1
|
Hai Q, Smith JD. Acyl-Coenzyme A: Cholesterol Acyltransferase (ACAT) in Cholesterol Metabolism: From Its Discovery to Clinical Trials and the Genomics Era. Metabolites 2021; 11:metabo11080543. [PMID: 34436484 PMCID: PMC8398989 DOI: 10.3390/metabo11080543] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
The purification and cloning of the acyl-coenzyme A: cholesterol acyltransferase (ACAT) enzymes and the sterol O-acyltransferase (SOAT) genes has opened new areas of interest in cholesterol metabolism given their profound effects on foam cell biology and intestinal lipid absorption. The generation of mouse models deficient in Soat1 or Soat2 confirmed the importance of their gene products on cholesterol esterification and lipoprotein physiology. Although these studies supported clinical trials which used non-selective ACAT inhibitors, these trials did not report benefits, and one showed an increased risk. Early genetic studies have implicated common variants in both genes with human traits, including lipoprotein levels, coronary artery disease, and Alzheimer’s disease; however, modern genome-wide association studies have not replicated these associations. In contrast, the common SOAT1 variants are most reproducibly associated with testosterone levels.
Collapse
|
2
|
Wang X, Guo S, Hu Y, Guo H, Zhang X, Yan Y, Ma J, Li Y, Wang H, He J, Ma R. Microarray analysis of long non-coding RNA expression profiles in low high-density lipoprotein cholesterol disease. Lipids Health Dis 2020; 19:175. [PMID: 32723322 PMCID: PMC7388226 DOI: 10.1186/s12944-020-01348-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022] Open
Abstract
Background Low high-density lipoprotein cholesterol (HDL-C) disease with unknown etiology has a high prevalence in the Xinjiang Kazak population. In this study, long noncoding RNAs (lncRNAs) that might play a role in low HDL-C disease were identified. Methods Plasma samples from 10 eligible individuals with low HDL disease and 10 individuals with normal HDL-C levels were collected. The lncRNA profiles for 20 Xinjiang Kazak individuals were measured using microarray analysis. Results Differentially expressed lncRNAs and mRNAs with fold-change values not less than 1.5 and FDR-adjusted P-values less than 0.05 were screened. Bioinformatic analyses, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses, were used to determine relevant signaling pathways and predict potential target genes. In total, 381 lncRNAs and 370 mRNAs were differentially expressed based on microarray analysis. Compared with those in healthy individuals, several lncRNAs were upregulated or downregulated in patients with low HDL-C disease, among which TCONS_00006679 was most significantly upregulated and TCONS_00011823 was most significantly downregulated. GO and KEGG pathway analyses as well as co-expression networks of lncRNAs and mRNAs revealed that the platelet activation pathway and cardiovascular disease were associated with low HDL-C disease. Conclusions Potential target genes integrin beta-3 (ITGB3) and thromboxane A2 receptor (TBXA2R) were regulated by the lncRNAs AP001033.3–201 and AC068234.2–202, respectively. Both genes were associated with cardiovascular disease and were involved in the platelet activation pathway. AP001033.3–201 and AC068234.2–202 were associated with low HDL-C disease and could play a role in platelet activation in cardiovascular disease. These results reveal the potential etiology of dyslipidemia in the Xinjiang Kazakh population and lay the foundation for further validation using large sample sizes.
Collapse
Affiliation(s)
- Xinping Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Shuxia Guo
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi, China
| | - Yunhua Hu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Heng Guo
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Xianghui Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Yizhong Yan
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Jiaolong Ma
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Yu Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Haixia Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Jia He
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China.
| | - Rulin Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi, China.
| |
Collapse
|
3
|
Wang K, Wu T, Chen Y, Song G, Chen Z. Prognostic Effect of Preoperative Apolipoprotein B Level in Surgical Patients with Clear Cell Renal Cell Carcinoma. Oncol Res Treat 2020; 43:340-345. [PMID: 32554963 DOI: 10.1159/000507964] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND The aim of this study was to assess the prognostic value of the preoperative apolipoprotein B (ApoB) level in surgical patients with clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS The study included 307 ccRCC patients receiving radical or partial nephrectomy between 2003 and 2012 in our center. The correlations among the preoperative ApoB, clinicopathological parameters, and overall survival (OS) were evaluated. RESULTS A total of 193 males (62.9%) and 114 females (37.1%) with ccRCC who underwent radical or partial nephrectomy were enrolled in the present study. The OS at 5 years after the operation was 90.6% for all patients, 87.4% for the lower ApoB group, and 97.0% for the higher-ApoB group. The cause-specific survival (CSS) at 5 years after surgery was 90.2% for all patients, 86.7% for the lower-ApoB group, and 97.0% for the higher-ApoB group. A higher-ApoB level was related to a better OS and CSS in ccRCC patients (p = 0.001 and p < 0.001, respectively). In multivariate analysis, age >60 years (p = 0.008 and p = 0.023) and a lower Apo B level (p = 0.019 and p = 0.018) were independent prognostic factors for OS and CSS, respectively. CONCLUSIONS In the Apo apolipoprotein family, the preoperative ApoB level had an important clinical significance for predicting the prognosis and survival rate of ccRCC patients.
Collapse
Affiliation(s)
- Kun Wang
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Tingchun Wu
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yiming Chen
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanglai Song
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Zhen Chen
- Department of Surgical Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China,
| |
Collapse
|
4
|
Su X, Peng D. The exchangeable apolipoproteins in lipid metabolism and obesity. Clin Chim Acta 2020; 503:128-135. [PMID: 31981585 DOI: 10.1016/j.cca.2020.01.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
Dyslipidemia, characterized by increased plasma levels of low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), triglyceride (TG), and reduced plasma levels of high-density lipoprotein cholesterol (HDL-C), is confirmed as a hallmark of obesity and cardiovascular diseases (CVD), posing serious risks to the future health of humans. Thus, it is important to understand the molecular metabolism of dyslipidemia, which could help reduce the morbidity and mortality of obesity and CVD. Currently, several exchangeable apolipoproteins, such as apolipoprotein A1 (ApoA1), apolipoprotein A5 (ApoA5), apolipoprotein E (ApoE), and apolipoprotein C3 (ApoC3), have been verified to exert vital effects on modulating lipid metabolism and homeostasis both in plasma and in cells, which consequently affect dyslipidemia. In the present review, we summarize the findings of the effect of exchangeable apolipoproteins on affecting lipid metabolism in adipocytes and hepatocytes. Furthermore, we also provide new insights into the mechanisms by which the exchangeable apolipoproteins influence the pathogenesis of dyslipidemia and its related cardio-metabolic disorders.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Daoquan Peng
- Department of Cardiovascular Medicine, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Obirikorang C, Acheampong E, Quaye L, Yorke J, Amos-Abanyie EK, Akyaw PA, Anto EO, Bani SB, Asamoah EA, Batu EN. Association of single nucleotide polymorphisms with dyslipidemia in antiretroviral exposed HIV patients in a Ghanaian population: A case-control study. PLoS One 2020; 15:e0227779. [PMID: 31929604 PMCID: PMC6957303 DOI: 10.1371/journal.pone.0227779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/28/2019] [Indexed: 01/11/2023] Open
Abstract
Dyslipidemia is a potential complication of long-term usage of antiretroviral therapy (ART) and also known to be associated with genetic factors. The host genetic variants associated with dyslipidemia in HIV patients on ART in Ghana have not been fully explored. The study constituted a total of 289 HIV-infected patients on stable ART for at least a year. Fasting blood was collected into EDTA tube for lipids measurement. Lipid profiles were used to define dyslipidemia based on the NCEP-ATP III criteria. HIV-infected subjects were categorized into two groups; those with dyslipidemia (cases) (n = 90; 31.1%) and without dyslipidemia (controls)(n = 199; 68.9%). Four candidate single nucleotide polymorphism (SNP) genes (ABCA1-rs2066714, LDLR-rs6511720, APOA5-rs662799 and DSCAML1-rs10892151) were determined. Genotyping was performed on isolated genomic DNA of study participants using PCR followed by a multiplex ligation detection reaction (LDR). The percentage of the population who had the rare homozygote alleles for rs6511720 (T/T), rs2066714 (G/G), rs10892151 (T/T) and rs662799 (G/G) among case subjects were 5.5%, 14.4%, 6.6% and 10.0% whiles 2.0% 9.1%, 6.5% and 4.0% were observed among control subjects. There were statistically significant differences in the genotypic prevalence of APOA5 (p = 0.0357) and LDLR polymorphisms (p = 0.0387) between case and control subjects. Compared to the AA genotype of the APOA5 polymorphisms, individuals with the rare homozygote genotype [aOR = 2.38, 95%CI(1.06-6.54), p = 0.004] were significantly associated with an increased likelihood of developing dyslipidemia after controlling for age, gender, treatment duration, CD4 counts and BMI. Moreover, individuals with the rare homozygous genotype of ABCA1 (G/G) [aOR = 10.7(1.3-88.7), p = 0.0280] and LDLR (rs6511720) G>T [aOR = 61.2(7.6-493.4), p<0.0001) were more likely to have high levels of total cholesterol levels. Our data accentuate the presence of SNPs in four candidate genes and their association with dyslipidemia among HIV patients exposed to ART in the Ghanaian population, especially variants in APOA5-rs662799 and LDLR rs6511720 respectively. These findings provide baseline information that necessitates a pre-symptomatic strategy for monitoring dyslipidemia in ART-treated HIV patients. There is a need for longitudinal studies to validate a comprehensive number of SNPs and their associations with dyslipidemia.
