1
|
Daugherty A, Milewicz DM, Dichek DA, Ghaghada KB, Humphrey JD, LeMaire SA, Li Y, Mallat Z, Saeys Y, Sawada H, Shen YH, Suzuki T, Zhou (周桢) Z. Recommendations for Design, Execution, and Reporting of Studies on Experimental Thoracic Aortopathy in Preclinical Models. Arterioscler Thromb Vasc Biol 2025; 45:609-631. [PMID: 40079138 PMCID: PMC12018150 DOI: 10.1161/atvbaha.124.320259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
There is a recent dramatic increase in research on thoracic aortic diseases that includes aneurysms, dissections, and rupture. Experimental studies predominantly use mice in which aortopathy is induced by chemical interventions, genetic manipulations, or both. Many parameters should be deliberated in experimental design in concert with multiple considerations when providing dimensional data and characterization of aortic tissues. The purpose of this review is to provide recommendations on guidance in (1) the selection of a mouse model and experimental conditions for the study, (2) parameters for standardizing detection and measurements of aortic diseases, (3) meaningful interpretation of characteristics of diseased aortic tissue, and (4) reporting standards that include rigor and transparency.
Collapse
Affiliation(s)
- Alan Daugherty
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Dianna M. Milewicz
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David A. Dichek
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ketan B. Ghaghada
- Department of Radiology, Texas Children’s Hospital, and Department of Radiology, Baylor College of Medicine Houston, TX, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Scott A. LeMaire
- Heart & Vascular Institute, Geisinger Health System, Danville, PA, USA
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Yanming Li
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Ziad Mallat
- Division of Cardiorespiratory Medicine, Department of Medicine, Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK; Unversité de Paris, Inserm U970, Paris Cardiovascular Research Centre, Paris, France
| | - Yvan Saeys
- Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research, Department of Applied Mathematics, Computer Science and Statistics, Ghent University Ghent, Belgium
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, Saha Aortic Center, Department of Physiology, University of Kentucky, KY, USA
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery and Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Toru Suzuki
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Leicester, UK and Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zhen Zhou (周桢)
- Division of Medical Genetics, Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
2
|
Carvalho KFS, de Lima JF, Silva JLM, de Almeida CR, Cunha RGA, Alves JV, Tostes RC, Lobato NS, Costa RM. Toll-like receptor 9 contributes to perivascular adipose tissue dysfunction in spontaneously hypertensive rats. Eur J Pharmacol 2025; 998:177524. [PMID: 40097130 DOI: 10.1016/j.ejphar.2025.177524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/14/2025] [Accepted: 03/15/2025] [Indexed: 03/19/2025]
Abstract
Perivascular adipose tissue (PVAT) plays a key role in vascular homeostasis by exerting anticontractile effects. However, PVAT dysfunction in hypertension contributes to vascular abnormalities via inflammation and oxidative stress. This study investigates the role of Toll-like receptor 9 (TLR9) in PVAT dysfunction in spontaneously hypertensive rats (SHR). Elevated TLR9 expression and activation were observed in SHR PVAT, along with increased pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) and reactive oxygen species (ROS). These changes impaired PVAT's anticontractile effects, reduced nitric oxide (NO) bioavailability, and heightened vascular contraction. Pharmacological inhibition of TLR9 with ODN2088 restored PVAT's anticontractile function, reduced inflammation and oxidative stress, and improved vascular tone. This treatment also significantly lowered systolic blood pressure in SHR. TLR9-mediated PVAT dysfunction was closely linked to NF-κB signaling, as inhibition of this pathway attenuated inflammatory cytokine production and improved vascular reactivity. ROS scavenging with Tiron confirmed the role of oxidative stress in the loss of PVAT function. Despite unaltered endothelial nitric oxide synthase (eNOS) expression, NO levels were reduced in SHR PVAT due to ROS-induced scavenging. Notably, TLR9 inhibition restored NO bioavailability, reinforcing its therapeutic potential. These findings establish TLR9 as a critical mediator of PVAT dysfunction in hypertension, driving inflammation, oxidative stress, and vascular impairment. Targeting TLR9 and oxidative stress may represent effective therapeutic strategies for mitigating vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Karine F S Carvalho
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Júlia F de Lima
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - João Lucas M Silva
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | | | - Rosana G A Cunha
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Juliano V Alves
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil; Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Núbia S Lobato
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil
| | - Rafael M Costa
- Institute of Health Sciences, Federal University of Jatai, Jatai, GO, Brazil.
| |
Collapse
|
3
|
Ma C, Li Y, Tian M, Deng Q, Qin X, Lu H, Gao J, Chen M, Weinstein LS, Zhang M, Bu P, Yang J, Zhang Y, Zhang C, Zhang W. Gsα Regulates Macrophage Foam Cell Formation During Atherosclerosis. Circ Res 2024; 134:e34-e51. [PMID: 38375634 PMCID: PMC10978275 DOI: 10.1161/circresaha.123.323156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Many cardiovascular pathologies are induced by signaling through G-protein-coupled receptors via Gsα (G protein stimulatory α subunit) proteins. However, the specific cellular mechanisms that are driven by Gsα and contribute to the development of atherosclerosis remain unclear. METHODS High-throughput screening involving data from single-cell and bulk sequencing were used to explore the expression of Gsα in atherosclerosis. The differentially expression and activity of Gsα were analyzed by immunofluorescence and cAMP measurements. Macrophage-specific Gsα knockout (Mac-GsαKO) mice were generated to study the effect on atherosclerosis. The role of Gsα was determined by transplanting bone marrow and performing assays for foam cell formation, Dil-ox-LDL (oxidized low-density lipoprotein) uptake, chromatin immunoprecipitation, and luciferase reporter assays. RESULTS ScRNA-seq showed elevated Gnas in atherosclerotic mouse aorta's cholesterol metabolism macrophage cluster, while bulk sequencing confirmed increased GNAS expression in human plaque macrophage content. A significant upregulation of Gsα and active Gsα occurred in macrophages from human and mouse plaques. Ox-LDL could translocate Gsα from macrophage lipid rafts in short-term and promote Gnas transcription through ERK1/2 activation and C/EBPβ phosphorylation via oxidative stress in long-term. Atherosclerotic lesions from Mac-GsαKO mice displayed decreased lipid deposition compared with those from control mice. Additionally, Gsα deficiency alleviated lipid uptake and foam cell formation. Mechanistically, Gsα increased the levels of cAMP and transcriptional activity of the cAMP response element binding protein, which resulted in increased expression of CD36 and SR-A1. In the translational experiments, inhibiting Gsα activation with suramin or cpGN13 reduced lipid uptake, foam cell formation, and the progression of atherosclerotic plaques in mice in vivo. CONCLUSIONS Gsα activation is enhanced during atherosclerotic progression and increases lipid uptake and foam cell formation. The genetic or chemical inactivation of Gsα inhibit the development of atherosclerosis in mice, suggesting that drugs targeting Gsα may be useful in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Chang Ma
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yihui Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mi Tian
- Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China
| | - Qiming Deng
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoteng Qin
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hanlin Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiangang Gao
- School of Life Science and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, 250013, China
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20814, USA
| | - Lee S. Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, 20814, USA
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Peili Bu
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Jianmin Yang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yun Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wencheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences; Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
4
|
Harrison DG, Bader M, Lerman LO, Fink G, Karumanchi SA, Reckelhoff JF, Sequeira-Lopez MLS, Touyz RM. Tail-Cuff Versus Radiotelemetry to Measure Blood Pressure in Mice and Rats. Hypertension 2024; 81:3-5. [PMID: 37990918 PMCID: PMC10842069 DOI: 10.1161/hypertensionaha.123.22329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Affiliation(s)
- D G Harrison
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (D.G.H.)
| | - M Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany (M.B.)
| | - L O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN (L.O.L.)
| | - G Fink
- Department of Pharmacology and Toxicology, Michigan State University, College of Osteopathic Medicine, East Lansing (G.F.)
| | - S A Karumanchi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA (S.A.K.)
| | - J F Reckelhoff
- Department of Cell and Molecular Biology Women's Health Research Center, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - M L S Sequeira-Lopez
- Department of Paediatrics, University of Virginia, Charlottesville (M.L.S.S.-L.)
| | - R M Touyz
- Research Institute of McGill University Health Centre, McGill University, Montreal, QC, Canada (R.M.T.)
| |
Collapse
|
5
|
El-Lakany MA, Haghbin N, Arora N, Hashad AM, Mironova GY, Sancho M, Gros R, Welsh DG. Ca V3.1 channels facilitate calcium wave generation and myogenic tone development in mouse mesenteric arteries. Sci Rep 2023; 13:20407. [PMID: 37989780 PMCID: PMC10663617 DOI: 10.1038/s41598-023-47715-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023] Open
Abstract
The arterial myogenic response to intraluminal pressure elicits constriction to maintain tissue perfusion. Smooth muscle [Ca2+] is a key determinant of constriction, tied to L-type (CaV1.2) Ca2+ channels. While important, other Ca2+ channels, particularly T-type could contribute to pressure regulation within defined voltage ranges. This study examined the role of one T-type Ca2+ channel (CaV3.1) using C57BL/6 wild type and CaV3.1-/- mice. Patch-clamp electrophysiology, pressure myography, blood pressure and Ca2+ imaging defined the CaV3.1-/- phenotype relative to C57BL/6. CaV3.1-/- mice had absent CaV3.1 expression and whole-cell current, coinciding with lower blood pressure and reduced mesenteric artery myogenic tone, particularly at lower pressures (20-60 mmHg) where membrane potential is hyperpolarized. This reduction coincided with diminished Ca2+ wave generation, asynchronous events of Ca2+ release from the sarcoplasmic reticulum, insensitive to L-type Ca2+ channel blockade (Nifedipine, 0.3 µM). Proximity ligation assay (PLA) confirmed IP3R1/CaV3.1 close physical association. IP3R blockade (2-APB, 50 µM or xestospongin C, 3 µM) in nifedipine-treated C57BL/6 arteries rendered a CaV3.1-/- contractile phenotype. Findings indicate that Ca2+ influx through CaV3.1 contributes to myogenic tone at hyperpolarized voltages through Ca2+-induced Ca2+ release tied to the sarcoplasmic reticulum. This study helps establish CaV3.1 as a potential therapeutic target to control blood pressure.
Collapse
Affiliation(s)
- Mohammed A El-Lakany
- Department of Physiology & Pharmacology, Schulich School of Medicine, Robarts Research Institute, University of Western Ontario, 1151 Richmond Road N, London, ON, N6A 5B7, Canada.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Nadia Haghbin
- Department of Physiology & Pharmacology, Schulich School of Medicine, Robarts Research Institute, University of Western Ontario, 1151 Richmond Road N, London, ON, N6A 5B7, Canada
| | - Naman Arora
- Department of Physiology & Pharmacology, Schulich School of Medicine, Robarts Research Institute, University of Western Ontario, 1151 Richmond Road N, London, ON, N6A 5B7, Canada
| | - Ahmed M Hashad
- Department of Physiology & Pharmacology, Schulich School of Medicine, Robarts Research Institute, University of Western Ontario, 1151 Richmond Road N, London, ON, N6A 5B7, Canada
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Galina Yu Mironova
- Department of Physiology & Pharmacology, Schulich School of Medicine, Robarts Research Institute, University of Western Ontario, 1151 Richmond Road N, London, ON, N6A 5B7, Canada
| | - Maria Sancho
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Robert Gros
- Department of Physiology & Pharmacology, Schulich School of Medicine, Robarts Research Institute, University of Western Ontario, 1151 Richmond Road N, London, ON, N6A 5B7, Canada
| | - Donald G Welsh
- Department of Physiology & Pharmacology, Schulich School of Medicine, Robarts Research Institute, University of Western Ontario, 1151 Richmond Road N, London, ON, N6A 5B7, Canada.
| |
Collapse
|
6
|
Xu J, Ma H, Shi L, Zhou H, Cheng Y, Tong J, Meng B, Xu X, He K, Ding S, Zhang J, Yue L, Xiang G. Inflammatory Cell-Derived MYDGF Attenuates Endothelial LDL Transcytosis to Protect Against Atherogenesis. Arterioscler Thromb Vasc Biol 2023; 43:e443-e467. [PMID: 37767706 DOI: 10.1161/atvbaha.123.319905] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Inflammation contributes to the pathogenesis of atherosclerosis. But little is known about the potential benefits of inflammatory cells to atherosclerosis. The aim of this study was to investigate the function of inflammatory cells/endothelium axis and determine whether and how inflammatory cell-derived MYDGF (myeloid-derived growth factor) inhibited endothelial LDL (low-density lipoprotein) transcytosis. METHODS In in vivo experiments, both loss- and gain-of-function strategies were used to evaluate the effect of inflammatory cell-derived MYDGF on LDL transcytosis. We generated monocyte/macrophage-targeted MYDGF-null mice on an Ldlr (LDL receptor)-/- background in the loss-of-function strategy and restored the inflammatory cell-derived MYDGF by bone marrow transplantation and inflammatory cell-specific overexpression of MYDGF mice model in the gain-of-function strategy. In in vitro experiments, coculture experiments between primary mouse aortic endothelial cells and macrophages and mouse aortic endothelial cells supplemented with or without recombinant MYDGF were conducted. RESULTS Inflammatory cell-derived MYDGF deficiency aggravated endothelial LDL transcytosis, drove LDL uptake by artery wall, and thus exacerbated atherosclerosis in vivo. Inflammatory cell-derived MYDGF restoration by bone marrow transplantation and inflammatory cell MYDGF overexpression alleviated LDL transport across the endothelium, prevented LDL accumulation in the subendothelial space, and subsequently ameliorated atherosclerosis in vivo. Furthermore, in the in vitro study, macrophages isolated from MYDGF+/+ mice and recombinant MYDGF attenuated LDL transcytosis and uptake in mouse aortic endothelial cells. Mechanistically, MYDGF inhibited MAP4K4 (mitogen-activated protein kinase kinase kinase kinase isoform 4) phosphorylation, enhanced activation of Akt (protein kinase B)-1, and diminished the FoxO (forkhead box O) 3a signaling cascade to exert protective effects of MYDGF on LDL transcytosis and atherosclerosis. CONCLUSIONS The findings support a role for inflammatory cell-derived MYDGF served as a cross talk factor between inflammatory cells and endothelial cells that inhibits LDL transcytosis across endothelium. MYDGF may become a novel therapeutic drug for atherosclerosis, and the beneficial effects of inflammatory cell in atherosclerosis deserve further attention.
