1
|
Rezaei M, Moghoofei M. The role of viral infection in implantation failure: direct and indirect effects. Reprod Biol Endocrinol 2024; 22:142. [PMID: 39529140 PMCID: PMC11552308 DOI: 10.1186/s12958-024-01303-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Implantation is the key initial complex stage of pregnancy. Several factors are involved in implantation, but acute and controlled inflammation has been shown to play as a key role. On the other hand, the role of viral infections in directly infecting blastocyst and trophoblast and inducing chronic and uncontrolled inflammation and disrupting microRNAs expression can make this review strongly attractive and practical. We aim to provide an overview of viral infections as the potential etiology of unsuccessful implantation pathophysiology through alteration of the cellular and molecular endometrial microenvironment. Based on our search, this is the first review to discuss the role of inflammation associated with viral infection in implantation failure.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Department of Obstetrics and Gynecology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohsen Moghoofei
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Lim SJ, Gan SC, Ong HT, Ngeow YF. In vitro analysis of VEGF-mediated endothelial permeability and the potential therapeutic role of Anti-VEGF in severe dengue. Biochem Biophys Rep 2024; 39:101814. [PMID: 39263317 PMCID: PMC11387214 DOI: 10.1016/j.bbrep.2024.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Background Vascular endothelial growth factor (VEGF) is one of the proteins involved in dengue immunopathogenesis. It is overexpressed in severe dengue and contributes to vascular permeability and plasma leakage. In this study, we investigated the effects of VEGF and anti-VEGF treatments on endothelial cells in vitro, to assess the potential use of anti-VEGF antibodies in managing severe dengue. Methods Human pulmonary microvascular endothelial cells were treated with VEGF and a VEGF/anti-VEGF combination. The effects of the treatments were studied using an endothelial permeability assay and microarray gene expression profiling. In the permeability assay, the fluorescein isothiocyanate (FITC)-dextran fluorescence signal across the endothelial monolayer was recorded, and the cells were stained with PECAM-1 to detect gap formation. RNA was extracted from treated cells for microarray gene profiling and analysis. The results were analyzed for differentially expressed genes (DEGs) and gene enrichment analysis. The DEGs were subjected to STRING to construct the protein-protein interaction network and then Cytoscape to identify the hub genes. Results VEGF-treated endothelial cells showed greater movement of FITC-dextran across the monolayer than VEGF/anti-VEGF-treated cells. There were 111 DEGs for VEGF-treated cells and 118 DEGs for VEGF/anti-VEGF-treated cells. The genes upregulated in VEGF-treated cells were enriched in inflammatory responses and regulation of the endothelial barrier, nitric oxide synthesis, angiogenesis, and the nucleotide-binding oligomerization domain-like receptor signaling pathway. Top 10 hub genes were identified from the DEGs. Conclusions VEGF treatment increased permeability across endothelial cells, while anti-VEGF reduced this leakage. Analysis of VEGF-treated endothelial cells identified hub genes implicated in severe dengue. The top 10 hub genes were TNF, IL1B, IL6, CCL2, PTGS2, ICAM1, CXCL2, CXCL1, CSF2, and TLR2. The results of this study show that using anti-VEGF antibodies to neutralize VEGF may be a promising therapy to prevent the progression of dengue to severe dengue.
Collapse
Affiliation(s)
- Sheng Jye Lim
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
| | - Seng Chiew Gan
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
| | - Hooi Tin Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
- Center for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
| | - Yun Fong Ngeow
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
- Centre for Research on Communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
3
|
Takenoshita Y, Tokito A, Jougasaki M. Inhibitory Effects of Eicosapentaenoic Acid on Vascular Endothelial Growth Factor-Induced Monocyte Chemoattractant Protein-1, Interleukin-6, and Interleukin-8 in Human Vascular Endothelial Cells. Int J Mol Sci 2024; 25:2749. [PMID: 38473995 PMCID: PMC10931732 DOI: 10.3390/ijms25052749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024] Open
Abstract
Vascular endothelial growth factor (VEGF) induces monocyte chemoattractant protein-1 (MCP-1) and plays an important role in vascular inflammation and atherosclerosis. We investigated the mechanisms of VEGF-induced MCP-1 expression and the effects of eicosapentaenoic acid (EPA) in human umbilical vein endothelial cells (HUVECs). Real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) demonstrated that VEGF enhanced MCP-1 gene expression and protein secretion in HUVECs. Western immunoblot analysis revealed that VEGF induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and inhibitor of nuclear factor (NF)-κB (IκB). Treatment with pharmacological inhibitors of p38 MAPK (SB203580) or NF-κB (BAY11-7085) significantly suppressed VEGF-induced MCP-1 in HUVECs. EPA inhibited VEGF-induced MCP-1 mRNA, protein secretion, phosphorylation of p38 MAPK, and the translocation of phospho-p65 to the nucleus. Additionally, VEGF also stimulated gene expressions of interleukin (IL)-6 and IL-8, which were suppressed by SB203580, BAY11-7085, and EPA. The present study has demonstrated that VEGF-induced activation of MCP-1, IL-6, and IL-8 involves the p38 MAPK and NF-κB signaling pathways and that EPA inhibits VEGF-induced MCP-1, IL-6, and IL-8 via suppressing these signaling pathways. This study supports EPA as a beneficial anti-inflammatory and anti-atherogenic drug to reduce the VEGF-induced activation of proinflammatory cytokine and chemokines.
Collapse
Affiliation(s)
| | | | - Michihisa Jougasaki
- Institute for Clinical Research, NHO Kagoshima Medical Center, Kagoshima 892-0853, Japan; (Y.T.); (A.T.)
| |
Collapse
|
4
|
Jain S, Vimal N, Angmo N, Sengupta M, Thangaraj S. Dengue Vaccination: Towards a New Dawn of Curbing Dengue Infection. Immunol Invest 2023; 52:1096-1149. [PMID: 37962036 DOI: 10.1080/08820139.2023.2280698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dengue is an infectious disease caused by dengue virus (DENV) and is a serious global burden. Antibody-dependent enhancement and the ability of DENV to infect immune cells, along with other factors, lead to fatal Dengue Haemorrhagic Fever and Dengue Shock Syndrome. This necessitates the development of a robust and efficient vaccine but vaccine development faces a number of hurdles. In this review, we look at the epidemiology, genome structure and cellular targets of DENV and elaborate upon the immune responses generated by human immune system against DENV infection. The review further sheds light on various challenges in development of a potent vaccine against DENV which is followed by presenting a current account of different vaccines which are being developed or have been licensed.
Collapse
Affiliation(s)
- Sidhant Jain
- Independent Researcher, Institute for Globally Distributed Open Research and Education (IGDORE), Rewari, India
| | - Neha Vimal
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, India
| | - Nilza Angmo
- Maitreyi College, University of Delhi, Delhi, India
| | - Madhumita Sengupta
- Janki Devi Bajaj Government Girls College, University of Kota, Kota, India
| | - Suraj Thangaraj
- Swami Ramanand Teerth Rural Government Medical College, Maharashtra University of Health Sciences, Ambajogai, India
| |
Collapse
|
5
|
Goodarzi V, Nouri S, Nassaj ZS, Bighash M, Abbasian S, Hagh RA. Long non coding RNAs reveal important pathways in childhood asthma: a future perspective. J Mol Histol 2023; 54:257-269. [PMID: 37537509 DOI: 10.1007/s10735-023-10131-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/04/2023] [Indexed: 08/05/2023]
Abstract
Asthma is a long-term inflammatory disease of the airways of the lungs refers changes that occur in conjunction with, or as a result of, chronic airway inflammation. Airway remodeling the subsequent of inflammation constitutes cellular and extracellular matrix changes in the wall airways, epithelial-to-mesenchymal-transition and airway smooth muscle cell proliferation. Diseases often begin in childhood and despite extensive research, causative pathogenic mechanisms still remain unclear. Transcriptome analysis of childhood asthma reveals distinct gene expression profiles of Long noncoding RNAs which have been reported to play a central regulatory role in various aspects of pathogenesis, clinical course and treatment of asthma. We briefly review current understanding of lnc-RNA dysregulation in children with asthma, focusing on their complex role in the inflammation, cell proliferation and remodeling of airway to guide future researches. We found that the lnc-RNAs increases activity of several oncogenes such c-Myc, Akt, and ERK and various signaling pathways such as MAPK (PI3K, Ras, JNK and p38), NF-κB and Wnt and crosstalk between these pathways by TGFβ, β-catenin, ERK and SKP2. Moreover, two different signal transduction pathways, Wnt and Notch1, can be activated by two lnc-RNAs through sponging the same miRNA for exacerbation cell proliferation.
Collapse
Affiliation(s)
- Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Shadi Nouri
- Arak University of Medical Sciences, Arak, Iran
| | - Zohre Saleh Nassaj
- Center for Health Related Social and Behavioral Sciences Research, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mansoureh Bighash
- Bachelor of Nursing, School of Paramedical Sciences, Qazvin University of Medical Sciences, Qazvn, Iran
| | - Sadegh Abbasian
- Department of Laboratory Science, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | | |
Collapse
|
6
|
Kadir RRA, Alwjwaj M, Rakkar K, Othman OA, Sprigg N, Bath PM, Bayraktutan U. Outgrowth Endothelial Cell Conditioned Medium Negates TNF-α-Evoked Cerebral Barrier Damage: A Reverse Translational Research to Explore Mechanisms. Stem Cell Rev Rep 2023; 19:503-515. [PMID: 36056287 PMCID: PMC9902316 DOI: 10.1007/s12015-022-10439-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 02/07/2023]
Abstract
Improved understanding of the key mechanisms underlying cerebral ischemic injury is essential for the discovery of efficacious novel therapeutics for stroke. Through detailed analysis of plasma samples obtained from a large number of healthy volunteers (n = 90) and ischemic stroke patients (n = 81), the current study found significant elevations in the levels of TNF-α at baseline (within the first 48 h of stroke) and on days 7, 30, 90 after ischaemic stroke. It then assessed the impact of this inflammatory cytokine on an in vitro model of human blood-brain barrier (BBB) and revealed dramatic impairments in both barrier integrity and function, the main cause of early death after an ischemic stroke. Co-treatment of BBB models in similar experiments with outgrowth endothelial cell-derived conditioned media (OEC-CM) negated the deleterious effects of TNF-α on BBB. Effective suppression of anti-angiogenic factor endostatin, stress fiber formation, oxidative stress, and apoptosis along with concomitant improvements in extracellular matrix adhesive and tubulogenic properties of brain microvascular endothelial cells and OECs played an important role in OEC-CM-mediated benefits. Significant increases in pro-angiogenic endothelin-1 and monocyte chemoattractant protein-1 in OEC-CM compared to the secretomes of OEC and HBMEC, detected by proteome profiling assay, accentuate the beneficial effects of OEC-CM. In conclusion, this reverse translational study identifies TNF-α as an important mediator of post-ischemic cerebral barrier damage and proposes OEC-CM as a potential vasculoprotective therapeutic strategy by demonstrating its ability to regulate a wide range of mechanisms associated with BBB function. Clinical trial registration NCT02980354.
