biomarkers in chronic heart failure. Int J Cardiol 2019; 276:157-165. [DOI: 10.1016/j.ijcard.2018.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/03/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023]
|
48
|
Pitocco D, Scavone G, Di Leo M, Vitiello R, Rizzi A, Tartaglione L, Costantini F, Flex A, Galli M, Caputo S, Ghirlanda G, Pontecorvi A. Charcot Neuroarthropathy: From the Laboratory to the Bedside. Curr Diabetes Rev 2019; 16:62-72. [PMID: 31057120 DOI: 10.2174/1573399815666190502121945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND The diabetic Charcot foot syndrome is a serious and potentially limbthreatening lower-extremity complication of diabetes. INTRODUCTION The present review provides a concise account of the advances made over the last twentyfive years in understanding the pathogenesis and management of Charcot neuroarthropathy (CN). METHODS In this study, the widely known pathogenetic mechanisms underpinning CN are brought into focus, particularly the role of RANKL/RANK/OPG system and advanced glycation end production in the pathogenesis of CN. Furthermore, other potential triggering factors, namely nitric oxide, endothelial dysfunction, macro calcifications and body weight that influence CN have also been discussed. RESULTS The wide range of diagnostic tools available to clinicians for accurate staging of this pathology has been examined, particularly radiological and nuclear medicine imaging. Additionally, the difficult differential diagnosis between osteomyelitis and CN is also elucidated. CONCLUSION The review concludes with the comprehensive summary of the major promising therapeutic strategies, including conservative treatment involving orthopedic devices, pharmacological approach, and the most common surgical techniques currently employed in the diagnosis and treatment of this acute disease.
Collapse
Affiliation(s)
- Dario Pitocco
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Scavone
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Mauro Di Leo
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Raffaele Vitiello
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alessandro Rizzi
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Linda Tartaglione
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Federica Costantini
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Andrea Flex
- Institute of Internal Medicine, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Marco Galli
- Institute of Orthopedic Surgery, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Salvatore Caputo
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giovanni Ghirlanda
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Alfredo Pontecorvi
- Diabetes Care Unit, Institute of Endocrinology, Catholic University of Sacred Heart, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| |
Collapse
|
49
|
Skarlis C, Palli E, Nezos A, Koutsilieris M, Mavragani CP. Study of the incidence of osteoporosis in patients with Sjögren's syndrome (pSS) and investigation of activation of the RANKL /RANK and osteoprotegerin (OPG) system. Mediterr J Rheumatol 2018; 29:224-227. [PMID: 32185332 PMCID: PMC7045933 DOI: 10.31138/mjr.29.4.224] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/12/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
| | | | | | - Michail Koutsilieris
- Department of Physiology.,Department of Pathophysiology, School of Medicine, National University of Athens, Athens, Greece
| | | |
Collapse
|
50
|
Abstract
Low plasma testosterone (T) levels correlated with metabolic syndrome, cardiovascular diseases, and increased mortality risk. T exerts a significant effect on the regulation of adipose tissue accumulation, and in the glucose and lipids metabolism. Adipocytes are the primary source of the most important adipokines responsible for inflammation and chronic diseases. This review aims to analyze the possible effect of T on the regulation of the proinflammatory cytokines secretion. A systematic literature search on MEDLINE, Google Scholar, and Cochrane using the combination of the following keywords: “testosterone” with “inflammation,” “cytokines,” “adiponectin, CRP, IL-1B, IL-6, TNFα, leptin” was conducted. Sixteen articles related to the effect of low T level and 18 to the effect of T therapy on proinflammatory cytokine were found. T exerts a significant inhibitory effect on adipose tissue formation and the expression of various adipocytokines, such as leptin, TNF-α, IL-6, IL-1, and is positively correlated with adiponectin level, whereas a low T level is correlated with increased expression of markers of inflammation. Further studies are necessary to investigate the role of T, integrated with weight loss and physical activity, on its action on the mechanisms of production and regulation of proinflammatory cytokines.
Collapse
|