1
|
Yue P, Lv X, Cao H, Zou Y, You J, Luo J, Lu Z, Chen H, Liu Z, Zhong Z, Xiong Y, Fan X, Ye Q. Hypothermic oxygenated perfusion inhibits CLIP1-mediated TIRAP ubiquitination via TFPI2 to reduce ischemia‒reperfusion injury of the fatty liver. Exp Mol Med 2024; 56:2588-2601. [PMID: 39617791 DOI: 10.1038/s12276-024-01350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 12/28/2024] Open
Abstract
The use of fatty livers in liver transplantation has emerged as a crucial strategy to expand the pool of donor livers; however, fatty livers are more sensitive to ischemia‒reperfusion injury (IRI). Excessive congenital inflammatory responses are crucial in IRI. Hypothermic oxygenated perfusion (HOPE) is a novel organ preservation technique that may improve marginal donor liver quality by reducing the inflammatory response. Tissue factor pathway inhibitor-2 (TFPI2) and CAP-Gly domain-containing linker protein 1 (CLIP1) exhibit modulatory effects on the inflammatory response. However, the underlying mechanisms of HOPE in fatty liver and the effects of TFPI2 and CLIP1 in fatty liver IRI remain unclear. Here, we aimed to explore the impact of HOPE on the inflammatory response in a rat model of fatty liver IRI and the mechanisms of action of TFPI2 and CLIP1. HOPE significantly reduces liver injury, especially the inflammatory response, and alleviates damage to hepatocytes and endothelial cells. Mechanistically, HOPE exerts its effects by inhibiting TFPI2, and CLIP1 can rescue the damaging effects of TFPI2. Moreover, HOPE promoted the ubiquitination and subsequent degradation of Toll/interleukin-1 receptor domain-containing adapter protein (TIRAP) by regulating the binding of R24 of the KD1 domain of TFPI2 with CLIP1, thereby negatively regulating the TLR4/NF-κB-mediated inflammatory response and reducing IRI. Furthermore, TFPI2 expression increased and CLIP1 expression decreased following cold ischemia in human fatty livers. Overall, our results suggest that targeting the inflammatory response by modulating the TFPI2/CLIP1/TIRAP signaling pathway via HOPE represents a potential therapeutic approach to ameliorate IRI during fatty liver transplantation.
Collapse
Affiliation(s)
- Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Xiaoyan Lv
- Department of Hematology, Zhongnan Hospital of Wuhan University, 430071, Wuhan, China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Yongkang Zou
- Department of Hepatobiliary Surgery, Department of Organ Transplantation, Guizhou Provincial People's Hospital, 550002, Guiyang, China
| | - Jian You
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Jun Luo
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Hao Chen
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Xiaoli Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China.
- The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, 410013, Changsha, China.
| |
Collapse
|
2
|
Wojtukiewicz MZ, Mysliwiec M, Tokajuk A, Kruszewska J, Politynska B, Jamroze A, Wojtukiewicz AM, Tang DG, Honn KV. Tissue factor pathway inhibitor-2 (TFPI-2)-an underappreciated partaker in cancer and metastasis. Cancer Metastasis Rev 2024; 43:1185-1204. [PMID: 39153052 PMCID: PMC11554837 DOI: 10.1007/s10555-024-10205-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
The coagulation system is known to play an important role in cancer development and metastasis, but the precise mechanisms by which it does so remain incompletely understood. With this in mind, we provide an updated overview of the effects of TFPI-2, a protease inhibitor, on cancer development and metastasis. TFPI-2 interacts with the thrombin cascade and also employs other mechanisms to suppress cancer growth and dissemination, which include extracellular matrix stabilization, promotion of caspase-mediated cell apoptosis, inhibition of angiogenesis and transduction of intracellular signals. Down-regulation of TFPI-2 expression is well documented in numerous types of neoplasms, mainly via promoter methylation. However, the exact role of TFPI-2 in cancer progression and possible approaches to up-regulate TFPI-2 expression warrant further studies. Strategies to reactivate TFPI-2 may represent a promising direction for future anticancer studies and therapy development.
Collapse
Affiliation(s)
- Marek Z Wojtukiewicz
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland.
- Department of Clinical Oncology, Comprehensive Cancer Center of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland.
| | - Marta Mysliwiec
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland
| | - Anna Tokajuk
- Department of Clinical Oncology, Comprehensive Cancer Center of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland
| | - Joanna Kruszewska
- Department of Oncology, Medical University of Bialystok, 12 Ogrodowa, 15-027, Bialystok, Poland
| | - Barbara Politynska
- Department of Psychology and Philosophy, Medical University of Bialystok, 37 Szpitalna, 15-295, Bialystok, Poland
- Robinson College, University of Cambridge, Grange Road, Cambridge, CB3 9AN, UK
| | - Anmbreen Jamroze
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Anna M Wojtukiewicz
- Department of Psychology and Philosophy, Medical University of Bialystok, 37 Szpitalna, 15-295, Bialystok, Poland
| | - Dean G Tang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Kenneth V Honn
- Department of Pathology-School of Medicine, Bioactive Lipids Research Program, Wayne State University, 540 East Canfield Avenue, Detroit, MI, 48201, USA
- Karmanos Cancer Institute, 4100 John R St, Detroit, MI, 48201, USA
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI, 48202, USA
| |
Collapse
|
3
|
Cao Y, Xing R, Li Q, Bai Y, Liu X, Tian B, Li X. Inhibition of the AP-1/TFPI2 axis contributes to alleviating cerebral ischemia/reperfusion injury by improving blood-brain barrier integrity. Hum Cell 2024; 37:1679-1695. [PMID: 39227518 DOI: 10.1007/s13577-024-01125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
Reperfusion after cerebral ischemia leads to secondary damage to the nervous system, called cerebral ischemia/reperfusion injury (CIRI). The blood-brain barrier (BBB) consists of endothelial cells and tight junction (TJ) proteins, and its disruption aggravates CIRI. Two GSE datasets identified Tissue Factor Pathway Inhibitor 2 (TFPI2) as a differentially upregulated gene (Log2FC > 1, p < 0.01) in the cerebral cortex of ischemic rats, and TFPI2 affects angiogenesis of endothelial cells. Moreover, genes (c-Jun, c-Fos, FosL1) encoding subunits of Activator Protein-1 (AP-1), a transcription factor involved in IRI, were highly expressed in ischemic samples. Thus, the effects of the AP-1/TFPI2 axis on CIRI were explored. We determined increased TFPI2 expression in the cerebral cortex of rats receiving middle cerebral artery occlusion (MCAO) for 90 min and reperfusion (R) for 48 h. Then AAV2-shTFPI2 particles (5 × 1010 vg) were injected into the right lateral ventricle of rats 3 weeks before MCAO/R. TFPI2 knockdown decreased infarct size and neuronal injury in ischemic rats. It improved BBB integrity, demonstrated by reduced FITC-dextran leakage in brain tissues of MCAO/R-operated rats. Furthermore, it increased the expression of TJ proteins (Occludin, Claudin-5, TJP-1) in the cerebral cortex of rats with CIRI. Consistently, we found that TFPI2 knockdown mitigated cell damage in mouse endothelial bEND.3 cells with oxygen and glucose deprivation (ODG) for 6 h and reoxygenation (R) for 18 h (OGD/R) treatment. High co-expression of c-Jun and c-Fos significantly elevated TFPI2 promoter activity. c-Jun knockdown inhibited TFPI2 expression in OGD/R-treated bEND.3 cell. Collectively, our findings demonstrate that inhibition of the AP-1/TFPI2 axis alleviates CIRI.
Collapse
Affiliation(s)
- Yue Cao
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Ruixian Xing
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Qiushi Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Yang Bai
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Xuewen Liu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Buxian Tian
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China.
| |
Collapse
|
4
|
Qu X, Huang Q, Li H, Lou F. Comparative transcriptomics revealed the ecological trap effect of linearly polarized light on Oratosquilla oratoria. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101234. [PMID: 38631126 DOI: 10.1016/j.cbd.2024.101234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024]
Abstract
Although polarized light can assist many animals in performing special visual tasks, current polarized light pollution (PLP) caused by urban construction has been shown to induce maladaptive behaviors of PL-sensitive animals and change ecological interactions. However, the underlying mechanisms remain unclear. Our previous work hypothesized that linearly polarized light (LPL) is an ecological trap for Oratosquilla oratoria, a common Stomatopoda species in the China Sea. Here we explored the underlying negative effects of artificially LPL on O. oratoria based on comparative transcriptomics. We identified 3616 differentially expressed genes (DEGs) in O. oratoria compound eyes continuous exposed to natural light (NL) and LPL scenarios. In comparison with the NL scenario, a total of 1972 up- and 1644 down- regulated genes were obtained from the O. oratoria compound eyes under LPL scenario, respectively. Furthermore, we performed functional annotation of those DEGs described above and identified 65 DEGs related to phototransduction, reproduction, immunity, and synapse. Based on the functional information, we suspected that continuous LPL exposure could block the light transmission, disrupt the reproductive process, and lead to the progressive failure of the immune response of O. oratoria. In conclusion, this study is the first to systematically describe the negative effects of artificial LPL exposure on O. oratoria at the genetic level, and it can improve the biological conservation theory behind PLP.