Collapse
Affiliation(s)
- Christian Obirikorang
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Emmanuel Acheampong
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- School of Medical and Health Science, Edith Cowan University, Joondalup, Australia
| | - Lawrence Quaye
- School of Allied Health Sciences, University of Development Studies, Tamale, Ghana
| | - Joseph Yorke
- Department of Surgery, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Ernestine Kubi Amos-Abanyie
- H3Africa Kidney Disease Research Project, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Priscilla Abena Akyaw
- H3Africa Kidney Disease Research Project, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Enoch Odame Anto
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- School of Medical and Health Science, Edith Cowan University, Joondalup, Australia
| | - Simon Bannison Bani
- School of Allied Health Sciences, University of Development Studies, Tamale, Ghana
| | - Evans Adu Asamoah
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Emmanuella Nsenbah Batu
- Department of Molecular Medicine, School of Medical Science, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
6
|
Pirim D, Radwan ZH, Wang X, Niemsiri V, Hokanson JE, Hamman RF, Feingold E, Bunker CH, Demirci FY, Kamboh MI. Apolipoprotein E-C1-C4-C2 gene cluster region and inter-individual variation in plasma lipoprotein levels: a comprehensive genetic association study in two ethnic groups. PLoS One 2019; 14:e0214060. [PMID: 30913229 PMCID: PMC6435132 DOI: 10.1371/journal.pone.0214060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/12/2019] [Indexed: 01/15/2023] Open
Abstract
The apolipoprotein E-C1-C4-C2 gene cluster at 19q13.32 encodes four amphipathic apolipoproteins. The influence of APOE common polymorphisms on plasma lipid/lipoprotein profile, especially on LDL-related traits, is well recognized; however, little is known about the role of other genes/variants in this gene cluster. In this study, we evaluated the role of common and uncommon/rare genetic variation in this gene region on inter-individual variation in plasma lipoprotein levels in non-Hispanic Whites (NHWs) and African blacks (ABs). In the variant discovery step, the APOE, APOC1, APOC4, APOC2 genes were sequenced along with their flanking and hepatic control regions (HCR1 and HCR2) in 190 subjects with extreme HDL-C/TG levels. The next step involved the genotyping of 623 NHWs and 788 ABs for the identified uncommon/rare variants and common tagSNPs along with additional relevant SNPs selected from public resources, followed by association analyses with lipid traits. A total of 230 sequence variants, including 15 indels were identified, of which 65 were novel. A total of 70 QC-passed variants in NHWs and 108 QC-passed variants in ABs were included in the final association analyses. Single-site association analysis of SNPs with MAF>1% revealed 20 variants in NHWs and 24 variants in ABs showing evidence of association with at least one lipid trait, including several variants exhibiting independent associations from the established APOE polymorphism even after multiple-testing correction. Overall, our study has confirmed known associations and also identified novel associations in this genomic region with various lipid traits. Our data also support the contribution of both common and uncommon/rare variation in this gene region in affecting plasma lipid profile in the general population.
Collapse
Affiliation(s)
- Dilek Pirim
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Faculty of Arts&Science, Uludag University, Gorukle, Bursa, Turkey
| | - Zaheda H Radwan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vipavee Niemsiri
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Richard F Hamman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Clareann H Bunker
- Department of Epidemiology, Graduate School of Public Health, University Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
7
|
Wang X, Guo H, Li Y, Wang H, He J, Mu L, Hu Y, Ma J, Yan Y, Li S, Ding Y, Zhang M, Niu Q, Liu J, Zhang J, Ma R, Guo S. Interactions among genes involved in reverse cholesterol transport and in the response to environmental factors in dyslipidemia in subjects from the Xinjiang rural area. PLoS One 2018; 13:e0196042. [PMID: 29758034 PMCID: PMC5951566 DOI: 10.1371/journal.pone.0196042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/05/2018] [Indexed: 12/26/2022] Open
Abstract
Gene-gene and gene-environment interactions may be partially responsible for dyslipidemia, but studies investigating interactions in the reverse cholesterol transport system (RCT) are limited. We explored these interactions in a Xinjiang rural population by genotyping five SNPs using SNPShot technique in APOA1, ABCA1, and LCAT, which are involved in the RCT (690 patients, 743 controls). We conducted unconditional logistical regression analysis to evaluate associations and generalized multifactor dimensionality reduction to evaluate interactions. Results revealed significant differences in rs670 and rs2292318 allele frequencies between cases and controls (P<0.025). rs670 G allele carriers were more likely to develop dyslipidemia than A allele carriers (OR = 1.315, OR 95% CI: 1.067-2.620; P = 0.010). rs2292318 T allele carriers were more likely to develop dyslipidemia than A allele carriers (OR = 1.264, OR 95% CI: 1.037-1.541; P = 0.020). Gene-gene interaction model APOA1rs670-ABCA1rs1800976-ABCA1rs4149313-LCATrs1109166 (P = 0.0107) and gene-environment interaction model ABCA1rs1800976-ABCA1rs4149313-LCATrs1109166-obesity-smoking were optimal dyslipidemia predictors (P = 0.0107) and can interact (4). Differences in A-C-A-C-A and G-G-G-T-G haplotype frequencies were observed (P<0.05). Serum lipid profiles could be partly attributed to RCT gene polymorphisms. Thus, dyslipidemia is influenced by APOA1, ABCA1, LCAT, environmental factors, and their interactions.
Collapse
Affiliation(s)
- Xinping Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Heng Guo
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Yu Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Haixia Wang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Jia He
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi, China
| | - Lati Mu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Yunhua Hu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Jiaolong Ma
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Yizhong Yan
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Shugang Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Yusong Ding
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Mei Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Qiang Niu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi, China
| | - Jiaming Liu
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Jingyu Zhang
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Rulin Ma
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| | - Shuxia Guo
- Department of Public Health, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
8
|
Paththinige CS, Sirisena ND, Dissanayake V. Genetic determinants of inherited susceptibility to hypercholesterolemia - a comprehensive literature review. Lipids Health Dis 2017; 16:103. [PMID: 28577571 PMCID: PMC5457620 DOI: 10.1186/s12944-017-0488-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 02/08/2023] Open
Abstract
Hypercholesterolemia is a strong determinant of mortality and morbidity associated with cardiovascular diseases and a major contributor to the global disease burden. Mutations in four genes (LDLR, APOB, PCSK9 and LDLRAP1) account for the majority of cases with familial hypercholesterolemia. However, a substantial proportion of adults with hypercholesterolemia do not have a mutation in any of these four genes. This indicates the probability of having other genes with a causative or contributory role in the pathogenesis of hypercholesterolemia and suggests a polygenic inheritance of this condition. Here in, we review the recent evidence of association of the genetic variants with hypercholesterolemia and the three lipid traits; total cholesterol (TC), HDL-cholesterol (HDL-C) and LDL-cholesterol (LDL-C), their biological pathways and the associated pathogenetic mechanisms. Nearly 80 genes involved in lipid metabolism (encoding structural components of lipoproteins, lipoprotein receptors and related proteins, enzymes, lipid transporters, lipid transfer proteins, and activators or inhibitors of protein function and gene transcription) with single nucleotide variants (SNVs) that are recognized to be associated with hypercholesterolemia and serum lipid traits in genome-wide association studies and candidate gene studies were identified. In addition, genome-wide association studies in different populations have identified SNVs associated with TC, HDL-C and LDL-C in nearly 120 genes within or in the vicinity of the genes that are not known to be involved in lipid metabolism. Over 90% of the SNVs in both these groups are located outside the coding regions of the genes. These findings indicates that there might be a considerable number of unrecognized processes and mechanisms of lipid homeostasis, which when disrupted, would lead to hypercholesterolemia. Knowledge of these molecular pathways will enable the discovery of novel treatment and preventive methods as well as identify the biochemical and molecular markers for the risk prediction and early detection of this common, yet potentially debilitating condition.