Collapse
Affiliation(s)
- Rais Reskiawan A Kadir
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Mansour Alwjwaj
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Kamini Rakkar
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Othman Ahmad Othman
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Nikola Sprigg
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Philip M Bath
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK
| | - Ulvi Bayraktutan
- Academic Unit of Mental Health and Clinical Neuroscience, Clinical Sciences Building, School of Medicine, The University of Nottingham, Hucknall Road, Nottingham, NG5 1PB, UK.
| |
Collapse
|
7
|
Mao XD, Min SN, Zhu MQ, He L, Zhang Y, Li JW, Tian YX, Yu GY, Wu LL, Cong X. The Role of Endothelial Barrier Function in the Fibrosis of Salivary Gland. J Dent Res 2023; 102:82-92. [PMID: 36112881 DOI: 10.1177/00220345221118508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In the salivary glands, fibrosis occurs in many pathological conditions. Endothelial tight junction (TJ)-based barrier function plays a vital role in maintaining the homeostasis of the salivary glands. However, whether endothelial barrier function is changed and involved in the pathogenesis of glandular fibrosis is unknown. Here, by using a mouse model in which the main excretory duct of the submandibular gland (SMG) was ligated to induce inflammation and fibrosis, endothelial barrier function and TJ protein expression and distribution were examined. Both 4-kDa and 70-kDa fluorescence-labeled dextrans permeated more in the 1-, 3-, and 7-d ligated SMGs. Meanwhile, the mRNA level of claudin-5 was increased with an obvious redistribution from apicolateral membranes to lateral membranes and cytoplasm in the fibrotic glands. Notably, the TJ sealer AT1001 significantly attenuated the disrupted endothelial barrier function and thereby ameliorated the glandular fibrosis. Cytokine array detection showed that monocyte chemoattractant protein-1 (MCP-1) was highly enriched in the 3-d ligated SMGs, and MCP-1 directly impaired barrier function, increased claudin-5 expression, induced the relocalization of claudin-5, and activated p-ERK1/2 in cultured human endothelial cells. Furthermore, the upregulation and disorganization of claudin-5 as well as the elevation of MCP-1 and p-ERK1/2 signaling were also confirmed in fibrotic SMGs from patients with chronic sialadenitis and immunoglobulin G4-related sialadenitis. Altogether, our findings revealed that disrupted endothelial barrier function contributed to the progression of glandular fibrosis, and targeting endothelial TJs might be a promising approach to alleviate salivary gland fibrosis-related diseases.
Collapse
Affiliation(s)
- X D Mao
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - S N Min
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China
| | - M Q Zhu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China
| | - L He
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - Y Zhang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - J W Li
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - Y X Tian
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - G Y Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, P.R. China
| | - L L Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| | - X Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, P.R. China
| |
Collapse
|
8
|
Tissue Derivation and Biological Sex Uniquely Mediate Endothelial Cell Protein Expression, Redox Status, and Nitric Oxide Synthesis. Cells 2022; 12:cells12010093. [PMID: 36611888 PMCID: PMC9818567 DOI: 10.3390/cells12010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Human endothelial cells are routinely utilized in cardiovascular research to provide a translational foundation for understanding how the vascular endothelium functions in vivo. However, little attention has been given to whether there are sex specific responses in vitro. Similarly, it is unclear whether endothelial cells derived from distinct tissues behave in a homogenous manner. Herein, we demonstrate that marked sex differences exist within, and between, commonly utilized human primary endothelial cells from healthy donors, with respect to redox status, nitric oxide synthesis, and associated proteins that can mediate their expression. Further, we demonstrate that endothelial cells respond uniquely to inflammatory insult in a sex- and tissue origin-dependent manner. Our findings suggest sex and tissue derivation may need to be considered when studying endothelial cells in vitro as cells derived from distinct tissue and sexes may not behave interchangeably.
Collapse
|
9
|
Vitreous protein networks around ANG2 and VEGF in proliferative diabetic retinopathy and the differential effects of aflibercept versus bevacizumab pre-treatment. Sci Rep 2022; 12:21062. [PMID: 36473885 PMCID: PMC9726866 DOI: 10.1038/s41598-022-25216-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular signalling proteins interact in networks rather than in isolation. In this context we investigated vitreous protein levels, including placental growth factor (PlGF), angiopoietin-2 (ANG2) and vascular endothelial growth factor (VEGF), in patients with proliferative diabetic retinopathy (PDR) with variable disease severities, and after anti-VEGF pre-treatment. Vitreous samples of 112 consecutive patients undergoing vitrectomy for PDR and of 52 non-diabetic patients with macular holes as controls were studied. A subset of the PDR patients were treated with either aflibercept (AFB, n = 25) or bevacizumab (BVZ)/ranibizumab (RZB) (n = 13), before surgery. Antibody-based analysis of 35 proteins (growth factors and cytokines) showed a significant increase in expression levels of 27 proteins in PDR patients as compared to controls. In network analysis of co-regulated proteins, a strong correlation in expression levels between VEGF, PlGF, MCP1 and ANG2 was found, mostly clustered around ANG2. In the AFB treatment group, concentrations of several proteins were decreased, including VEGFR1, whereas interleukin 6 and 8 were increased as compared to untreated PDR patients. The observed differences in vitreous protein levels between the different treatments and untreated PDR patients may underlie differences in clinical outcomes in patients with PDR.
Collapse
|
10
|
Freitas-Ribeiro S, Diogo GS, Oliveira C, Martins A, Silva TH, Jarnalo M, Horta R, Reis RL, Pirraco RP. Growth Factor-Free Vascularization of Marine-Origin Collagen Sponges Using Cryopreserved Stromal Vascular Fractions from Human Adipose Tissue. Mar Drugs 2022; 20:md20100623. [PMID: 36286447 PMCID: PMC9604698 DOI: 10.3390/md20100623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
The successful integration of transplanted three-dimensional tissue engineering (TE) constructs depends greatly on their rapid vascularization. Therefore, it is essential to address this vascularization issue in the initial design of constructs for perfused tissues. Two of the most important variables in this regard are scaffold composition and cell sourcing. Collagens with marine origins overcome some issues associated with mammal-derived collagen while maintaining their advantages in terms of biocompatibility. Concurrently, the freshly isolated stromal vascular fraction (SVF) of adipose tissue has been proposed as an advantageous cell fraction for vascularization purposes due to its highly angiogenic properties, allowing extrinsic angiogenic growth factor-free vascularization strategies for TE applications. In this study, we aimed at understanding whether marine collagen 3D matrices could support cryopreserved human SVF in maintaining intrinsic angiogenic properties observed for fresh SVF. For this, cryopreserved human SVF was seeded on blue shark collagen sponges and cultured up to 7 days in a basal medium. The secretome profile of several angiogenesis-related factors was studied throughout culture times and correlated with the expression pattern of CD31 and CD146, which showed the formation of a prevascular network. Upon in ovo implantation, increased vessel recruitment was observed in prevascularized sponges when compared with sponges without SVF cells. Immunohistochemistry for CD31 demonstrated the improved integration of prevascularized sponges within chick chorioalantoic membrane (CAM) tissues, while in situ hybridization showed human cells lining blood vessels. These results demonstrate the potential of using cryopreserved SVF combined with marine collagen as a streamlined approach to improve the vascularization of TE constructs.
Collapse
Affiliation(s)
- Sara Freitas-Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Gabriela S. Diogo
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Catarina Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Albino Martins
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Tiago H. Silva
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, and Burn Unity, Centro Hospitalar de São João, 4200-319 Porto, Portugal
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
| | - Rogério P. Pirraco
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, 4805-017 Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, 4710-057 Guimarães, Portugal
- Correspondence:
| |
Collapse
|
11
|
Liberski S, Wichrowska M, Kocięcki J. Aflibercept versus Faricimab in the Treatment of Neovascular Age-Related Macular Degeneration and Diabetic Macular Edema: A Review. Int J Mol Sci 2022; 23:9424. [PMID: 36012690 PMCID: PMC9409486 DOI: 10.3390/ijms23169424] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetic macular edema (DME) and neovascular age-related macular degeneration (nAMD) are common retinal vascular diseases responsible for most blindness in the working-age and older population in developed countries. Currently, anti-VEGF agents that block VEGF family ligands, including ranibizumab, bevacizumab (off-label use), brolucizumab, and aflibercept, are the first-line treatment for nAMD and DME. However, due to the complex pathophysiological background of nAMD and DME, non-response, resistance during anti-VEGF therapy, and relapses of the disease are still observed. Moreover, frequent injections are a psychological and economic burden for patients, leading to inadequate adhesion to therapy and a higher risk of complications. Therefore, therapeutic methods are strongly needed to develop and improve, allowing for more satisfactory disease management and lower treatment burden. Currently, the Ang/Tie-2 pathway is a promising therapeutic target for retinal vascular diseases. Faricimab is the first bispecific monoclonal antibody for intravitreal use that can neutralize VEGF and Ang-2. Due to the prolonged activity, faricimab allows extending the interval between successive injections up to three or four months in nAMD and DME patients, which can be a significant benefit for patients and an alternative to implanted drug delivery systems.
Collapse
Affiliation(s)
- Sławomir Liberski
- Department of Ophthalmology, Poznan University of Medical Sciences, ul. Augustyna Szamarzewskiego 84, 61-848 Poznan, Poland
| | - Małgorzata Wichrowska
- Department of Ophthalmology, Poznan University of Medical Sciences, ul. Augustyna Szamarzewskiego 84, 61-848 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, ul. Bukowska 70, 60-812 Poznan, Poland
| | - Jarosław Kocięcki
- Department of Ophthalmology, Poznan University of Medical Sciences, ul. Augustyna Szamarzewskiego 84, 61-848 Poznan, Poland
| |
Collapse
|
12
|
Liu C, Zhang S, Deng X, Chen Y, Shen L, Hu L, Mao J. Comparison of Intraocular Cytokine Levels of Choroidal Neovascularization Secondary to Different Retinopathies. Front Med (Lausanne) 2021; 8:783178. [PMID: 34993212 PMCID: PMC8725795 DOI: 10.3389/fmed.2021.783178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose: To investigate and compare the aqueous concentrations of vascular endothelial growth factor (VEGF) and other inflammatory cytokines in various choroidal neovascularization (CNV) diseases and types. Methods: This observational study included 127 naive eyes with CNV and 43 control eyes with cataracts. Aqueous humor (AH) samples were obtained prior to intravitreal anti-VEGF injection or cataract surgery. Multiple inflammatory cytokines, including VEGF, interleukin (IL) 6, IL-8, IL-10, interferon-inducible protein 10 (IP-10), and monocyte chemotactic protein 1 (MCP-1) levels, were measured using a multiplex bead assay. The angiogenesis index was defined as the ratio of IP-10 to MCP-1. In addition, the relationship among AH cytokine levels, central macular thickness (CMT), and CNV size on optical coherence tomography angiography (OCTA) was evaluated. Results: Except in the myopic CNV group (P = 0.452), the AH concentration of VEGF was significantly higher in all other CNV groups than in the control group (P < 0.05 for all comparisons). IL-8, IL-10, IP-10, and MCP-1 levels (P < 0.05 for all groups) were significantly higher in all CNV diseases except those with neovascular central serous chorioretinopathy. The angiogenesis index was significantly higher in all CNV diseases (P < 0.05 for all comparisons). The VEGF level may be associated with the size of the CNV on OCTA (p = 0.043). Conclusions: The level of intraocular inflammatory cytokines varied among different CNV diseases and CNV types. Therefore, the angiogenesis index may be a more sensitive indicator of angiogenesis.