Collapse
Affiliation(s)
- Xiuyu Qu
- School of Ocean, Yantai University, Yantai 264003, Shandong, China
| | - Qi Huang
- School of Food Science and Bioengineering, Yantai Institute of Technology, Yantai 264003, Shandong, China
| | - Huanjun Li
- Shandong Marine Resource and Environment Research Institute, Yantai 264003, Shandong, China
| | - Fangrui Lou
- School of Ocean, Yantai University, Yantai 264003, Shandong, China.
| |
Collapse
|
5
|
Zhou Q, Gao X, Xu H, Lu X. Non-apoptotic regulatory cell death scoring system to predict the clinical outcome and drug choices in breast cancer. Heliyon 2024; 10:e31342. [PMID: 38813233 PMCID: PMC11133894 DOI: 10.1016/j.heliyon.2024.e31342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Background Breast cancer (BC), the most common cancer among women globally, has been shown by numerous studies to significantly involve non-apoptotic regulatory cell death (RCD) in its pathogenesis and progression. Methods We obtained the RNA sequences and clinical data of BC patients from The Cancer Genome Atlas (TCGA) database for the training set, while datasets GSE96058, GSE86166, and GSE20685 from The Gene Expression Omnibus (GEO) database were utilized as validation cohorts. Initially, we performed non-negative matrix factorization (NMF) clustering analysis on the BC samples from the TCGA database to discern non-apoptotic RCD-related molecular subtypes. To identify prognostically-relevant non-apoptotic RCD genes (NRGs) and construct a prognostic model, we implemented three machine learning algorithms: lasso regression, random forest, and XGBoost analysis. The expression of selected genes was verified using real-time quantitative polymerase chain reaction (RT-qPCR), single-cell RNA-sequencing (scRNA-seq) analysis, and The Human Protein Atlas (HPA) database. The risk signature was evaluated concerning clinical characteristics and drug sensitivity. Furthermore, we developed a nomogram to predict BC patient survival. Results The NMF method successfully compartmentalized patients from the TCGA database into three distinct non-apoptotic RCD-related subtypes, with significant variations observed in immune characteristics and prognostic stratification across these subtypes. We identified 5 differentially expressed NRGs used in establishing the risk signature. Patients with different risk groups exhibited distinct clinicopathological features, drug sensitivity, and prognostic outcomes. A nomogram was subsequently developed, incorporating the NRGs-related risk signature, age, T stage, and N stage, to aid clinical decision-making. Conclusion We identified a novel NRGs-related risk signature, which was expected to become a potential prognostic marker in BC.
Collapse
Affiliation(s)
| | | | - Hui Xu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| | - Xuan Lu
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225001, China
| |
Collapse
|
6
|
Xu Z, Zhu X, Mu S, Fan R, Wang B, Gao W, Kang T. FTO overexpression expedites wound healing and alleviates depression in burn rats through facilitating keratinocyte migration and angiogenesis via mediating TFPI-2 demethylation. Mol Cell Biochem 2024; 479:325-335. [PMID: 37074506 DOI: 10.1007/s11010-023-04719-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/21/2023] [Indexed: 04/20/2023]
Abstract
Burn injury is a serious traumatic injury that leads to severe physical and psychosocial impairment. Wound healing after burn injury is a substantial challenge in medical community. This study investigated the biological effects of the demethylase fat mass and obesity-associated protein (FTO) on burn injury. FTO protein level in burn skin tissues of patients was measured with Western blot assay. Keratinocytes (HaCaT cells) were given heat stimulation to induce an in vitro burn injury model, and then transfected with overexpression plasmids of FTO (pcDNA-FTO) or small interfering RNA against FTO (si-FTO). Cell proliferation, migration, and angiogenesis in keratinocytes were evaluated with CCK-8, Transwell, and tube formation assays, respectively. Tissue factor pathway inhibitor-2 (TFPI-2) m6A methylation level was detected with MeRIP‑qPCR assay. Then rescue experiments were conducted to explore the effects of FTO/TFPI-2 axis on keratinocyte functions. Lentivirus carrying FTO overexpression plasmids was injected into a burn rat model to detect its effects on wound healing and depressive-like behaviors in burn rats. FTO was downregulated in burn skin and heat-stimulated keratinocytes. FTO prominently augmented proliferation, migration and angiogenesis in heat-stimulated keratinocytes, while FTO knockdown showed the opposite results. FTO inhibited TFPI-2 expression by FTO-mediated m6A methylation modification. TFPI-2 overexpression abrogated FTO mediated enhancement of proliferation, migration and angiogenesis in keratinocytes. Additionally, FTO overexpression accelerated wound healing and improved depressive-like behaviors in burn rat model. FTO prominently augmented proliferation, migration and angiogenesis in heat-stimulated keratinocytes though inhibiting TFPI-2, and then improved wound healing and depressive-like behaviors.
Collapse
Affiliation(s)
- Zihan Xu
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xiumei Zhu
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Shengzhi Mu
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Ronghui Fan
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Benfeng Wang
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Wenjie Gao
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Tao Kang
- Department of Neurology, Shaanxi Provincial People's Hospital, Xi'an, 710068, China.
| |
Collapse
|
7
|
Mechanism of oxidized phospholipid-related inflammatory response in vascular ageing. Ageing Res Rev 2023; 86:101888. [PMID: 36806379 DOI: 10.1016/j.arr.2023.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/20/2023]
Abstract
Vascular ageing is an important factor in the morbidity and mortality of the elderly. Atherosclerosis is a characteristic disease of vascular ageing, which is closely related to the enhancement of vascular inflammation. Phospholipid oxidation products are important factors in inducing cellular inflammation. Through interactions with vascular cells and immune cells, they regulate intracellular signaling pathways, activate the expression of various cytokines, and affect cell behavior, such as metabolic level, proliferation, apoptosis, etc. Intervention in lipid metabolism and anti-inflammation are the two key pathways of drugs for the treatment of atherosclerosis. This review aims to sort out the signaling pathway of oxidized phospholipids-induced inflammatory factors in vascular cells and immune cells and the mechanism leading to changes in cell behavior, and summarize the therapeutic targets in the inflammatory signaling pathway for the development of atherosclerosis drugs.
Collapse
|
8
|
Guan G, Xie J, Dai Y, Han H. TFPI2 suppresses the interaction of TGF-β2 pathway regulators to promote endothelial-mesenchymal transition in diabetic nephropathy. J Biol Chem 2022; 298:101725. [PMID: 35157852 PMCID: PMC8914548 DOI: 10.1016/j.jbc.2022.101725] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 12/22/2022] Open
Abstract
Endothelial–mesenchymal transition (EndMT) is an important source of myofibroblasts, but also contributes to the progression of diabetic nephropathy (DN). By several differential gene expression analyses from the Gene Expression Omnibus (GEO) database, the tissue factor pathway inhibitor 2 (TFPI2) gene, known as a tumor suppressor, was shown to be dysregulated in DN; however, the potential role and regulatory mechanism of TFPI2 in DN are unclear. Here, we found abnormal upregulation of TFPI2 in the renal cortex of diabetic mice, accompanied by impaired renal function. We also injected a single dose of adeno-associated virus (AAV)2 carrying shRNA targeting TFPI2 intravenously into these mice and found that knockdown of TFPI2 improved renal function and reduced renal fibrosis and cell apoptosis in experimental DN. Furthermore, hyperglycemia-induced EndMT was inhibited in the absence of TFPI2, as evidenced by increased expression of endothelial markers (VE-cadherin and CD31) and decreased expression of mesenchymal markers (α-SMA, desmin, and FSP-1). To further explore the mechanism in vitro, human renal glomerular endothelial cells (hRGECs) were incubated in the presence of high glucose or transforming growth factor beta (TGF-β)2. TFPI2 deficiency inhibited high glucose-induced cell apoptosis and TGF-β2-induced EndMT in hRGECs, while overexpression of TFPI2 had the opposite effects. Importantly, TGF-β2 is a crucial driver of EndMT, and we found that TFPI2 promoted TGF-β2/Smad signaling activation by interferring the interaction of TGF-β pathway regulators (SMURF2 with SMAD7). Our results show that TFPI2 regulates EndMT and the TGF-β2 signaling pathway and is a potential promoter of DN pathogenesis.
Collapse
Affiliation(s)
- Guoying Guan
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Jinjiao Xie
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yamei Dai
- Health Management Center, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Hui Han
- Department of Geriatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
9
|
Kremer V, Bink DI, Stanicek L, van Ingen E, Gimbel T, Hilderink S, Günther S, Nossent AY, Boon RA. MEG8 regulates Tissue Factor Pathway Inhibitor 2 (TFPI2) expression in the endothelium. Sci Rep 2022; 12:843. [PMID: 35039572 PMCID: PMC8763909 DOI: 10.1038/s41598-022-04812-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
A large portion of the genome is transcribed into non-coding RNA, which does not encode protein. Many long non-coding RNAs (lncRNAs) have been shown to be involved in important regulatory processes such as genomic imprinting and chromatin modification. The 14q32 locus contains many non-coding RNAs such as Maternally Expressed Gene 8 (MEG8). We observed an induction of this gene in ischemic heart disease. We investigated the role of MEG8 specifically in endothelial function as well as the underlying mechanism. We hypothesized that MEG8 plays an important role in cardiovascular disease via epigenetic regulation of gene expression. Experiments were performed in human umbilical vein endothelial cells (HUVECs). In vitro silencing of MEG8 resulted in impaired angiogenic sprouting. More specifically, total sprout length was reduced as was proliferation, while migration was unaffected. We performed RNA sequencing to assess changes in gene expression after loss of MEG8. The most profoundly regulated gene, Tissue Factor Pathway Inhibitor 2 (TFPI2), was fivefold increased following MEG8 silencing. TFPI2 has previously been described as an inhibitor of angiogenesis. Mechanistically, MEG8 silencing resulted in a reduction of the inhibitory histone modification H3K27me3 at the TFPI2 promoter. Interestingly, additional silencing of TFPI2 partially restored angiogenic sprouting capacity but did not affect proliferation of MEG8 silenced cells. In conclusion, silencing of MEG8 impairs endothelial function, suggesting a potential beneficial role in maintaining cell viability. Our study highlights the MEG8/TFPI2 axis as potential therapeutic approach to improve angiogenesis following ischemia.