Collapse
Affiliation(s)
- C S Paththinige
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka.
| | - N D Sirisena
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| | - Vhw Dissanayake
- Human Genetics Unit, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo, 00800, Sri Lanka
| |
Collapse
|
9
|
Yao MH, He J, Ma RL, Ding YS, Guo H, Yan YZ, Zhang JY, Liu JM, Zhang M, Rui DS, Niu Q, Guo SX. Association between Polymorphisms and Haplotype in the ABCA1 Gene and Overweight/Obesity Patients in the Uyghur Population of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:220. [PMID: 26891315 PMCID: PMC4772240 DOI: 10.3390/ijerph13020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study aimed to detect the association between polymorphisms and haplotype in the ATP-binding cassette transporter A1 (ABCA1) gene and overweight/obese Uyghur patients in China. METHODS A total of 259 overweight/obese patients and 276 normal weight subjects, which were randomly selected from among 3049 adult Uyghurs, were matched for age. We genotyped ABCA1 single nucleotide polymorphisms of rs2515602, rs3890182, rs2275542, rs2230806, rs1800976, and rs4149313. RESULTS (1) The genotypic and allelic frequencies of rs2515602 and rs4149313 differed between the control group and case group. The genotypic frequency of rs2275542 also differed between the control group and case group (p < 0.05); (2) rs2515602, rs2230806, and rs4149313 polymorphisms were significantly related to risk of overweight/obese; (3) a significant linkage disequilibrium (LD) was observed between the ABCA1 gene rs2275542 with rs3890182 and rs2515602 with rs4149313. (4) the C-C-C-A-G-G, T-C-G-A-G-G, and T-T-G-G-G-A haplotypes were significant in normal weight and overweight/obese subjects (p < 0.05); (5) the levels of HDL-C (rs2515602, rs2275542, rs4149313) in normal weight subjects were different among the genotypes (p < 0.05); the levels of TC, LDL-C and TG (rs1800976) in overweight/obese subjects were different among the genotypes (p < 0.05). CONCLUSIONS The rs2515602, rs4149313, and rs2275542 polymorphisms were associated with overweight/obese conditions among Uyghurs. Strong LD was noted between rs2275542 with rs3890182 and rs2515602 with rs4149313. The C-C-C-A-G-G and T-C-G-A-G-G haplotypes may serve as risk factors of overweight/obesity among Uyghurs. The T-T-G-G-G-A haplotype may serve as a protective factor of overweight/obesity among Uyghurs. Rs2515602, rs2275542, rs4149313, and rs1800976 polymorphisms in the ABCA1 gene may influence lipid profiles.
Collapse
Affiliation(s)
- Ming-Hong Yao
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jia He
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Ru-Lin Ma
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Yu-Song Ding
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Heng Guo
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Yi-Zhong Yan
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jing-Yu Zhang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jia-Ming Liu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Mei Zhang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Dong-Shen Rui
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Qiang Niu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Shu-Xia Guo
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| |
Collapse
|
10
|
Yao MH, Guo H, He J, Yan YZ, Ma RL, Ding YS, Zhang JY, Liu JM, Zhang M, Li SG, Xu SZ, Niu Q, Ma JL, Guo SX. Interactions of Six SNPs in ABCA1gene and Obesity in Low HDL-C Disease in Kazakh of China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:176. [PMID: 26828509 PMCID: PMC4772196 DOI: 10.3390/ijerph13020176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To detect the interactions between six functional polymorphisms in ABCA1 and obesity in Kazakhs with low HDL-C levels. METHODS A total of 204 patients with low HDL-C and 207 health control subjects, which were randomly selected from among 5692 adult Kazakhs, were matched for age and sex. We genotyped ABCA1 single nucleotide polymorphisms of rs2515602, rs3890182, rs2275542, rs2230806, rs1800976, and rs4149313. RESULTS (1) The genotypic and allelic frequencies of rs2515602, rs2230806 and rs4149313 were different between normal HDL-C and low HDL-C subjects, the genotypic frequency of rs2275542 was also different between normal HDL-C and low HDL-C subjects (p < 0.05); (2) the level of HDL-C (rs2515602 and rs2275542) in normal HDL-C subjects were different among the genotypes (p < 0.05); the levels of TC, LDL-C (rs2515602, rs4149313); TG (rs2515602, rs1800976, rs4149313) in low HDL-C patients were different among the genotypes (p < 0.05); (3) interactions between the rs3890182, rs2275542, rs180096, and rs4149313 polymorphisms in ABCA1 gene and obesity may be associated with low HDL-C disease; (4) the C-C-C-A-A-G, T-C-C-A-A-A, T-C-C-A-A-G, C-C-C-A-A-A, C-T-G-G-A-A, and T-T-C-G-A-A haplotypes were significant between the subjects with normal HDL-C and low HDL-C level (p < 0.05). CONCLUSIONS The differences in serum lipid levels between normal HDL-C and low HDL-C subjects among Kazakhs might partly result from ABCA1 gene polymorphisms; ABCA1 gene polymorphisms may be associated with low HDL-C disease; the low HDL-C disease might partly result from interactions between ABCA1 gene polymorphisms and obesity; the C-C-C-A-A-G, T-C-C-A-A-A, and T-C-C-A-A-G haplotypes may serve as risk factors of low HDL-C disease among Kazakhs, the C-C-C-A-A-A, C-T-G-G-A-A, and T-T-C-G-A-A haplotypes may serve as protective factor of low HDL-C disease among Kazakhs.
Collapse
Affiliation(s)
- Ming-hong Yao
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Heng Guo
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jia He
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Yi-zhong Yan
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Ru-lin Ma
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Yu-song Ding
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jing-yu Zhang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jia-ming Liu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Mei Zhang
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Shu-gang Li
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Shang-zhi Xu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Qiang Niu
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Jiao-long Ma
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| | - Shu-xia Guo
- Department of Public Health and Key Laboratory of Xinjiang Endemic and Ethnic Diseases of the Ministry of Education, Shihezi University School of Medicine, Shihezi 832002, China.
| |
Collapse
|
11
|
UEYAMA CHIKARA, HORIBE HIDEKI, YAMASE YUICHIRO, FUJIMAKI TETSUO, OGURI MITSUTOSHI, KATO KIMIHIKO, ARAI MASAZUMI, WATANABE SACHIRO, MUROHARA TOYOAKI, YAMADA YOSHIJI. Association of FURIN and ZPR1 polymorphisms with metabolic syndrome. Biomed Rep 2015; 3:641-647. [PMID: 26405538 PMCID: PMC4534873 DOI: 10.3892/br.2015.484] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/08/2015] [Indexed: 12/17/2022] Open
Abstract
Although genome-wide association studies (GWASs) have identified various genes and loci in predisposition to metabolic syndrome (MetS) or each component of this condition, the genetic basis of MetS in individuals remains to be identified definitively. The aim of the present study was to examine the possible association of MetS in individuals with 29 polymorphisms that were previously identified as susceptibility loci for coronary artery disease or myocardial infarction by meta-analyses of GWASs. The study population comprised 1,822 subjects with MetS and 1,096 controls. Subjects with MetS had ≥3 of the 5 components of the diagnostic criteria for MetS, whereas control individuals had 0-1 of the 5 components. The genotypes for the 29 polymorphisms were determined by the multiplex bead-based Luminex assay. Comparisons of allele frequencies by the χ2 test revealed that rs17514846 (A→C) of the furin (paired basic amino acid-cleaving enzyme) gene (FURIN; P=0.0006), rs964184 (C→G) of the ZPR1 zinc finger gene (ZPR1; P=0.0078) and rs599839 (G→A) of the proline/serine-rich coiled-coil 1 gene (P=0.0486) were significantly (P<0.05) associated with the prevalence of MetS. Multivariable logistic regression analysis with adjustment for age, gender and smoking status revealed that rs17514846 of FURIN (P=0.0016; odds ratio, 0.76; dominant model) and rs964184 of ZPR1 (P=0.0164; odds ratio, 1.21; dominant model) were significantly associated with MetS. The minor A allele of rs17514846 of FURIN was significantly associated with a decrease in the serum concentration of triglycerides (P=0.0293) and to an increase in the serum concentration of high-density lipoprotein (HDL) cholesterol (P=0.0460). The minor G allele of rs964184 of ZPR1 was significantly associated with increases in the serum concentration of triglycerides (P=6.2×10-9) and fasting plasma glucose level (P=0.0028) and to a decrease in the serum concentration of HDL cholesterol (P=0.0105). FURIN and ZPR1 may thus be susceptibility loci for MetS.
