1
|
Wei HJ, Li YH, Shi GY, Liu SL, Chang PC, Kuo CH, Wu HL. Thrombomodulin domains attenuate atherosclerosis by inhibiting thrombin-induced endothelial cell activation. Cardiovasc Res 2011; 92:317-27. [PMID: 21840881 DOI: 10.1093/cvr/cvr220] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Thrombin modulates the formation of atherosclerotic lesions by stimulating a variety of cellular effects through protease-activated receptor-1 (PAR-1) activation. Thrombomodulin (TM) inhibits thrombin effects by binding thrombin through its domains 2 and 3 (TMD23). We investigated whether recombinant TMD23 (rTMD23) could inhibit atherosclerosis via its thrombin-binding ability. METHODS AND RESULTS Wild-type mouse rTMD23 and three mutants with altered thrombin-binding sites, rTMD23 (I425A), rTMD23 (D424A/D426A), and rTMD23 (D424A/I425A/D426A), were expressed and purified in the Pichia pastoris expression system. Wild-type rTMD23 and rTMD23 (D424A/D426A) could effectively bind thrombin, activate protein C, and prolong thrombin clotting time, whereas rTMD23 (I425A) and rTMD23 (D424A/I425A/D426A) lost these functions. Wild-type rTMD23, but not rTMD23 (I425A), decreased both the thrombin-induced surface PAR-1 internalization and the increase in cytoplasmic Ca(2+) concentrations in endothelial cells (ECs). Wild-type rTMD23 and rTMD23 (D424A/D426A) also inhibited thrombin-induced adhesion molecules and monocyte chemoattractant protein-1 expression and increased permeability in ECs, whereas rTMD23 (I425A) and rTMD23 (D424A/I425A/D426A) had no such effects. Furthermore, wild-type rTMD23 and rTMD23 (D424A/D426A) were effective in reducing carotid ligation-induced neointima formation in C57BL/6 mice and atherosclerotic lesion formation in apolipoprotein E-deficient (ApoE-/-) mice, whereas rTMD23 with the I425A mutation showed impairment of this function. Wild-type rTMD23, but not rTMD23 (I425A), also markedly suppressed the PAR-1, the adhesion molecules expression, and the macrophage content in the carotid ligation model and ApoE-/- mice. CONCLUSION rTMD23 protein significantly reduces atherosclerosis and neointima formation through its thrombin-binding ability.
Collapse
Affiliation(s)
- Hsi-Ju Wei
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
2
|
Troyanovsky B, Alvarez DF, King JA, Schaphorst KL. Thrombin enhances the barrier function of rat microvascular endothelium in a PAR-1-dependent manner. Am J Physiol Lung Cell Mol Physiol 2007; 294:L266-75. [PMID: 18083763 DOI: 10.1152/ajplung.00107.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thrombin is a multifunctional coagulation protease with pro- and anti-inflammatory vascular effects. We questioned whether thrombin may have segmentally differentiated effects on pulmonary endothelium. In cultured rat endothelial cells, rat thrombin (10 U/ml) recapitulated the previously reported decrease in transmonolayer electrical resistance (TER), F-actin stress fiber formation, paracellular gap formation, and increased permeability. In contrast, in rat pulmonary microvascular endothelial cells (PMVEC), isolated on the basis of Griffonia simplicifolia lectin recognition, thrombin increased TER, induced fewer stress fibers, and decreased permeability. To assess for differential proteinase-activated receptor (PAR) expression as a basis for the different responses, PAR family expression was analyzed. Both pulmonary artery endothelial cells and PMVEC expressed PAR-1 and PAR-2; however, only PMVEC expressed PAR-3, as shown by both RT-PCR and Western analysis. PAR-1 activating peptides (PAR-APs: SFLLRN-NH(2) and TFLLRN-NH(2)) were used to confirm a role for the PAR-1 receptor. PAR-APs (25-250 muM) also increased TER, formed fewer stress fibers, and did not induce paracellular gaps in PMVEC in contrast to that shown in pulmonary artery endothelial cells. These results were confirmed in isolated perfused rat lung preparations. PAR-APs (100 mug/ml) induced a 60% increase in the filtration coefficient over baseline. However, by transmission electron microscopy, perivascular fluid cuffs were seen only along conduit veins and arteries without evidence of intra-alveolar edema. We conclude that thrombin exerts a segmentally differentiated effect on endothelial barrier function in vitro, which corresponds to a pattern of predominant perivascular fluid cuff formation in situ. This may indicate a distinct role for thrombin in the microcirculation.