Collapse
Affiliation(s)
- Veerle Kremer
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.,Department of Medical Biochemistry, Academic Medical Center, Amsterdam UMC, Amsterdam, The Netherlands
| | - Diewertje I Bink
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Laura Stanicek
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands.,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Eva van Ingen
- Department of Surgery, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Theresa Gimbel
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany
| | - Sarah Hilderink
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Stefan Günther
- German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany.,Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Anne Yaël Nossent
- Department of Surgery, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Departments of Laboratory Medicine and Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU Medical Center, Amsterdam UMC, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands. .,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany. .,German Centre for Cardiovascular Research DZHK, Partner Site Frankfurt Rhein/Main, Frankfurt am Main, Germany.
| |
Collapse
|
10
|
Hennigs JK, Matuszcak C, Trepel M, Körbelin J. Vascular Endothelial Cells: Heterogeneity and Targeting Approaches. Cells 2021; 10:2712. [PMID: 34685692 PMCID: PMC8534745 DOI: 10.3390/cells10102712] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/18/2023] Open
Abstract
Forming the inner layer of the vascular system, endothelial cells (ECs) facilitate a multitude of crucial physiological processes throughout the body. Vascular ECs enable the vessel wall passage of nutrients and diffusion of oxygen from the blood into adjacent cellular structures. ECs regulate vascular tone and blood coagulation as well as adhesion and transmigration of circulating cells. The multitude of EC functions is reflected by tremendous cellular diversity. Vascular ECs can form extremely tight barriers, thereby restricting the passage of xenobiotics or immune cell invasion, whereas, in other organ systems, the endothelial layer is fenestrated (e.g., glomeruli in the kidney), or discontinuous (e.g., liver sinusoids) and less dense to allow for rapid molecular exchange. ECs not only differ between organs or vascular systems, they also change along the vascular tree and specialized subpopulations of ECs can be found within the capillaries of a single organ. Molecular tools that enable selective vascular targeting are helpful to experimentally dissect the role of distinct EC populations, to improve molecular imaging and pave the way for novel treatment options for vascular diseases. This review provides an overview of endothelial diversity and highlights the most successful methods for selective targeting of distinct EC subpopulations.
Collapse
Affiliation(s)
- Jan K. Hennigs
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Christiane Matuszcak
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| | - Martin Trepel
- Department of Hematology and Medical Oncology, University Medical Center Augsburg, 86156 Augsburg, Germany;
| | - Jakob Körbelin
- ENDomics Lab, Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
11
|
Wojtukiewicz MZ, Mysliwiec M, Matuszewska E, Sulkowski S, Zimnoch L, Politynska B, Wojtukiewicz AM, Tucker SC, Honn KV. Imbalance in Coagulation/Fibrinolysis Inhibitors Resulting in Extravascular Thrombin Generation in Gliomas of Varying Levels of Malignancy. Biomolecules 2021; 11:663. [PMID: 33947134 PMCID: PMC8146081 DOI: 10.3390/biom11050663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 12/31/2022] Open
Abstract
Neoplastic processes are integrally related to disturbances in the mechanisms regulating hemostatic processes. Brain tumors, including gliomas, are neoplasms associated with a significantly increased risk of thromboembolic complications, affecting 20-30% of patients. As gliomas proliferate, they cause damage to the brain tissue and vascular structures, which leads to the release of procoagulant factors into the systemic circulation, and hence systemic activation of the blood coagulation system. Hypercoagulability in cancer patients may be, at least in part, a result of the inadequate activity of coagulation inhibitors. The aim of the study was to evaluate the expression of the inhibitors of the coagulation and fibrinolysis systems (tissue factor pathway inhibitor, TFPI; tissue factor pathway inhibitor-2 TFPI-2; protein C, PC; protein S, PS, thrombomodulin, TM; plasminogen activators inhibitor, PAI-1) in gliomas of varying degrees of malignancy. Immunohistochemical studies were performed on 40 gliomas, namely on 13 lower-grade (G2) gliomas (8 astrocytomas, 5 oligodendrogliomas) and 27 high-grade gliomas (G3-12 anaplastic astrocytomas, 4 anaplastic oligodendrogliomas; G4-11 glioblastomas). A strong expression of TFPI-2, PS, TM, PAI-1 was observed in lower-grade gliomas, while an intensive color immunohistochemical (IHC) reaction for the presence of TFPI antigens was detected in higher-grade gliomas. The presence of PC antigens was found in all gliomas. Prothrombin fragment 1+2 was observed in lower- and higher-grade gliomas reflecting local activation of blood coagulation. Differences in the expression of coagulation/fibrinolysis inhibitors in the tissues of gliomas with varying degrees of malignancy may be indicative of their altered role in gliomas, going beyond that of their functions in the hemostatic system.
Collapse
Affiliation(s)
- Marek Z. Wojtukiewicz
- Department of Oncology, Medical University of Białystok, 12 Ogrodowa St., 15-027 Bialystok, Poland;
- Department of Clinical Oncology, Comprehensive Cancer Center, 12 OgrodowaSt., 15-369 Bialystok, Poland;
| | - Marta Mysliwiec
- Department of Oncology, Medical University of Białystok, 12 Ogrodowa St., 15-027 Bialystok, Poland;
| | - Elwira Matuszewska
- Department of Clinical Oncology, Comprehensive Cancer Center, 12 OgrodowaSt., 15-369 Bialystok, Poland;
| | - Stanislaw Sulkowski
- Department of General Pathomorphology, Medical University of Bialystok, Waszyngtona 13, 15-269 Bialystok, Poland;
| | - Lech Zimnoch
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-269 Bialystok, Poland;
| | - Barbara Politynska
- Department of Philosophy and Human Psychology, Medical University of Bialystok, 15-295 Bialystok, Poland; (B.P.); (A.M.W.)
- Robinson College, University of Cambridge, Cambridge CB3 9AN, UK
| | - Anna M. Wojtukiewicz
- Department of Philosophy and Human Psychology, Medical University of Bialystok, 15-295 Bialystok, Poland; (B.P.); (A.M.W.)
| | - Stephanie C. Tucker
- Bioactive Lipids Research Program, Department of Pathology-School of Medicine, Wayne State University, Detroit, MI 48202, USA;
- Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Kenneth V. Honn
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA;
- Department of Oncology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
12
|
Yuan HQ, Hao YM, Ren Z, Gu HF, Liu FT, Yan BJ, Qu SL, Tang ZH, Liu LS, Chen DX, Jiang ZS. Tissue factor pathway inhibitor in atherosclerosis. Clin Chim Acta 2019; 491:97-102. [PMID: 30695687 DOI: 10.1016/j.cca.2019.01.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/13/2022]
Abstract
Tissue factor pathway inhibitor (TFPI) reduces the development of atherosclerosis by regulating tissue factor (TF) mediated coagulation pathway. In this review, we focus on recent findings on the inhibitory effects of TFPI on endothelial cell activation, vascular smooth muscle cell (VSMC) proliferation and migration, inflammatory cell recruitment and extracellular matrix which are associated with the development of atherosclerosis. Meanwhile, we are also concerned about the impact of TFPI levels and genetic polymorphisms on clinical atherogenesis. This article aims to explain the mechanism in inhibiting the development of atherosclerosis and clinical effects of TFPI, and provide new ideas for the clinical researches and mechanism studies of atherothrombosis.
Collapse
Affiliation(s)
- Hou-Qin Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Ya-Meng Hao
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Hong-Feng Gu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Feng-Tao Liu
- Center of Functional Laboratory, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 42100, PR China
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Shun-Lin Qu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Zhi-Han Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Lu-Shan Liu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China
| | - Da-Xing Chen
- Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, University of South China, Hengyang City, Hunan Province 421001, PR China.
| |
Collapse
|
13
|
Zhou H, Che Y, Fu X, Wei H, Gao X, Chen Y, Zhang S. Interaction between tissue factor pathway inhibitor-2 gene polymorphisms and environmental factors associated with coronary atherosclerosis in a Chinese Han. J Thromb Thrombolysis 2018; 47:67-72. [PMID: 30343349 DOI: 10.1007/s11239-018-1755-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To investigate the association of single nucleotide polymorphisms (SNPs) within tissue factor pathway inhibitor-2 (TFPI-2) gene polymorphisms and additional gene-environment interaction with coronary atherosclerosis risk. Generalized multifactor dimensionality reduction (GMDR) was used to screen the best interaction combination among 4 SNPs, smoking and alcohol drinking. Logistic regression was performed to investigate association between 4 SNPs within TFPI-2 gene and coronary atherosclerosis risk. Coronary atherosclerosis risk was significantly higher in carriers with the A allele of rs34489123 within TFPI-2 gene than those with GG genotype (GA+AA versus GG), adjusted OR (95% CI) = 1.70 (1.20-2.31), and was also higher in carriers with the G allele of rs4264 within TFPI-2 gene than those with AA genotype (AG+GG versus AA), adjusted OR (95% CI) = 1.62 (1.21-2.11). GMDR model shown the best models for gene-environment interaction were rs34489123 and smoking after adjusting the covariates, which scored 10 out of 10 for cross-validation consistency and 0.0010 for the sign test. Heavy LD was found for SNPs rs34489123 and rs59805398 (D' value was more than 0.8). Compared to control individuals, the AG haplotypes appeared to be significantly associated with increased coronary atherosclerosis risk, OR (95% CI) = 1.73 (1.22-2.32). We found that the A allele of rs34489123 and the G allele of rs4264 within TFPI-2 gene, interaction between rs34489123 and smoking and AG haplotypes were all associated with increased coronary atherosclerosis risk.