Collapse
Affiliation(s)
- CHIKARA UEYAMA
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507-8522, Japan
| | - HIDEKI HORIBE
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507-8522, Japan
| | - YUICHIRO YAMASE
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507-8522, Japan
| | - TETSUO FUJIMAKI
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Mie 511-0428, Japan
| | - MITSUTOSHI OGURI
- Department of Cardiology, Japanese Red Cross Nagoya First Hospital, Nagoya, Aichi 453-8511, Japan
| | - KIMIHIKO KATO
- Department of Internal Medicine, Meitoh Hospital, Nagoya, Aichi 465-0025, Japan
| | - MASAZUMI ARAI
- Department of Cardiology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - SACHIRO WATANABE
- Department of Cardiology, Gifu Prefectural General Medical Center, Gifu 500-8717, Japan
| | - TOYOAKI MUROHARA
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - YOSHIJI YAMADA
- Department of Human Functional Genomics, Life Science Research Center, Mie University, Tsu, Mie 514-8507, Japan
| |
Collapse
|
12
|
ABE SHINTARO, TOKORO FUMITAKA, MATSUOKA REIKO, ARAI MASAZUMI, NODA TOSHIYUKI, WATANABE SACHIRO, HORIBE HIDEKI, FUJIMAKI TETSUO, OGURI MITSUTOSHI, KATO KIMIHIKO, MINATOGUCHI SHINYA, YAMADA YOSHIJI. Association of genetic variants with dyslipidemia. Mol Med Rep 2015; 12:5429-36. [DOI: 10.3892/mmr.2015.4081] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 06/06/2015] [Indexed: 11/06/2022] Open
|
13
|
Pirim D, Wang X, Radwan ZH, Niemsiri V, Bunker CH, Barmada MM, Kamboh MI, Demirci FY. Resequencing of LPL in African Blacks and associations with lipoprotein-lipid levels. Eur J Hum Genet 2015; 23:1244-53. [PMID: 25626708 PMCID: PMC4538195 DOI: 10.1038/ejhg.2014.268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 10/24/2014] [Accepted: 11/09/2014] [Indexed: 01/15/2023] Open
Abstract
Genome-wide association studies have identified several loci associated with plasma lipid levels but those common variants together account only for a small proportion of the genetic variance of lipid traits. It has been hypothesized that the remaining heritability may partly be explained by rare variants with strong effect sizes. Here, we have comprehensively investigated the associations of both common and uncommon/rare variants in the lipoprotein lipase (LPL) gene in relation to plasma lipoprotein-lipid levels in African Blacks (ABs). For variant discovery purposes, the entire LPL gene and flanking regions were resequenced in 95 ABs with extreme high-density lipoprotein cholesterol (HDL-C) levels. A total of 308 variants were identified, of which 64 were novel. Selected common tagSNPs and uncommon/rare variants were genotyped in the entire sample (n=788), and 126 QC-passed variants were evaluated for their associations with lipoprotein-lipid levels by using single-site, haplotype and rare variant (SKAT-O) association analyses. We found eight not highly correlated (r(2)<0.40) signals (rs1801177:G>A, rs8176337:G>C, rs74304285:G>A, rs252:delA, rs316:C>A, rs329:A>G, rs12679834:T>C, and rs4921684:C>T) nominally (P<0.05) associated with lipid traits (HDL-C, LDL-C, ApoA1 or ApoB levels) in our sample. The most significant SNP, rs252:delA, represented a novel association observed with LDL-C (P=0.002) and ApoB (P=0.012). For TG and LDL-C, the haplotype analysis was more informative than the single-site analysis. The SKAT-O analysis revealed that the bin (group) containing 22 rare variants with MAF≤0.01 exhibited nominal association with TG (P=0.039) and LDL-C (P=0.027). Our study indicates that both common and uncommon/rare LPL variants/haplotypes may affect plasma lipoprotein-lipid levels in general African population.
Collapse
Affiliation(s)
- Dilek Pirim
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xingbin Wang
- 1] Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA [2] Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zaheda H Radwan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vipavee Niemsiri
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Clareann H Bunker
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Michael Barmada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Radwan ZH, Wang X, Waqar F, Pirim D, Niemsiri V, Hokanson JE, Hamman RF, Bunker CH, Barmada MM, Demirci FY, Kamboh MI. Comprehensive evaluation of the association of APOE genetic variation with plasma lipoprotein traits in U.S. whites and African blacks. PLoS One 2014; 9:e114618. [PMID: 25502880 PMCID: PMC4264772 DOI: 10.1371/journal.pone.0114618] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 11/11/2014] [Indexed: 01/23/2023] Open
Abstract
Although common APOE genetic variation has a major influence on plasma LDL-cholesterol, its role in affecting HDL-cholesterol and triglycerides is not well established. Recent genome-wide association studies suggest that APOE also affects plasma variation in HDL-cholesterol and triglycerides. It is thus important to resequence the APOE gene to identify both common and uncommon variants that affect plasma lipid profile. Here, we have sequenced the APOE gene in 190 subjects with extreme HDL-cholesterol levels selected from two well-defined epidemiological samples of U.S. non-Hispanic Whites (NHWs) and African Blacks followed by genotyping of identified variants in the entire datasets (623 NHWs, 788 African Blacks) and association analyses with major lipid traits. We identified a total of 40 sequence variants, of which 10 are novel. A total of 32 variants, including common tagSNPs (≥5% frequency) and all uncommon variants (<5% frequency) were successfully genotyped and considered for genotype-phenotype associations. Other than the established associations of APOE*2 and APOE*4 with LDL-cholesterol, we have identified additional independent associations with LDL-cholesterol. We have also identified multiple associations of uncommon and common APOE variants with HDL-cholesterol and triglycerides. Our comprehensive sequencing and genotype-phenotype analyses indicate that APOE genetic variation impacts HDL-cholesterol and triglycerides in addition to affecting LDL-cholesterol.
Collapse
Affiliation(s)
- Zaheda H. Radwan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xingbin Wang
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fahad Waqar
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Dilek Pirim
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vipavee Niemsiri
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John E. Hokanson
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Richard F. Hamman
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Clareann H. Bunker
- Department of Epidemiology, Graduate School of Public Health, University Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Michael Barmada
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - F. Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - M. Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
15
|
Braun TR, Been LF, Singhal A, Worsham J, Ralhan S, Wander GS, Chambers JC, Kooner JS, Aston CE, Sanghera DK. A replication study of GWAS-derived lipid genes in Asian Indians: the chromosomal region 11q23.3 harbors loci contributing to triglycerides. PLoS One 2012; 7:e37056. [PMID: 22623978 PMCID: PMC3356398 DOI: 10.1371/journal.pone.0037056] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 04/17/2012] [Indexed: 01/08/2023] Open
Abstract
Recent genome-wide association scans (GWAS) and meta-analysis studies on European populations have identified many genes previously implicated in lipid regulation. Validation of these loci on different global populations is important in determining their clinical relevance, particularly for development of novel drug targets for treating and preventing diabetic dyslipidemia and coronary artery disease (CAD). In an attempt to replicate GWAS findings on a non-European sample, we examined the role of six of these loci (CELSR2-PSRC1-SORT1 rs599839; CDKN2A-2B rs1333049; BUD13-ZNF259 rs964184; ZNF259 rs12286037; CETP rs3764261; APOE-C1-C4-C2 rs4420638) in our Asian Indian cohort from the Sikh Diabetes Study (SDS) comprising 3,781 individuals (2,902 from Punjab and 879 from the US). Two of the six SNPs examined showed convincing replication in these populations of Asian Indian origin. Our study confirmed a strong association of CETP rs3764261 with high-density lipoprotein cholesterol (HDL-C) (p = 2.03×10(-26)). Our results also showed significant associations of two GWAS SNPs (rs964184 and rs12286037) from BUD13-ZNF259 near the APOA5-A4-C3-A1 genes with triglyceride (TG) levels in this Asian Indian cohort (rs964184: p = 1.74×10(-17); rs12286037: p = 1.58×10(-2)). We further explored 45 SNPs in a ∼195 kb region within the chromosomal region 11q23.3 (encompassing the BUD13-ZNF259, APOA5-A4-C3-A1, and SIK3 genes) in 8,530 Asian Indians from the London Life Sciences Population (LOLIPOP) (UK) and SDS cohorts. Five more SNPs revealed significant associations with TG in both cohorts individually as well as in a joint meta-analysis. However, the strongest signal for TG remained with BUD13-ZNF259 (rs964184: p = 1.06×10(-39)). Future targeted deep sequencing and functional studies should enhance our understanding of the clinical relevance of these genes in dyslipidemia and hypertriglyceridemia (HTG) and, consequently, diabetes and CAD.