Collapse
Affiliation(s)
- Chenyi Liu
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
| | - Shian Zhang
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinyi Deng
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yijing Chen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijun Shen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Hu
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Liang Hu
| | - Jianbo Mao
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, China
- Eye Hospital of Wenzhou Medical University, Wenzhou, China
- Jianbo Mao
| |
Collapse
|
13
|
Li D, Ren JW, Xu T, Li L, Liu P, Li Y. Effect of bovine bone collagen oligopeptides on wound healing in mice. Aging (Albany NY) 2021; 13:9028-9042. [PMID: 33690172 PMCID: PMC8034929 DOI: 10.18632/aging.202750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/08/2021] [Indexed: 01/01/2023]
Abstract
Impaired wound healing often brings a set of problems in clinical practice. This study aimed to observe the wound healing potential of bovine bone collagen oligopeptides (BCOP) in mice. After an operation, mice in BCOP-treated groups were given intragastric administration of BCOP, while others were administered vehicle. Mice were sacrificed at different points. The wound healing condition and the tensile strength were observed, serum biochemical indexes and mRNA expression of level of related genes were measured. Compared with the normal control group, albumin (ALB), prealbumin (PA), transferrin (TRF), hydroxyproline (Hyp) levels and tension strength in the BCOP-treated groups increased significantly (p < 0.05). A pathological report showed that neutrophil granulocyte in the BCOP-treated groups decreased, while blood capillary and fibroblasts increased. The levels of serum inflammation indexes like interleukin (IL)-8, tumor necrosis factor (TNF)-α, chemokine (C-C motif) ligand 2 (CCL2) and C-reactive protein (CRP) significantly decreased in full-thickness incision model, whereas increased in full-thickness excision model (p < 0.05). Furthermore, IL-10, stromal cell-derived factor-1 alpha (SDF-1α) levels and the mRNA expression of vascular endothelial growth factor (VEGF) significantly increased in both models (p < 0.05). These results suggested that oral administration of BCOP could promote wound healing in mice.
Collapse
Affiliation(s)
- Di Li
- Department of Clinical Nutrition, Peking University People's Hospital, Beijing 100044, China
| | - Jin-Wei Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Teng Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Lin Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| | - Peng Liu
- Department of Clinical Nutrition, Peking University People's Hospital, Beijing 100044, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
14
|
Lu ZG, May A, Dinh B, Lin V, Su F, Tran C, Adivikolanu H, Ehlen R, Che B, Wang ZH, Shaw DH, Borooah S, Shaw PX. The interplay of oxidative stress and ARMS2-HTRA1 genetic risk in neovascular AMD. ACTA ACUST UNITED AC 2021; 5. [PMID: 34017939 PMCID: PMC8133762 DOI: 10.20517/2574-1209.2020.48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in adults over 60 years old globally. There are two forms of advanced AMD: “dry” and “wet”. Dry AMD is characterized by geographic atrophy of the retinal pigment epithelium and overlying photoreceptors in the macular region; whereas wet AMD is characterized by vascular penetrance from the choroid into the retina, known as choroidal neovascularization (CNV). Both phenotypes eventually lead to loss of central vision. The pathogenesis of AMD involves the interplay of genetic polymorphisms and environmental risk factors, many of which elevate retinal oxidative stress. Excess reactive oxygen species react with cellular macromolecules, forming oxidation-modified byproducts that elicit chronic inflammation and promote CNV. Additionally, genome-wide association studies have identified several genetic variants in the age-related maculopathy susceptibility 2/high-temperature requirement A serine peptidase 1 (ARMS2-HTRA1) locus associated with the progression of late-stage AMD, especially the wet subtype. In this review, we will focus on the interplay of oxidative stress and HTRA1 in drusen deposition, chronic inflammation, and chronic angiogenesis. We aim to present a multifactorial model of wet AMD progression, supporting HTRA1 as a novel therapeutic target upstream of vascular endothelial growth factor (VEGF), the conventional target in AMD therapeutics. By inhibiting HTRA1’s proteolytic activity, we can reduce pro-angiogenic signaling and prevent proteolytic breakdown of the blood-retina barrier. The anti-HTRA1 approach offers a promising alternative treatment option to wet AMD, complementary to anti-VEGF therapy.
Collapse
Affiliation(s)
- Zhi-Gang Lu
- Department of Neurology, First People's Hospital of Jingmen, Jingchu University of Technology, Jingmen 448000, Hubei, China.,Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam May
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brian Dinh
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Lin
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fei Su
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christina Tran
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Harini Adivikolanu
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rachael Ehlen
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Briana Che
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhi-Hao Wang
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel H Shaw
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Westview High School, San Diego, CA 92131, USA
| | - Shyamanga Borooah
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peter X Shaw
- Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California, San Diego, La Jolla, CA 92093, USA.,Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
O'Connor T, Heikenwalder M. CCL2 in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1302:1-14. [PMID: 34286437 DOI: 10.1007/978-3-030-62658-7_1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The C-C motif chemokine ligand 2 (CCL2) is a crucial mediator of immune cell recruitment during microbial infections and tissue damage. CCL2 is also frequently overexpressed in cancer cells and other cells in the tumor microenvironment, and a large body of evidence indicates that high CCL2 levels are associated with more aggressive malignancies, a higher probability of metastasis, and poorer outcomes in a wide range of cancers. CCL2 plays a role in recruiting tumor-associated macrophages (TAMs), which adopt a pro-tumorigenic phenotype and support cancer cell survival, facilitate tumor cell invasion, and promote angiogenesis. CCL2 also has direct, TAM-independent effects on tumor cells and the tumor microenvironment, including recruitment of other myeloid subsets and non-myeloid cells, maintaining an immunosuppressive environment, stimulating tumor cell growth and motility, and promoting angiogenesis. CCL2 also plays important roles in the metastatic cascade, such as creating a pre-metastatic niche in distant organs and promoting tumor cell extravasation across endothelia. Due to its many roles in tumorigenesis and metastatic processes, the CCL2-CCR2 signaling axis is currently being pursued as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Tracy O'Connor
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Virology, Technical University of Munich, Munich, Germany.
- Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Institute of Virology, Technical University of Munich, Munich, Germany.
- Helmholtz Center Munich, Neuherberg, Germany.
- Institute of Molecular Immunology and Experimental Oncology, Technical University of Munich, Munich, Germany.
| |
Collapse
|
16
|
Brennan MÁ, Layrolle P, Mooney DJ. Biomaterials functionalized with MSC secreted extracellular vesicles and soluble factors for tissue regeneration. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909125. [PMID: 32952493 PMCID: PMC7494127 DOI: 10.1002/adfm.201909125] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 05/05/2023]
Abstract
The therapeutic benefits of mesenchymal stromal cell (MSC) transplantation have been attributed to their secreted factors, including extracellular vesicles (EVs) and soluble factors. The potential of employing the MSC secretome as an alternative acellular approach to cell therapy is being investigated in various tissue injury indications, but EVs administered via bolus injections are rapidly sequestered and cleared. However, biomaterials offer delivery platforms to enhance EV retention rates and healing efficacy. In this review, we highlight the mechanisms underpinning the therapeutic effects of MSC-EVs and soluble factors as effectors of immunomodulation and tissue regeneration, conferred primarily via their nucleic acid and protein contents. We discuss how manipulating the cell culture microenvironment or genetic modification of MSCs can further augment the potency of their secretions. The most recent advances in the development of EV-functionalized biomaterials that mediate enhanced angiogenesis and cell survival, while attenuating inflammation and fibrosis, are presented. Finally, some technical challenges to be considered for the clinical translation of biomaterials carrying MSC-secreted bioactive cargo are discussed.
Collapse
Affiliation(s)
- Meadhbh Á Brennan
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Pierre Layrolle
- INSERM, UMR 1238, PHY-OS, Bone sarcomas and remodeling of calcified tissues, Faculty of Medicine, University of Nantes, Nantes, France
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Block LN, Aliota MT, Friedrich TC, Schotzko ML, Mean KD, Wiepz GJ, Golos TG, Schmidt JK. Embryotoxic impact of Zika virus in a rhesus macaque in vitro implantation model†. Biol Reprod 2020; 102:806-816. [PMID: 31901091 DOI: 10.1093/biolre/ioz236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 12/29/2022] Open
Abstract
Zika virus (ZIKV) infection is associated with adverse pregnancy outcomes in humans, and infection in the first trimester can lead to miscarriage and stillbirth. Vertical and sexual transmissions of ZIKV have been demonstrated, yet the impact of infection during the initial stages of pregnancy remains unexplored. Here we defined the impact of ZIKV on early embryonic and placental development with a rhesus macaque model. During in vitro fertilization (IVF), macaque gametes were inoculated with a physiologically relevant dose of 5.48log10 plaque-forming units (PFU) of Zika virus/H.sapiens-tc/PUR/2015/PRVABC59_v3c2. Exposure at fertilization did not alter blastocyst formation rates compared to controls. To determine the impact of ZIKV exposure at implantation, hatched blastocysts were incubated with 3.26log10, 4.26log10, or 5.26log10 PFU, or not exposed to ZIKV, followed by extended embryo culture for 10 days. ZIKV exposure negatively impacted attachment, growth, and survival in comparison to controls, with exposure to 5.26log10 PFU ZIKV resulting in embryonic degeneration by day 2. Embryonic secretion of pregnancy hormones was lower in ZIKV-exposed embryos. Increasing levels of infectious virus were detected in the culture media post-exposure, suggesting that the trophectoderm is susceptible to productive ZIKV infection. These results demonstrate that ZIKV exposure severely impacts the zona-free blastocyst, whereas exposure at the time of fertilization does not hinder blastocyst formation. Overall, early stages of pregnancy may be profoundly sensitive to infection and pregnancy loss, and the negative impact of ZIKV infection on pregnancy outcomes may be underestimated.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew T Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN, USA
| | - Thomas C Friedrich
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michele L Schotzko
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine D Mean
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Gregory J Wiepz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA and.,Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
18
|
Characterization of Biomarker Levels in Crimean-Congo Hemorrhagic Fever and Hantavirus Fever with Renal Syndrome. Viruses 2019; 11:v11080686. [PMID: 31357521 PMCID: PMC6722556 DOI: 10.3390/v11080686] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/20/2019] [Accepted: 07/25/2019] [Indexed: 01/02/2023] Open
Abstract
Hemorrhagic fever with renal syndrome (HFRS) and Crimean-Congo hemorrhagic fever (CCHF) are important viral hemorrhagic fevers (VHF), especially in the Balkan region. Infections with Dobrava or Puumala orthohantavirus and Crimean-Congo hemorrhagic fever orthonairovirus can vary from a mild, nonspecific febrile illness, to a severe disease with a fatal outcome. The pathogenesis of both diseases is poorly understood, but it has been suggested that a host’s immune mechanism might influence the pathogenesis of the diseases and survival. The aim of our study is to characterize cytokine response in patients with VHF in association with the disease progression and viral load. Forty soluble mediators of the immune response, coagulation, and endothelial dysfunction were measured in acute serum samples in 100 HFRS patients and 70 CCHF patients. HFRS and CCHF patients had significantly increased levels of IL-6, IL-12p70, IP-10, INF-γ, TNF-α, GM-CSF, MCP-3, and MIP-1b in comparison to the control group. Interestingly, HFRS patients had higher concentrations of serum MIP-1α, MIP-1β, which promote activation of macrophages and NK cells. HFRS patients had increased concentrations of IFN-γ and TNF-α, while CCHF patients had significantly higher concentrations of IFN-α and IL-8. In both, CCHF and HFRS patients’ viral load significantly correlated with IP-10. Patients with fatal outcome had significantly elevated concentrations of IL-6, IFN-α2 and MIP-1α, while GRO-α, chemokine related to activation of neutrophils and basophils, was downregulated. Our study provided a comprehensive characterization of biomarkers released in the acute stages of CCHF and HFRS.