Collapse
Affiliation(s)
- Hairong Zhou
- Department of General Medicine, Longhua District Central Hospital, Shenzhen, 518110, China
| | - Yanjuan Che
- Department of Cardiovascular Medicine, Mudanjiang Second People's Hospital, Mudanjiang, 15700, China
| | - Xiuhua Fu
- Department of Cardiovascular Medicine, Mudanjiang Second People's Hospital, Mudanjiang, 15700, China.
| | - Hong Wei
- Department of Cardiovascular Medicine, Mudanjiang Second People's Hospital, Mudanjiang, 15700, China
| | - Xiuying Gao
- Department of Cardiovascular Medicine, Mudanjiang Second People's Hospital, Mudanjiang, 15700, China
| | - Yanxuan Chen
- Department of General Medicine, Longhua District Central Hospital, Shenzhen, 518110, China
| | - Shaopeng Zhang
- Department of General Medicine, Longhua District Central Hospital, Shenzhen, 518110, China
| |
Collapse
|
14
|
Bakhashab S, Ahmed F, Schulten HJ, Ahmed FW, Glanville M, Al-Qahtani MH, Weaver JU. Proangiogenic Effect of Metformin in Endothelial Cells Is via Upregulation of VEGFR1/2 and Their Signaling under Hyperglycemia-Hypoxia. Int J Mol Sci 2018; 19:293. [PMID: 29351188 PMCID: PMC5796238 DOI: 10.3390/ijms19010293] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/12/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease is the leading cause of morbidity/mortality worldwide. Metformin is the first therapy offering cardioprotection in type 2 diabetes and non-diabetic animals with unknown mechanism. We have shown that metformin improves angiogenesis via affecting expression of growth factors/angiogenic inhibitors in CD34⁺ cells under hyperglycemia-hypoxia. Now we studied the direct effect of physiological dose of metformin on human umbilical vein endothelial cells (HUVEC) under conditions mimicking hypoxia-hyperglycemia. HUVEC migration and apoptosis were studied after induction with euglycemia or hyperglycemia and/or CoCl₂ induced hypoxia in the presence or absence of metformin. HUVEC mRNA was assayed by whole transcript microarrays. Genes were confirmed by qRT-PCR, proteins by western blot, ELISA or flow cytometry. Metformin promoted HUVEC migration and inhibited apoptosis via upregulation of vascular endothelial growth factor (VEGF) receptors (VEGFR1/R2), fatty acid binding protein 4 (FABP4), ERK/mitogen-activated protein kinase signaling, chemokine ligand 8, lymphocyte antigen 96, Rho kinase 1 (ROCK1), matrix metalloproteinase 16 (MMP16) and tissue factor inhibitor-2 under hyperglycemia-chemical hypoxia. Therefore, metformin's dual effect in hyperglycemia-chemical hypoxia is mediated by direct effect on VEGFR1/R2 leading to activation of cell migration through MMP16 and ROCK1 upregulation, and inhibition of apoptosis by increase in phospho-ERK1/2 and FABP4, components of VEGF signaling cascades.
Collapse
Affiliation(s)
- Sherin Bakhashab
- Biochemistry Department, King Abdulaziz University, Jeddah P.O. Box 80218, Saudi Arabia.
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah P.O. Box 80216, Saudi Arabia.
| | - Farid Ahmed
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah P.O. Box 80216, Saudi Arabia.
| | - Hans-Juergen Schulten
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah P.O. Box 80216, Saudi Arabia.
| | - Fahad W Ahmed
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
- Queen Elizabeth Hospital, Gateshead, Newcastle Upon Tyne NE9 6SH, UK.
| | - Michael Glanville
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
| | - Mohammed H Al-Qahtani
- Centre of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah P.O. Box 80216, Saudi Arabia.
| | - Jolanta U Weaver
- Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
- Queen Elizabeth Hospital, Gateshead, Newcastle Upon Tyne NE9 6SH, UK.
- Cardiovascular Research Centre, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK.
| |
Collapse
|
15
|
Crispel Y, Ghanem S, Attias J, Kogan I, Brenner B, Nadir Y. Involvement of the heparanase procoagulant domain in bleeding and wound healing. J Thromb Haemost 2017; 15:1463-1472. [PMID: 28439967 DOI: 10.1111/jth.13707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Indexed: 12/01/2022]
Abstract
Essentials Heparanase forms a complex with tissue factor and enhances the generation of factor Xa. The present study was aimed to identify the procoagulant domain of heparanase. Procoagulant peptides significantly shortened bleeding time and enhanced wound healing. Tissue factor pathway inhibitor (TFPI)-2 derived peptides inhibited the procoagulant peptides. SUMMARY Background Heparanase, which is known to be involved in angiogenesis and metastasis, was shown to form a complex with tissue factor (TF) and to enhance the generation of activated factor X (FXa). Our study demonstrated that peptides derived from TF pathway inhibitor (TFPI)-2 impeded the procoagulant effect of heparanase, and attenuated inflammation, tumor growth, and vascularization. Aims To identify the procoagulant domain in the heparanase molecule, and to evaluate its effects in a model of wound healing that involves inflammation and angiogenesis. Methods Twenty-four potential peptides derived from heparanase were generated, and their effect was studied in an assay of FXa generation. Peptides 14 and 16, which showed the best procoagulant effect, were studied in a bleeding mouse model and in a wound-healing mouse model. Results Peptides 14 and 16 increased FXa levels by two-fold to three-fold, and, at high levels, caused consumption coagulopathy. The TFPI-2-derived peptides explored in our previous study were found to inhibit the procoagulant effect induced by peptides 14 and 16. In the bleeding model, time to clot formation was shortened by 50% when peptide 14 or peptide 16 was topically applied or injected subcutaneously. In the wound-healing model, the wound became more vascular, and its size was reduced to one-fifth as compared with controls, upon 1 week of exposure to peptide 14 or peptide 16 applied topically or injected subcutaneously. Conclusions The putative heparanase procoagulant domain was identified. Peptides derived from this domain significantly shortened bleeding time and enhanced wound healing.
Collapse
Affiliation(s)
- Y Crispel
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, The Bruce Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| | - S Ghanem
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, The Bruce Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| | - J Attias
- Stat Laboratory Rambam Health Care Campus, The Bruce Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| | - I Kogan
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, The Bruce Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| | - B Brenner
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, The Bruce Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| | - Y Nadir
- Thrombosis and Hemostasis Unit, Rambam Health Care Campus, The Bruce Rappaport Faculty of Medicine, The Technion, Haifa, Israel
| |
Collapse
|
16
|
Puttabyatappa M, Al-Alem LF, Zakerkish F, Rosewell KL, Brännström M, Curry TE. Induction of Tissue Factor Pathway Inhibitor 2 by hCG Regulates Periovulatory Gene Expression and Plasmin Activity. Endocrinology 2017; 158:109-120. [PMID: 27813674 PMCID: PMC5412983 DOI: 10.1210/en.2016-1544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/02/2016] [Indexed: 11/19/2022]
Abstract
Increased proteolytic activity is a key event that aids in breakdown of the follicular wall to permit oocyte release. How the protease activity is regulated is still unknown. We hypothesize that tissue factor pathway inhibitor 2 (TFPI2), a Kunitz-type serine protease inhibitor, plays a role in regulating periovulatory proteolytic activity as in other tissues. TFPI2 is secreted into the extracellular matrix (ECM) where it is postulated to regulate physiological ECM remodeling. The expression profile of TFPI2 during the periovulatory period was assessed utilizing a well-characterized human menstrual cycle model and a gonadotropin-primed rat model. Administration of an ovulatory dose of human chorionic gonadotropin (hCG) increased TFPI2 expression dramatically in human and rat granulosa and theca cells. This increase in Tfpi2 expression in rat granulosa cells required hCG-mediated epidermal growth factor, protein kinase A, mitogen-activated protein kinase (MAPK) 1/2, p38 MAPK and protease activated receptor 1-dependent cell signaling. A small interferingRNA-mediated knockdown of TFPI2 in rat granulosa cells resulted in increased plasmin activity in the granulosa cell conditioned media. Knockdown of TFPI2 also reduced expression of multiple genes including interleukin 6 (Il6) and amphiregulin (Areg). Overexpression of TFPI2 using an adenoviral vector partially restored the expression of Il6 and Areg in TFPI2 siRNA treated rat granulosa cells. These data support the hypothesis that TFPI2 is important for moderating plasmin activity and regulating granulosa cell gene expression during the periovulatory period. We, therefore, propose that through these actions, TFPI2 aids in the tissue remodeling taking place during follicular rupture and corpus luteum formation.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| | - Linah F. Al-Alem
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| | - Farnosh Zakerkish
- Department of Obstetrics and Gynecology, University of Gothenburg, and Stockholm IVF, Gothenburg, Sweden SE 405 30
| | - Katherine L. Rosewell
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, and Stockholm IVF, Gothenburg, Sweden SE 405 30
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky 40536; and
| |
Collapse
|
17
|
Ghilardi C, Silini A, Figini S, Anastasia A, Lupi M, Fruscio R, Giavazzi R, Bani MR. Trypsinogen 4 boosts tumor endothelial cells migration through proteolysis of tissue factor pathway inhibitor-2. Oncotarget 2016; 6:28389-400. [PMID: 26318044 PMCID: PMC4695067 DOI: 10.18632/oncotarget.4949] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 07/02/2015] [Indexed: 11/25/2022] Open
Abstract
Proteases contribute to cancer in many ways, including tumor vascularization and metastasis, and their pharmacological inhibition is a potential anticancer strategy. We report that human endothelial cells (EC) express the trypsinogen 4 isoform of the serine protease 3 (PRSS3), and lack both PRSS2 and PRSS1. Trypsinogen 4 expression was upregulated by the combined action of VEGF-A, FGF-2 and EGF, angiogenic factors representative of the tumor microenvironment. Suppression of trypsinogen 4 expression by siRNA inhibited the angiogenic milieu-induced migration of EC from cancer specimens (tumor-EC), but did not affect EC from normal tissues. We identified tissue factor pathway inhibitor-2 (TFPI-2), a matrix associated inhibitor of cell motility, as the functional target of trypsinogen 4, which cleaved TFPI-2 and removed it from the matrix put down by tumor-EC. Silencing tumor-EC for trypsinogen 4 accumulated TFPI2 in the matrix. Showing that angiogenic factors stimulate trypsinogen 4 expression, which hydrolyses TFPI-2 favoring a pro-migratory situation, our study suggests a new pathway linking tumor microenvironment signals to endothelial cell migration, which is essential for angiogenesis and blood vessel remodeling. Abolishing trypsinogen 4 functions might be an exploitable strategy as anticancer, particularly anti-vascular, therapy.