Collapse
Affiliation(s)
- Timothy R. Braun
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Latonya F. Been
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Akhil Singhal
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jacob Worsham
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Sarju Ralhan
- Section of Cardiology, Hero Dayanand Medical College and Hospital Heart Institute, Ludhiana, Punjab, India
| | - Gurpreet S. Wander
- Section of Cardiology, Hero Dayanand Medical College and Hospital Heart Institute, Ludhiana, Punjab, India
| | - John C. Chambers
- Department of Epidemiology and Biostatistics, Imperial College London, London, United Kingdom
| | - Jaspal S. Kooner
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Christopher E. Aston
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Dharambir K. Sanghera
- Department of Pediatrics, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
16
|
Apolipoprotein A1/C3/A5 haplotypes and serum lipid levels. Lipids Health Dis 2011; 10:140. [PMID: 21854571 PMCID: PMC3170230 DOI: 10.1186/1476-511x-10-140] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 08/19/2011] [Indexed: 01/08/2023] Open
Abstract
Background The association of single nucleotide polymorphisms (SNPs) in the apolipoprotein (Apo) A1/C3/A4/A5 gene cluster and serum lipid profiles is inconsistent. The present study was undertaken to detect the association between the ApoA1/C3/A5 gene polymorphisms and their haplotypes with serum lipid levels in the general Chinese population. Methods A total of 1030 unrelated subjects (492 males and 538 females) aged 15-89 were randomly selected from our previous stratified randomized cluster samples. Genotyping of the ApoA1 -75 bp G>A, ApoC3 3238C>G, ApoA5 -1131T>C, ApoA5 c.553G>T and ApoA5 c.457G>A was performed by polymerse chain reaction and restriction fragment length polymorphism combined with gel electrophoresis, and then confirmed by direct sequencing. Pair-wise linkage disequilibria and haplotype analysis among the five SNPs were estimated. Results The levels of high-density lipoprotein cholesterol (HDL-C) and ApoA1 were lower in males than in femailes (P < 0.05 for each). The allelic and genotypic frequencies of the SNPs were no significant difference between males and females except ApoC3 3238C>G. There were 11 haplotypes with a frequency >1% identified in the cluster in our population. At the global level, the haplotypes comprised of all five SNPs were significantly associated with all seven lipid traits. In particular, haplotype G-G-C-C-A (6%; in the order of ApoA5 c.553G>T, ApoA5 c.457G>A, ApoA5 -1131T>C, ApoC3 3238C>G, and ApoA1 -75bp G>A) and G-A-T-C-G (4%) showed consistent association with total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), ApoA1, ApoB, and the ApoA1/ApoB ratio. In addition, carriers of haplotype G-G-T-C-G (26%) had increased serum concentration of HDL-C and ApoA1, whereas carriers of G-G-C-G-G (15%) had high concentrations of TC, triglyceride (TG) and ApoB. We also found that haplotypes with five SNPs explain much more serum lipid variation than any single SNP alone, especially for TG (4.4% for haplotype vs. 2.4% for -1131T>C max based on R-square) and HDL-C (5.1% for haplotype vs. 0.9% for c.553G>T based on R-square). Serum lipid parameters were also correlated with genotypes and several environment factors. Conclusions Several common SNPs and their haplotypes in the ApoA1/C3/A5 gene cluster are closely associated with modifications of serum lipid parameters in the general Chinese population.
Collapse
|
17
|
Greenawalt DM, Dobrin R, Chudin E, Hatoum IJ, Suver C, Beaulaurier J, Zhang B, Castro V, Zhu J, Sieberts SK, Wang S, Molony C, Heymsfield SB, Kemp DM, Reitman ML, Lum PY, Schadt EE, Kaplan LM. A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort. Genome Res 2011; 21:1008-16. [PMID: 21602305 DOI: 10.1101/gr.112821.110] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
To map the genetics of gene expression in metabolically relevant tissues and investigate the diversity of expression SNPs (eSNPs) in multiple tissues from the same individual, we collected four tissues from approximately 1000 patients undergoing Roux-en-Y gastric bypass (RYGB) and clinical traits associated with their weight loss and co-morbidities. We then performed high-throughput genotyping and gene expression profiling and carried out a genome-wide association analyses for more than 100,000 gene expression traits representing four metabolically relevant tissues: liver, omental adipose, subcutaneous adipose, and stomach. We successfully identified 24,531 eSNPs corresponding to about 10,000 distinct genes. This represents the greatest number of eSNPs identified to our knowledge by any study to date and the first study to identify eSNPs from stomach tissue. We then demonstrate how these eSNPs provide a high-quality disease map for each tissue in morbidly obese patients to not only inform genetic associations identified in this cohort, but in previously published genome-wide association studies as well. These data can aid in elucidating the key networks associated with morbid obesity, response to RYGB, and disease as a whole.
Collapse
|
18
|
Sáez ME, González-Pérez A, Martínez-Larrad MT, Gayán J, Real LM, Serrano-Ríos M, Ruiz A. WWOX gene is associated with HDL cholesterol and triglyceride levels. BMC MEDICAL GENETICS 2010; 11:148. [PMID: 20942981 PMCID: PMC2967537 DOI: 10.1186/1471-2350-11-148] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 10/14/2010] [Indexed: 01/22/2023]
Abstract
Background Altered lipid profile, and in particular low HDL and high triglyceride (TG) plasma levels, are within the major determinants of cardiovascular diseases. The identification of quantitative trait loci (QTL) affecting these lipid levels is a relevant issue for predictive purposes. The WWOX gene has been recently associated with HDL levels. This gene is located at chromosome 16q23, a region previously linked to familial combined hyperlipidemia (FCHL) and HDL. Our objective is to perform a genetic association analysis at the WWOX gene region with HDL, TG and TG/HDL ratio. Methods A quantitative association analysis performed in 801 individuals selected from the Spanish general population. Results For HDL levels, two regions of intron 8 display clustering of positive signals (p < 0.05) but none of them was associated in the haplotypic analysis (0.07 ≤ p ≤ 0.165). For TG levels not only intron 8 but also a 27 kb region spanning from the promoter region to intron 4 are associated in this study. For the TG/HDL genetic association analysis, positive signals are coincident with those of the isolated traits. Interestingly, haplotypic analysis at the 5' region showed that variation in this region modified both HDL and TG levels, especially the latter (p = 0.003). Conclusions Our results suggest that WWOX is a QTL for both TG and HDL.
Collapse
Affiliation(s)
- María E Sáez
- Departamento de Genómica Estructural, Neocodex, 41092 Sevilla, Spain.
| | | | | | | | | | | | | |
Collapse
|
19
|
Lu Y, Feskens EJM, Boer JMA, Imholz S, Verschuren WMM, Wijmenga C, Vaarhorst A, Slagboom E, Müller M, Dollé MET. Exploring genetic determinants of plasma total cholesterol levels and their predictive value in a longitudinal study. Atherosclerosis 2010; 213:200-5. [PMID: 20832063 DOI: 10.1016/j.atherosclerosis.2010.08.053] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/06/2010] [Accepted: 08/08/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND Plasma total cholesterol (TC) levels are highly genetically determined. Although ample evidence of genetic determination of separate lipoprotein cholesterol levels has been reported, using TC level directly as a phenotype in a relatively large broad-gene based association study has not been reported to date. METHODS AND RESULTS We genotyped 361 single nucleotide polymorphisms (SNPs) across 243 genes based on pathways potentially relevant to cholesterol metabolism in 3575 subjects that were examined thrice over 11 years. Twenty-three SNPs were associated with TC levels after adjustment for multiple testing. We used 12 of them (rs7412 and rs429358 in APOE, rs646776 in CELSR2, rs1367117 in APOB, rs6756629 in ABCG5, rs662799 in APOA5, rs688 in LDLR, rs10889353 in DOCK7, rs2304130 in NCAN, rs3846662 in HMGCR, rs2275543 in ABCA1, rs7275 in SMARCA4) that were confirmed in previous candidate association or genome-wide-association studies to define a gene risk score (GRS). Average TC levels increased from 5.23 ± 0.82 mmol/L for those with 11 or less cholesterol raising alleles to 6.03 ± 1.11 mmol/L for those with 18 or more (P for trend<0.0001). The association with TC levels was slightly stronger when the weighted GRS that weighted the magnitude of allelic effects was used. CONCLUSION A panel of common genetic variants in the genes pivotal in cholesterol metabolism could possibly help identify those people who are at risk of high cholesterol levels.
Collapse
Affiliation(s)
- Yingchang Lu
- Division of Human Nutrition, Wageningen University and Research Center, PO Box 8129, 6700 EV Wageningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jeannesson E, Siest G, Zaiou M, Berrahmoune H, Masson C, Visvikis-Siest S. Genetic profiling of human cell lines used as in vitro model to study cardiovascular pathophysiology and pharmacotoxicology. Cell Biol Toxicol 2009; 25:561-571. [PMID: 19067187 DOI: 10.1007/s10565-008-9112-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 11/12/2008] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cell lines are widely used to monitor drug pharmacokinetics and pharmacodynamics and to investigate a number of biochemical mechanisms. However, little is known about the genetic profile of these in vitro models. OBJECTIVES To analyze genetic profile of Thp1, U937, HL60, K562, HepG2, Kyn2, and Caco2 human cell lines with a focus on genetic variations within genes involved in the development of cardiovascular pathologies and drug treatment response. METHODS Multiplex polymerase chain reaction (PCR), PCR-restriction fragment length polymorphism and TaqMan assays were used to genotype 120 polymorphisms within 68 genes previously shown to be involved in various processes such as inflammation, lipid metabolism, and blood pressure. RESULTS We provide here a list of potential polymorphisms known to be associated with cardiovascular disease. Our results show that the seven cell lines examined carry several of these mutations within genes of interest. Due to the abundance of these variations, only two examples will be given in this abstract. For instance, U937 cells are homozygous for APOE varepsilon4, a mutant associated with higher susceptibility to cardiovascular diseases and lower response to statins. Our study also showed that deletion in intron 16 of the ACE gene, which is associated with susceptibility to hypertension and variation of response to ACE inhibitors, can be found in all considered cells but Kyn2 cells. CONCLUSION We provide here a data bank of different cell lines genetic profile. In our opinion, this useful information may bring insights into the design and choice of an adequate in vitro model and may help to explain mysterious discrepancies in data from different laboratories.