Collapse
Affiliation(s)
- Jinling Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Huaxing Ma
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, China (H.M.)
| | - Lingfeng Shi
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Hui Zhou
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Hunan, China (H.Z.)
| | - Yangyang Cheng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, China (H.M.)
| | - Jiayue Tong
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Biying Meng
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Xiaoli Xu
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Kaiyue He
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Sheng Ding
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| | - Jiajia Zhang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Ling Yue
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
| | - Guangda Xiang
- Department of Endocrinology, General Hospital of Central Theater Command, Wuhan, China (J.X., L.S., Y.C., J.T., B.M., X.X., J.Z., L.Y., G.X.)
- The First School of Clinical Medicine, Southern Medical University, Guangdong, China (J.X., L.S., Y.C., J.T., K.H., S.D., G.X.)
| |
Collapse
|
7
|
Vinaiphat A, Pazhanchamy K, JebaMercy G, Ngan SC, Leow MKS, Ho HH, Gao YG, Lim KL, Richards AM, de Kleijn DPV, Chen CP, Kalaria RN, Liu J, O'Leary DD, McCarthy NE, Sze SK. Endothelial Damage Arising From High Salt Hypertension Is Elucidated by Vascular Bed Systematic Profiling. Arterioscler Thromb Vasc Biol 2023; 43:427-442. [PMID: 36700429 DOI: 10.1161/atvbaha.122.318439] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Considerable evidence links dietary salt intake with the development of hypertension, left ventricular hypertrophy, and increased risk of stroke and coronary heart disease. Despite extensive epidemiological and basic science interrogation of the relationship between high salt (HS) intake and blood pressure, it remains unclear how HS impacts endothelial cell (EC) and vascular structure in vivo. This study aims to elucidate HS-induced vascular pathology using a differential systemic decellularization in vivo approach. METHODS We performed systematic molecular characterization of the endothelial glycocalyx and EC proteomes in mice with HS (8%) diet-induced hypertension versus healthy control animals. Isolation of eGC and EC compartments was achieved using differential systemic decellularization in vivo methodology. Altered protein expression in hypertensive compared to normal mice was characterized by liquid chromatography tandem mass spectrometry. Proteomic results were validated using functional assays, microscopic imaging, and histopathologic evaluation. RESULTS Proteomic analysis revealed a significant downregulation of eGC and associated proteins in HS diet-induced hypertensive mice (among 1696 proteins identified in this group, 723 were markedly decreased in abundance, while only 168 were increased in abundance. Bioinformatic analysis indicated substantial derangement of the eGC layer, which was subsequently confirmed by fluorescent and electron microscopy assessment of vessel damage ex vivo. In the EC fraction, HS-induced hypertension significantly altered protein mediators of contractility, metabolism, mechanotransduction, renal function, and the coagulation cascade. In particular, we observed dysregulation of integrin subunits α2, α2b, and α5, which was associated with arterial wall inflammation and substantial infiltration of CD68+ monocyte-macrophages. Consequently, HS-induced hypertensive mice also displayed reduced vascular integrity of multiple organs including lungs, kidneys, and heart. CONCLUSIONS These findings provide novel molecular insight into HS-induced structural changes in eGC and EC composition that may increase cardiovascular risk and potentially guide the development of new diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - Kalailingam Pazhanchamy
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - Gnanasekaran JebaMercy
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - SoFong Cam Ngan
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| | - Melvin Khee-Shing Leow
- Lee Kong Chian School of Medicine (M.K.-S.L., K.L.L.), Nanyang Technological University, Singapore
- Tan Tock Seng Hospital, Singapore (M.K.-S.L., H.H.H.)
| | - Hee Hwa Ho
- Tan Tock Seng Hospital, Singapore (M.K.-S.L., H.H.H.)
| | - Yong-Gui Gao
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine (M.K.-S.L., K.L.L.), Nanyang Technological University, Singapore
| | - A Mark Richards
- Department of Cardiology, National University Heart Centre, Singapore (A.M.R.)
- Department of Cardiology, University of Otago, Christchurch, New Zealand (A.M.R.)
| | | | - Christopher P Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.P.C.)
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom (R.N.K.)
| | - Jian Liu
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| | - Deborah D O'Leary
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (N.E.M.)
| | - Siu Kwan Sze
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| |
Collapse
|
8
|
Interleukin 17A infusion has no acute or long-term hypertensive action in conscious unrestrained male mice. Pflugers Arch 2022; 474:709-719. [DOI: 10.1007/s00424-022-02705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/03/2022] [Accepted: 05/05/2022] [Indexed: 11/26/2022]
|
9
|
Miklosz J, Kalaska B, Zajaczkowski S, Pawlak D, Mogielnicki A. Monitoring of Cardiorespiratory Parameters in Rats-Validation Based on Pharmacological Stimulation. Pharmaceuticals (Basel) 2021; 14:ph14121223. [PMID: 34959624 PMCID: PMC8705495 DOI: 10.3390/ph14121223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/13/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
The methods used in preclinical studies should minimize the suffering and the number of animals but still provide precise and consistent results enabling the introduction of drug candidates into the phase of clinical trials. Thus, we aimed to develop a method allowing us to perform preliminary safety and toxicity studies of candidates for human medicines, while reducing the number of animals. We have devised a method based on a combination of two devices: Plugsys (Transonics System Inc., Ithaca, NY, USA) and PhysioSuite (Kent Scientific Corporation, Torrington, CT, USA), which allow simultaneous registration of nine circulatory and respiratory parameters, and body temperature. Vehicle and adrenaline, or nitroglycerin, as reference substances were administered into the right femoral vein of Wistar rats. Physiological conditions were registered over 60 min after drug administration by measuring systolic, diastolic and mean blood pressure, heart rate (HR), blood perfusion of paw vessels, blood oxygen saturation, respiratory rate, average and peak exhaled CO2, and body temperature. Blood pressure was measured by cannula placed in the left common carotid artery and connected to the pressure transducer (Plugsys). The other parameters were measured by the PhysioSuite. Adrenaline-induced immediate dose-related hypertension and nitroglycerin hypotension were correlated with the change in blood perfusion. They both increased HR. Adrenaline decreased blood oxygen saturation and slightly affected respiratory parameters, while nitroglycerin caused a progressive increase in respiratory rate and a decrease in the peak of exhaled CO2. Our method may become an inseparable part of the preliminary safety and toxicity studies of tested drugs, while being an important step towards improving animal welfare.
Collapse
Affiliation(s)
- Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Bialystok, Poland; (B.K.); (D.P.); (A.M.)
- Correspondence: ; Tel.: +48-85-748-5231
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Bialystok, Poland; (B.K.); (D.P.); (A.M.)
| | | | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Bialystok, Poland; (B.K.); (D.P.); (A.M.)
| | - Andrzej Mogielnicki
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Bialystok, Poland; (B.K.); (D.P.); (A.M.)
| |
Collapse
|
10
|
Tawfik MK, Keshawy MM, Makary S. Blocking angiotensin 2 receptor attenuates diabetic nephropathy via mitigating ANGPTL2/TL4/NF-κB expression. Mol Biol Rep 2021; 48:6457-6470. [PMID: 34431038 DOI: 10.1007/s11033-021-06647-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/11/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a consequence of diabetes mellitus (DM) and is associated with early changes in renal angiotensin II (ANG II). These changes were evaluated using ANG II blocker valsartan early from week two of diabetes (experiment I, renoprotective) and late from week nine of diabetes (experiment II, renotherapeutic) to the end of both experiments at week twelve. METHODS AND RESULTS In both experiments, adult male Wister rats were divided into (i) vehicle group; (ii) valsartan received oral 30 mg/Kg/day; (iii) diabetic received single 50 mg/Kg intraperitoneal streptozotocin injection; (iv) renoprotection, diabetic rats received valsartan treated in experiments I and II. DM effects on urine albumin excretion, blood pressure, and renal ANG II were measured. Urinary nephrin, kidney injury molecule-1 (KIM-1), renal angiopoietin-like protein 2 (ANGPTL2), and toll-like receptor 4 (TLR 4) mRNA expression were tested. DM-initiated fibrotic markers integrin, α-smooth muscle actin expression, and collagen IV and apoptotic protein caspase 3 were tested. DM induced early changes starting from week four in the tested variables. At week twelve, in both experiments, valsartan intervention showed a significant reduction in ANG II, ANGPTL2, TLR 4 and integrin expression and improvement in albuminuria, blood pressure, urinary biomarkers, fibrotic and apoptotic markers. CONCLUSIONS Changes leading to DN starts early in the disease course and ANG II reduction decreased the expression of ANGPTL2 and integrin which preserve the glomerular barrier. Blocking ANG II was able to decrease TLR 4 and inflammatory cytokines leading to decreasing DN.
Collapse
Affiliation(s)
- Mona K Tawfik
- Department of Pharmacology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohammed M Keshawy
- Nephrology Division, Department of Internal Medicine, Faculty of Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Samy Makary
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
11
|
Cartilage oligomeric matrix protein is an endogenous β-arrestin-2-selective allosteric modulator of AT1 receptor counteracting vascular injury. Cell Res 2021; 31:773-790. [PMID: 33510386 PMCID: PMC8249609 DOI: 10.1038/s41422-020-00464-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/15/2020] [Indexed: 01/30/2023] Open
Abstract
Compelling evidence has revealed that biased activation of G protein-coupled receptor (GPCR) signaling, including angiotensin II (AngII) receptor type 1 (AT1) signaling, plays pivotal roles in vascular homeostasis and injury, but whether a clinically relevant endogenous biased antagonism of AT1 signaling exists under physiological and pathophysiological conditions has not been clearly elucidated. Here, we show that an extracellular matrix protein, cartilage oligomeric matrix protein (COMP), acts as an endogenous allosteric biased modulator of the AT1 receptor and its deficiency is clinically associated with abdominal aortic aneurysm (AAA) development. COMP directly interacts with the extracellular N-terminus of the AT1 via its EGF domain and inhibits AT1-β-arrestin-2 signaling, but not Gq or Gi signaling, in a selective manner through allosteric regulation of AT1 intracellular conformational states. COMP deficiency results in activation of AT1a-β-arrestin-2 signaling and subsequent exclusive AAA formation in response to AngII infusion. AAAs in COMP-/- or ApoE-/- mice are rescued by AT1a or β-arrestin-2 deficiency, or the application of a peptidomimetic mimicking the AT1-binding motif of COMP. Explorations of the endogenous biased antagonism of AT1 receptor or other GPCRs may reveal novel therapeutic strategies for cardiovascular diseases.