Collapse
|
19
|
A Stillborn Multiple Organs' Investigation from a Maternal DENV-4 Infection: Histopathological and Inflammatory Mediators Characterization. Viruses 2019; 11:v11040319. [PMID: 30986974 PMCID: PMC6521294 DOI: 10.3390/v11040319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Dengue virus (DENV) is an emerging virus involved in outbreaks in Brazil. The association between the virus and vertical transmission, with disorders in the placenta, has raised a worldwide concern. On the 29th gestational week, a pregnant woman presented severe complications due to a DENV infection leading to maternal and fetus death. Postmortem analysis of fetal organs demonstrated the presence of DENV using reverse transcriptase polymerase chain reaction (RT-PCR) in the fetal brain and DENV non-structural protein 3 (NS3) staining in placenta and several peripheral fetal tissues, such as the brain, liver, lungs, and spleen. Histological analysis of the placenta and fetal organs revealed different types of tissue abnormalities, which included inflammation, hemorrhage, edema, and necrosis in placenta and tissue disorganization in the fetus, such as spongiform parenchyma, microglial inflammation, steatosis, hyalinose arteriolar, inflammatory cells in the alveolar septa, and disorganization of the lymphoid follicle. Increased cellularity (macrophage, Hofbauer cells and TCD8+ lymphocytes) and up-regulation of inflammatory mediators such as IFN-γ, TNF-α, RANTES/CCL5, MCP1/CCL2, and VEGF/R2 were detected in the liver, lung, spleen, brain, and placenta, supporting placental and fetus peripheral tissues inflammation. Maternal infection leading to the production of those vascular mediators may alter the vascular permeability, facilitating the virus entry and tissue and barrier dysfunction.
Collapse
|
20
|
Okuda Y, Fukumoto M, Horie T, Oku H, Takai S, Nakanishi T, Matsuzaki K, Tsujimoto H, Ikeda T. Periocular injection of candesartan-PLGA microparticles inhibits laser-induced experimental choroidal neovascularization. Clin Ophthalmol 2019; 13:87-93. [PMID: 30643382 PMCID: PMC6318708 DOI: 10.2147/opth.s181110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Microparticle technology enables local administration of medication. The purpose of this study was to examine the inhibitory effect of locally administered candesartan (CAN)-encapsulated microparticles on experimental choroidal neovascularization (CNV). Methods Laser photocoagulation was used to induce CNV in Brown Norway rats. The rats were pretreated with subconjunctival injections of CAN (5.0 mg/eye) or phosphate buffer saline for 3 days before photocoagulation. The volume of CNV was evaluated 7 days after laser injury using the lectin staining technique. The infiltration of macrophages within the CNV lesion was determined using immunofluorescent staining with an anti-CD68 antibody. mRNA levels of MCP-1, IL1-β and VEGF in the retinal pigment epithelium/choroid complex were determined using quantitative PCR (q-PCR). Results CNV volume was significantly suppressed by the treatment with CAN compared with that in vehicle-treated eyes (P<0.05, two-tailed Student’s t-test). Subconjunctival injections of CAN decreased the numbers of CD68+ cells in the CNV lesion. The increased mRNA levels of MCP-1, IL1-β, and VEGF induced by photocoagulation was significantly suppressed following the local administration of CAN (P<0.05, two-tailed Student’s t-test). Conclusion Local administration of CAN inhibited experimentally induced CNV possibly through anti-inflammatory effects.
Collapse
Affiliation(s)
- Yoshitaka Okuda
- Department of Ophthalmology, Osaka Medical College, Osaka, Japan,
| | | | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, Osaka, Japan,
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, Osaka, Japan,
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Osaka, Japan
| | - Toyofumi Nakanishi
- Department of Clinical and Laboratory Medicine, Osaka Medical College, Osaka, Japan
| | - Kaori Matsuzaki
- Research and Development Division, Hosokawa Micron Corporation, Osaka, Japan
| | - Hiroyuki Tsujimoto
- Research and Development Division, Hosokawa Micron Corporation, Osaka, Japan
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Osaka, Japan,
| |
Collapse
|
21
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
22
|
Dietary onion ameliorates antioxidant defence, inflammatory response, and cardiovascular risk biomarkers in hypercholesterolemic Wistar rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
23
|
Bonyadi M, Foruzandeh Z, Mohammadian T, Fotouhi N, Soheilian M, Jabbarpoor Bonyadi MH, Javadzadeh A, Moein H, Yaseri M. Evaluation of CC-cytokine ligand 2 and complementary factor H Y402H polymorphisms and their interactional association with age-related macular degeneration. Acta Ophthalmol 2016; 94:e779-e785. [PMID: 27316788 DOI: 10.1111/aos.13143] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 04/30/2016] [Indexed: 12/15/2022]
Abstract
PURPOSE To evaluate the association of CC-cytokine ligand 2 CCL2-2518 (rs1024611) single nucleotide polymorphism, complement factor H (CFH Y402H) and their possible interaction in developing advanced age-related macular degeneration (AMD). METHODS In this case-control study, DNA samples from 266 patients with advanced AMD and 229 healthy controls were genotyped for CCL2 polymorphism and also 254 patients and 164 healthy controls were genotyped for CFH polymorphism. The possible associations of these polymorphisms with susceptibility to AMD independently and in different joint combinations were evaluated. RESULTS The genotype frequency for CFH was found to be significantly different between AMD and normal controls (31.5% versus 20.7%, OR = 3.56, p < 0.001 for CC and 52.4% versus 41.5%, OR = 2.96, p < 0.001 for CT genotype). However, no significant association between CCL2 polymorphism and AMD was observed in this cohort (OR = 1.15 and OR = 0.8, p = 0.172). Interestingly, studying the joint effects of two genotypes (TT genotype of CFH Y402H and AG genotype of CCL2-2518) showed more significant protective effect against AMD (p = 0.0001), while the risk effect of CC and CT genotypes of CFH was only visible in the presence of AA genotype of CCL2-2518 (p = 0.044 and p = 0.05). CONCLUSION Complement factor H Y402H polymorphism is strongly associated with advanced type AMD. Although this study revealed no association of CCL2-2518 with AMD, the risk effect of CFH genotypes was only visible in the presence of AA genotype of CCL2-2518. AG genotype of CCL2-2518 in combination with TT genotype of CFH Y402H showed significant protective effect against AMD.
Collapse
Affiliation(s)
- Mortaza Bonyadi
- Center of Excellence for Biodiversity; Faculty of Natural Sciences; University of Tabriz; Tabriz Iran
- Liver and Gastrointestinal Disease Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Zahra Foruzandeh
- Center of Excellence for Biodiversity; Faculty of Natural Sciences; University of Tabriz; Tabriz Iran
| | - Tahereh Mohammadian
- Center of Excellence for Biodiversity; Faculty of Natural Sciences; University of Tabriz; Tabriz Iran
| | - Nikou Fotouhi
- Center of Excellence for Biodiversity; Faculty of Natural Sciences; University of Tabriz; Tabriz Iran
| | - Masoud Soheilian
- Ocular Tissue Engineering Research Center; Ophthalmic Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Mohammad Hossein Jabbarpoor Bonyadi
- Center of Excellence for Biodiversity; Faculty of Natural Sciences; University of Tabriz; Tabriz Iran
- Ocular Tissue Engineering Research Center; Ophthalmic Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Alireza Javadzadeh
- Department of Ophthalmology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Hamidreza Moein
- Ocular Tissue Engineering Research Center; Ophthalmic Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Mehdi Yaseri
- Department of Biostatistics and Epidemiology; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
24
|
Wahl EA, Schenck TL, Machens HG, Balmayor ER. VEGF released by deferoxamine preconditioned mesenchymal stem cells seeded on collagen-GAG substrates enhances neovascularization. Sci Rep 2016; 6:36879. [PMID: 27830734 PMCID: PMC5103276 DOI: 10.1038/srep36879] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/24/2016] [Indexed: 01/01/2023] Open
Abstract
Hypoxia preconditioning of mesenchymal stem cells (MSCs) has been shown to promote wound healing through HIF-1α stabilization. Preconditioned MSCs can be applied to three-dimensional biomaterials to further enhance the regenerative properties. While environmentally induced hypoxia has proven difficult in clinical settings, this study compares the wound healing capabilities of adipose derived (Ad) MSCs seeded on a collagen-glycosaminoglycan (GAG) dermal substrate exposed to either environmental hypoxia or FDA approved deferoxamine mesylate (DFO) to stabilize HIF-1α for wound healing. The release of hypoxia related reparative factors by the cells on the collagen-GAG substrate was evaluated to detect if DFO produces results comparable to environmentally induced hypoxia to facilitate optimal clinical settings. VEGF release increased in samples exposed to DFO. While the SDF-1α release was lower in cells exposed to environmental hypoxia in comparison to cells cultured in DFO in vitro. The AdMSC seeded biomaterial was further evaluated in a murine model. The implants where harvested after 1 days for histological, inflammatory, and protein analysis. The application of DFO to the cells could mimic and enhance the wound healing capabilities of environmentally induced hypoxia through VEGF expression and promises a more viable option in clinical settings that is not merely restricted to the laboratory.