Collapse
Affiliation(s)
- Elise Jeannesson
- Equipe Génétique Cardiovasculaire, INSERM, CIC 9501, Nancy, 54000, France
| | | | | | | | | | | |
Collapse
|
21
|
Lu Y, Feskens EJM, Boer JMA, Müller M. The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population. Atherosclerosis 2009; 210:14-27. [PMID: 19932478 DOI: 10.1016/j.atherosclerosis.2009.10.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/22/2009] [Accepted: 10/26/2009] [Indexed: 01/10/2023]
Abstract
The liver is currently known to be the major organ to eliminate excess cholesterol from our body. It accomplishes this function in two ways: conversion of cholesterol molecules into bile acids (BAs) and secretion of unesterified cholesterol molecules into bile. BAs are synthesized in the hepatocytes, secreted into bile and delivered to the lumen of the small intestine where they act as detergents to facilitate absorption of fats and fat-soluble vitamins. About 95% of BAs are recovered in the ileum during each cycle of the enterohepatic circulation. Five percent are lost and replaced by newly synthesized BAs, which amounts to approximately 500 mg/day in adult humans. In contrast to the efficiency of the BAs' enterohepatic circulation, 50% of the 1000 mg of cholesterol secreted daily into bile is lost in feces. It is known that rare human mutations in certain genes in bile acid and bile metabolic pathway influence blood cholesterol levels. With the recent success of genome-wide association studies, we are convinced that common genetic variants also play a role in the genetic architecture of plasma lipid traits. In this review, we summarized the current state of knowledge about genetic variations in bile acid and bile metabolic pathway, and assessed their impact on blood cholesterol levels and cholesterol metabolic kinetics in the population.
Collapse
Affiliation(s)
- Yingchang Lu
- Division of Human Nutrition, Wageningen University and Research Center, PO Box 8129, 6700 EV Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Golledge J, Biros E, Cooper M, Warrington N, Palmer LJ, Norman PE. Apolipoprotein E genotype is associated with serum C-reactive protein but not abdominal aortic aneurysm. Atherosclerosis 2009; 209:487-91. [PMID: 19818961 DOI: 10.1016/j.atherosclerosis.2009.09.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/10/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Apolipoprotein E (ApoE) genotype has been associated with systemic inflammation and athero-thrombosis however the association with abdominal aortic aneurysm (AAA) has not been previously examined. We assessed the association between ApoE genotype with AAA presence and growth, and serum C-reactive protein (CRP). METHODS Serum concentrations of CRP (in 1358 men) and 6 single nucleotide polymorphisms (SNPs) for ApoE (in 1711 men) were examined in subjects from the Health In Men Study. 640 men with small AAAs were followed by ultrasound surveillance for a mean of 4.1 years. RESULTS There was no association between ApoE genotype and AAA presence. Men heterozygote for the ApoE p.Arg176Cys polymorphism had slower AAA growth, odds ratio for AAA progression> or =median 0.41, 95% confidence intervals 0.21-0.80, p=0.01. Men heterozygote for the ApoE g.50093756A>G polymorphism had slightly more rapid AAA growth, odds ratio for AAA progression> or =median 1.48, 95% confidence intervals 1.02-2.14, p=0.04. None of the ApoE SNPs were associated with AAA growth however taking into account multiple testing. Two SNPs in ApoE were associated with serum CRP under a co-dominant model, ApoE p.Cys130Arg (SNP ID rs429358), p=0.00003 and ApoE g.50114786A>G (SNP ID rs4420638), p=0.00013. Adjusting for other risk factors plus serum creatinine the varepsilon4 allele was associated with lower serum CRP under a dominant model, coefficient 0.089, p=0.002. CONCLUSION We found no consistent association between ApoE genotype and AAA. We confirmed an association between ApoE genotype and serum CRP.
Collapse
Affiliation(s)
- Jonathan Golledge
- Vascular Biology Unit, School of Medicine, James Cook University, Townsville, Queensland 4811, Australia.
| | | | | | | | | | | |
Collapse
|
23
|
Interactions among genetic variants from SREBP2 activating-related pathway on risk of coronary heart disease in Chinese Han population. Atherosclerosis 2009; 208:421-6. [PMID: 19740467 DOI: 10.1016/j.atherosclerosis.2009.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 06/07/2009] [Accepted: 08/09/2009] [Indexed: 11/20/2022]
Abstract
Sterol regulatory element binding proteins (SREBPs), as a family of membrane-bound transcription factors, control the metabolism of cholesterol and fatty acids. We conducted a case-control study to investigate whether the common variants of genes from the SREBP2 activating-related pathway, involving SREBP2, SCAP, INSIG1 and INSIG2 genes, were associated with coronary heart disease (CHD) of Chinese Han population individually or interactively. Three, four and two single nucleotide polymorphisms (SNPs) from the INSIG1, INSIG2 and SCAP genes were chosen as haplotype-tagging SNPs (htSNPs), respectively, and one nonsynonymous coding SNP was selected from SREBP2. All of the SNPs were genotyped in 853 CHD cases and 948 unrelated control subjects. The interactions among SNPs of the four genes were evaluated with multifactor-dimensionality reduction (MDR) and logistic regression models (LRM). The results from MDR indicated that there existed the SNP-SNP interactive effect of INSIG1 gene on CHD (best prediction accuracy=56.09%, p=0.002 on 1000 permutations). The results from LRM also identified the 2-locus interaction model (adjusted p< or =0.001 for interaction) as well as the 3-locus gene-gene interaction (adjusted p=0.026 for interaction). Single polymorphism analysis showed that the rs4822063 of SREBP2 was associated with LDL-C in the controls. The genotype CC carriers had higher LDL-C than the major allele G carriers (3.44+/-0.90 mmol/L versus 3.17+/-0.84 mmol/L, adjusted p=0.038). Our results suggested that the INSIG1 gene was associated with CHD; there might be potential interactive effect on CHD among genes from SREBP2 activating-related pathway; and the SREBP2 gene might be associated with plasma lipid level.
Collapse
|
24
|
Frikke-Schmidt R. Genetic variation in the ABCA1 gene, HDL cholesterol, and risk of ischemic heart disease in the general population. Atherosclerosis 2009; 208:305-16. [PMID: 19596329 DOI: 10.1016/j.atherosclerosis.2009.06.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/23/2009] [Accepted: 06/02/2009] [Indexed: 12/13/2022]
Abstract
Epidemiological studies consistently demonstrate a strong inverse association between low levels of high-density lipoprotein (HDL) cholesterol and increased risk of ischemic heart disease (IHD). This review focuses on whether both rare and common genetic variation in ABCA1 contributes to plasma levels of HDL cholesterol and to risk of IHD in the general population, and further seeks to understand whether low levels of HDL cholesterol per se are causally related to IHD. Studies of the ABCA1 gene demonstrate a general strategy for detecting functional genetic variants, and show that both common and rare ABCA1 variants contribute to levels of HDL cholesterol and risk of IHD in the general population. The association between ABCA1 variants and risk of IHD appears, however, to be independent of plasma levels of HDL cholesterol. With the recent identification of the largest number of individuals heterozygous for loss-of-function mutations in ABCA1 worldwide, population studies suggests that genetically low HDL cholesterol per se does not predict an increased risk of IHD, and thus questions the causality of isolated low levels of HDL cholesterol for the development of IHD.