Collapse
Affiliation(s)
- Carmen Ghilardi
- Laboratory of Biology and Treatment of Metastases, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Antonietta Silini
- Laboratory of Biology and Treatment of Metastases, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Sara Figini
- Laboratory of Biology and Treatment of Metastases, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Alessia Anastasia
- Laboratory of Biology and Treatment of Metastases, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Monica Lupi
- Laboratory of Cancer Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, University of Milan-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Raffaella Giavazzi
- Laboratory of Biology and Treatment of Metastases, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Maria Rosa Bani
- Laboratory of Biology and Treatment of Metastases, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| |
Collapse
|
18
|
Guo S, Lok J, Zhao S, Leung W, Som AT, Hayakawa K, Wang Q, Xing C, Wang X, Ji X, Zhou Y, Lo EH. Effects of Controlled Cortical Impact on the Mouse Brain Vasculome. J Neurotrauma 2016; 33:1303-16. [PMID: 26528928 DOI: 10.1089/neu.2015.4101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Perturbations in blood vessels play a critical role in the pathophysiology of brain injury and neurodegeneration. Here, we use a systematic genome-wide transcriptome screening approach to investigate the vasculome after brain trauma in mice. Mice were subjected to controlled cortical impact and brains were extracted for analysis at 24 h post-injury. The core of the traumatic lesion was removed and then cortical microvesels were isolated from nondirectly damaged ipsilateral cortex. Compared to contralateral cortex and normal cortex from sham-operated mice, we identified a wide spectrum of responses in the vasculome after trauma. Up-regulated pathways included those involved in regulation of inflammation and extracellular matrix processes. Decreased pathways included those involved in regulation of metabolism, mitochondrial function, and transport systems. These findings suggest that microvascular perturbations can be widespread and not necessarily localized to core areas of direct injury per se and may further provide a broader gene network context for existing knowledge regarding inflammation, metabolism, and blood-brain barrier alterations after brain trauma. Further efforts are warranted to map the vasculome with higher spatial and temporal resolution from acute to delayed phase post-trauma. Investigating the widespread network responses in the vasculome may reveal potential mechanisms, therapeutic targets, and biomarkers for traumatic brain injury.
Collapse
Affiliation(s)
- Shuzhen Guo
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Josephine Lok
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts.,2 Department of Pediatrics, Massachusetts General Hospital , Harvard Medical School, Boston, Massachusetts
| | - Song Zhao
- 3 The Department of Spine Surgery, the First Hospital of Jilin University , Changchun, China
| | - Wendy Leung
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Angel T Som
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Kazuhide Hayakawa
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Qingzhi Wang
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Changhong Xing
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Xiaoying Wang
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Xunming Ji
- 4 Cerebrovascular Research Center, Department of Neurosurgery, Xuanwu Hospital, Capital Medical University , Beijing, China
| | - Yiming Zhou
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| | - Eng H Lo
- 1 Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital , Harvard Medical School, Charlestown, Massachusetts
| |
Collapse
|
19
|
Amin M, Pushpakumar S, Muradashvili N, Kundu S, Tyagi SC, Sen U. Regulation and involvement of matrix metalloproteinases in vascular diseases. FRONT BIOSCI-LANDMRK 2016; 21:89-118. [PMID: 26709763 PMCID: PMC5462461 DOI: 10.2741/4378] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases whose main function is to degrade and deposit structural proteins within the extracellular matrix (ECM). A dysregulation of MMPs is linked to vascular diseases. MMPs are classified into collagenases, gelatinases, membrane-type, metalloelastase, stromelysins, matrilysins, enamelysins, and unclassified subgroups. The production of MMPs is stimulated by factors such as oxidative stress, growth factors and inflammation which lead to its up- or down-regulation with subsequent ECM remodeling. Normally, excess activation of MMPs is controlled by their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs). An imbalance of MMPs and TIMPs has been implicated in hypertension, atherosclerotic plaque formation and instability, aortic aneurysms and varicose vein wall remodeling. Also, recent evidence suggests epigenetic regulation of some MMPs in angiogenesis and atherosclerosis. Over the years, pharmacological inhibitors of MMPs have been used to modify or prevent the development of the disease with some success. In this review, we discuss recent advances in MMP biology, and their involvement in the manifestation of vascular disease.
Collapse
Affiliation(s)
- Matthew Amin
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sathnur Pushpakumar
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Nino Muradashvili
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Sourav Kundu
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202
| | - Utpal Sen
- Department of Physiology and Biophysics, University of Louisville, School of Medicine, Louisville, KY-40202,
| |
Collapse
|
20
|
Yu J, Liu RL, Luo XP, Shi HM, Ma D, Pan JJ, Ni HC. Tissue Factor Pathway Inhibitor-2 Gene Polymorphisms Associate With Coronary Atherosclerosis in Chinese Population. Medicine (Baltimore) 2015; 94:e1675. [PMID: 26496276 PMCID: PMC4620828 DOI: 10.1097/md.0000000000001675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) may play critical roles in the pathogenesis of atherosclerosis. In this study, we aimed to investigate the association between TFPI-2 gene polymorphisms and coronary atherosclerosis.Four hundred and seven patients with coronary atherosclerosis and 306 individuals with normal coronary artery were enrolled in the present study. Nine single-nucleotide polymorphisms (SNPs) (rs3763473, rs59805398, rs60215632, rs59999573, rs59740167, rs34489123, rs4517, rs4264, and rs4271) were detected with polymerase chain reaction-direct sequencing method. Severity of coronary atherosclerosis was assessed by Gensini score. After the baseline investigation, patients with coronary atherosclerosis were followed up for incidence of cardiovascular events (CVEs).Eight SNPs were in accordance with the Hardy-Weinberg equilibrium, and 8 haplotypes were constructed based on rs59999573, rs59740167, and rs34489123 after linkage disequilibrium and haplotype analysis. Two SNPs (rs59805398 and rs34489123) and 5 haplotypes correlated with coronary atherosclerosis even after adjustment by Gensini score. At follow-up (median 53 months, range 1-60 months), 85 patients experienced CVE. However, there was no strong association between the gene polymorphisms and the occurrence of CVE.Tissue factor pathway inhibitor-2 gene polymorphisms were associated with coronary atherosclerosis in the Chinese population, suggesting that the information about TFPI-2 gene polymorphisms was useful for assessing the risk of developing coronary atherosclerosis, but there was not enough evidence showing it could predict occurrence of CVE.
Collapse
Affiliation(s)
- Jia Yu
- From the Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, 200040, China (JY, R-IL, X-PL, H-MS, J-JP, H-CN); and Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, 200032, China (DM)
| | | | | | | | | | | | | |
Collapse
|
21
|
Shi M, Yin F, Gu H, Zhu J, Yin X. Tissue Factor Pathway Inhibitor-Coated Stents Inhibit Restenosis in a Rabbit Carotid Artery Model. Cardiovasc Ther 2015; 33:353-9. [PMID: 26280363 DOI: 10.1111/1755-5922.12152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Our aim was to study the efficacy and safety of tissue factor pathway inhibitor (TFPI)-coated stents in inhibiting restenosis in a rabbit carotid artery model. METHODS Subculture was conducted in aorta smooth muscle cell, which was taken from male Wistar rat, and the 3-5-generation cells were taken for plasmid transfection and cytotoxicity experiment. TFPI microspheres were made of a TFPI plasmid which was enwrapped by poly-l-glutamic acid (PLGA). TFPI-coated stents (n = 7) and bare metal stents (n = 6) were implanted into prepared carotid artery stenosis model of New Zealand white rabbits. The transfection efficiency of TFPI gene and its influence on animal tissue, restenosis inhibition, and biochemical indicator were observed. RESULT Tissue factor pathway inhibitor microspheres can transfect successfully into cells, and present no cytotoxicity. Autopsy results showed no pathological changes in liver and spleen of rabbits after implanting TFPI-coated stents. TFPI gene could transfect and express successfully in vessel wall cells, and thrombus was found in some lumens of bare metal stents group after 7 day, while no such thrombus was observed in coated stents group. Degree of hyperplasia of coronary endarterectomy in bare metal stents group was evidently higher than those in coated stents group. Obvious stent restenosis was discovered only in one case in bare metal stents group (diameter stenosis ≥50%). However, no case in coated stents group showed with stent restenosis. CONCLUSION Tissue factor pathway inhibitor-coated stents could successfully transfect TFPI gene into vessel wall cells, thereby inhibiting restenosis without obvious side effect in the rabbit carotid artery model.
Collapse
Affiliation(s)
- Mingyu Shi
- Department of Cardiovasology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Yin
- Department of Cardiovasology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyue Gu
- Department of Cardiovasology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jing Zhu
- Department of Cardiovasology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinhua Yin
- Department of Cardiovasology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Post-transcriptional control of Amblyomin-X on secretion of vascular endothelial growth factor and expression of adhesion molecules in endothelial cells. Toxicon 2015; 101:1-10. [PMID: 25912945 DOI: 10.1016/j.toxicon.2015.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/20/2015] [Accepted: 04/21/2015] [Indexed: 12/12/2022]
Abstract
Angiogenesis is a pivotal process of homeostasis and tissue repair, but it also favours neovascularisation syndromes and cancer nutrition. The chemical mediation of angiogenesis is complex, involving a balance between serine proteases and their inhibitors. We addressed the mechanisms of action of a Kunitz serine protease inhibitor (KPI) on spontaneous angiogenesis, using Amblyomin-X, a KPI designed from the cDNA library of the Amblyomma cajennense tick. Amblyomin-X treatment (10-1000 ng/10 μL; each 48 h; 3 times) reduced the number of vessels in the subcutaneous dorsal tissue of male Swiss mice, as measured by intravital microscopy, haematoxylin-eosin staining, and PECAM-1 immunofluorescence labeling. Incubation of Amblyomin-X with t-End endothelial cells, a murine endothelial microvascular lineage, did not alter cell proliferation, cell-cycle phases, necrosis and apoptosis, and the production of nitric oxide and prostaglandin E2. Nevertheless, Amblyomin-X treatment reduced t-End migration and adhesion to Matrigel(®), and inhibited the VEGF-A secretion and VCAM-1 and β3 integrin expressions by posttranscriptional pathways. Together, data herein outline novel posttranscriptional mechanisms of KPIs on endothelial cells during angiogenesis and point out the possible application of Amblyomin-X as a local inhibitor to undesired neovascularisation process.