Collapse
Affiliation(s)
- Elizabeth A Wahl
- Department of Plastic Surgery and Hand Surgery, University Hospital rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Thilo L Schenck
- Department of Plastic Surgery and Hand Surgery, University Hospital rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Hans-Günther Machens
- Department of Plastic Surgery and Hand Surgery, University Hospital rechts der Isar, Technische Universität München, Munich, 81675, Germany
| | - Elizabeth R Balmayor
- Department of Plastic Surgery and Hand Surgery, University Hospital rechts der Isar, Technische Universität München, Munich, 81675, Germany.,Institute for Advanced Study, Technische Universität München, Garching, 85748, Germany
| |
Collapse
|
25
|
Arakaki R, Yamasaki T, Kanno T, Shibasaki N, Sakamoto H, Utsunomiya N, Sumiyoshi T, Shibuya S, Tsuruyama T, Nakamura E, Ogawa O, Kamba T. CCL2 as a potential therapeutic target for clear cell renal cell carcinoma. Cancer Med 2016; 5:2920-2933. [PMID: 27666332 PMCID: PMC5083746 DOI: 10.1002/cam4.886] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/07/2016] [Accepted: 08/01/2016] [Indexed: 12/21/2022] Open
Abstract
We previously reported that the pVHL‐atypical PKC‐JunB pathway contributed to promotion of cell invasiveness and angiogenesis in clear cell renal cell carcinoma (ccRCC), and we detected chemokine (C‐C motif) ligand‐2 (CCL2) as one of downstream effectors of JunB. CCL2 plays a critical role in tumorigenesis in other types of cancer, but its role in ccRCC remains unclear. In this study, we investigated the roles and therapeutic potential of CCL2 in ccRCC. Immunohistochemical analysis of CCL2 expression for ccRCC specimens showed that upregulation of CCL2 expression correlated with clinical stage, overall survival, and macrophage infiltration. For functional analysis of CCL2 in ccRCC cells, we generated subclones of WT8 cells that overexpressed CCL2 and subclones 786‐O cells in which CCL2 expression was knocked down. Although CCL2 expression did not affect cell proliferation in vitro, CCL2 overexpression enhanced and CCL2 knockdown suppressed tumor growth, angiogenesis, and macrophage infiltration in vivo. We then depleted macrophages from tumor xenografts by administration of clodronate liposomes to confirm the role of macrophages in ccRCC. Depletion of macrophages suppressed tumor growth and angiogenesis. To examine the effect of inhibiting CCL2 activity in ccRCC, we administered CCL2 neutralizing antibody to primary RCC xenografts established from patient surgical specimens. Inhibition of CCL2 activity resulted in significant suppression of tumor growth, angiogenesis, and macrophage infiltration. These results suggest that CCL2 is involved in angiogenesis and macrophage infiltration in ccRCC, and that CCL2 could be a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Ryuichiro Arakaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toshinari Yamasaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kanno
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noboru Shibasaki
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiromasa Sakamoto
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Noriaki Utsunomiya
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Sumiyoshi
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinsuke Shibuya
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuaki Tsuruyama
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Eijiro Nakamura
- Laboratory for Malignancy Control Research/Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomomi Kamba
- Department of Urology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
26
|
Koyanagi Y, Yoshida S, Kobayashi Y, Kubo Y, Yamaguchi M, Nakama T, Nakao S, Ikeda Y, Ohshima Y, Ishibashi T, Sonoda KH. Comparison of the Effectiveness of Intravitreal Ranibizumab for Diabetic Macular Edema in Vitrectomized and Nonvitrectomized Eyes. Ophthalmologica 2016; 236:67-73. [PMID: 27362944 DOI: 10.1159/000446992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022]
Abstract
PURPOSE To compare the effectiveness of intravitreal ranibizumab (IVR) for diabetic macular edema (DME) between eyes with and without previous vitrectomy. PROCEDURES We prospectively assessed the best-corrected visual acuity (BCVA) and central macular thickness (CMT) after IVR for 6 months. RESULTS There were no significant differences in the baseline BCVA and CMT between both groups. In the nonvitrectomized group (n = 15), the mean changes of BCVA and CMT from baseline to month 6 were significant (p < 0.01). In the vitrectomized group (n = 10), the improvement appeared to be slower, and the mean BCVA improvement was not significant (p = 0.5), although the mean CMT decrease was significant (p < 0.05). There were no significant differences in the mean changes of BCVA and CMT between both groups at 6 months. CONCLUSIONS The difference in the effectiveness of IVR between both groups was not significant. IVR can be a treatment option even for vitrectomized DME eyes.
Collapse
Affiliation(s)
- Yoshito Koyanagi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sundaram S, Yan L. Time-restricted feeding reduces adiposity in mice fed a high-fat diet. Nutr Res 2016; 36:603-11. [DOI: 10.1016/j.nutres.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/08/2016] [Accepted: 02/16/2016] [Indexed: 11/27/2022]
|
28
|
Fauser S, Viebahn U, Muether PS. Intraocular and systemic inflammation-related cytokines during one year of ranibizumab treatment for neovascular age-related macular degeneration. Acta Ophthalmol 2015; 93:734-8. [PMID: 26016605 DOI: 10.1111/aos.12770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 04/20/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE To determine inflammation-related intraocular and systemic cytokine concentrations in neovascular age-related macular degeneration (nAMD) compared with controls and to assess the influence of long-term intravitreal ranibizumab treatment over 1 year. METHODS Aqueous humour and blood plasma of 21 controls and 17 treatment-naive nAMD patients were collected prior to cataract surgery or ranibizumab treatment. Follow-up specimens in nAMD patients were acquired immediately prior to subsequent ranibizumab injections as needed. Multiplex bead assays were conducted for ten inflammation-related cytokines and vascular endothelial growth factor (VEGF). p-values were Holm-Bonferroni-corrected for multiple comparisons. RESULTS Prior to ranibizumab treatment, initiation aqueous humour levels of monocyte chemo-attractant protein (MCP)-1/CCL2 (p = 0.005) and vascular cell adhesin molecule (VCAM) (p = 0.002) were elevated in nAMD compared with controls. Other intraocular cytokines did not differ, including VEGF. In plasma, no differences between nAMD patients and controls were found at baseline. Pro re nata ranibizumab treatment over 12 months with 8 ± 2 injections reduced aqueous VEGF (p < 0.0001) with a trend to reduced VEGF plasma concentrations (p = 0.046), with all specimens taken at least 28 days after the previous injection. All other local and systemic cytokines remained unchanged. CONCLUSION Neovascular age-related macular degeneration is associated with local ocular MCP-1/CCL2 and VCAM elevations, suggesting a local inflammatory involvement in the pathophysiology of nAMD. We did not detect systemic differences. Ranibizumab treatment does not result in local or systemic changes of these cytokines, in contrast to VEGF suppression. MCP-1/CCL2 and VCAM may be potential additional treatment targets for nAMD.
Collapse
Affiliation(s)
- Sascha Fauser
- Department of Ophthalmology; University Hospital of Cologne; Cologne Germany
| | - Ulrike Viebahn
- Department of Ophthalmology; University Hospital of Cologne; Cologne Germany
| | - Philipp S. Muether
- Department of Ophthalmology; University Hospital of Cologne; Cologne Germany
| |
Collapse
|
29
|
Papa A, Tsergouli K, Çağlayık DY, Bino S, Como N, Uyar Y, Korukluoglu G. Cytokines as biomarkers of Crimean-Congo hemorrhagic fever. J Med Virol 2015; 88:21-7. [PMID: 26118413 DOI: 10.1002/jmv.24312] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2015] [Indexed: 01/23/2023]
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a potentially severe disease caused by CCHF virus. As in other viral hemorrhagic fevers, it is considered that the course and outcome of the disease depend on the viral load and the balance among the immune response mediators, and that a fatal outcome is the result of a "cytokine storm." The level of 27 cytokines was measured in serum samples taken from 29 patients during the acute phase of the disease. Two cases were fatal. Among survivors, significant differences between severe and non-severe cases were observed in the levels of IP-10, and MCP-1, while the levels of IL-1b, IL-5, IL-6, IL-8, IL-9, IL-10, IL-15, IP-10, MCP-1, TNF-α, and RANTES differed significantly between fatal and non-fatal cases (P < 0.05). RANTES was negatively correlated with the outcome of the disease. A striking similarity with the cytokine patterns seen in Ebola virus disease was observed. A weak Th1 immune response was seen. The viral load was positively correlated with IL-10, IP-10, and MCP-1 levels, and negatively correlated with the ratio IL-12/IL-10. Especially IP-10 and MCP-1 were significantly associated with the viral load, the severity and outcome of the disease, and they could act as biomarkers and, probably, as potential targets for treatment strategies design.
Collapse
Affiliation(s)
- Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Tsergouli
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dilek Yağcı Çağlayık
- Department of Microbiology Reference Laboratories, Virology Reference and Research Laboratory, Public Health Institutions of Turkey, Ankara, Turkey
| | | | - Najada Como
- Clinic of Infectious Diseases, Mother Theresa University Hospital, Tirana, Albania
| | - Yavuz Uyar
- Department of Microbiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Gulay Korukluoglu
- Department of Microbiology Reference Laboratories, Virology Reference and Research Laboratory, Public Health Institutions of Turkey, Ankara, Turkey
| |
Collapse
|
30
|
Combined effect of insulin-like growth factor-1 and CC chemokine ligand 2 on angiogenic events in endothelial cells. PLoS One 2015; 10:e0121249. [PMID: 25830234 PMCID: PMC4382320 DOI: 10.1371/journal.pone.0121249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 01/29/2015] [Indexed: 12/31/2022] Open
Abstract
Therapeutic angiogenesis may be applied in medical conditions to promote stimulation of angiogenesis. Angiogenesis is a multistep process, which includes endothelial cell proliferation, migration, and tube formation, which is mediated by various angiogenic polypeptides. Thus, studies that elucidate the cellular mechanisms involved in these processes are necessary to develop novel therapeutic strategies. This study investigated the in vitro effects of the pro-angiogenic factors, insulin-like growth factor-1 (IGF-1) and/or chemokine (CC motif) ligand 2 (CCL2), on endothelial cells. Flow cytometry analysis showed that IGF-1 and CCL2 treatment did not interfere with IGF-1 receptor (IGF-1R) expression, but CCL2 treatment increased CCL2 receptor (CCR2) expression. Immunofluorescence analysis revealed that the IGF-1/CCL2 combination induced a greater increase in fibronectin deposition, but the treatments did not alter the expression of the fibronectin receptors, CD49e and CD44. The interaction of fibronectin with cytokines demonstrated that IGF-1/CCL2 promoted changes in intermediate F-actin remodeling that may result in increased endothelial cell adhesion and cell migration mediated by fibronectin. Furthermore, IGF-1/CCL2 stimulated endothelial cells, grown on fibronectin, to form capillary-like structures and intercellular lumina with greater luminal area. These data suggest that IGF-1/CCL2 combination and a fibronectin matrix may contribute to the angiogenesis process to stimulate adhesion, migration, and tube formation by endothelial cells as a result of F-actin remodeling.