Collapse
Affiliation(s)
- Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Section for Molecular Genetics, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen Ø DK-2100, Denmark.
| |
Collapse
|
25
|
Boes E, Coassin S, Kollerits B, Heid IM, Kronenberg F. Genetic-epidemiological evidence on genes associated with HDL cholesterol levels: a systematic in-depth review. Exp Gerontol 2008; 44:136-60. [PMID: 19041386 DOI: 10.1016/j.exger.2008.11.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/09/2008] [Accepted: 11/04/2008] [Indexed: 12/12/2022]
Abstract
High-density lipoprotein (HDL) particles exhibit multiple antiatherogenic effects. They are key players in the reverse cholesterol transport which shuttles cholesterol from peripheral cells (e.g. macrophages) to the liver or other tissues. This complex process is thought to represent the basis for the antiatherogenic properties of HDL particles. The amount of cholesterol transported in HDL particles is measured as HDL cholesterol (HDLC) and is inversely correlated with the risk for coronary artery disease: an increase of 1mg/dL of HDLC levels is associated with a 2% and 3% decrease of the risk for coronary artery disease in men and women, respectively. Genetically determined conditions with high HDLC levels (e.g. familial hyperalphalipoproteinemia) often coexist with longevity, and higher HDLC levels were found among healthy elderly individuals. HDLC levels are under considerable genetic control with heritability estimates of up to 80%. The identification and characterization of genetic variants associated with HDLC concentrations can provide new insights into the background of longevity. This review provides an extended overview on the current genetic-epidemiological evidence from association studies on genes involved in HDLC metabolism. It provides a path through the jungle of association studies which are sometimes confusing due to the varying and sometimes erroneous names of genetic variants, positions and directions of associations. Furthermore, it reviews the recent findings from genome-wide association studies which have identified new genes influencing HDLC levels. The yet identified genes together explain only a small amount of less than 10% of the HDLC variance, which leaves an enormous room for further yet to be identified genetic variants. This might be accomplished by large population-based genome-wide meta-analyses and by deep-sequencing approaches on the identified genes. The resulting findings will probably result in a re-drawing and extension of the involved metabolic pathways of HDLC metabolism.
Collapse
Affiliation(s)
- Eva Boes
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
26
|
Golembesky AK, Gammon MD, North KE, Bensen JT, Schroeder JC, Teitelbaum SL, Neugut AI, Santella RM. Peroxisome proliferator-activated receptor-alpha (PPARA) genetic polymorphisms and breast cancer risk: a Long Island ancillary study. Carcinogenesis 2008; 29:1944-9. [PMID: 18586686 DOI: 10.1093/carcin/bgn154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor-alpha (PPARA) has been shown to increase fatty acid oxidation and decrease cytokine levels and has been implicated in insulin production. Genetic variants of PPARA have been associated with cardiovascular disease, obesity and type II diabetes mellitus. Although no research to date has investigated the possible link between PPARA and breast cancer, the function of this gene suggests that it could play a role in breast cancer development. Six PPARA polymorphisms were evaluated in association with incident breast cancer in a population-based case-control study (n = 1073 cases and n = 1112 controls) using unconditional logistic and multilevel regression and haplotype-based analyses. The odds of breast cancer were doubled among women with PPARA polymorphism rs4253760 (odds ratio = 1.97 for rare versus common homozygote alleles; 95% confidence interval: 1.14, 3.43). This association remained constant with the inclusion of all interrogated polymorphisms studied in hierarchical models. No additive interactions with body mass index or weight gain were present, but there was some evidence of interaction between PPARA variants and aspirin use, defined as use at least once per week for 6 months or longer. Fourteen haplotypes were imputed with frequencies >1% among postmenopausal women, but no statistically significant differences in haplotype frequencies between cases and controls were evident. Our results are the first to evaluate the relationship between PPARA and breast cancer incidence and suggest that replication in an independent cohort is warranted.
Collapse
Affiliation(s)
- Amanda K Golembesky
- Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Oliveira Sousa M, Alía P, Pintó X. Gen de la apolipoproteína A5: asociación con el metabolismo de los triglicéridos y las enfermedades cardiovasculares. Med Clin (Barc) 2008; 130:787-93. [DOI: 10.1157/13121105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Klos K, Shimmin L, Ballantyne C, Boerwinkle E, Clark A, Coresh J, Hanis C, Liu K, Sayre S, Hixson J. APOE/C1/C4/C2 hepatic control region polymorphism influences plasma apoE and LDL cholesterol levels. Hum Mol Genet 2008; 17:2039-46. [PMID: 18378515 DOI: 10.1093/hmg/ddn101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We characterized 102 kb of chromosome 19 containing the apolipoprotein (APO) E/C1/C4/C2 cluster and two flanking genes for common DNA variants associated with plasma low-density lipoprotein cholesterol (LDL-C) level. DNA variants were identified by comparing sequences of 48 haploid hybrid cell lines. We genotyped participants (1943 Whites and 2046 African-Americans) of the Coronary Artery Risk Development in Young Adults study for 115 variants. After controlling for the effects of the APOE epsilon2/3/4 polymorphism, a single nucleotide polymorphism, rs35136575, in the downstream hepatic control region 2 (HCR-2) was associated with LDL-C in Caucasians (P = 0.0004), accounting for 1% of variation. We genotyped rs35136575 in the Atherosclerosis Risk in Communities (ARIC) cohort (3679 African-Americans and 10 427 Whites) and in the Genetic Epidemiology Network of Arteriopathy (GENOA) sibships (1381 African-Americans in 592 sibships, 1116 Caucasians in 503 sibships and 1378 Mexican-Americans in 416 sibships), finding association with LDL-C level in ARIC Caucasians (P = 0.0064). Lower plasma LDL-C was observed with the rare allele. Plasma apoE level was strongly associated with HCR-2 variant genotype in all three GENOA samples (P </= 0.002), indicating an effect on apoE concentration. Patterns of association for plasma apo A-I, apoB, LDL-C, high-density lipoprotein cholesterol, total cholesterol and triglyceride levels with rs35136575 in the population-based samples evaluated in this study suggest a pleiotropic effect that may be context-dependent.
Collapse
Affiliation(s)
- Kathy Klos
- Human Genetic Center, University of Texas Health Science Center at Houston, Houston, TX 77225, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Biros E, Karan M, Golledge J. Genetic variation and atherosclerosis. Curr Genomics 2008; 9:29-42. [PMID: 19424482 PMCID: PMC2674308 DOI: 10.2174/138920208783884856] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 02/22/2008] [Accepted: 02/22/2008] [Indexed: 01/06/2023] Open
Abstract
A family history of atherosclerosis is independently associated with an increased incidence of cardiovascular events. The genetic factors underlying the importance of inheritance in atherosclerosis are starting to be understood. Genetic variation, such as mutations or common polymorphisms has been shown to be involved in modulation of a range of risk factors, such as plasma lipoprotein levels, inflammation and vascular calcification. This review presents examples of present studies of the role of genetic polymorphism in atherosclerosis.
Collapse
Affiliation(s)
| | | | - Jonathan Golledge
- Vascular Biology Unit, School of Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
30
|
Genetic determinants of plasma lipoproteins. ACTA ACUST UNITED AC 2007; 4:600-9. [PMID: 17957207 DOI: 10.1038/ncpcardio1005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 07/28/2007] [Indexed: 02/07/2023]
Abstract
The search for common genetic determinants of plasma lipoproteins began in the early 1980s. Despite some exceptions, these efforts have not yet yielded a set of biological markers that can be used in clinical practice. By contrast, successes in defining the molecular basis of rare single-gene disorders, such as familial hypoalphalipoproteinemia, have shown the value of experimental designs that focus on genomic analysis of individuals within the tails of Gaussian distributions of quantitative lipoprotein traits. For example, this strategy showed that a small but relevant proportion of individuals within the <5% tail of plasma HDL-cholesterol distribution have mutations in genes that cause familial hypoalphalipoproteinemia. The value of clinical testing for genomic variants as an adjunct to a biochemical measurement of plasma lipoproteins, however, is at best questionable. A more direct impact of genetic studies is that definitions of 'common' and 'large genetic effects' have become more tempered, reflecting perhaps the biological reality that plasma lipoproteins are probably determined by the aggregate of numerous modest and occasional large genetic effects in addition to environmental factors. Here, we review recent progress on genomic variants and cholesterol metabolism, and discuss the impact these genetic studies will have on clinical cardiology.