Collapse
|
12
|
Agócs R, Pap D, Sugár D, Tóth G, Turiák L, Veréb Z, Kemény L, Tulassay T, Vannay Á, Szabó AJ. Cyclooxygenase-2 Modulates Glycosaminoglycan Production in the Skin During Salt Overload. Front Physiol 2020; 11:561722. [PMID: 33192558 PMCID: PMC7645107 DOI: 10.3389/fphys.2020.561722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/11/2020] [Indexed: 11/13/2022] Open
Abstract
Sodium (Na+) can accumulate in the skin tissue, sequestered by negatively charged glycosaminoglycans (GAGs). During dietary salt overload, the amount and charge density of dermal GAG molecules - e.g., hyaluronic acid (HA) and chondroitin sulfate (CS) - increases; however, the regulation of the process is unknown. Previously, it has been demonstrated that the level of cyclooxygenase-2 (COX-2) activity and the content of prostaglandin E2 (PGE2) are elevated in the skin due to high-salt consumption. A link between the COX-2/PGE2 system and GAG synthesis was also suggested. We hypothesized that in dermal fibroblasts (DFs) high-sodium concentration activates the COX-2/PGE2 pathway and also that PGE2 increases the production of HA. Our further aim was to demonstrate that the elevation of the GAG content is ceased by COX-2 inhibition in a salt overloaded animal model. For this, we investigated the messenger RNA (mRNA) expression of COX-2 and HA synthase 2 enzymes as well as the PGE2 and HA production of DFs by real-time reverse transcription PCR (qRT-PCR) and ELISA, respectively. The results showed that both high-sodium concentration and PGE2 treatment increases HA content of the media. Sodium excess activates the COX-2/PGE2 pathway in DFs, and COX-2 inhibition decreases the synthesis of HA. In the animal experiment, the HA- and CS disaccharide content in the skin of male Wistar rats was measured using high performance liquid chromatography-mass spectrometry (HPLC-MS). In the skin of rats receiving high-salt diet, the content of both HA- and monosulfated-CS disaccharides increased, whereas COX-2 inhibition blocked this overproduction. In conclusion, high-salt environment could induce GAG production of DFs in a COX-2/PGE2-dependent manner. Moreover, the COX-2 inhibition resulted in a decreased skin GAG content of the salt overloaded rats. These data revealed a new DF-mediated regulation of GAG synthesis in the skin during salt overload.
Collapse
Affiliation(s)
- Róbert Agócs
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Domonkos Pap
- MTA-SE (Hungarian Academy of Sciences - Semmelweis University) Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dániel Sugár
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Gábor Tóth
- MS (Mass Spectrometry) Proteomics Research Group, Research Centre for Natural Sciences, Budapest, Hungary.,Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | - Lilla Turiák
- MS (Mass Spectrometry) Proteomics Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | - Zoltán Veréb
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE (Hungarian Academy of Sciences - University of Szeged) Dermatological Research Group, University of Szeged, Szeged, Hungary.,HCEMM-USZ (Hungarian Centre of Excellence for Molecular Medicine - University of Szeged) Skin Research Group, Szeged, Hungary
| | - Lajos Kemény
- Department of Dermatology and Allergology, University of Szeged, Szeged, Hungary.,MTA-SZTE (Hungarian Academy of Sciences - University of Szeged) Dermatological Research Group, University of Szeged, Szeged, Hungary.,HCEMM-USZ (Hungarian Centre of Excellence for Molecular Medicine - University of Szeged) Skin Research Group, Szeged, Hungary
| | - Tivadar Tulassay
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.,MTA-SE (Hungarian Academy of Sciences - Semmelweis University) Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Ádám Vannay
- MTA-SE (Hungarian Academy of Sciences - Semmelweis University) Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila J Szabó
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary.,MTA-SE (Hungarian Academy of Sciences - Semmelweis University) Pediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
13
|
Luzes R, Crisóstomo T, Silva PA, Iack R, de Abreu VG, Francischetti EA, Vieyra A. Angiotensin-(3-4) normalizes blood pressure, decreases Na + and energy intake, but preserves urinary Na + excretion in overweight hypertensive rats. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166012. [PMID: 33212189 DOI: 10.1016/j.bbadis.2020.166012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 01/13/2023]
Abstract
Hypertension, one of the most common and severe comorbidities of obesity and overweight, is a worldwide epidemic affecting over 30% of the population. We induced overweight in young male rats (aged 58 days) by exposure to a hypercaloric high lipid (HL) diet in which 70% of the calories originated from fat. The HL diet also contained 33 or 57% higher Na+ than the control (CTR) diet. Over the following weeks the HL rats gradually became overweight (490 ± 12 g vs 427 ± 7 g in the CTR group after 15 weeks) with high visceral fat. They developed elevated systolic blood pressure (SBP) (141 ± 1.9 mmHg), which was fully restored to CTR values (128 ± 1.1 mmHg) by oral administration of Ang-(3-4) (Val-Tyr), the shortest renin-angiotensin-derived peptide. The overweight rats had lower plasma Na+ concentration that augmented to CTR values by Ang-(3-4) treatment. Na+ ingestion was depressed by 40% as result of the Ang-(3-4) treatment, whereas the urinary excretion of Na+ (UNaV) remained unmodified. The preservation of UNaV after Ang-(3-4) treatment - despite the sharp decrease in the dietary Na+ intake - can be ascribed to the normalization of renal type 1 angiotensin II receptors and Na+-transporting ATPases, both up-regulated in overweight rats. These renal effects complete a counterregulatory action on elevated renin-angiotensin activity that allows the high SBP to be normalized and body Na+ homeostasis to be restored concomitantly in overweight rats.
Collapse
Affiliation(s)
- Rafael Luzes
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | - Thuany Crisóstomo
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo A Silva
- Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | - Roxane Iack
- Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | | | - Emílio A Francischetti
- Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Graduate Program in Translational Biomedicine, University of Grande Rio, Duque de Caxias, Brazil; National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Garshick MS, Tawil M, Barrett TJ, Salud-Gnilo CM, Eppler M, Lee A, Scher JU, Neimann AL, Jelic S, Mehta NN, Fisher EA, Krueger JG, Berger JS. Activated Platelets Induce Endothelial Cell Inflammatory Response in Psoriasis via COX-1. Arterioscler Thromb Vasc Biol 2020; 40:1340-1351. [PMID: 32131611 PMCID: PMC7180109 DOI: 10.1161/atvbaha.119.314008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/13/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Patients with psoriasis have impaired vascular health and increased cardiovascular disease (CVD). Platelets are key players in the pathogenesis of vascular dysfunction in cardiovascular disease and represent therapeutic targets in cardiovascular prevention. The object of this study was to define the platelet phenotype and effector cell properties on vascular health in psoriasis and evaluate whether aspirin modulates the platelet-induced phenotype. Approach and Results: Platelets from psoriasis patients (n=45) exhibited increased platelet activation (relative to age- and gender-matched controls, n=18), which correlated with psoriasis skin severity. Isolated platelets from psoriasis patients demonstrated a 2- to 3-fold (P<0.01) increased adhesion to human aortic endothelial cells and induced proinflammatory transcriptional changes, including upregulation of IL 8 (interleukin 8), IL1β, and Cox (cyclooxygenase)-2 Platelet RNA sequencing revealed an interferon signature and elevated expression of COX-1, which correlated with psoriasis disease severity (r=0.83, P=0.01). In a randomized trial of patients with psoriasis, 2 weeks of 81 mg low-dose aspirin, a COX-1 inhibitor, reduced serum thromboxane (Tx) B2 and reduced brachial vein endothelial proinflammatory transcript expression >70% compared with the no-treatment group (P<0.01). Improvement in brachial vein endothelial cell inflammation significantly correlated with change in serum TxB2 (r=0.48, P=0.02). CONCLUSIONS In patients with psoriasis, platelets are activated and induce endothelial cell inflammation. Low-dose aspirin improved endothelial cell health in psoriasis via platelet COX-1 inhibition. These data demonstrate a previously unappreciated role of platelets in psoriasis and endothelial cell inflammation and suggests that aspirin may be effective in improving vascular health in patients with psoriasis. Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT03228017.
Collapse
Affiliation(s)
- Michael S. Garshick
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine
| | - Michael Tawil
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine
| | - Tessa J. Barrett
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine
| | | | - Michael Eppler
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine
| | - Angela Lee
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine
| | - Jose U. Scher
- Psoriatic Arthritis Center, Division of Rheumatology, Department of Medicine, New York University School of Medicine
| | - Andrea L. Neimann
- Ronald O. Perelman Department of Dermatology, New York University School of Medicine
| | - Sanja Jelic
- Division of Pulmonary, Allergy & Critical Care Medicine, Department of Medicine, Columbia University Medical Center
| | - Nehal N. Mehta
- Section of Inflammation and Cardiometabolic Diseases, National Heart, Lung and Blood Institute, National Institutes of Health
| | - Edward A. Fisher
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine
| | - James G. Krueger
- Psoriatic Arthritis Center, Division of Rheumatology, Department of Medicine, New York University School of Medicine
| | - Jeffrey S. Berger
- Center for the Prevention of Cardiovascular Disease, Department of Medicine, New York University School of Medicine
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University School of Medicine
- Division of Hematology, Department of Medicine, New York University School of Medicine
- Division of Vascular Surgery, Department of Surgery, New York University School of Medicine
| |
Collapse
|
15
|
Vrolijk MF, van Essen H, Opperhuizen A, Bast A, Janssen BJ. Haemodynamic effects of the flavonoid quercetin in rats revisited. Br J Pharmacol 2020; 177:1841-1852. [PMID: 31877232 PMCID: PMC7070173 DOI: 10.1111/bph.14955] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/13/2019] [Accepted: 12/12/2019] [Indexed: 11/30/2022] Open
Abstract
Background and Purpose The flavonoid quercetin increased the in vitro potency of the α1‐antagonist tamsulosin to reduce phenylephrine‐dependent arterial contractions by 10‐fold. To examine if this supplement–drug interaction luxates hypotensive and orthostatic events in vivo, several set of studies were conducted in spontaneously hypertensive (SHR) and normotensive (Wistar Kyoto [WKY]) rats. Experimental Approach First, in rats pretreated with quercetin or its vehicle, responses to phenylephrine and tamsulosin were examined. Second, tamsulosin‐induced changes in renal, mesenteric, hindquarter and carotid conductance were compared in quercetin‐ and vehicle‐treated rats instrumented with Doppler flow probes. Animals were also placed on a tilt table to record regional haemodynamic changes to orthostatic challenges. Third, adult SHR were instrumented with telemeters to measure 24‐hr patterns of BP. Recordings were made before and during a 5‐week oral treatment of quercetin. Finally, pre‐hypertensive SHR were treated with quercetin from 4 to 8 weeks of age and arterial pressure was measured at 8 and 12 weeks. Key Results Pretreatment with quercetin did not influence the responses to phenylephrine and tamsulosin, in neither WKY nor SHR. While tamsulosin treatment and tilting lowered BP and increased conductance in all vascular beds, effect size was not influenced by pretreatment with quercetin. Prolonged treatment with quercetin, in either prehypertensive SHR or adult SHR with established hypertension did not lower BP. Conclusions and Implications Cumulatively, these data demonstrate that quercetin does not amplify haemodynamic effects of tamsulosin or tilting in vivo in rats and has no effect on BP development in SHR.
Collapse
Affiliation(s)
- Misha F Vrolijk
- Department of Pharmacology & Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Faculty of Science and Engineering, Maastricht University Campus Venlo, Venlo, The Netherlands
| | - Helma van Essen
- Department of Pharmacology & Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Antoon Opperhuizen
- Department of Pharmacology & Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Office for Risk Assessment andResearch (BuRO), Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, The Netherlands
| | - Aalt Bast
- Department of Pharmacology & Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Faculty of Science and Engineering, Maastricht University Campus Venlo, Venlo, The Netherlands
| | - Ben J Janssen
- Department of Pharmacology & Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Hossain E, Sarkar O, Li Y, Anand-Srivastava MB. Sodium nitroprusside attenuates hyperproliferation of vascular smooth muscle cells from spontaneously hypertensive rats through the inhibition of overexpression of AT1 receptor, cell cycle proteins, and c-Src/growth factor receptor signaling pathways. Can J Physiol Pharmacol 2020; 98:35-43. [DOI: 10.1139/cjpp-2019-0338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently showed that sodium nitroprusside (SNP), a NO donor, attenuated hypertension in spontaneously hypertensive rats (SHR). Since hypertension is associated with enhanced proliferation and hypertrophy of vascular smooth muscle cells (VSMC), the present study examines whether in vivo treatment of SHR with SNP could also inhibit the augmented proliferation of VSMC and explore the signaling mechanisms. Treatment of 8 week old SHR and Wistar Kyoto rats with SNP twice a week for 2 weeks inhibited the enhanced proliferation of VSMC from SHR, the enhanced expression of angiotensin II type 1 (AT1) receptor, and enhanced activation of c-Src and growth factor receptors and ERK1/2 signaling pathways. In addition, SNP also inhibited the overexpression of cell cycle proteins including cyclins D1, Cdk4, and phosphorylated pRB and restored the downregulated Cdk inhibitors p21Cip1 and p27Kip1 expression towards control levels. Furthermore, SNP-induced inhibition of enhanced levels of the AT1 receptor and enhanced proliferation was reversed by L-NAME, an inhibitor of nitric oxide synthase. These results suggest that the SNP-induced antiproliferative effect may be mediated through the inhibition of enhanced expression of the AT1 receptor, cell cycle proteins and activation of c-Src, growth factor receptors, and MAP kinase signaling.