Collapse
|
31
|
Zhang J, Li G, Gao S, Yao Y, Pang L, Li Y, Wang W, Zhao Q, Kong D, Li C. Monocyte chemoattractant protein-1 released from polycaprolactone/chitosan hybrid membrane to promote angiogenesis in vivo. J BIOACT COMPAT POL 2014. [DOI: 10.1177/0883911514554146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have fabricated a hybrid membrane composed of polycaprolactone and a natural polysaccharide, chitosan. The incorporation of chitosan enabled heparinization of the material via electrostatic interaction between heparin and chitosan. More importantly, since multiple cytokines have exhibited binding affinity towards heparin, heparinization of the polycaprolactone/chitosan compound also facilitated immobilization of monocyte chemoattractant protein-1, which is a well-reported pro-angiogenic chemokine. Results demonstrated that the heparinized polycaprolactone/chitosan membrane with monocyte chemoattractant protein-1 immobilization was able to release monocyte chemoattractant protein-1 in a controlled and sustained manner. Bioactivity of the released monocyte chemoattractant protein-1 was uncompromised as shown by a chemotaxis chamber assay using isolated rat peripheral blood mononuclear cells. Enhanced local angiogenesis was subsequently observed in vivo after subcutaneous implantation of the heparinized polycaprolactone/chitosan membrane with monocyte chemoattractant protein-1-releasing property and the mechanisms underlying the angiogenic role of monocyte chemoattractant protein-1 were also investigated. We propose that the monocyte chemoattractant protein-1-induced local capillary formation is attributable to increased recruitment of macrophages, particularly the alternatively activated M2 macrophages, which have been implicated in wound healing. Moreover, a direct effect of monocyte chemoattractant protein-1 on angiogenesis was also observed, mainly via monocyte chemoattractant protein-1-stimulated vascular endothelial growth factor expression and activity. In summary, we report here a feasible way to fabricate a polycaprolactone/chitosan hybrid material that could be functionalized with angiogenic signalling agents, such as monocyte chemoattractant protein-1. Implantation of this material promoted angiogenesis and may therefore be developed into scaffold or dressing materials in treating local ischemia injuries or cutaneous wound.
Collapse
Affiliation(s)
- Ju Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Guoping Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Shan Gao
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yao Yao
- The Key Laboratory of Bioactive Materials of Ministry of Education, Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin, China
| | - Liyun Pang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Yuejie Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Qiang Zhao
- The Key Laboratory of Bioactive Materials of Ministry of Education, Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin, China
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
- The Key Laboratory of Bioactive Materials of Ministry of Education, Institute of Molecular Biology, College of Life Science, Nankai University, Tianjin, China
| | - Chen Li
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
32
|
Lin M, Zhao L, Zhao W, Weng J. Dissecting the mechanism of carotid atherosclerosis from the perspective of regulation. Int J Mol Med 2014; 34:1458-66. [PMID: 25318463 PMCID: PMC4214333 DOI: 10.3892/ijmm.2014.1960] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/28/2014] [Indexed: 01/26/2023] Open
Abstract
Carotid atherosclerosis is a chronic inflammatory disease of the arterial wall. The present study aimed to identify changes in the gene expression and regulatory factors for atherosclerotic plaques of carotid atherosclerosis from an early to an advanced stage. The original data were downloaded from the NCBI GEO database under accession no. GSE28829. Differentially expressed genes (DEGs) were detected by the Robust Multiarray Average (RMA). The enriched Gene Ontology (GO) terms and pathways for DEGs using DAVID were subsequently identified. The transcriptional and microRNA (miRNA) regulatory network were constructed for the DEGs. Cis-regulatory signals were also investigated. More genes were activated in the advanced stage compared with the early stage. IGHG1 and SPP1 were upregulated, while MYBL1 and PLD were downregulated. The upregulated genes in the advanced stage were involved in atherosclerosis‑related GO terms such as immune, vascular and cell movement homeostasis. The DEGs were significantly enriched in cell adhesion molecules (CAMs) and the focal adhesion pathway. MMP9 and CFL2 played key roles in the transcriptional regulatory network. Moreover, miR-328 was identified as one of the hubs in the miRNA regulatory network. The results may therefore be used to determine the mechanism involved in carotid atherosclerosis.
Collapse
Affiliation(s)
- Min Lin
- Department of Neurology, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, P.R. China
| | - Lin Zhao
- Department of Neurosurgery, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, P.R. China
| | - Wenlong Zhao
- Department of Neurology, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, P.R. China
| | - Jing Weng
- Department of Neurology, Fuzhou General Hospital of Nanjing Command, PLA, Fuzhou 350025, P.R. China
| |
Collapse
|
33
|
Pankajakshan D, Agrawal DK. Mesenchymal Stem Cell Paracrine Factors in Vascular Repair and Regeneration. ACTA ACUST UNITED AC 2014; 1. [PMID: 28890954 DOI: 10.19104/jbtr.2014.107] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cell therapy show great optimism in the treatment of several diseases. MSCs are attractive candidates for cell therapy because of easy isolation, high expansion potential giving unlimited pool of transplantable cells, low immunogenicity, amenability to ex vivo genetic modification, and multipotency. The stem cells orchestrate the repair process by various mechanisms such as transdifferentiation, cell fusion, microvesicles or exosomes and most importantly by secreting paracrine factors. The MSCs release several angiogenic, mitogenic, anti-apoptotic, anti-inflammatory and anti-oxidative factors that play fundamental role in regulating tissue repair in various vascular and cardiac diseases. The therapeutic release of these factors by the cells can be enhanced by several strategies like genetic modification, physiological and pharmacological preconditioning, improved cell culture and selection methods, and biomaterial based approaches. The current review describes the impact of paracrine factors released by MSCs on vascular repair and regeneration in myocardial infarction, restenosis and peripheral artery disease, and the various strategies adopted to enhance the release of these paracrine factors to enhance organ function.
Collapse
Affiliation(s)
- Divya Pankajakshan
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| | - Devendra K Agrawal
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE, USA
| |
Collapse
|
34
|
Del Porto F, di Gioia C, Tritapepe L, Ferri L, Leopizzi M, Nofroni I, De Santis V, Della Rocca C, Mitterhofer AP, Bruno G, Taurino M, Proietta M. The multitasking role of macrophages in Stanford type A acute aortic dissection. Cardiology 2013; 127:123-9. [PMID: 24334970 DOI: 10.1159/000355253] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 08/16/2013] [Indexed: 01/29/2023]
Abstract
OBJECTIVES The aim of the study was to determine whether the release by macrophages of matrix metalloproteinase (MMP)-12 and vascular endothelial growth factor (VEGF) - leading to inflammation, matrix degradation and neoangiogenesis - represents an effective pathway that underlies aortic wall remodeling in Stanford type A acute aortic dissection (AAD). METHODS Twenty-one consecutive patients with no genetic predisposition, with Stanford type A AAD were selected. In each patient, the levels of serum VEGF, MMP-12, serum interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1 were evaluated using enzyme-linked immunosorbent assay. Ascending aortic specimens were collected for immunohistochemical identification of any presence of inflammatory infiltrate, VEGF and CD31 expression. RESULTS A significant increase in serum VEGF (p = 0.044), MMP-12 (p = 0.007), IL-6 (p = 0.0001), IL-8 (p = 0.0001) and MCP-1 (p = 0.0001) levels was observed in the AAD group compared to the control group. Furthermore, all AAD samples were positive for VEGF in the tunica media and showed vessel growth and immune-inflammatory infiltrate. A large number of cases (62.79%) showed inflammation at the edge of the dissection and approximately half (51.42%) showed neovessels growing at the edge of the dissection. CONCLUSIONS The results suggest that VEGF-mediated angiogenesis and matrix degradation play a role in AAD. Finally, we believe that MMP-12 should be considered a marker of AAD.
Collapse
Affiliation(s)
- Flavia Del Porto
- Dipartimento di Medicina Clinica e Molecolare, Facoltà di Medicina e Psicologia, Ospedale Sant'Andrea, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Heterogeneity of functional properties of Clone 66 murine breast cancer cells expressing various stem cell phenotypes. PLoS One 2013; 8:e78725. [PMID: 24265713 PMCID: PMC3827106 DOI: 10.1371/journal.pone.0078725] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/19/2013] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous. METHODS Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis. RESULTS The proportion of cells expressing CD44(high)CD24(low/neg), side population (SP) cells, ALDH1(+), CD49f(high), CD133(high), and CD34(high) differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1(+), CD34(low), and CD49f(high) suggested properties of transit amplifying cells. Colony formation was higher from ALDH1(-) and non-SP cells than ALDH1(+) and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than "non-stem" cells. Fewer SP cells were needed to form tumors than ALDH1(+) cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined. CONCLUSIONS These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.
Collapse
|
36
|
Khurana D, Mathur D, Prabhakar S, Thakur K, Anand A. Vascular endothelial growth factor and monocyte chemoattractant protein-1 levels unaltered in symptomatic atherosclerotic carotid plaque patients from north India. Front Neurol 2013; 4:27. [PMID: 23565106 PMCID: PMC3613844 DOI: 10.3389/fneur.2013.00027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 03/02/2013] [Indexed: 11/13/2022] Open
Abstract
We aimed to identify the role of vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein (MCP-1) as a serum biomarker of symptomatic carotid atherosclerotic plaque in North Indian population. Individuals with symptomatic carotid atherosclerotic plaque have high risk of ischemic stroke. Previous studies from western countries have shown an association between VEGF and MCP-1 levels and the incidence of ischemic stroke. In this study, venous blood from 110 human subjects was collected, 57 blood samples of which were obtained from patients with carotid plaques, 38 neurological controls without carotid plaques, and another 15 healthy controls who had no history of serious illness. Serum VEGF and MCP-1 levels were measured using commercially available enzyme-linked immunosorbent assay. We also correlated the data clinically and carried out risk factor analysis based on the detailed questionnaire obtained from each patient. For risk factor analysis, a total of 70 symptomatic carotid plaque cases and equal number of age and sex matched healthy controls were analyzed. We found that serum VEGF levels in carotid plaque patients did not show any significant change when compared to either of the controls. Similarly, there was no significant upregulation of MCP-1 in the serum of these patients. The risk factor analysis revealed that hypertension, diabetes, and physical inactivity were the main correlates of carotid atherosclerosis (p < 0.05). Prevalence of patients was higher residing in urban areas as compared to rural region. We also found that patients coming from mountain region were relatively less vulnerable to cerebral atherosclerosis as compared to the ones residing at non mountain region. On the contrary, smoking, obesity, dyslipidemia, alcohol consumption, and tobacco chewing were not observed as the determinants of carotid atherosclerosis risk in North India (p > 0.05). We conclude that the pathogenesis of carotid plaques may progress independent of these inflammatory molecules. In parallel, risk factor analysis indicates hypertension, diabetes, and sedentary lifestyle as the most significant risk factors of ischemic stroke identified in North India. This could be helpful in early identification of subjects at risk for stroke and devising health care strategies.