Collapse
|
23
|
Williams L, Deana A, Romero A, Molina A, Lunello P. High-level production of active human TFPI-2 Kunitz domain in plant. Protein Expr Purif 2014; 96:14-9. [PMID: 24486814 DOI: 10.1016/j.pep.2014.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/19/2022]
Abstract
Plants are an attractive production system alternative to cell bioreactor not only because of its lower production costs, but also due to its lack of mammalian pathogens and contaminants, plant capacity to generate appropriate eukaryotic folding and in many cases correct post-translational modifications. In recent years, several recombinant proteins and antibodies have been introduced in the biopharmaceutical market, in particular in cancer therapeutics. Kunitz domain 1 (KD1), a domain of Human Tissue Factor Pathway Inhibitor-2 (TFPI-2), has an outstanding potential in cancer treatment because it is a potent inhibitor of extracellular serine proteinases involved in tumor progression and angiogenesis. We present here the expression and purification of active human KD1 in different Nicotiana species as hosts and its stability during the infection process using a construct derived from a Tobacco mosaic virus (TMV) vector. Our purification protocol allows to recover over 100mg of active human KD1 per batch of 1 kg of plant tissue at about 97% purity. The yields are reproducible, being N. benthamiana the best system where higher levels of KD1 are obtained. Recombinant KD1 was also used to produce a high-sensitivity polyclonal antibody able to detect not only KD1 but also full-length TFPI-2. Finally, we show that this platform is a valuable alternative for the large scale production of KD1.
Collapse
|
24
|
Shiva Shankar TV, Willems L. Epigenetic modulators mitigate angiogenesis through a complex transcriptomic network. Vascul Pharmacol 2014; 60:57-66. [PMID: 24445350 DOI: 10.1016/j.vph.2014.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 12/18/2013] [Accepted: 01/08/2014] [Indexed: 12/19/2022]
Abstract
In this review, we summarize the knowledge pertaining to the role of epigenetics in the regulation of angiogenesis. In particular, we show that lysine acetylation and cytosine methylation are important transcriptional regulators of angiogenic genes in endothelial cells. Lysine acetylation and cytosine methylation inhibitors idiosyncratically tune the transcriptome and affect expression of key modulators of angiogenesis such as VEGF and eNOS. Transcriptomic profiling also reveals a series of novel genes that are concomitantly affected by epigenetic modulators. The reversibility and overall tolerability of currently available epigenetic inhibitors open up the prospect of therapeutic intervention in pathologies where angiogenesis is exacerbated. This type of multitargeted strategy has the major advantage of overcoming the compensatory feedback mechanisms that characterize single anti-angiogenic factors.
Collapse
Affiliation(s)
- T V Shiva Shankar
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium
| | - L Willems
- Molecular and Cellular Epigenetics (GIGA-Cancer) and Molecular Biology (GxABT), University of Liège (ULg), Liège, Belgium.
| |
Collapse
|
25
|
The role of tissue factor pathway inhibitor-2 in malignant transformation of sinonasal inverted papilloma. Eur Arch Otorhinolaryngol 2013; 271:2191-6. [DOI: 10.1007/s00405-013-2840-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 11/08/2013] [Indexed: 01/03/2023]
|
26
|
Zhu B, Xu T, Yuan J, Guo X, Liu D. Transcriptome sequencing reveals differences between primary and secondary hair follicle-derived dermal papilla cells of the Cashmere goat (Capra hircus). PLoS One 2013; 8:e76282. [PMID: 24069460 PMCID: PMC3777969 DOI: 10.1371/journal.pone.0076282] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/22/2013] [Indexed: 12/30/2022] Open
Abstract
The dermal papilla is thought to establish the character and control the size of hair follicles. Inner Mongolia Cashmere goats (Capra hircus) have a double coat comprising the primary and secondary hair follicles, which have dramatically different sizes and textures. The Cashmere goat is rapidly becoming a potent model for hair follicle morphogenesis research. In this study, we established two dermal papilla cell lines during the anagen phase of the hair growth cycle from the primary and secondary hair follicles and clarified the similarities and differences in their morphology and growth characteristics. High-throughput transcriptome sequencing was used to identify gene expression differences between the two dermal papilla cell lines. Many of the differentially expressed genes are involved in vascularization, ECM-receptor interaction and Wnt/β-catenin/Lef1 signaling pathways, which intimately associated with hair follicle morphogenesis. These findings provide valuable information for research on postnatal morphogenesis of hair follicles.
Collapse
Affiliation(s)
- Bing Zhu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Teng Xu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Jianlong Yuan
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
| | - Xudong Guo
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
- * E-mail: (XG); (DL)
| | - Dongjun Liu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology of the Ministry of Education, Inner Mongolia University, Hohhot, China
- * E-mail: (XG); (DL)
| |
Collapse
|
27
|
Over-expression of TFPI-2 promotes atherosclerotic plaque stability by inhibiting MMPs in apoE-/- mice. Int J Cardiol 2013; 168:1691-7. [PMID: 23608390 DOI: 10.1016/j.ijcard.2013.03.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 11/24/2022]
|
28
|
Xu C, Wang H, He H, Zheng F, Chen Y, Zhang J, Lin X, Ma D, Zhang H. Low expression of TFPI-2 associated with poor survival outcome in patients with breast cancer. BMC Cancer 2013; 13:118. [PMID: 23497249 PMCID: PMC3607852 DOI: 10.1186/1471-2407-13-118] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 03/12/2013] [Indexed: 01/08/2023] Open
Abstract
Background The purpose of this study is to evaluate the prognostic value of TFPI-2 expression in breast cancer patients through examining the correlation between TFPI-2 expression and breast cancer clinicopathologic features. Methods Immunohistochemical staining combined with digital image analysis was used to quantify the expression of TFPI-2 protein in breast tumor tissues. For evaluation of the prognostic value of TFPI-2 expression to each clinicopathologic factor, Kaplan-Meier method and COX’s Proportional Hazard Model were employed. Results TFPI-2 expression was significantly correlated with tumor size, lymph node metastasis, histologic grade, clinical stage, and vessel invasion. More importantly, TFPI-2 expression was also associated with disease-free survival (DFS) of breast cancer patients. We found that patients with high TFPI-2 expression had longer DFS compared with those with low or negative expression of TFPI-2 (P <0.05, log-rank test). Cox’s regression analysis indicated that TFPI-2 expression, histologic grade, and vessel invasion might be significant prognostic factors for DFS, while TFPI-2 expression and histologic grade were the most significant independent predictors for tumor recurrence. Compared with the group with low/high TFPI-2 expression, the TFPI-2 negative group was more likely to have tumor relapse. The hazard ratio of DFS is 0.316 (P <0.01). Conclusions Low or negative expression of TFPI-2 is associated with breast cancer progression, recurrence and poor survival outcome after breast cancer surgery. TFPI-2 expression in breast tumors is a potential prognostic tool for breast cancer patients.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Breast Surgery, Yangpu Hospital, Tongji University, Shanghai 200090, China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Shi X, Wallis AM, Gerard RD, Voelker KA, Grange RW, DePinho RA, Garry MG, Garry DJ. Foxk1 promotes cell proliferation and represses myogenic differentiation by regulating Foxo4 and Mef2. J Cell Sci 2012; 125:5329-37. [PMID: 22956541 DOI: 10.1242/jcs.105239] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In response to severe injury, adult skeletal muscle exhibits a remarkable regenerative capacity due to a resident muscle stem/progenitor cell population. While a number of factors are expressed in the muscle progenitor cell (MPC) population, the molecular networks that govern this cell population remain an area of active investigation. In this study, utilizing knockdown techniques and overexpression of Foxk1 in the myogenic lineage, we observed dysregulation of Foxo and Mef2 downstream targets. Utilizing an array of technologies, we establish that Foxk1 represses the transcriptional activity of Foxo4 and Mef2 and physically interacts with Foxo4 and Mef2, thus promoting MPC proliferation and antagonizing the myogenic lineage differentiation program, respectively. Correspondingly, knockdown of Foxk1 in C2C12 myoblasts results in cell cycle arrest, and Foxk1 overexpression in C2C12CAR myoblasts retards muscle differentiation. Collectively, we have established that Foxk1 promotes MPC proliferation by repressing Foxo4 transcriptional activity and inhibits myogenic differentiation by repressing Mef2 activity. These studies enhance our understanding of the transcriptional networks that regulate the MPC population and muscle regeneration.