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Oli Sarkar
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Madhu B. Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
17
|
Brownlee RD, Kass PH, Sammak RL. Blood Pressure Reference Intervals for Ketamine-sedated Rhesus Macaques ( Macaca mulatta). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2020; 59:24-29. [PMID: 31896390 PMCID: PMC6978576 DOI: 10.30802/aalas-jaalas-19-000072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/11/2019] [Accepted: 09/05/2019] [Indexed: 11/05/2022]
Abstract
Appropriate calculation and use of reference intervals have widespread clinical and research implications. Unfortunately, reference intervals for blood pressure in one of the most commonly used NHP species, rhesus macaques (Macaca mulatta), have never been calculated. Although anesthetic drugs and noninvasive methods of blood pressure measurement both have known effects on blood pressure values, their use provides the safest, fastest, and most widely used approach to clinical evaluation and blood pressure collection in this species. We analyzed noninvasive blood pressure measurements from 103 healthy, ketamine-sedated, adult (age, 8 to 16 y) rhesus macaques, representing both sexes, with various body condition scores by using 2 types of sphygmomanometers at 3 different anatomic locations. Reference intervals were calculated for each device, in each location, thus establishing normative data beneficial to clinical veterinarians assessing animal health and encouraging researchers to use noninvasive methods. Age, body condition score, sex, type of sphygmomanometer, and location of cuff placement were all found to influence blood pressure measurements significantly, providing important information necessary for the appropriate interpretation of noninvasive blood pressure values in rhesus macaques.
Collapse
Affiliation(s)
| | | | - Rebecca L Sammak
- California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
18
|
Fontanesi LB, Fazan FS, Dias FJ, Schiavoni MCL, Marques Jr. W, Fazan VPS. Sensory and Motor Conduction Velocity in Spontaneously Hypertensive Rats: Sex and Aging Investigation. Front Syst Neurosci 2019; 13:62. [PMID: 31736720 PMCID: PMC6838635 DOI: 10.3389/fnsys.2019.00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022] Open
Abstract
The literature is extensive on how hypertension affects the morphology and function of the central nervous system (CNS) and is being focused on multiple organ damage involving the kidneys, heart, endothelium and retina. Hypertension damage to the peripheral nervous system is less explored in the literature. We have previously shown morphometric alterations in large and small caliber myelinated fibers of nerves in the adult spontaneously hypertensive rat (SHR). However, the functional correlation of these findings has not been explored. We performed an electrophysiological investigation of hind limb nerves in SHR of both genders in different ages. Normotensive Wistar-Kyoto (WKY) rats were used as controls. Electrophysiological recordings and determination of motor (MCV) and sensory (SCV) nerve conduction velocity were performed in the same animals at four different ages: 5, 8, 20 and 40 weeks after birth. Comparisons were made between ages, genders and animal strain. We showed a continuous body weight increase in adult life in all animals studied. MCV got stable at 20-week old hypertensive animals and continued to increase in normotensive ones. The SCV was constant between the ages of 20 and 40 weeks old in female SHR and decreased in male SHR while it continued to increase in WKY animals. The electrophysiological investigation of the nerves in WKY and SHR from both genders and different ages, associated with morphological and morphometric data from the literature suggest that hypertension affects the nerve function and might corroborate the development of a peripheral neuropathy.
Collapse
Affiliation(s)
- Lucas B. Fontanesi
- Department of Neuroscience and Behavioral Science, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Frederico S. Fazan
- Department of Physiology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Fernando J. Dias
- Department of Integral Dentistry, CICO—Research Center in Dental Sciences, Dental School, Universidad de La Frontera (UFRo), Temuco, Chile
| | - Maria Cristina L. Schiavoni
- Department of Neuroscience and Behavioral Science, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Wilson Marques Jr.
- Department of Neuroscience and Behavioral Science, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Valéria Paula Sassoli Fazan
- Department of Neuroscience and Behavioral Science, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
- Department of Surgery and Anatomy, School of Medicine of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
19
|
Cabral EV, Vieira LD, Sant'Helena BRM, Ribeiro VS, Farias JS, Aires RS, Paz ST, Muzi‐Filho H, Paixão AD, Vieyra A. Alpha‐Tocopherol during lactation and after weaning alters the programming effect of prenatal high salt intake on cardiac and renal functions of adult male offspring. Clin Exp Pharmacol Physiol 2019; 46:1151-1165. [DOI: 10.1111/1440-1681.13161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Edjair V. Cabral
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Leucio D. Vieira
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | | | - Valdilene S. Ribeiro
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Juliane S. Farias
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Regina S. Aires
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
| | - Silvania T. Paz
- Department of Pathology Federal University of Pernambuco Recife Brazil
| | - Humberto Muzi‐Filho
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Carlos Chagas Filho Institute of Biophysics Federal University of Rio de Janeiro Rio de Janeiro Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA Rio de Janeiro Brazil
| | - Ana D. Paixão
- Department of Physiology and Pharmacology Federal University of Pernambuco Recife Brazil
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - Adalberto Vieyra
- National Center of Structural Biology and Bioimaging/CENABIO Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Carlos Chagas Filho Institute of Biophysics Federal University of Rio de Janeiro Rio de Janeiro Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA Rio de Janeiro Brazil
- Graduate Program in Translational Biomedicine/BIOTRANS Grande Rio University Duque de Caxias Brazil
| |
Collapse
|
20
|
do Carmo JM, da Silva AA, Moak SP, da Silva FS, Spradley FT, Hall JE. Role of melanocortin 4 receptor in hypertension induced by chronic intermittent hypoxia. Acta Physiol (Oxf) 2019; 225:e13222. [PMID: 30466186 DOI: 10.1111/apha.13222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 12/23/2022]
Abstract
AIM We previously demonstrated that central nervous system (CNS) melanocortin 4 receptors (MC4R) play a key role in regulating blood pressure (BP) in some conditions associated with increased SNS activity, including obesity. In this study, we examined whether activation of CNS MC4R contributes to chronic intermittent hypoxia (CIH)-induced hypertension and ventilatory responses to hypercapnia. METHODS Rats were instrumented with an intracerebroventricular (ICV) cannula in the lateral cerebral ventricle for continuous infusion of MC4R antagonist (SHU-9119) and telemetry probes for measuring mean arterial pressure (MAP) and heart rate (HR). Untreated and SHU-9119-treated rats as well as obese and lean MC4R-deficient rats were exposed to CIH for 7-18 consecutive days. RESULTS Chronic intermittent hypoxia reduced cumulative food intake by 18 ± 5 g while MAP and HR increased by 10 ± 3 mm Hg and 9 ± 5 bpm in untreated rats. SHU-9119 increased food intake (from 15 ± 1 to 46 ± 3 g) and prevented CIH-induced reduction in food intake. CIH-induced hypertension was not attenuated by MC4R antagonism (average increase of 10 ± 1 vs 9 ± 1 mm Hg for untreated and SHU-9119 treated rats). In obese MC4R-deficient rats, CIH for 7 days raised BP by 11 ± 4 mm Hg. However, when MC4R-deficient rats were food restricted to prevent obesity, CIH-induced hypertension was attenuated by 32%. We also found that MC4R deficiency was associated with impaired ventilatory responses to hypercapnia independently of obesity. CONCLUSION These results show that obesity and the CNS melanocortin system interact in complex ways to elevate BP during CIH and that MC4R may be important in the ventilatory responses to hypercapnia.
Collapse
Affiliation(s)
- Jussara M. do Carmo
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular‐Renal Research Center University of Mississippi Medical Center Jackson Mississippi
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular‐Renal Research Center University of Mississippi Medical Center Jackson Mississippi
- Barão de Mauá University Center Ribeirão Preto Brazil
- Universidade Estadual de Minas Gerais Passos Brazil
| | - Sydney P. Moak
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular‐Renal Research Center University of Mississippi Medical Center Jackson Mississippi
| | - Fernanda S. da Silva
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular‐Renal Research Center University of Mississippi Medical Center Jackson Mississippi
- Barão de Mauá University Center Ribeirão Preto Brazil
| | - Frank T. Spradley
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular‐Renal Research Center University of Mississippi Medical Center Jackson Mississippi
- Department of Surgery University of Mississippi Medical Center Jackson Mississippi
| | - John E. Hall
- Department of Physiology and Biophysics, Mississippi Center for Obesity Research, Cardiovascular‐Renal Research Center University of Mississippi Medical Center Jackson Mississippi
| |
Collapse
|
21
|
Hossain E, Sarkar O, Li Y, Anand-Srivastava MB. Inhibition of overexpression of Giα proteins and nitroxidative stress contribute to sodium nitroprusside-induced attenuation of high blood pressure in SHR. Physiol Rep 2019; 6:e13658. [PMID: 29595917 PMCID: PMC5875540 DOI: 10.14814/phy2.13658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 01/15/2018] [Indexed: 01/08/2023] Open
Abstract
We earlier showed that vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit enhanced expression of Giα proteins which was attributed to the decreased levels of nitric oxide (NO), because elevation of the intracellular levels of NO by NO donors; sodium nitroprusside (SNP) and S-Nitroso-N-acetyl-DL-penicillamine (SNAP), attenuated the enhanced expression of Giα proteins. Since the enhanced expression of Giα proteins is implicated in the pathogenesis of hypertension, the present study was undertaken to investigate if treatment of SHR with SNP could also attenuate the development of high blood pressure (BP) and explore the underlying molecular mechanisms. Intraperitoneal injection of SNP at a concentration of 0.5 mg/kg body weight twice a week for 2 weeks into SHR attenuated the high blood pressure by about 80 mmHg without affecting the BP in WKY rats. SNP treatment also attenuated the enhanced levels of superoxide anion (O2- ), hydrogen peroxide (H2 O2 ), peroxynitrite (ONOO- ), and NADPH oxidase activity in VSMC from SHR to control levels. In addition, the overexpression of different subunits of NADPH oxidase; Nox-1, Nox-2, Nox-4, P22phox , and P47phox , and Giα proteins in VSMC from SHR were also attenuated by SNP treatment. On the other hand, SNP treatment augmented the decreased levels of intracellular NO, eNOS, and cGMP in VSMC from SHR. These results suggest that SNP treatment attenuates the development of high BP in SHR through the elevation of intracellular levels of cGMP and inhibition of the enhanced levels of Giα proteins and nitroxidative stress.
Collapse
Affiliation(s)
- Ekhtear Hossain
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Oli Sarkar
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Yuan Li
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Madhu B Anand-Srivastava
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
22
|
Koszegi S, Molnar A, Lenart L, Hodrea J, Balogh DB, Lakat T, Szkibinszkij E, Hosszu A, Sparding N, Genovese F, Wagner L, Vannay A, Szabo AJ, Fekete A. RAAS inhibitors directly reduce diabetes-induced renal fibrosis via growth factor inhibition. J Physiol 2018; 597:193-209. [PMID: 30324679 PMCID: PMC6312411 DOI: 10.1113/jp277002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Increased activation of the renin-angiotensin-aldosterone system (RAAS) and elevated growth factor production are of crucial importance in the development of renal fibrosis leading to diabetic kidney disease. The aim of this study was to provide evidence for the antifibrotic potential of RAAS inhibitor (RAASi) treatment and to explore the exact mechanism of this protective effect. We found that RAASi ameliorate diabetes-induced renal interstitial fibrosis and decrease profibrotic growth factor production. RAASi prevents fibrosis by acting directly on proximal tubular cells, and inhibits hyperglycaemia-induced growth factor production and thereby fibroblast activation. These results suggest a novel therapeutic indication and potential of RAASi in the treatment of renal fibrosis. ABSTRACT In diabetic kidney disease (DKD) increased activation of renin-angiotensin-aldosterone system (RAAS) contributes to renal fibrosis. Although RAAS inhibitors (RAASi) are the gold standard therapy in DKD, the mechanism of their antifibrotic effect is not yet clarified. Here we tested the antifibrotic and renoprotective action of RAASi in a rat model of streptozotocin-induced DKD. In vitro studies on proximal tubular cells and renal fibroblasts were also performed to further clarify the signal transduction pathways that are directly altered by hyperglycaemia. After 5 weeks of diabetes, male Wistar rats were treated for two more weeks per os with the RAASi ramipril, losartan, spironolactone or eplerenone. Proximal tubular cells were cultured in normal or high glucose (HG) medium and treated with RAASi. Platelet-derived growth factor (PDGF) or connective tissue growth factor (CTGF/CCN2)-induced renal fibroblasts were also treated with various RAASi. In diabetic rats, reduced renal function and interstitial fibrosis were ameliorated and elevated renal profibrotic factors (TGFβ1, PDGF, CTGF/CCN2, MMP2, TIMP1) and alpha-smooth muscle actin (αSMA) levels were decreased by RAASi. HG increased growth factor production of HK-2 cells, which in turn induced activation and αSMA production of fibroblasts. RAASi decreased tubular PDGF and CTGF expression and reduced production of extracellular matrix (ECM) components in fibroblasts. In proximal tubular cells, hyperglycaemia-induced growth factor production increased renal fibroblast transformation, contributing to the development of fibrosis. RAASi, even in non-antihypertensive doses, decreased the production of profibrotic factors and directly prevented fibroblast activation. All these findings suggest a novel therapeutic role for RAASi in the treatment of renal fibrosis.