Collapse
|
31
|
Smith RC, Segman RH, Golcer-Dubner T, Pavlov V, Lerer B. Allelic variation in ApoC3, ApoA5 and LPL genes and first and second generation antipsychotic effects on serum lipids in patients with schizophrenia. THE PHARMACOGENOMICS JOURNAL 2007; 8:228-36. [PMID: 17726453 DOI: 10.1038/sj.tpj.6500474] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Schizophrenic patients who are treated with antipsychotics, especially second generation antipsychotics, such as clozapine and olanzapine, manifest an increase in cholesterol and triglycerides as well as other changes associated with diabetes or the metabolic syndrome. Previous studies have shown that polymorphisms in several genes that regulate lipid metabolism can influence the levels of these lipids and response to drug treatment. We have investigated in an exploratory study whether polymorphisms in the apolipoprotein C-III (ApoC3), apolipoprotein A-V gene (ApoA5) and lipoprotein lipase genes influence differential lipid response to treatment with three second generation antipsychotics-olanzapine, clozapine and risperidone-or treatment with a first generation antipsychotic. A total of 189 patients with schizophrenia or schizoaffective disorder who were being treated with a single antipsychotic were studied in a cross-sectional study design in which fasting serum cholesterol and triglycerides and selected single-nucleotide polymorphosms (SNPs) in the three lipid metabolism genes were assessed. The treatment with antipsychotic monotherapy makes drug haplotype ascertainment less complex. Our analyses showed several nominally significant drug x gene and drug x haplotype interactions. The rarer C allele or the ApoA5_1131 (T/C) SNP was associated with higher cholesterol levels in patients treated with first generation antipsychotics and lower cholesterol levels in patients treated with olanzapine or clozapine. The rarer C allele of the ApoA5_SW19 (G/C) SNP was associated with higher cholesterol in risperidone-treated patients. An ApoA5 CG haplotype was associated with decreased cholesterol in olanzapine- or clozapine-treated patients and higher cholesterol in patients treated with first generation antipsychotics. The presence of the rarer T allele of the ApoC3_1100 (C/T) SNP or the presence of the ApoC3 TG haplotype was associated with decreased triglyceride levels in patients treated with olanzapine or clozapine and a nonsignificant trend for increased triglycerides in patients treated with first generation antipsychotics. The presence of the ApoC3 CC haplotype was associated with increased triglycerides in patients treated with olanzapine or clozapine. The overall magnitude of the effects was not large. These results provide a potential initial step toward a pharmacogenetic approach to selection of antipsychotic treatment which may help minimize the side effect of increases in serum lipids.
Collapse
Affiliation(s)
- R C Smith
- Department of Psychiatry, New York University Medical School and Manhattan Psychiatric Center, New York, NY 11557-0316, USA.
| | | | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW This review focuses on recent progress towards the characterization of genetic variations that contribute to interindividual variation in plasma high-density lipoprotein cholesterol levels in the general population. RECENT FINDINGS Many of the genes that harbor rare mutations leading to extreme high-density lipoprotein cholesterol levels contain common variation that influences plasma high-density lipoprotein cholesterol in several study populations. Candidate gene association studies provide evidence that some of these variations have an effect on high-density lipoprotein cholesterol, dependent on epistatic interactions or environmental context. Both rare and common variations contribute to interindividual high-density lipoprotein cholesterol variation. Recent comparisons of candidate gene sequences between individuals in the tails of the high-density lipoprotein cholesterol distributions (the upper or lower 1-5%) of several study populations indicate that as many as 20% of individuals with low high-density lipoprotein cholesterol harbor a rare mutation in an investigated gene. For example, the ABCA1 gene region harbors rare mutations and common variants that contribute to interindividual high-density lipoprotein cholesterol variation in the general population. SUMMARY The genetic control of high-density lipoprotein cholesterol level is complex. Maximizing the utility of genetic knowledge for predicting an individual's high-density lipoprotein cholesterol level or response to intervention will require a better understanding of the action of combinations of genetic variants and environmental exposures.
Collapse
Affiliation(s)
- Kathy L E Klos
- aHuman Genetics Center, University of Texas Health Science Center, Houston, Texas 77225, USA.
| | | |
Collapse
|
33
|
Graham RR, Kyogoku C, Sigurdsson S, Vlasova IA, Davies LRL, Baechler EC, Plenge RM, Koeuth T, Ortmann WA, Hom G, Bauer JW, Gillett C, Burtt N, Cunninghame Graham DS, Onofrio R, Petri M, Gunnarsson I, Svenungsson E, Rönnblom L, Nordmark G, Gregersen PK, Moser K, Gaffney PM, Criswell LA, Vyse TJ, Syvänen AC, Bohjanen PR, Daly MJ, Behrens TW, Altshuler D. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus. Proc Natl Acad Sci U S A 2007; 104:6758-63. [PMID: 17412832 PMCID: PMC1847749 DOI: 10.1073/pnas.0701266104] [Citation(s) in RCA: 364] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Systematic genome-wide studies to map genomic regions associated with human diseases are becoming more practical. Increasingly, efforts will be focused on the identification of the specific functional variants responsible for the disease. The challenges of identifying causal variants include the need for complete ascertainment of genetic variants and the need to consider the possibility of multiple causal alleles. We recently reported that risk of systemic lupus erythematosus (SLE) is strongly associated with a common SNP in IFN regulatory factor 5 (IRF5), and that this variant altered spicing in a way that might provide a functional explanation for the reproducible association to SLE risk. Here, by resequencing and genotyping in patients with SLE, we find evidence for three functional alleles of IRF5: the previously described exon 1B splice site variant, a 30-bp in-frame insertion/deletion variant of exon 6 that alters a proline-, glutamic acid-, serine- and threonine-rich domain region, and a variant in a conserved polyA+ signal sequence that alters the length of the 3' UTR and stability of IRF5 mRNAs. Haplotypes of these three variants define at least three distinct levels of risk to SLE. Understanding how combinations of variants influence IRF5 function may offer etiological and therapeutic insights in SLE; more generally, IRF5 and SLE illustrates how multiple common variants of the same gene can together influence risk of common disease.
Collapse
Affiliation(s)
- Robert R. Graham
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
- Departments of Genetics and Medicine, Harvard Medical School, and Center for Human Genetics Research and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Chieko Kyogoku
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Snaevar Sigurdsson
- Molecular Medicine, Department of Medical Sciences, Uppsala University, SE-751 Uppsala, Sweden
| | - Irina A. Vlasova
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Leela R. L. Davies
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
- Departments of Genetics and Medicine, Harvard Medical School, and Center for Human Genetics Research and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Emily C. Baechler
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Robert M. Plenge
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
- Departments of Genetics and Medicine, Harvard Medical School, and Center for Human Genetics Research and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Thearith Koeuth
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Ward A. Ortmann
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Geoffrey Hom
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Jason W. Bauer
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Clarence Gillett
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Noel Burtt
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
- Departments of Genetics and Medicine, Harvard Medical School, and Center for Human Genetics Research and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114
| | | | - Robert Onofrio
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
- Departments of Genetics and Medicine, Harvard Medical School, and Center for Human Genetics Research and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Michelle Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Iva Gunnarsson
- Department of Medicine, Rheumatology Unit, Karolinska Institutet/Karolinska University Hospital, SE-771 Stockholm, Sweden
| | - Elisabet Svenungsson
- Department of Medicine, Rheumatology Unit, Karolinska Institutet/Karolinska University Hospital, SE-771 Stockholm, Sweden
| | - Lars Rönnblom
- Section of Rheumatology, Department of Medical Sciences, Uppsala University, SE-751 Uppsala, Sweden
| | - Gunnel Nordmark
- Section of Rheumatology, Department of Medical Sciences, Uppsala University, SE-751 Uppsala, Sweden
| | - Peter K. Gregersen
- The Feinstein Institute for Medical Research, North Shore–Long Island Jewish Health System, Manhasset, NY 11030
| | - Kathy Moser
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Patrick M. Gaffney
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Lindsey A. Criswell
- Department of Medicine, University of California, San Francisco, CA 94143; and
| | - Timothy J. Vyse
- Rheumatology Section, Imperial College, Hammersmith Hospital, London W12 0NN, United Kingdom
| | - Ann-Christine Syvänen
- Molecular Medicine, Department of Medical Sciences, Uppsala University, SE-751 Uppsala, Sweden
| | - Paul R. Bohjanen
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - Mark J. Daly
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
- Departments of Genetics and Medicine, Harvard Medical School, and Center for Human Genetics Research and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Timothy W. Behrens
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455
| | - David Altshuler
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
- Departments of Genetics and Medicine, Harvard Medical School, and Center for Human Genetics Research and Departments of Molecular Biology and Medicine, Massachusetts General Hospital, Boston, MA 02114
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW HDL is a recognized negative risk factor for the cardiovascular diseases. Establishing the genetic determinants of HDL concentration and functions would add to the prediction of cardiovascular risk and point to the biochemical mechanisms underlying this risk. The present review focuses on various approaches to establish genetic determinants of the HDL concentration, structure and function. RECENT FINDINGS While many genes contribute to the HDL concentration and collectively account for half of the variability, polymorphism of individual candidate genes contributes little. There are strong interactions between environmental and genetic influences. Recent findings have confirmed that APOA1 and ABCA1 exert the strongest influence on HDL concentrations and risk of atherosclerosis. CETP and lipases also affect the HDL concentration and functionality, but their connection to the atherosclerosis risk is conditional on the interaction between environmental and genetic factors. SUMMARY Analysis of genetic determinants of HDL-cholesterol in patients with specific disease states or in response to the environmental condition may be a more accurate way to assess variations in HDL concentration. This may result in defining the rules of interaction between genetic and environmental factors and lead to understanding the mechanisms responsible for the variations in HDL concentration and functionality.
Collapse
Affiliation(s)
- Dmitri Sviridov
- Baker Heart Research Institute, Melbourne, Victoria, Australia.
| | | |
Collapse
|
35
|
|