Collapse
Affiliation(s)
- Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim H, Bartley GE, Young SA, Davis PA, Yokoyama W. HPMC supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in diet-induced obese mice. Mol Nutr Food Res 2012; 56:1464-76. [DOI: 10.1002/mnfr.201200082] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/20/2012] [Accepted: 05/18/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Hyunsook Kim
- Department of Nutrition; University of California; Davis CA USA
- USDA, ARS; Western Regional Research Center; Albany CA USA
| | | | | | - Paul A. Davis
- Department of Nutrition; University of California; Davis CA USA
| | | |
Collapse
|
31
|
Actions of the Kunitz-type serine protease inhibitor Amblyomin-X on VEGF-A-induced angiogenesis. Toxicon 2012; 60:333-40. [PMID: 22575283 DOI: 10.1016/j.toxicon.2012.04.349] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/17/2012] [Accepted: 04/24/2012] [Indexed: 11/22/2022]
Abstract
Amblyomin-X is a Kunitz-type serine protease inhibitor (Kunitz-type SPI) designed from the cDNA library of the Amblyomma cajennense tick, which displays in vivo anti-tumor activities. Here, the mechanisms of actions of Amblyomin-X in vascular endothelial growth factor A (VEGF-A)-induced angiogenesis were characterized. Topical application of Amblyomin-X (10 or 100 ng/10 μl; each 48 h) inhibited VEGF-A-induced (10 ng/10 μl; each 48 h) angiogenesis in the dorsal subcutaneous tissue in male Swiss mice. Moreover, similar effect was observed in the VEGF-A-induced angiogenesis in the chicken chorioallantoic membrane (CAM). Additional in vitro assays in t-End cells showed that Amblyomin-X treatment delayed the cell cycle, by maintaining them in G0/G1 phase, and inhibited cell proliferation and adhesion, tube formation and membrane expression of the adhesion molecule platelet-endothelial cell adhesion molecule-1 (PECAM-1), regardless of mRNA synthesis. Together, results herein reveal the role of Kunitz-type SPI on in vivo VEGF-A-induced angiogenesis, by exerting modulatory actions on endothelial cell proliferation and adhesion, especially on membrane expression of PECAM-1. These data provide further mechanisms of actions of Kunitz-type SPI, corroborating their relevance as scientific tools in the design of therapeutic molecules.
Collapse
|
32
|
Qin Y, Zhang S, Gong W, Li J, Jia J, Quan Z. Adenovirus-mediated gene transfer of tissue factor pathway inhibitor-2 inhibits gallbladder carcinoma growth in vitro and in vivo. Cancer Sci 2012; 103:723-730. [PMID: 22320835 PMCID: PMC7659267 DOI: 10.1111/j.1349-7006.2012.02218.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/01/2011] [Accepted: 01/03/2012] [Indexed: 02/05/2023] Open
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) has been identified as a tumor suppressor gene in several types of cancers, but its role in gallbladder carcinoma (GBC) is yet to be determined. In the present study, TFPI-2 expression in GBC tissues was examined, and its inhibitory activities against GBC growth were evaluated in vitro and in vivo after adenovirus-mediated gene transfer of TFPI-2 (Ad5-TFPI-2) was constructed to restore the expression of TFPI-2 in GBC cell lines (GBC-SD, SGC-996, NOZ) and xenograft tumors. Immunohistochemical staining showed that TFPI-2 was significantly downregulated in GBC tissue specimens. Ad5-TFPI-2 could significantly inhibit GBC growth both in vitro and in vivo. Apoptosis analysis and western blotting assay demonstrated that Ad5-TFPI-2 could induce the apoptosis of both GBC cell lines and tissues by promoting the activities of cytochrome c, Bax, caspase-3 and -9 and suppressing Bcl-2 activity. These data indicated that TFPI-2 acts as a tumor suppressor in GBC, and may have a potential role in gene therapy for GBC.
Collapse
Affiliation(s)
- Yiyu Qin
- Department of General Surgery, Xinhua Hospital, Affiliated to School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
33
|
Zhou Q, Xiong Y, Chen Y, Du Y, Zhang J, Mu J, Guo Q, Wang H, Ma D, Li X. Effects of tissue factor pathway inhibitor-2 expression on biological behavior of BeWo and JEG-3 cell lines. Clin Appl Thromb Hemost 2011; 18:526-33. [PMID: 22203034 DOI: 10.1177/1076029611429785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To investigate the effect of tissue factor pathway inhibitor-2 (TFPI-2) expression on biological behavior of BeWo and JEG-3 cell lines. MATERIAL AND METHODS The expression of TFPI-2 in BeWo and JEG-3 cells was upregulated by pEGFP-N3-TFPI-2 and downregulated by small interference RNA transfection, confirmed by Western blotting assay and real-time polymerase chain reaction (RT-PCR). Boyden chamber, Cell Counting Kit-8 (CCK-8), and Hoechst 33258/terminal deoxynucleotidyltransferase-mediated UTP end labeling (TUNEL) assays were used for migration, invasion, and proliferation/apoptosis analysis, respectively. RESULTS In Western blotting and RT-PCR assay, protein and messenger RNA (mRNA) expression of TFPI-2 in transfected BeWo and JEG-3 cells were confirmed. Expression of TFPI-2 inhibited BeWo and downregulated JEG-3 cell migration, invasion, proliferation, and induced apoptosis (P < .05) in Boyden chamber, CCK-8, Hoechst 33258, and TUNEL detection, respectively. CONCLUSIONS TFPI-2 expression caused invasion and proliferation impair and induced apoptosis in TFPI-2 regulated BeWo and JEG-3 cells. It provides a clue for potential role of TFPI-2 in trophoblast.
Collapse
Affiliation(s)
- Qiongjie Zhou
- Obstetrics and Gynecology Hospital, Fudan University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Guo H, Li M, Chen P, Blake DJ, Kong X, Hao X, Niu R, Zhang N. 4-Methyl-3-nitro-benzoic acid, a migration inhibitor, prevents breast cancer metastasis in SCID mice. Cancer Lett 2011; 305:69-75. [PMID: 21429660 DOI: 10.1016/j.canlet.2011.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
Metastasis remains a formidable problem in malignant tumors. In this study, MTT assay revealed that 4-methyl-3-nitro-benzoic acid (MNBA) had no effect on cell viability and did not interfere with cell cycle in any breast cancer cell lines tested. However, treatment with MNBA on breast cancer cells can inhibit EGF-induced migration and chemotaxis in vitro. In vivo assay demonstrated that MNBA and Paclitaxel synergistically inhibited tumor growth and metastasis in breast cancer SCID mice xenografts. These results suggest that MNBA is a potent inhibitor cancer cell chemotaxis and may be developed into a novel anti-metastasis drug.
Collapse
Affiliation(s)
- Hua Guo
- Tianjin Medical University, Cancer Institute and Hospital, Research Center of Basic Medical Sciences, Tianjin, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Recombinant TFPI-2 enhances macrophage apoptosis through upregulation of Fas/FasL. Eur J Pharmacol 2010; 654:135-41. [PMID: 21192924 DOI: 10.1016/j.ejphar.2010.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 11/14/2010] [Accepted: 12/11/2010] [Indexed: 11/20/2022]
Abstract
Tissue factor pathway inhibitor-2 (TFPI-2) is a Kunitz-type serine proteinase inhibitor with inhibitory activity toward activated factor XI, plasma kallikrein, plasmin, certain matrix metalloproteinases, and the tissue factor-activated factor VII complex. In addition, TFPI-2 has other functions such as promoting cell migration and inducing apoptosis. In the present study, we investigated if TFPI-2 induced apoptosis in cultured U937-derived macrophages and the possible signal pathways that involved in the apoptotic process. Apoptotic DNA fragment detection and caspase-3,9 activity measurements indicated that rTFPI-2 promoted U937-derived macrophage apoptosis. Hoechst 33342 assay and flow cytometry further showed that rTFPI-2 induced apoptosis in cultured macrophages in a dose-dependent manner. Because death receptors of the TNF family such as Fas are the best-understood death pathways that recruit Fas-associated death domain (FADD) and procaspase-8 to the receptor in macrophages, we investigated the expression of Fas and its ligand (FasL) and downstream signal caspase-8 by Western blot analysis. The results indicated that the process of apoptosis triggered by rTFPI-2 was, at least in part, actively conducted by U937-derived macrophages possibly through Fas/FasL signal pathway. In brief, rTFPI-2 may have the potential usefulness in inducing macrophages apoptosis, which suggest TFPI-2 might have antiatherogenic effects.
Collapse
|
36
|
Zhou J, Wang Y, Xiong Y, Wang H, Feng Y, Chen J. Delivery of TFPI-2 using ultrasound with a microbubble agent (SonoVue) inhibits intimal hyperplasia after balloon injury in a rabbit carotid artery model. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1876-1883. [PMID: 20888684 DOI: 10.1016/j.ultrasmedbio.2010.08.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/13/2010] [Accepted: 08/21/2010] [Indexed: 05/29/2023]
Abstract
Here we report a new, simple and efficient method by using ultrasound and a microbubble agent (SonoVue) for delivering a gene to balloon-injured carotid arteries for restenosis prophylaxis. The tissue factor pathway inhibitor-2 (TFPI-2) has been shown to inhibit the postinjury intimae hyperplasia in atherosclerotic vessels. New Zealand white rabbits were divided into 4 groups with 14 in each, a treatment control for balloon injury, a gene vehicle control, a gene delivery of TFPI-2 without using ultrasound and a gene delivery of TFPI-2 using ultrasound. After four weeks, the injured artery neointimal proliferation was significantly lower in the TFPI-2 group with ultrasound than the control groups (p < 0.01) according to the measurement of the mean luminal diameters by B-mode ultrasonography. The ratio of intimal/media area and the stenosis rate in the gene delivery facilitated by ultrasound were significantly lower than those of the nonultrasound gene delivering method (p < 0.01).
Collapse
Affiliation(s)
- Jie Zhou
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
37
|
Wang Y, Zhou J, Zhang Y, Wang X, Chen J. Delivery of TFPI-2 using SonoVue and adenovirus results in the suppression of thrombosis and arterial re-stenosis. Exp Biol Med (Maywood) 2010; 235:1072-81. [PMID: 20682602 DOI: 10.1258/ebm.2010.010046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genes could be used to treat atherosclerosis. The key problem is how to target a gene through the walls of arteries in free-flowing blood. TFPI-2 has been shown to suppress thrombosis and arterial re-stenosis, which indicates its potential function in gene therapy for atherosclerosis. The microbubble ultrasound contrast agent is widely applied in diagnostic imaging, and could be used for transferring genes into arteries. By transfecting TFPI-2 into arteries using SonoVue (a kind of microbubble ultrasound contrast agent), we identified TFPI-2 as an available factor for inhibiting the proliferation of vascular endothelial cells in vivo. Compared with adenovirus, SonoVue showed similar gene transfection efficiency, but the latter showed stronger inhibition of thrombosis and arterial re-stenosis with a high expression of TFPI-2 protein in vitro and in vivo. SonoVue was less damaging when transfecting genes into the arterial wall. These data indicate that transfecting human TFPI-2 into the arterial wall may suppress thrombosis and arterial re-stenosis, and reduce atherosclerosis.