Collapse
Affiliation(s)
- Dheeraj Khurana
- Department of Neurology, Post Graduate Institute of Medical Education and Research Chandigarh, India
| | | | | | | | | |
Collapse
|
37
|
Autocrine CCL2, CXCL4, CXCL9 and CXCL10 signal in retinal endothelial cells and are enhanced in diabetic retinopathy. Exp Eye Res 2013; 109:67-76. [PMID: 23352833 DOI: 10.1016/j.exer.2013.01.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/09/2013] [Accepted: 01/14/2013] [Indexed: 11/21/2022]
Abstract
This study aimed at examining the presence and role of chemokines (angiogenic CCL2/MCP-1 and angiostatic CXCL4/PF-4, CXCL9/Mig, CXCL10/IP-10) in proliferative diabetic retinopathy (PDR). Regulated chemokine production in human retinal microvascular cells (HRMEC) and chemokine levels in vitreous samples from 40 PDR and 29 non-diabetic patients were analyzed. MCP-1, PF-4, Mig, IP-10 and VEGF levels in vitreous fluid from PDR patients were significantly higher than in controls. Except for IP-10, cytokine levels were significantly higher in PDR with active neovascularization and PDR without traction retinal detachment (TRD) than those in inactive PDR, PDR with TRD and control subjects. Exploratory regression analysis identified associations between higher levels of IP-10 and inactive PDR and PDR with TRD. VEGF levels correlated positively with MCP-1 and IP-10. Significant positive correlations were observed between MCP-1 and IP-10 levels. In line with these clinical findings Western blot analysis revealed increased PF-4 expression in diabetic rat retinas. HRMEC produced MCP-1, Mig and IP-10 after stimulation with IFN-γ, IL-1β or lipopolysaccharide. IFN-γ synergistically enhanced Mig and IP-10 production in response to IL-1β or lipopolysaccharide. MCP-1 was produced by HRMEC in response to VEGF treatment and activated HRMEC via the ERK and Akt/PKB pathway. On the other hand, phosphorylation of ERK induced by VEGF and MCP-1 was inhibited by PF-4, Mig and IP-10. In accordance with inhibition of angiogenic signal transduction pathways, PF-4 inhibited in vitro migration of HRMEC. Thus, regulatory roles for chemokines in PDR were demonstrated. In particular, IP-10 might be associated with the resolution of active PDR and the development of TRD.
Collapse
|
38
|
Importance of chemokine (CC-motif) ligand 2 in breast cancer. Int J Biol Markers 2012; 27:e179-85. [PMID: 22865298 DOI: 10.5301/jbm.2012.9345] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2012] [Indexed: 01/22/2023]
Abstract
Breast cancer is the leading cause of cancer-related death in women in the United States. Chemokine (CC-motif) ligand 2 (CCL2), an inflammatory cytokine and chemokine, is highly expressed within the tumor and stromal cell populations and has been associated with enhanced tumorigenesis. In breast cancer patients, CCL2 has been correlated with high tumor grade and has been shown to have significant prognostic value for relapse-free survival. CCL2 likely exerts its pro-tumorigenic effects through recruitment of tumor-associated macrophages (TAMs); TAMs promote a tumorigenic microenvironment through the induction of growth enhancers, angiogenic factors and inflammatory mediators. CCL2 may also stimulate angiogenesis independently of TAM recruitment as it is closely associated with several endothelial cell growth factors. Additionally, CCL2 has been implicated in several processes leading to metastatic establishment including the development of bone metastasis. It has also been reported to directly upregulate pro-tumorigenic inflammatory mediators, including regulated upon activation, normal T cell expressed and secreted (RANTES) and tumor necrosis factor-alpha (TNF-α). While there is emerging support for a tumor promoting role of CCL2 in breast cancer, additional research is required before CCL2 can be decisively established as a prognostic factor and/or treatment target in breast cancer.
Collapse
|
39
|
Dwyer J, Hebda JK, Le Guelte A, Galan-Moya EM, Smith SS, Azzi S, Bidere N, Gavard J. Glioblastoma cell-secreted interleukin-8 induces brain endothelial cell permeability via CXCR2. PLoS One 2012; 7:e45562. [PMID: 23029099 PMCID: PMC3447807 DOI: 10.1371/journal.pone.0045562] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/21/2012] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma constitutes the most aggressive and deadly of brain tumors. As yet, both conventional and molecular-based therapies have met with limited success in treatment of this cancer. Among other explanations, the heterogeneity of glioblastoma and the associated microenvironment contribute to its development, as well as resistance and recurrence in response to treatments. Increased vascularity suggests that tumor angiogenesis plays an important role in glioblastoma progression. However, the molecular crosstalk between endothelial and glioblastoma cells requires further investigation. To examine the effects of glioblastoma-derived signals on endothelial homeostasis, glioblastoma cell secretions were collected and used to treat brain endothelial cells. Here, we present evidence that the glioblastoma secretome provides pro-angiogenic signals sufficient to disrupt VE-cadherin-mediated cell-cell junctions and promote endothelial permeability in brain microvascular endothelial cells. An unbiased angiogenesis-specific antibody array screen identified the chemokine, interleukin-8, which was further demonstrated to function as a key factor involved in glioblastoma-induced permeability, mediated through its receptor CXCR2 on brain endothelia. This underappreciated interface between glioblastoma cells and associated endothelium may inspire the development of novel therapeutic strategies to induce tumor regression by preventing vascular permeability and inhibiting angiogenesis.
Collapse
|
40
|
Jonas JB, Tao Y, Neumaier M, Findeisen P. Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmol 2012; 90:e381-8. [PMID: 22490043 DOI: 10.1111/j.1755-3768.2012.02414.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
PURPOSE To measure the concentration of cytokines in the aqueous humour of eyes with exudative age-related macular degeneration (AMD). METHODS The clinical interventional study included a study group of 18 patients with exudative AMD and a control group of 20 patients undergoing routine cataract surgery. Age did not vary significantly (p = 0.36) between study group (80.8 ± 6.4 years) and control group (77.0 ± 9.9 years), nor did gender (p = 0.75). During the interventions, aqueous humour samples were obtained, in which the concentration of cytokines was measured using a solid-phase chemiluminescence immunoassay. Macular thickness was measured by optical coherence tomography (OCT). RESULTS In the study group as compared to the control group, significantly higher concentrations were measured for epithelial growth factor (EGF) (p = 0.017), human growth factor (HGF) (p= 0.048), intercellular adhesion molecule-1 (ICAM1) (p = 0.028), interleukin 12p40 (IL12p40) (p = 0.009), interleukin 1a2 (IL1a2) (p = 0.01), interleukin 3 (IL3) (p = 0.02), interleukin 6 (IL6) (p = 0.006), interleukin 8 (IL8) (p = 0.02), monocyte chemoattractant protein-1 (MCP-1) (p = 0.048), monokine induced by interferon gamma (MIG) (p = 0.016), matrix metalloproteinase 9 (MMP9) (p = 0.004) and plasminogen activator inhibitor 1 (PAI1) (p = 0.006). Macular thickness was significantly associated with the concentrations of EGF (p = 0.001), HGF (p = 0.02), ICAM1 (p = 0.001), interleukin 12p40 (p = 0.006), IL 1a2 (p = 0.002), MIG (p = 0.001), MMP9 (p < 0.001) and PAI1 (p = 0.01). Interleukin 6 and MCP-1 showed significant associations with the height of retinal pigment epithelium detachment. CONCLUSIONS Numerous cytokines are associated with the presence and the amount of exudative AMD.
Collapse
Affiliation(s)
- Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karls-University Heidelberg, Germany.
| | | | | | | |
Collapse
|
41
|
Yan L. Dietary supplementation with curcumin enhances metastatic growth of Lewis lung carcinoma in mice. Int J Cancer 2012; 132:269-75. [PMID: 22729592 DOI: 10.1002/ijc.27683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/30/2012] [Indexed: 11/06/2022]
Abstract
Our study investigated the effects of dietary supplementation with curcumin [(1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] on spontaneous metastasis of Lewis lung carcinoma (LLC) in C57BL/6 mice. Mice were fed with the AIN93G control diet or with the diet supplemented with 2 or 4% curcumin for 5 weeks at which time they were injected subcutaneously with 2.5 × 10(5) viable LLC cells. The subcutaneous primary tumor was surgically removed when it reached ~ 8 mm in diameter, and the experiment was terminated 10 days after the surgery. There was no difference in pulmonary metastatic yield among the groups. Curcumin supplementation at either dietary level did not significantly increase the size of metastatic tumors; however, the combined data from both curcumin groups showed that curcumin treatment increased metastatic tumor cross-sectional area by 46% (p < 0.05) and volume by 70% (p < 0.05) compared to the controls. Curcumin supplementation increased plasma concentrations of angiogenic factors angiogenin (p < 0.05), basic fibroblast growth factor (p < 0.05) and vascular endothelial growth factor (p < 0.05), as well as inflammatory cytokines interleukin-1β (p < 0.05) and monocyte chemotactic protein-1 (p < 0.05), compared to the controls. These results demonstrate that curcumin does not prevent metastasis and indicate that it can enhance metastatic growth of LLC in mice, perhaps through upregulation of angiogenesis and inflammation.
Collapse
Affiliation(s)
- Lin Yan
- U.S. Department of Agriculture, Agricultural Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND 58202, USA.
| |
Collapse
|
42
|
EFFECT OF INTRAVITREAL METHOTREXATE AND AQUEOUS HUMOR CYTOKINE LEVELS IN REFRACTORY RETINAL VASCULITIS IN BEHCET DISEASE. Retina 2012; 32:1395-402. [DOI: 10.1097/iae.0b013e31823496a3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Zakaria N, Van Grasdorff S, Wouters K, Rozema J, Koppen C, Lion E, Cools N, Berneman Z, Tassignon MJ. Human tears reveal insights into corneal neovascularization. PLoS One 2012; 7:e36451. [PMID: 22590547 PMCID: PMC3348927 DOI: 10.1371/journal.pone.0036451] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 04/04/2012] [Indexed: 12/02/2022] Open
Abstract
Corneal neovascularization results from the encroachment of blood vessels from the surrounding conjunctiva onto the normally avascular cornea. The aim of this study is to identify factors in human tears that are involved in development and/or maintenance of corneal neovascularization in humans. This could allow development of diagnostic tools for monitoring corneal neovascularization and combination monoclonal antibody therapies for its treatment. In an observational case-control study we enrolled a total of 12 patients with corneal neovascularization and 10 healthy volunteers. Basal tears along with reflex tears from the inferior fornix, superior fornix and using a corneal bath were collected along with blood serum samples. From all patients, ocular surface photographs were taken. Concentrations of the pro-angiogenic cytokines interleukin (IL)-6, IL-8, Vascular Endothelial Growth Factor (VEGF), Monocyte Chemoattractant Protein 1 (MCP-1) and Fas Ligand (FasL) were determined in blood and tear samples using a flow cytometric multiplex assay. Our results show that the concentration of pro-angiogenic cytokines in human tears are significantly higher compared to their concentrations in serum, with highest levels found in basal tears. Interestingly, we could detect a significantly higher concentration of IL- 6, IL-8 and VEGF in localized corneal tears of patients with neovascularized corneas when compared to the control group. This is the first study of its kind demonstrating a significant difference of defined factors in tears from patients with neovascularized corneas as compared to healthy controls. These results provide the basis for future research using animal models to further substantiate the role of these cytokines in the establishment and maintenance of corneal neovascularization.