Collapse
Affiliation(s)
- Sandor Koszegi
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Agnes Molnar
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Lilla Lenart
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Judit Hodrea
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Dora Bianka Balogh
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Tamas Lakat
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Edgar Szkibinszkij
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Adam Hosszu
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| | - Nadja Sparding
- Nordic Bioscience, Biomarkers & Research, Herlev, Denmark.,Biomedical Sciences, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Laszlo Wagner
- Department of Transplantation and Surgery, Semmelweis University, Budapest, Hungary
| | - Adam Vannay
- MTA-SE Paediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Attila J Szabo
- 1st Department of Paediatrics, Semmelweis University, Budapest, Hungary.,MTA-SE Paediatrics and Nephrology Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Andrea Fekete
- MTA-SE "Lendület" Diabetes Research Group, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,1st Department of Paediatrics, Semmelweis University, Budapest, Hungary
| |
Collapse
|
23
|
Beeson JH, Blackmore HL, Carr SK, Dearden L, Duque-Guimarães DE, Kusinski LC, Pantaleão LC, Pinnock AG, Aiken CE, Giussani DA, Fernandez-Twinn DS, Ozanne SE. Maternal exercise intervention in obese pregnancy improves the cardiovascular health of the adult male offspring. Mol Metab 2018; 16:35-44. [PMID: 30293577 PMCID: PMC6157615 DOI: 10.1016/j.molmet.2018.06.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVE Obesity during pregnancy is associated with an elevated risk of cardiovascular disease in the offspring. With increased numbers of women entering pregnancy overweight or obese, there is a requirement for targeted interventions to reduce disease risk in future generations. Using an established murine model of maternal obesity during pregnancy, we investigated if a treadmill exercise intervention in the mother could improve offspring cardiac health and explored potential underlying mechanisms. METHODS A 20-minute treadmill exercise intervention protocol was performed 5 days a week in diet-induced obese female C57BL/6 mice 1 week prior to, and up to E17 of pregnancy. All male offspring were weaned onto a control diet and studied at 8 weeks of age when their cardiovascular physiology was assessed by in vivo echocardiography and non-invasive tail cuff plethysmography. Cardiomyocyte cell area, re-expression of fetal genes and the expression of calcium handling and sympathetic activation proteins were determined. RESULTS At 8 weeks, there was no difference in bodyweight or fat mass between groups. Offspring of obese dams developed pathologic cardiac hypertrophy, hypertension and cardiac dysfunction characterized by reduced ejection fraction (p < 0.001). Maternal exercise prevented cardiac hypertrophy and dysfunction but failed to prevent hypertension. These offspring of exercised dams also had enhanced (p < 0.001) levels of calcium handling proteins and a sympathetic-activated inotropic response. CONCLUSIONS Exercise in obese pregnancy was beneficial to offspring cardiac function and structure but did not influence hypertension suggesting they are programmed by separate mechanistic pathways. These data suggest combination interventions in obese pregnancies will be required to improve all aspects of the cardiovascular health of the next generation.
Collapse
Affiliation(s)
- Jessica H Beeson
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Heather L Blackmore
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Sarah K Carr
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Laura Dearden
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Daniella E Duque-Guimarães
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Laura C Kusinski
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Lucas C Pantaleão
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Adele G Pinnock
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Catherine E Aiken
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK; Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital and NIHR Cambridge Comprehensive Biomedical Research Centre, Box 223, Cambridge, CB2 0SW, UK.
| | - Dino A Giussani
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3EG, UK.
| | - Denise S Fernandez-Twinn
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Susan E Ozanne
- University of Cambridge, Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Level 4, Box 289, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
24
|
Wang S, Azarfar A, Wang Y, Cao Z, Li S. N-carbamylglutamate restores nitric oxide synthesis and attenuates high altitude-induced pulmonary hypertension in Holstein heifers ascended to high altitude. J Anim Sci Biotechnol 2018; 9:63. [PMID: 30186602 PMCID: PMC6120069 DOI: 10.1186/s40104-018-0277-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/03/2018] [Indexed: 02/04/2023] Open
Abstract
Background High-altitude pulmonary hypertension (HAPH) is a life-threating condition for animals in high altitude, and disturbance of endothelial nitric oxide (NO) synthesis contributes to its pathogenesis. N-carbamylglutamate (NCG), which enhances arginine synthesis, promotes endogenous synthesis of NO. In this study, we determined the effects of NCG on alleviating HAPH in Holstein heifers that ascended to Tibet (Lhasa, 3,658 m). Methods Exp. 1, 2,000 Holstein heifers were transported from low elevation (1,027 m) to Lhasa. After being exposed to hypoxia for 1 yr, Holstein heifers were assigned to a healthy group (Control, n = 6) with mean pulmonary hypertension (mPAP) < 41 mmHg, and an HAPH affected group (HAPH, n = 6) with mPAP > 49 mmHg. Lung tissues were collected to evaluate histopathological changes and the expression of endothelial nitric oxide synthase (eNOS). Exp. 2, ten healthy heifers and 10 HAPH affected heifers were supplemented with NCG (20 g/d per heifer) for 4 wk. Physiological parameters were determined and blood samples were collected on d − 1 and d 28 of the feeding trial. Results Expression of eNOS in small pulmonary arteriole intima was higher in the healthy than HAPH group (P = 0.006), whereas HAPH group had significantly thicker media and adventitia than healthy group (all P < 0.05). The mRNA of eNOS and protein level of eNOS were higher in the lungs of heifers in the healthy group than in the HAPH group (both P < 0.001), whereas endothelin-1 protein levels were higher in HAPH group than in the healthy group (P = 0.025). NCG supplementation decreased mPAP and ammonia (both P = 0.001), whereas it increased the expression of eNOS, arginine, and plasma NO (all P < 0.05). Conclusions The expression of eNOS was decreased in Holstein heifers with HAPH. NCG supplementation decreased mPAP through the restoration of eNOS and endogenous NO synthesis. Electronic supplementary material The online version of this article (10.1186/s40104-018-0277-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuxiang Wang
- 1State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Arash Azarfar
- 2Faculty of Agriculture, Department of Animal Science, Lorestan University, PO Box 465, Khorramabad, Iran
| | - Yajing Wang
- 1State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Zhijun Cao
- 1State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Shengli Li
- 1State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
25
|
Comparison of oscillometric, Doppler and invasive blood pressure measurement in anesthetized goats. PLoS One 2018; 13:e0197332. [PMID: 29791515 PMCID: PMC5965870 DOI: 10.1371/journal.pone.0197332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/30/2018] [Indexed: 11/30/2022] Open
Abstract
Arterial blood pressure (BP) can be measured directly using an invasive intra-arterial method. This method is considered a gold standard, however it is potentially hazardous and requires expensive equipment and professional skills. Therefore, two non-invasive methods–Doppler ultrasonic sphygmomanometry and oscillometry–have been introduced in veterinary medicine. Their accuracy has so far been reliably evaluated in various animal species, however only one study included a small group of goats. Therefore, we carried out a large-scale study which aimed to evaluate agreement between the two non-invasive methods and invasive intra-arterial BP measurement in anesthetized goats at various age. The study included 122 goats of two Polish local breeds (Polish White Improved and Polish Fawn Improved): 67 adult females, 35 adult males, and 20 two-month-old female kids. Goats were anesthetized with the intravenous mixture of xylazine and ketamine. BP was measured simultaneously with the three methods in each goat with 7 measurements on average taken. The study showed that according to the criteria of the American College of Veterinary Internal Medicine (ACVIM) oscillometric method yielded BP measurements sufficiently consistent with invasive intra-arterial method in anesthetized adult goats– 95% of oscillometric BP measurements were expected to differ from invasive BP measurements by at most ±20–25 mmHg. The agreement was worse in goat kids–oscillometry significantly overestimated invasive BP measurements, which resulted in highly asymmetrical 95% limits of agreement. Doppler systolic BP very poorly conformed to invasive systolic BP both in adult goats and in kids and all the ACVIM criteria were violated. Concluding, oscillometry, but not Doppler ultrasonic sphygmomanometry, may be regarded as an alternative to invasive BP measurement in large-scale scientific studies involving adult goats, however, individual oscillometric BP measurements should be treated with caution as estimated 95% limits of agreement were wide.
Collapse
|
26
|
Poulsen CB, Wang T, Assersen K, Iversen NK, Damkjaer M. Does mean arterial blood pressure scale with body mass in mammals? Effects of measurement of blood pressure. Acta Physiol (Oxf) 2018; 222:e13010. [PMID: 29210189 DOI: 10.1111/apha.13010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 01/21/2023]
Abstract
For at least the last 30 years, it has been discussed whether mean arterial blood pressure (MAP) is independent of body mass or whether it increases in accordance with the vertical height between the heart and the brain. The debate has centred on the most appropriate mathematical models for analysing allometric scaling and phylogenetic relationships; there has been previously little focus on evaluating the validity of underlying physiological data. Currently, the 2 most comprehensive scaling analyses are based on data from 47 species of mammals, based on 114 references. We reviewed all available references to determine under which physiological conditions MAP had been recorded. In 44 (38.6%) of the cited references, MAP was measured in anaesthetized animals. Data from conscious animals were reported in 59 (51.8%) of references; of these, 3 (2.6%) were radiotelemetric studies. In 5 species, data were reported from both anaesthetized and conscious animals, and the mean difference in the MAP between these settings was 20 ± 29 mm Hg. From a literature search, we identified MAP measurements performed by radiotelemetry in 11 of the 47 species included in the meta-analyses. A Bland-Altman analysis showed a bias of 1 mm Hg with 95% confidence interval (from -35 to 36 mm Hg); that is, the limits of agreement between radiotelemetric studies and studies in restrained animals were double the supposed difference in the MAP between the mouse and elephant. In conclusion, the existing literature does not provide evidence for either a positive or neutral scaling of arterial pressure to body mass across taxa.
Collapse
Affiliation(s)
- C. B. Poulsen
- Department of Cardiology; Regional Hospital West Jutland; Herning Denmark
| | - T. Wang
- Department of Zoophysiology; Aarhus University; Aarhus Denmark
| | - K. Assersen
- Department of Cardiovascular and Renal Research; University of Southern Denmark; Odense Denmark
| | - N. K. Iversen
- Department of Zoophysiology; Aarhus University; Aarhus Denmark
- Center for Functionally Integrative Neuroscience; Institute of Clinical Medicine; Aarhus University; Aarhus C Denmark
| | - M. Damkjaer
- Department of Cardiovascular and Renal Research; University of Southern Denmark; Odense Denmark
- Department of Paediatrics; Kolding Hospital; Kolding Denmark
| |
Collapse
|
27
|
Ahmed M, Azmat A, Khan S. Acute hypotensive and diuretic activities of Berberis vulgaris root bark aqueous extract in normal rats. BRAZ J PHARM SCI 2018. [DOI: 10.1590/s2175-97902017000417077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
28
|
Li T, Yu B, Liu Z, Li J, Ma M, Wang Y, Zhu M, Yin H, Wang X, Fu Y, Yu F, Wang X, Fang X, Sun J, Kong W. Homocysteine directly interacts and activates the angiotensin II type I receptor to aggravate vascular injury. Nat Commun 2018; 9:11. [PMID: 29296021 PMCID: PMC5750214 DOI: 10.1038/s41467-017-02401-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022] Open
Abstract
Hyperhomocysteinemia (HHcy) is a risk factor for various cardiovascular diseases. However, the mechanism underlying HHcy-aggravated vascular injury remains unclear. Here we show that the aggravation of abdominal aortic aneurysm by HHcy is abolished in mice with genetic deletion of the angiotensin II type 1 (AT1) receptor and in mice treated with an AT1 blocker. We find that homocysteine directly activates AT1 receptor signalling. Homocysteine displaces angiotensin II and limits its binding to AT1 receptor. Bioluminescence resonance energy transfer analysis reveals distinct conformational changes of AT1 receptor upon binding to angiotensin II and homocysteine. Molecular dynamics and site-directed mutagenesis experiments suggest that homocysteine regulates the conformation of the AT1 receptor both orthosterically and allosterically by forming a salt bridge and a disulfide bond with its Arg167 and Cys289 residues, respectively. Together, these findings suggest that strategies aimed at blocking the AT1 receptor may mitigate HHcy-associated aneurysmal vascular injuries. High homocysteine plasma levels are associated with cardiovascular diseases. Here, Li and colleagues find that homocysteine aggravates vascular injury by direct binding to the angiotensin II type 1 receptor (AT1R), identifying AT1R inhibition as a potential strategy to counteract the deleterious vascular effects of hyperhomocysteinemia.