Collapse
Affiliation(s)
- Yuxue Wang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Anti-inflammatory actions of serine protease inhibitors containing the Kunitz domain. Inflamm Res 2010; 59:679-87. [PMID: 20454830 DOI: 10.1007/s00011-010-0205-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 02/01/2010] [Accepted: 04/12/2010] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Protease inhibitors, including the Kunitz, Kazal, serpin and mucus families, play important roles in inhibiting protease activities during homeostasis, inflammation, tissue injury, and cancer progression. Interestingly, in addition to their anti-protease activity, protease inhibitors also often possess other intrinsic properties that contribute to termination of the inflammatory process, including modulation of cytokine expression, signal transduction and tissue remodeling. In this review we have tried to summarize recent findings on the Kunitz family of serine proteinase inhibitors and their implications in health and disease. MATERIALS AND METHODS A systematic search was performed in the electronic databases PubMed and ScienceDirect up to October 2009. We tried to limit the review to anti-inflammatory actions and actions not related to protease inhibition. RESULTS AND CONCLUSION Recent studies have demonstrated that the Kunitz inhibitors are not only protease inhibitors, but can also prevent inflammation and tissue injury and subsequently promote tissue remodeling.
Collapse
|
39
|
Fan YZ, Sun W. Molecular regulation of vasculogenic mimicry in tumors and potential tumor-target therapy. World J Gastrointest Surg 2010; 2:117-27. [PMID: 21160860 PMCID: PMC2999229 DOI: 10.4240/wjgs.v2.i4.117] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/26/2010] [Accepted: 02/02/2010] [Indexed: 02/06/2023] Open
Abstract
“Vasculogenic mimicry (VM)”, is a term that describes the unique ability of highly aggressive tumor cells to express a multipotent, stem cell-like phenotype, and form a pattern of vasculogenic-like networks in three-dimensional culture. As an angiogenesis-independent pathway, VM and/or periodic acid-schiff-positive patterns are associated with poor prognosis in tumor patients. Moreover, VM is resistant to angiogenesis inhibitors. Here, we will review the advances in research on biochemical and molecular signaling pathways of VM in tumors and on potential anti-VM therapy strategy.
Collapse
Affiliation(s)
- Yue-Zu Fan
- Yue-Zu Fan, Wei Sun, Department of Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | | |
Collapse
|
40
|
Takada H, Wakabayashi N, Dohi O, Yasui K, Sakakura C, Mitsufuji S, Taniwaki M, Yoshikawa T. Tissue factor pathway inhibitor 2 (TFPI2) is frequently silenced by aberrant promoter hypermethylation in gastric cancer. ACTA ACUST UNITED AC 2010; 197:16-24. [PMID: 20113832 DOI: 10.1016/j.cancergencyto.2009.11.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 10/04/2009] [Accepted: 11/02/2009] [Indexed: 12/16/2022]
Abstract
Aberrant methylation of promoter CpG islands is associated with transcriptional inactivation of tumor-suppressor genes in cancer. TFPI2, a Kunitz-type serine proteinase inhibitor, has been identified as a putative tumor-suppressor gene from genome-wide screening for aberrant methylation, using a microarray combined with the methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dCyd) in various types of tumors. We assessed the methylation status of TFPI2 and investigated its expression pattern in human primary gastric cancer (GC) tissues and in GC cell lines. Hypermethylation of the promoter CpG island, which was observed in more or less all of GC cell lines, was prevalent in a high proportion of primary GC tissues (15/18, or 83%), compared with noncancerous (4/18, or 22%) or normal (0/3, or 0%) stomach tissues, and expression of TFPI2 mRNA was reduced in 7 of the 17 primary GC tissues (41%). Moreover, immunohistochemical analyses showed decreased levels of TFPI-2 protein, compared with adjacent noncancerous tissues in 8 of the 20 primary GC tissues examined (40%). TFPI2 mRNA expression was restored in gene-silenced GC cells after treatment with 5-aza-dCyd. Aberrant methylation of TFPI2 promoter CpG island occurred not only in GC cells but also in primary GC tissues at a high frequency, suggesting that epigenetic silencing of TFPI2 may contribute to gastric carcinogenesis.
Collapse
Affiliation(s)
- Hisashi Takada
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kawaramachi Hirokoji, Kamigyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Negaard HFS, Svennevig K, Kolset SO, Iversen N, Lothe IMB, Østenstad B, Sandset PM, Iversen PO. Alterations in regulators of the extracellular matrix in non-Hodgkin lymphomas. Leuk Lymphoma 2009; 50:998-1004. [PMID: 19373600 DOI: 10.1080/10428190902889270] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone marrow angiogenesis is increased in non-Hodgkin lymphomas (NHL). Compounds affecting extracellular matrix (ECM) may modify angiogenesis. Here we investigated ECM regulators in 48 unselected NHL patients compared with 35 controls. Untreated patients had elevated (P < 0.05) serum matrix metalloproteinase (MMP) 9 and tissue inhibitor of metalloproteinase (TIMP) 1, while MMP-2, TIMP-2 and syndecan-1 were not significantly different from controls. MMP-9 mRNA was significantly up-regulated in blood mononuclear cells, while mRNA expressions of the other ECM regulators were unaltered. We found strong correlations between mRNA expressions of both vascular endothelial growth factor and fibroblast growth factor 2, and MMP-9, TIMP-1 and TIMP-2. After therapy, serum MMP-2 increased while MMP-9 decreased (P < 0.05), the others being unchanged. Several compounds affecting ECM may be involved in angiogenic activity in NHL.
Collapse
Affiliation(s)
- Helene F S Negaard
- Department of Haematology, Oslo University Hospital Ullevål, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Punj V, Matta H, Schamus S, Chaudhary PM. Integrated microarray and multiplex cytokine analyses of Kaposi's Sarcoma Associated Herpesvirus viral FLICE Inhibitory Protein K13 affected genes and cytokines in human blood vascular endothelial cells. BMC Med Genomics 2009; 2:50. [PMID: 19660139 PMCID: PMC2732924 DOI: 10.1186/1755-8794-2-50] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 08/06/2009] [Indexed: 11/10/2022] Open
Abstract
Background Kaposi's sarcoma (KS) associated herpesvirus (KSHV) is the etiological agent of KS, a neoplasm characterized by proliferating spindle cells, extensive neoangiogenesis and a prominent inflammatory infiltrate. Infection of blood vascular endothelial cells with KSHV in vitro results in their spindle cell transformation, which is accompanied by increased expression of inflammatory chemokines and cytokines, and acquisition of lymphatic endothelial markers. Mimicking the effect of viral infection, ectopic expression of KSHV-encoded latent protein vFLIP K13 is sufficient to induce spindle transformation of vascular endothelial cells. However, the effect of K13 expression on global gene expression and induction of lymphatic endothelial markers in vascular endothelial cells has not been studied. Methods We used gene array analysis to determine change in global gene expression induced by K13 in human vascular endothelial cells (HUVECs). Results of microarray analysis were validated by quantitative RT-PCR, immunoblotting and a multiplex cytokine array. Results K13 affected the expression of several genes whose expression is known to be modulated by KSHV infection, including genes involved in immune and inflammatory responses, anti-apoptosis, stress response, and angiogenesis. The NF-κB pathway was the major signaling pathway affected by K13 expression, and genetic and pharmacological inhibitors of this pathway effectively blocked K13-induced transcriptional activation of the promoter of CXCL10, one of the chemokines whose expression was highly upregulated by K13. However, K13, failed to induce expression of lymphatic markers in blood vascular endothelial cells. Conclusion While K13 may account for change in the expression of a majority of genes observed following KSHV infection, it is not sufficient for inducing lymphatic reprogramming of blood vascular endothelial cells.
Collapse
Affiliation(s)
- Vasu Punj
- Department of Medicine, Division of Hematology-Oncology, Hillman Cancer Center, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | |
Collapse
|
43
|
Transient RNA silencing of tissue factor pathway inhibitor-2 modulates lung cancer cell invasion. Clin Exp Metastasis 2009; 26:457-67. [DOI: 10.1007/s10585-009-9245-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 02/17/2009] [Indexed: 01/01/2023]
|
44
|
Ran Y, Pan J, Hu H, Zhou Z, Sun L, Peng L, Yu L, Sun L, Liu J, Yang Z. A Novel Role for Tissue Factor Pathway Inhibitor-2 in the Therapy of Human Esophageal Carcinoma. Hum Gene Ther 2009; 20:41-9. [PMID: 20377370 DOI: 10.1089/hum.2008.129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Yuliang Ran
- The State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Jian Pan
- The State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Hai Hu
- The State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Zhuan Zhou
- The State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Lichao Sun
- The State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Liang Peng
- The State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Long Yu
- The State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Lixin Sun
- The State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Jun Liu
- The State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, People's Republic of China
| | - Zhihua Yang
- The State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, People's Republic of China
| |
Collapse
|
45
|
Li Z, Mao Z, Lin Y, Liang W, Jiang F, Liu J, Tang Q, Ma D. Dynamic changes of tissue factor pathway inhibitor type 2 associated with IL-1β and TNF-α in the development of murine acute lung injury. Thromb Res 2008; 123:361-6. [DOI: 10.1016/j.thromres.2008.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 02/03/2008] [Accepted: 03/24/2008] [Indexed: 11/25/2022]
|
46
|
Human tissue factor pathway inhibitor-2 induces caspase-mediated apoptosis in a human fibrosarcoma cell line. Apoptosis 2008; 13:702-15. [DOI: 10.1007/s10495-008-0207-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|