Collapse
Affiliation(s)
- Nadia Zakaria
- Department of Ophthalmology, Antwerp University Hospital, Antwerp, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ibrahim SE, Elshishtawy HF, HelmySamy A, Galal ZA. Role of vascular endothelial growth factor and monocyte chemoattractant protein-1 in Behçet's disease. INDIAN JOURNAL OF RHEUMATOLOGY 2011. [DOI: 10.1016/s0973-3698(11)60202-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
45
|
Růžek D, Salát J, Singh SK, Kopecký J. Breakdown of the blood-brain barrier during tick-borne encephalitis in mice is not dependent on CD8+ T-cells. PLoS One 2011; 6:e20472. [PMID: 21629771 PMCID: PMC3100324 DOI: 10.1371/journal.pone.0020472] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 04/26/2011] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) virus causes severe encephalitis with serious sequelae in humans. The disease is characterized by fever and debilitating encephalitis that can progress to chronic illness or fatal infection. In this study, changes in permeability of the blood-brain barrier (BBB) in two susceptible animal models (BALB/c, and C57Bl/6 mice) infected with TBE virus were investigated at various days after infection by measuring fluorescence in brain homogenates after intraperitoneal injection of sodium fluorescein, a compound that is normally excluded from the central nervous system. We demonstrate here that TBE virus infection, in addition to causing fatal encephalitis in mice, induces considerable breakdown of the BBB. The permeability of the BBB increased at later stages of TBE infection when high virus load was present in the brain (i.e., BBB breakdown was not necessary for TBE virus entry into the brain), and at the onset of the first severe clinical symptoms of the disease, which included neurological signs associated with sharp declines in body weight and temperature. The increased BBB permeability was in association with dramatic upregulation of proinflammatory cytokine/chemokine mRNA expression in the brain. Breakdown of the BBB was also observed in mice deficient in CD8+ T-cells, indicating that these cells are not necessary for the increase in BBB permeability that occurs during TBE. These novel findings are highly relevant to the development of future therapies designed to control this important human infectious disease.
Collapse
Affiliation(s)
- Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | | | | | | |
Collapse
|
46
|
Liu J, Jha P, Lyzogubov VV, Tytarenko RG, Bora NS, Bora PS. Relationship between complement membrane attack complex, chemokine (C-C motif) ligand 2 (CCL2) and vascular endothelial growth factor in mouse model of laser-induced choroidal neovascularization. J Biol Chem 2011; 286:20991-1001. [PMID: 21515678 DOI: 10.1074/jbc.m111.226266] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The present study investigated the interactions among the complement membrane attack complex (MAC), CCL2, and VEGF that occur in vivo during the development of choroidal neovascularization (CNV). We first investigated the sequential expression of MAC, CCL2, and VEGF during laser-induced CNV in C57BL/6 mice. Increased MAC deposition was detected at 1 h, CCL2 increased at 3 h, and VEGF was up-regulated at day 3 post-laser treatment. These results suggested that during laser-induced CNV, MAC, CCL2 and VEGF are formed and/or expressed in the following order: MAC → CCL2 → VEGF. To determine the cross-talk between MAC, CCL2, and VEGF during laser-induced CNV, neutralizing antibodies were injected both systemically and locally to block the bioactivity of each molecule. Blocking MAC formation inhibited CCL2 and VEGF expression and also limited CNV formation, whereas neutralization of CCL2 bioactivity did not affect MAC deposition; however, it reduced VEGF expression and CNV formation. When bioactivity of VEGF was blocked, CNV formation was significantly inhibited, but MAC deposition was not affected. Together, our results demonstrate that MAC is an upstream mediator and effect of MAC on the development of laser-induced CNV can be attributed to its direct effect on VEGF as well as its effect on VEGF that is mediated by CCL2. Understanding the interplay between immune mediators is critical to gain insight into the pathogenesis of CNV.
Collapse
Affiliation(s)
- Juan Liu
- Department of Ophthalmology, University of Arkansas for Medical Sciences, Little Rock, Arizona 72205, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Chemokines are a family of small heparin-binding proteins, mostly known for their role in inflammation and immune surveillance, which have emerged as important regulators of angiogenesis. Chemokines influence angiogenesis either through recruitment of pro-angiogenic immune cells and endothelial progenitors to the neo-vascular niche or via direct regulation of endothelial function downstream of activation of G-protein coupled chemokine receptors. The dual function of chemokines in regulating immune response and angiogenesis confers a central role in modulating the tissue microenvironment. Therefore, chemokines may constitute attractive targets for therapeutic intervention in several pathological disorders. This review will summarize the current understanding of the role of chemokines in angiogenesis, and give an overview of angiostatic and angiogenic chemokines and their crosstalk with other angiogenic factors.
Collapse
Affiliation(s)
- Anna Dimberg
- Department of Genetics and Pathology, Uppsala University, Rudbeck Laboratory, 75185 Uppsala, Sweden.
| |
Collapse
|
48
|
Effects of dietary fat on spontaneous metastasis of Lewis lung carcinoma in mice. Clin Exp Metastasis 2010; 27:581-90. [PMID: 20697780 DOI: 10.1007/s10585-010-9347-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Accepted: 07/24/2010] [Indexed: 01/22/2023]
Abstract
The present study assessed the effects of dietary fat on spontaneous metastasis of Lewis lung carcinoma in mice. Three-week old male C57BL/6 mice were fed the AIN-93G diet or a 45% fat diet (% kcal.) for 7 weeks before they were subcutaneously injected with 2.5 × 10⁵ viable carcinoma cells. The primary tumor was resected 2 weeks later, and mice were maintained on their respective diets for an additional 2 weeks. The high-fat diet significantly increased body weight and abdominal adipose weight compared to the AIN-93G diet. Feeding mice the 45% fat diet resulted in a two-fold increase in the number of lung metastases (P < 0.05), a 35% increase in tumor cross-sectional area, and a 50% increase in tumor volume compared to mice fed the AIN-93G diet. There were no differences in plasma concentrations of TIMP-1, IL-1β, VEGF and MCP-1 in non-tumor-bearing mice fed the AIN-93G diet or the high-fat diet, but significant increases in these cytokines in tumor-bearing mice fed the AIN-93G diet compared to the non-tumor-bearing mice fed the same diet (P < 0.05 for each comparison). Further significant increases in these cytokines in tumor-bearing mice fed the 45% fat diet compared to the same tumor-bearing mice fed the AIN-93G diet (P < 0.05 for each comparison). The high-fat diet significantly increased plasma leptin and significantly decreased plasma adiponectin compared to the AIN-93G diet in both non-tumor-bearing and tumor-bearing mice. Results of the present study demonstrated that the high-fat diet enhanced spontaneous metastasis of Lewis lung carcinoma in mice and that this aggressiveness was accompanied with significant increases in plasma concentrations of angiogenic cytokines, suggesting that dietary fat affects metastasis by promoting angiogenic processes.
Collapse
|
49
|
Sumiyoshi M, Kimura Y. Enhancing effects of a chromone glycoside, eucryphin, isolated from Astilbe rhizomes on burn wound repair and its mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:820-829. [PMID: 20149614 DOI: 10.1016/j.phymed.2010.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 11/21/2009] [Accepted: 01/19/2010] [Indexed: 05/28/2023]
Abstract
We previously reported that three compounds isolated from Astilbe thunbergii rhizomes accelerated burn wound healing. Among the three substances, eucryphin enhanced burn wound healing most strongly; however, the biological mechanisms of eucryphin are not yet well understood and here we examined the effects on chemokine, growth factor, and cytokine productions in in vivo and in vitro experiments. We have set burn wounds on the backs of mice and topically applied either vehicle alone or vehicle containing low doses of eucryphin to the burn wound. We examined the effects of eucryphin on chemokine, cytokine, and growth factor production at the wound site and in various cells. Eucryphin (10(-4) to 10(-8)% ointment) facilitated burn wound repair compared to the vehicle control. Eucryphin (100 ng per wound) increased IL-1beta, MCP-1, VEGF, and TGF-beta1 levels in the exudates from the wound area. Eucryphin increased VEGF, TGF-beta1, and HIF-1alpha expression levels in keratinocytes. These findings suggest that the enhancement of burn wound healing by eucryphin might be due to promotional angiogenesis during skin wound repair as a result of the stimulation of VEGF and TGF-beta1 production caused by the increase in HIF-1alpha expression in keratinocytes.
Collapse
Affiliation(s)
- Maho Sumiyoshi
- Division of Functional Histology, Department of Functional Biomedicine, Graduate School of Medicine, Ehime University, Shitsukawa, Toon City, Ehime 791-0295, Japan
| | | |
Collapse
|
50
|
Sierra B, Perez AB, Vogt K, Garcia G, Schmolke K, Aguirre E, Alvarez M, Volk HD, Guzman MG. MCP-1 and MIP-1α expression in a model resembling early immune response to dengue. Cytokine 2010; 52:175-83. [PMID: 20650649 DOI: 10.1016/j.cyto.2010.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 06/07/2010] [Accepted: 06/19/2010] [Indexed: 10/19/2022]
Abstract
Dengue virus has become endemic in most tropical urban areas throughout the world, and DHF has appeared concomitantly with this expansion. The intensity of dengue virus replication during the early stages of infection could determine clinical outcomes; therefore, it is important to understand the impact of dengue virus infection on the earliest immune defense against microbial infection, which also strongly regulates the adaptive immune responses. This study was aimed at evaluating the expression of the CC-chemokines MIP-1α/CCL3 and MCP-1/CCL2 in peripheral blood leukocytes using an ex vivo model resembling dengue infection in vivo, in subjects with a well characterized dengue immune background, due to the exceptional Cuban epidemiological situation in dengue. The expression of IFNγ, TNFα and IL10 was also evaluated, giving insight about the role of MCP-1 and MIP-1α in the interplay between innate and adaptive immunity. From individuals with different dengue immune background after dengue virus challenge, increased and different expression of the chemokines and cytokines studied was verified in peripheral blood mononuclear cells, thus demonstrating that the previous immunity to a dengue virus serotype has a strong influence on the early immune response after dengue re-infection.
Collapse
Affiliation(s)
- Beatriz Sierra
- Virology Department, PAHO/WHO Collaborating Center for the Study of Dengue and its Vector, Institute of Tropical Medicine Pedro Kouri, Autopista Novia del Mediodia Km. 6 ½, La Lisa, Havana City, Cuba.
| | | | | | | | | | | | | | | | | |
Collapse
|