Collapse
Affiliation(s)
- Tuoyi Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China.,Capital Normal University High School, Beijing, 100048, China
| | - Bing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Zhixin Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University; Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, 250012, China
| | - Jingyuan Li
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, 19 B, Yuquan Road, Beijing, 100049, China
| | - Mingliang Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University; Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, 250012, China
| | - Yingbao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Mingjiang Zhu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Huiyong Yin
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences (INS), Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, 200031, China
| | - Xiaofeng Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, 19 B, Yuquan Road, Beijing, 100049, China
| | - Yi Fu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Fang Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Xian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China
| | - Xiaohong Fang
- Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinpeng Sun
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University; Key Laboratory Experimental Teratology of the Ministry of Education, Jinan, Shandong, 250012, China. .,School of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, 100191, China.
| |
Collapse
|
29
|
Daugherty A, Tall AR, Daemen MJ, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Circ Res 2017; 121:e53-e79. [DOI: 10.1161/res.0000000000000169] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
30
|
Carek AM, Conant J, Joshi A, Kang H, Inan OT. SeismoWatch: Wearable Cuffless Blood Pressure Monitoring Using Pulse Transit Time. PROCEEDINGS OF THE ACM ON INTERACTIVE, MOBILE, WEARABLE AND UBIQUITOUS TECHNOLOGIES 2017; 1:40. [PMID: 30556049 PMCID: PMC6292433 DOI: 10.1145/3130905] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/01/2017] [Indexed: 10/18/2022]
Abstract
The current norm for measuring blood pressure (BP) at home is using an automated BP cuff based on oscillometry. Despite providing a viable and familiar method of tracking BP at home, oscillometric devices can be both cumbersome and inaccurate with the inconvenience of the hardware typically limiting measurements to once or twice per day. To address these limitations, a wrist-watch BP monitor was developed to measure BP through a simple maneuver: holding the watch against the sternum to detect micro-vibrations of the chest wall associated with the heartbeat. As a pulse wave propagates from the heart to the wrist, an accelerometer and optical sensor on the watch measure the travel time - pulse transit time (PTT) - to estimate BP. In this paper, we conducted a study to test the accuracy and repeatability of our device. After calibration, the diastolic pressure estimations reached a root-mean-square error of 2.9 mmHg. The watch-based system significantly outperformed (p<0.05) conventional pulse arrival time (PAT) based wearable blood pressure estimations - the most commonly used method for wearable BP sensing in the existing literature and commercial devices. Our device can be a convenient means for wearable BP monitoring outside of clinical settings in both health-conscious and hypertensive populations.1.
Collapse
|
31
|
Daugherty A, Tall AR, Daemen MJAP, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP, Rosenfeld ME, Virmani R. Recommendation on Design, Execution, and Reporting of Animal Atherosclerosis Studies: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2017; 37:e131-e157. [PMID: 28729366 DOI: 10.1161/atv.0000000000000062] [Citation(s) in RCA: 250] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Animal studies are a foundation for defining mechanisms of atherosclerosis and potential targets of drugs to prevent lesion development or reverse the disease. In the current literature, it is common to see contradictions of outcomes in animal studies from different research groups, leading to the paucity of extrapolations of experimental findings into understanding the human disease. The purpose of this statement is to provide guidelines for development and execution of experimental design and interpretation in animal studies. Recommendations include the following: (1) animal model selection, with commentary on the fidelity of mimicking facets of the human disease; (2) experimental design and its impact on the interpretation of data; and (3) standard methods to enhance accuracy of measurements and characterization of atherosclerotic lesions.
Collapse
|
32
|
Ueki N, Kanasaki K, Kanasaki M, Takeda S, Koya D. Catechol-O-Methyltransferase Deficiency Leads to Hypersensitivity of the Pressor Response Against Angiotensin II. Hypertension 2017; 69:1156-1164. [DOI: 10.1161/hypertensionaha.117.09247] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/01/2017] [Accepted: 04/04/2017] [Indexed: 11/16/2022]
Abstract
Catechol-O-methyltransferase (COMT) metabolizes 2-hydroxyestradiol into 2-methoxyestradiol (2-ME); COMT deficiency has shown to be associated with hypertension in men and preeclampsia, the disease associated with hypersensitivity of pressor response against angiotensin II (Ang II). Here, we found that COMT deficiency could explain the hypersensitivity of pressor response against Ang II in mice because of the lack of 2-ME–dependent suppression of angiotensin II receptor type 1 (AT1R). Male C57BL/6 mice were subjected to COMT inhibitor (COMTi: 25 mg/kg per day) or oil (control) for 4 weeks, with or without low-dose Ang II infusion (ANGII: 70 ng/kg per minute) for the last 3 weeks. The Ang II–infused mice were treated with 2-ME (10 ng/d) or vehicle for the last 1 week. We obtained the following experimental groups: control, ANGII, COMTi, COMTi+ANGII, and COMTi+ANGII+2-ME. We performed similar experiments using the in vivo administration of small interfering RNA of COMT instead of COMTi. Neither ANGII nor COMTi exhibited significant alterations in systolic blood pressure. Compared with ANGII or COMTi, COMTi+ANGII displayed significantly higher systolic blood pressure, albuminuria, and glomerular endotheliosis; 2-ME normalized such alterations. Similar phenotypes were observed in COMT small interfering RNA–treated mice. In the aorta of COMT-deficient mice, AT1R expression was increased; 2-ME suppressed AT1R expression. The 2-ME exhibited peroxisome proliferator–activated receptor γ agonistic activity in vitro and ex vivo plasma from pregnant female mice as well. In vitro, 2-ME suppressed both basal and Ang II–induced AT1R levels in a peroxisome proliferator–activated receptor γ–dependent manner. The 2-ME is relevant to combat COMT deficiency–associated hypertensive disorders via suppression of AT1R by its peroxisome proliferator–activated receptor γ activity.
Collapse
Affiliation(s)
- Norikazu Ueki
- From the Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan (N.U., S.T.); and Department of Diabetology and Endocrinology (N.U., K.K., M.K., D.K.) and Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (K.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Keizo Kanasaki
- From the Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan (N.U., S.T.); and Department of Diabetology and Endocrinology (N.U., K.K., M.K., D.K.) and Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (K.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Megumi Kanasaki
- From the Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan (N.U., S.T.); and Department of Diabetology and Endocrinology (N.U., K.K., M.K., D.K.) and Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (K.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Satoru Takeda
- From the Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan (N.U., S.T.); and Department of Diabetology and Endocrinology (N.U., K.K., M.K., D.K.) and Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (K.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| | - Daisuke Koya
- From the Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan (N.U., S.T.); and Department of Diabetology and Endocrinology (N.U., K.K., M.K., D.K.) and Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute (K.K., D.K.), Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
33
|
Pitfalls of invasive blood pressure monitoring using the caudal ventral artery in rats. Sci Rep 2017; 7:41907. [PMID: 28198822 PMCID: PMC5304151 DOI: 10.1038/srep41907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
During rodent experiments, the caudal ventral artery (CVA) is useful for blood pressure (BP) measurement. However, CVA measurements may not reflect the true BP. This study was performed to verify the site-specific accuracy of invasive arterial BP monitoring during surgery in rats. Invasive arterial BP was simultaneously measured in rats via the CVA and the common carotid artery (CCA). The BP values were analysed while the rats were subjected to cooling of the head or tail. Additionally, the rats underwent digital subtraction angiography and histological examination of these arteries. The pressure difference was more significant in the tail cooling group than in the head cooling group. Digital subtraction angiography revealed that angiospasms occurred more frequently in the CVA than in the CCA upon cooling. This phenomenon was supported by histological analysis, which showed that the tunica media area was significantly larger in the CVA than in the CCA. CVA pressure is susceptible to environmental changes and may not accurately reflect the true BP without a strictly controlled laboratory environment. Therefore, understanding the pitfalls of this method is necessary to avoid cooling of the tail during BP measurement.
Collapse
|
34
|
Yeung KR, Chiu CL, Pears S, Heffernan SJ, Makris A, Hennessy A, Lind JM. A Cross-Sectional Study of Ageing and Cardiovascular Function over the Baboon Lifespan. PLoS One 2016; 11:e0159576. [PMID: 27427971 PMCID: PMC4948874 DOI: 10.1371/journal.pone.0159576] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022] Open
Abstract
Background Ageing is associated with changes at the molecular and cellular level that can alter cardiovascular function and ultimately lead to disease. The baboon is an ideal model for studying ageing due to the similarities in genetic, anatomical, physiological and biochemical characteristics with humans. The aim of this cross-sectional study was to investigate the changes in cardiovascular profile of baboons over the course of their lifespan. Methods Data were collected from 109 healthy baboons (Papio hamadryas) at the Australian National Baboon Colony. A linear regression model, adjusting for sex, was used to analyse the association between age and markers of ageing with P < 0.01 considered significant. Results Male (n = 49, 1.5–28.5 years) and female (n = 60, 1.8–24.6 years) baboons were included in the study. Age was significantly correlated with systolic (R2 = 0.23, P < 0.001) and diastolic blood pressure (R2 = 0.44, P < 0.001), with blood pressure increasing with age. Age was also highly correlated with core augmentation index (R2 = 0.17, P < 0.001) and core pulse pressure (R2 = 0.30, P < 0.001). Creatinine and urea were significantly higher in older animals compared to young animals (P < 0.001 for both). Older animals (>12 years) had significantly shorter telomeres when compared to younger (<3 years) baboons (P = 0.001). Conclusion This study is the first to demonstrate that cardiovascular function alters with age in the baboon. This research identifies similarities within cardiovascular parameters between humans and baboon even though the length of life differs between the two species.
Collapse
Affiliation(s)
- Kristen R. Yeung
- Western Sydney University, School of Medicine, Sydney, Australia
| | | | - Suzanne Pears
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, Australia
| | - Scott J. Heffernan
- Department of Renal Medicine, Royal Prince Alfred Hospital, Sydney, Australia
| | - Angela Makris
- Western Sydney University, School of Medicine, Sydney, Australia
- The Heart Research Institute, Sydney, Australia
- Nephrology Department, Liverpool Hospital, Sydney, Australia
| | - Annemarie Hennessy
- Western Sydney University, School of Medicine, Sydney, Australia
- The Heart Research Institute, Sydney, Australia
| | - Joanne M. Lind
- Western Sydney University, School of Medicine, Sydney, Australia
- * E-mail:
| |
Collapse
|
35
|
Kato K, Wakai J, Ozawa K, Sekiguchi M, Katahira K. Different sensitivity to the suppressive effects of isoflurane anesthesia on cardiorespiratory function in SHR/Izm, WKY/Izm, and Crl:CD (SD) rats. Exp Anim 2016; 65:393-402. [PMID: 27301719 PMCID: PMC5111842 DOI: 10.1538/expanim.16-0015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Isoflurane is a widely used anesthetic, but its effects with increase in inspired concentration on cardiovascular function have not yet been clarified in rodents. Additionally, there are only a few studies comparing isoflurane-induced cardiorespiratory effects between rat strains. Thus, we investigated the differences in cardiorespiratory responsiveness to increasing concentration of inspired isoflurane in SHR/Izm, WKY/Izm and Crl:CD (SD) rats, by increasing the setting values of vaporizer's dial indicator. The rats were anesthetized with 1.5% isoflurane, and electrocardiograms, blood pressure, and respiratory rate were recorded simultaneously. Thereafter, the inspired concentration was increased stepwise to 2%, 3%, 4%, and 5%, and cardiorespiratory parameters were obtained at each concentration. Under anesthesia at more than 4%, although prolongation of the RR and PR intervals was observed in all strains, shortening of the QTC interval was found only in SHR/Izm rats. From frequency domain analysis of heart rate variability, an increase in LF/HF ratio and a decrease of HF components were observed in SHR/Izm and WKY/Izm rats, respectively, with 5% isoflurane anesthesia. Blood pressure and heart rate were remarkably reduced in SHR/Izm rats at higher concentrations, whereas the reduction was smallest in WKY/Izm rats among the three strains examined. Respiratory rate was inspired concentration-dependently decreased in all strains. These results suggested that SHR/Izm rats are more sensitive to suppressive effects of isoflurane anesthesia on cardiovascular function among these rat strains.
Collapse
Affiliation(s)
- Kouki Kato
- Center for Laboratory Animal Science, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | |
Collapse
|
36
|
Fostering African-American Improvement in Total Health (FAITH!): An Application of the American Heart Association's Life's Simple 7™ among Midwestern African-Americans. J Racial Ethn Health Disparities 2016; 4:269-281. [PMID: 27059054 DOI: 10.1007/s40615-016-0226-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 10/22/2022]
Abstract
OBJECTIVE African-Americans have a strikingly low prevalence of ideal cardiovascular health metrics of the American Heart Association's Life's Simple 7 (LS7). This study was conducted to assess the impact of a community-based cardiovascular disease prevention intervention on the knowledge and achievement of cardiovascular health metrics among a marginalized African-American community. METHODS Adult congregants (n = 37, 70 % women) from three African-American churches in Rochester, MN, participated in the Fostering African-American Improvement in Total Health (FAITH!) program, a theory-based, culturally-tailored, 16-week education series incorporating the American Heart Association's LS7 framework. Feasibility testing included assessments of participant recruitment, program attendance, and retention. We classified participants according to definitions of ideal, intermediate, and poor cardiovascular health based on cardiac risk factors and health behaviors and calculated an LS7 score (range 0 to 14) at baseline and post-intervention. Knowledge of cardiac risk factors was assessed by questionnaire. Main outcome measures were changes in cardiovascular health knowledge and cardiovascular health components related to LS7 from baseline to post-intervention. Psychosocial measures included socioeconomic status, outlook on life, self-reported health, self-efficacy, and family support. RESULTS Thirty-six out of 37 recruited participants completed the entire program including health assessments. Participants attended 63.5 % of the education series and attendance at each session was, on average, 62 % of those enrolled. There was a statistically significant improvement in cardiovascular health knowledge (p < 0.02). A higher percentage of participants meeting either ideal or intermediate LS7 score categories and a lower percentage within the poor category were observed. Higher LS7 scores correlated with higher psychosocial measures ratings. CONCLUSIONS Although small, our study suggests that the FAITH! program is a feasible, community intervention promoting ideal cardiovascular health that has the potential to improve cardiovascular health literacy and LS7 among African-Americans.
Collapse
|
37
|
Bueters RRG, Jeronimus-Klaasen A, Maicas N, Florquin S, van den Heuvel LP, Schreuder MF. The Effects of Early Postnatal Diuretics Treatment on Kidney Development and Long-Term Kidney Function in Wistar Rats. Nephron Clin Pract 2016; 132:110-8. [PMID: 26807737 DOI: 10.1159/000442674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 10/30/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Diuretics are administered to neonates to control fluid balance. We studied whether clinical doses affected kidney development and function and whether extrauterine growth retardation (EUGR) could be a modulator. METHODS Wistar rats were cross-fostered in normal food or food restricted litters at postnatal day (PND) 2 and treated daily with 0.9% NaCl, 5 mg/kg furosemide or 5 mg/kg hydrochlorothiazide (HCTZ) up to PND 8. Kidneys were evaluated on proliferation, apoptosis and a set of mRNA target genes at PND 8, glomerular- and glomerular generation count at PND 35, clinical pathology parameters at 3- and 9 months, neutrophil gelatinase-associated lipocalin at PND 8, 3 and 6 months, monthly blood pressure from 3 months onward and histopathology at study end. RESULTS Treatment with furosemide or HCTZ did not have relevant effects on measured parameters. EUGR resulted in lower body weight from day 3 onwards (-29% at weaning; p < 0.001, -10% at necropsy; p < 0.001), less glomerular generations (4.4 ± 0.32 vs. 5.0 ± 0.423; p = 0.025, males only), decreased glomerular numbers (27,861 ± 3,468 vs. 30,527 ± 4,096; p = 0.026), higher creatinine clearance (0.84 ± 0.1 vs. 0.77 ± 0.09 ml/min/kg; p = 0.047) at 3 months and lower plasma creatinine (25.7 ± 1.8 vs. 27.5 ± 2.8 µmol/l; p = 0.043) at 9 months. CONCLUSION Furosemide and HCTZ did not influence kidney development or function when administered in a clinically relevant dose to rat pups at a stage of ongoing nephrogenesis. EUGR led to impaired kidney development but did not modify furosemide or HCTZ findings.
Collapse
Affiliation(s)
- Ruud R G Bueters
- Department of Pediatric Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
38
|
Lewis R, Curtis JT. Male prairie voles display cardiovascular dipping associated with an ultradian activity cycle. Physiol Behav 2016; 156:106-16. [PMID: 26780151 DOI: 10.1016/j.physbeh.2016.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/22/2015] [Accepted: 01/12/2016] [Indexed: 11/16/2022]
Abstract
Mammals typically display alternating active and resting phases and, in most species, these rhythms follow a circadian pattern. The active and resting phases often are accompanied by corresponding physiological changes. In humans, blood pressure decreases during the resting phase of the activity cycle, and the magnitude of that "nocturnal dipping" has been used to stratify patients according to the risk for cardiovascular disease. However, in contrast to most mammals, prairie voles (Microtus ochrogaster) have periods of activity and rest that follow an ultradian rhythm with period lengths significantly <24h. While rhythmic changes in blood pressure across a circadian activity cycle have been well-documented, blood pressure patterns in species that display ultradian rhythms in activity are less well-studied. In the current study, we implanted pressure-sensitive radiotelemetry devices in male prairie voles and recorded activity, mean arterial pressure (MAP), and heart rate (HR) continuously for 3days. Visualization of the ultradian rhythms was enhanced using a 1h running average to filter the dataset. Positive correlations were found between activity and MAP and between activity and HR. During the inactive period of the ultradian cycle, blood pressure decreased by about 15%, which parallels the nocturnal dipping pattern seen in healthy humans. Further, the duration of inactivity did not affect any of the cardiovascular measures, so the differences in blood pressure values between the active and inactive periods are likely driven by ultradian oscillations in hormones and autonomic function. Finally, specific behavioral patterns also were examined. Both the instrumented animal and his non-instrumented cagemate appeared to show synchronized activity patterns, with both animals displaying sleep-like behavior for more than 90% of the inactive period. We propose that the prairie vole ultradian rhythm in blood pressure is an analogue for circadian blood pressure variability and can be used to study the long-term effects of commonly prescribed drugs on blood pressure dipping.
Collapse
Affiliation(s)
- Robert Lewis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 W. 17th St., Tulsa, OK 74107, United States.
| | - J Thomas Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, 1111 W. 17th St., Tulsa, OK 74107, United States.
| |
Collapse
|
39
|
Estaphan S, Eissa H, Elattar S, Rashed L, Farouk M. A study on the effect of cimetidine and L-carnitine on myoglobinuric acute kidney injury in male rats. Injury 2015; 46:1223-30. [PMID: 25930980 DOI: 10.1016/j.injury.2015.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/16/2015] [Accepted: 03/30/2015] [Indexed: 02/06/2023]
Abstract
Myoglobinuric acute renal failure is the most important life threatening complication of rhabdomyolysis. Iron, free radicals, nitric oxide and cytochrome p450 are involved in the pathogenesis of mARF. The aim of this study is to compare the effect of cimetidine, l-carnitine and both agents together on mARF in rats. Forty rats were divided into 5 groups; group I: control rats, group II: myoglobinuric ARF rats, group III: mARF rats received l-carnitine (200mg/kg, i.p.), group IV: mARF rats received cimetidine (150mg/kg i.p.) and group V: mARF rats received both agents together. 48h after glycerol injection, systolic blood pressure was measured. Urine and blood samples were collected to evaluate urine volume, GFR, BUN, creatinine, K, Na, serum creatine kinase, NO and glutathione levels. Kidney specimens were taken to investigate renal cytochrome p450 and for histological examinations. Cimetidine treatment significantly decreased creatinine, BUN, K, Na, SBP and creatine kinase and increased GFR and urine volume compared to group II. l-carnitine exerted similar changes except for the effect on K and GFR. NO was significantly decreased, while renal glutathione and cytochrome p450 were significantly increased in groups treated with l-carnitine or cimetidine as compared to group II. Combined treatment further improved renal functions, creatine kinase, oxidative stress parameters and SBP as compared to each therapy alone. The histological changes confirmed the biochemical findings. Cimetidine and l-carnitine have protective effects - almost equally - against mARF. Using both agents together, minimises the renal injury.
Collapse
Affiliation(s)
- Suzanne Estaphan
- Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Hassan Eissa
- Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Samah Elattar
- Physiology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Laila Rashed
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| | - Mira Farouk
- Histology Department, Faculty of Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
40
|
Ghadhanfar E, Al-Bader M, Turcani M. Wistar rats resistant to the hypertensive effects of ouabain exhibit enhanced cardiac vagal activity and elevated plasma levels of calcitonin gene-related peptide. PLoS One 2014; 9:e108909. [PMID: 25279791 PMCID: PMC4184851 DOI: 10.1371/journal.pone.0108909] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/28/2014] [Indexed: 01/03/2023] Open
Abstract
Ouabain is a cardiac glycoside produced in the adrenal glands and hypothalamus. It affects the function of all cells by binding to Na+/K+-ATPase. Several lines of evidence suggest that endogenous ouabain could be involved in the pathogenesis of essential (particularly, salt-sensitive) hypertension. However, information regarding the postulated hypertensive effect of the long-term administration of low-dose exogenous ouabain is inconsistent. This study was designed to help settle this controversy through the use of telemetric monitoring of arterial blood pressure and to elucidate the ouabain-induced alterations that could either promote or prevent hypertension. Ouabain (63 and 324 µg/kg/day) was administered subcutaneously to male Wistar rats. Radiotelemetry was used to monitor blood pressure, heart rate and measures of cardiovascular variability and baroreflex sensitivity. The continuous administration of ouabain for 3 months did not elevate arterial blood pressure. The low-frequency power of systolic pressure variability, urinary excretion of catecholamines, and cardiovascular response to restraint stress and a high-salt diet as well as the responsiveness to α1-adrenergic stimulation were all unaltered by ouabain administration, suggesting that the activity of the sympathetic nervous system was not increased. However, surrogate indices of cardiac vagal nerve activity based on heart rate variability were elevated. Molecular remodeling in mesenteric arteries that could support the development of hypertension (increased expression of the genes for the Na+/Ca2+ exchanger and Na+/K+-ATPase α2 isoform) was not evident. Instead, the plasma level of vasodilatory calcitonin gene-related peptide (CGRP) significantly rose from 55 (11, SD) in the control group to 89 (20, SD) pg/ml in the ouabain-treated rats (PTukey's = 18.10(-5)). These data show that long-term administration of exogenous ouabain does not necessarily cause hypertension in rodents. The augmented parasympathetic activity and elevated plasma level of CGRP could be linked to the missing hypertensive effect of ouabain administration.
Collapse
Affiliation(s)
- Elham Ghadhanfar
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Maie Al-Bader
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Marian Turcani
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
41
|
Zeggwagh NA, Michel JB, Eddouks M. Acute hypotensive and diuretic activities of Artemisia herba alba aqueous extract in normal rats. Asian Pac J Trop Biomed 2014. [DOI: 10.12980/apjtb.4.2014apjtb-2014-0136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
42
|
Lim JKH, Nguyen CTO, He Z, Vingrys AJ, Bui BV. The effect of ageing on ocular blood flow, oxygen tension and retinal function during and after intraocular pressure elevation. PLoS One 2014; 9:e98393. [PMID: 24866182 PMCID: PMC4035318 DOI: 10.1371/journal.pone.0098393] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 05/02/2014] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigate the effect of ageing on the recovery of ocular blood flow, intravitreal oxygen tension and retinal function during and after intraocular pressure (IOP) elevation. METHODS Long Evans rats (3- and 14-month-old) underwent acute stepwise IOP elevation from 10 to 120 mmHg (5 mmHg steps each 3 minutes). IOP was then returned to baseline and recovery was monitored for 2 hours. Photopic electroretinograms (ERG) were recorded at each IOP step during stress and at each minute during recovery. Ocular blood flow and vitreal oxygen tension (pO2) were assayed continuously and simultaneously using a combined laser Doppler flow meter (LDF) and an oxygen sensitive fibre-optic probe, respectively. The combined sensor was placed in the vitreous chamber, proximal to the retina. Data were binned into 3 minute intervals during stress and 1 min intervals during recovery. Recovery data was described using a bi-logistic function. RESULTS Rats of both ages showed similar susceptibility to IOP elevation, with pO2 showing a closer relationship to ERG than LDF. During recovery, both ages showed a distinctive two-phased recovery for all three measures with the exception of the LDF in 3-month-old rats, which showed only 1 phase. In all animals, LDF recovered fastest (<1 minute), followed by pO2 (<10 minute) and ERG (>1 hour). 14-month-old rats showed surprisingly faster and greater LDF recovery compared to the younger group, with similar levels of pO2 recovery. However, the ERG in these middle-aged animals did not fully recover after two hours, despite showing no difference in susceptibility to IOP during stress compared to the young group. CONCLUSIONS Young and middle-aged eyes showed similar susceptibility to IOP elevation in terms of pO2, LDF and ERG. Despite this lack of difference during stress, older eyes did not completely recover function, suggesting a more subtle age-related susceptibility to IOP.
Collapse
Affiliation(s)
- Jeremiah K. H. Lim
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Christine T. O. Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Algis J. Vingrys
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Rogers JM, Ellis-Hutchings RG, Grey BE, Zucker RM, Norwood J, Grace CE, Gordon CJ, Lau C. Elevated Blood Pressure in Offspring of Rats Exposed to Diverse Chemicals During Pregnancy. Toxicol Sci 2013; 137:436-46. [DOI: 10.1093/toxsci/kft248] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
44
|
Collett JA, Hart AK, Patterson E, Kretzer J, Osborn JL. Renal angiotensin II type 1 receptor expression and associated hypertension in rats with minimal SHR nuclear genome. Physiol Rep 2013; 1:e00104. [PMID: 24303176 PMCID: PMC3841040 DOI: 10.1002/phy2.104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/06/2013] [Accepted: 09/03/2013] [Indexed: 01/23/2023] Open
Abstract
Angiotensin II (AII) has been linked as a causal factor in several experimental models of hypertension (HT) including Okamoto spontaneously hypertensive rats (SHR). The transmission and expression of AII type 1 receptors (AT1r) in SHR and the development of genetic HT remain unknown. It is hypothesized that tissue-specific expression of renin–angiotensin system (RAS) genes derived from SHR are linked to HT in offspring of SHR crossed with Brown Norway (BN) rats. Hypertensive female progeny of BN/SHR matings was backcrossed with founder BN males to generate the F1 and five backcross generations (BN/SHR-mtSHR). Progeny were phenotyped according to normotension (NT: systolic arterial pressure [SAP] ≤ 124 mmHg), borderline hypertension (BHT: 124 ≤ SAP < 145 mmHg), and HT (SAP ≥ 145 mmHg). Six generations produced more HT (n = 88; 46%) than NT (n = 21; 11%) offspring. The mRNA expression of the RAS was evaluated in NT (n = 20) and HT (n = 20) BN/SHR-mtSHR across several generations. Quantitative real-time polymerase chain reaction analysis of kidney tissue showed increased expression of AII, type 1 receptors (Agtr1a) (∼2.5-fold) in HT versus NT rats, while other members of both the renal and systemic RAS pathway were not different. Western blot analysis from kidney homogenates showed that AT1r protein levels were higher (P < 0.05) in backcross generation 3 (BC3) HT versus NT rats. Evaluation of SAP as a function of AT1r expression by linear regression indicated positive correlation (P < 0.05) in kidney of BC3 BN/SHR-mtSHR rats. Thus, elevated kidney AT1r expression may be involved in the development of HT in BN/SHR-mtSHR rats.
Collapse
Affiliation(s)
- Jason A Collett
- Department of Biology, University of Kentucky Lexington, Kentucky
| | | | | | | | | |
Collapse
|
45
|
Zavaritskaya O, Zhuravleva N, Schleifenbaum J, Gloe T, Devermann L, Kluge R, Mladenov M, Frey M, Gagov H, Fésüs G, Gollasch M, Schubert R. Role of KCNQ channels in skeletal muscle arteries and periadventitial vascular dysfunction. Hypertension 2012. [PMID: 23184384 DOI: 10.1161/hypertensionaha.112.197566] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
KCNQ channels have been identified in arterial smooth muscle. However, their role in vasoregulation and chronic vascular diseases remains elusive. We tested the hypothesis that KCNQ channels contribute to periadventitial vasoregulation in peripheral skeletal muscle arteries by perivascular adipose tissue and that they represent novel targets to rescue periadventitial vascular dysfunction. Two models, spontaneously hypertensive rats and New Zealand obese mice, were studied using quantitative polymerase chain reaction, the patch-clamp technique, membrane potential measurements, myography of isolated vessels, and blood pressure telemetry. In rat Gracilis muscle arteries, anticontractile effects of perivascular fat were inhibited by the KCNQ channel blockers XE991 and linopirdine but not by other selective K(+) channel inhibitors. Accordingly, XE991 and linopirdine blocked noninactivating K(+) currents in freshly isolated Gracilis artery smooth muscle cells. mRNAs of several KCNQ channel subtypes were detected in those arteries, with KCNQ4 channels being dominant. In spontaneously hypertensive rats, the anticontractile effect of perivascular fat in Gracilis muscle arteries was largely reduced compared with Wistar rats. However, the vasodilator effects of KCNQ channel openers and mRNA expression of KCNQ channels were normal. Furthermore, KCNQ channel openers restored the diminished anticontractile effects of perivascular fat in spontaneously hypertensive rats. Moreover, KCNQ channel openers reduced arterial blood pressure in both models of hypertension independent of ganglionic blockade. Thus, our data suggest that KCNQ channels play a pivotal role in periadventitial vasoregulation of peripheral skeletal muscle arteries, and KCNQ channel opening may be an effective mechanism to improve impaired periadventitial vasoregulation and associated hypertension.
Collapse
Affiliation(s)
- Olga Zavaritskaya
- Centre for Biomedicine and Medical Technology Mannheim, Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The association between fructose and increased blood pressure is still incompletely defined, because experimental studies have produced dissimilar conclusions. Amplified vasopressor responses to minimal stimuli and differing responses to fructose in peripheral versus central sites may explain the controversy. Fructose induces systemic hypertension through several mechanisms mainly associated with deleterious effects on target organs (kidney, endothelium, heart) exerted by the byproducts of its metabolism, such as uric acid. The kidney is particularly sensitive to the effects of fructose because high loads of this sugar reach renal tissue. In addition, fructose increases reabsorption of salt and water in the small intestine and kidney; thus the combination of salt and fructose has a synergistic effect in the development of hypertension. Clinical and epidemiologic studies have also linked fructose consumption with hypertension. Further studies are warranted in order to understand the role of fructose in the development of hypertension.
Collapse
|
47
|
Ho D, Zhao X, Gao S, Hong C, Vatner DE, Vatner SF. Heart Rate and Electrocardiography Monitoring in Mice. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2011; 1:123-139. [PMID: 21743842 DOI: 10.1002/9780470942390.mo100159] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The majority of current cardiovascular research involves studies in genetically engineered mouse models. The measurement of heart rate is central to understanding cardiovascular control under normal conditions, with altered autonomic tone, superimposed stress or disease states, both in wild type mice as well as those with altered genes. Electrocardiography (ECG) is the "gold standard" using either hard wire or telemetry transmission. In addition, heart rate is measured or monitored from the frequency of the arterial pressure pulse or cardiac contraction, or by pulse oximetry. For each of these techniques, discussions of materials and methods, as well as advantages and limitations are covered. However, only the direct ECG monitoring will determine not only the precise heart rates but also whether the cardiac rhythm is normal or not.
Collapse
Affiliation(s)
- David Ho
- Department of Cell Biology & Molecular Medicine and the Cardiovascular Research Institute at the University of Medicine & Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, MSB G-609, Newark, NJ 07103, U.S.A
| | | | | | | | | | | |
Collapse
|
48
|
Schuler B, Rettich A, Vogel J, Gassmann M, Arras M. Optimized surgical techniques and postoperative care improve survival rates and permit accurate telemetric recording in exercising mice. BMC Vet Res 2009; 5:28. [PMID: 19646283 PMCID: PMC2727500 DOI: 10.1186/1746-6148-5-28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 08/02/2009] [Indexed: 11/17/2022] Open
Abstract
Background The laboratory mouse is commonly used as a sophisticated model in biomedical research. However, experiments requiring major surgery frequently lead to serious postoperative complications and death, particularly if genetically modified mice with anatomical and physiological abnormalities undergo extensive interventions such as transmitter implantation. Telemetric transmitters are used to study cardiovascular physiology and diseases. Telemetry yields reliable and accurate measurement of blood pressure in the free-roaming, unanaesthetized and unstressed mouse, but data recording is hampered substantially if measurements are made in an exercising mouse. Thus, we aimed to optimize transmitter implantation to improve telemetric signal recording in exercising mice as well as to establish a postoperative care regimen that promotes convalescence and survival of mice after major surgery in general. Results We report an optimized telemetric transmitter implantation technique (fixation of the transmitter body on the back of the mouse with stainless steel wires) for subsequent measurement of arterial blood pressure during maximal exercise on a treadmill. This technique was used on normal (wildtype) mice and on transgenic mice with anatomical and physiological abnormalities due to constitutive overexpression of recombinant human erythropoietin. To promote convalescence of the animals after surgery, we established a regimen for postoperative intensive care: pain treatment (flunixine 5 mg/kg bodyweight, subcutaneously, twice per day) and fluid therapy (600 μl, subcutaneously, twice per day) were administrated for 7 days. In addition, warmth and free access to high energy liquid in a drinking bottle were provided for 14 days following transmitter implantation. This regimen led to a substantial decrease in overall morbidity and mortality. The refined postoperative care and surgical technique were particularly successful in genetically modified mice with severely compromised physiological capacities. Conclusion Recovery and survival rates of mice after major surgery were significantly improved by careful management of postoperative intensive care regimens including key supportive measures such as pain relief, administration of fluids, and warmth. Furthermore, fixation of the blood pressure transmitter provided constant reliable telemetric recordings in exercising mice.
Collapse
Affiliation(s)
- Beat Schuler
- University of Zurich, Vetsuisse Faculty, Institute of Veterinary Physiology, and Zurich Center for Integrative Human Physiology, 8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
Lesniewski LA, Connell ML, Durrant JR, Folian BJ, Anderson MC, Donato AJ, Seals DR. B6D2F1 Mice are a suitable model of oxidative stress-mediated impaired endothelium-dependent dilation with aging. J Gerontol A Biol Sci Med Sci 2009; 64:9-20. [PMID: 19211548 DOI: 10.1093/gerona/gln049] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
To determine if B6D2F1 mice represent a suitable model of oxidative stress-mediated impaired endothelium-dependent dilation (EDD) with aging, mice were studied at 6.9 +/- 0.3 and 31.9 +/- 0.6 months. EDD to acetylcholine (ACh) was 26% (p < .001) and 12% (p < .001) lower, respectively, in isolated carotid (n = 10-11) and femoral (n = 10) arteries from older mice, and reductions in arterial pressure to systemic ACh infusion were smaller in older mice (n = 6-10; p < .01). Nitrotyrosine was marked in aorta of older mice (p < .05, n = 4). Superoxide production in carotid arteries was greater (p < .05), and TEMPOL restored dilation in carotid arteries and systemically in older mice. N(G)-nitro-l-arginine methyl ester (l-NAME) reduced carotid artery dilation in young more than older mice, whereas TEMPOL restored the effects of l-NAME in older mice. Carotid artery stiffness was increased in older compared with young mice (p = .04). Our results provide the first comprehensive evidence that B6D2F1 mice are a useful model for investigating mechanisms of reduced nitric oxide-dependent, oxidative stress-associated EDD and increased arterial stiffness with aging.
Collapse
Affiliation(s)
- Lisa A Lesniewski
- Department of Integrative Physiology, University of Colorado at Boulder, 80309, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Slingerland L, Robben J, Schaafsma I, Kooistra H. Response of cats to familiar and unfamiliar human contact using continuous direct arterial blood pressure measurement. Res Vet Sci 2008; 85:575-82. [DOI: 10.1016/j.rvsc.2007.12.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 12/03/2007] [Accepted: 12/13/2007] [Indexed: 11/30/2022]
|