Collapse
Affiliation(s)
- B Troyanovsky
- Center for Lung Biology, University of South Alabama College of Medicine, 307 North University Drive, Mobile, AL 36688-0002, USA
| | | | | | | |
Collapse
|
3
|
Niimi S, Harashima M, Takayama K, Hara M, Hyuga M, Seki T, Ariga T, Kawanishi T, Hayakawa T. Thrombomodulin enhances the invasive activity of mouse mammary tumor cells. J Biochem 2005; 137:579-86. [PMID: 15944410 DOI: 10.1093/jb/mvi070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Thrombomodulin (TM) is a thrombin receptor on the surface of endothelial cells that converts thrombin from a procoagulant to an anticoagulant. Thrombin promotes invasion by various tumor cells, and positive or negative correlations are found between the expression of TM and tumorigenesis in some patients. In this study, we used an invasion assay to investigate the effect of TM on the invasive activity of a mouse mammary tumor cell line, MMT cells, and the effects of TM were compared with those of thrombin as a positive control. In the presence of 1% fetal calf serum (FCS), TM significantly stimulated MMT cell invasion in a dose-dependent manner, resulting in an approximately 3-fold increase at 1-10 pg/ml over the untreated control. Thrombin also caused a similar degree of stimulation at 50 ng/ml. Since thrombin activity was detected in the components of the assay system, an invasion assay was also performed in a thrombin-activity-depleted assay system constructed to eliminate the effect of thrombin activity; TM (10 pg/ml) plus thrombin (1 pg/ml) stimulated invasion by approximately 3.5-fold in this assay system. Hirudin, a specific thrombin inhibitor, inhibited stimulation by TM as well as by thrombin in both the presence and absence of 1% FCS. Investigations of the effects of TM on proliferation, adhesion and chemotaxis to clarify the mechanism of stimulation by TM revealed that TM does not affect proliferation or adhesion in the presence of 1% FCS, but stimulates chemotaxis by approximately 2.3-fold. Similar results were obtained in experiments using thrombin. TM (10 pg/ml) plus thrombin (1 pg/ml), on the other hand, stimulated chemotaxis by approximately 2.3-fold in the thrombin-activity-depleted assay system. Binding studies using [125I]-thrombin revealed that the cells have specific saturable binding sites for thrombin. These results show that TM stimulates the invasive activity of MMT cells, probably by acting as a cofactor for the thrombin-stimulated invasion of the cells via its receptor and lowering the effective concentration of thrombin. The findings also indicate that the stimulation of invasive activity in the presence of 1% FCS and in the thrombin-activity-depleted assay system may mainly be mediated by the stimulation of chemotaxis.
Collapse
Affiliation(s)
- Shingo Niimi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Li JM, Singh MJ, Itani M, Vasiliu C, Hendricks G, Baker SP, Hale JE, Rohrer MJ, Cutler BS, Nelson PR. Recombinant human thrombomodulin inhibits arterial neointimal hyperplasia after balloon injury. J Vasc Surg 2004; 39:1074-83. [PMID: 15111864 DOI: 10.1016/j.jvs.2003.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Smooth muscle cell proliferation is a major pathophysiologic factor in injury-induced neointimal hyperplasia and recurrent stenosis. We have demonstrated that recombinant human thrombomodulin (rTM) inhibits thrombin-induced arterial smooth muscle cell proliferation in vitro. The purpose of this study was to investigate the effect of rTM on neointimal hyperplasia in vivo. METHODS A rabbit femoral artery balloon injury model was used. Bilateral superficial femoral arteries were deendothelialized with a 2F arterial embolectomy catheter. rTM (145 microg/kg; 2.0 microg/mL in circulation) or Tris-hydrochloride vehicle control was administered intravenously during the procedure, then either discontinued (group A) or administered twice daily for an additional 48 hours (group B). Rabbits were euthanized at 4 days and at 1, 2, and 4 weeks, and femoral artery specimens were prepared with in situ perfusion fixation and paraffin embedding. Luminal, intima, media, and whole artery areas were quantitated with digital imaging computerized planimetry. Intima-media and lumen-whole artery ratios were calculated. The injury-induced inflammatory reaction was also evaluated with light microscopy, scanning and transmission electron microscopy, and immunohistochemical and immunohistofluorescence staining. RESULTS In the buffer control group, neointimal hyperplasia after femoral artery balloon injury was evident at 2 weeks, and was pronounced at 4 weeks (P <.0001). Infusion of rTM significantly inhibited intimal hyperplasia at both 2 and 4 weeks (P <.0001). In group A, rTM reduced the intima-media ratio by 27% and 39% at 2 and 4 weeks, respectively. Extended administration of rTM (group B) resulted in inhibition of hyperplasia by 57% and 30% at 2 and 4 weeks, respectively, but failed to reach significance compared with the shorter exposure. rTM infusion significantly inhibited thrombosis (8.1-fold) compared with the buffer control group (P =.012). rTM had no significant effect on lumen area or lumen-whole artery ratio, but treated arteries demonstrated significantly less compensatory dilatation (P =.045), as measured by whole artery area in response to less intimal hyperplasia. rTM administration inhibited platelet adhesion and inhibition of neutrophil infiltration to a degree that approached statistical significance (P =.0675). CONCLUSIONS Systemic intravenous administration of rTM significantly decreases neointimal hyperplasia and improves patency in the rabbit femoral artery after balloon injury. In addition to exhibiting antithrombotic and antiproliferative effects, rTM may also invoke an anti-inflammatory mechanism, and may alter vascular remodeling in a multidimensional role to inhibit recurrent stenosis after arterial injury.
Collapse
Affiliation(s)
- Jian-Ming Li
- Department of Surgery, Division of Vascular Surgery, University of Massachusetts Medical School, Worcester, Mass, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Riewald M, Ruf W. Proteinase-activated receptor activation by coagulation proteinases. Drug Dev Res 2003. [DOI: 10.1002/ddr.10310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Abstract
Coagulation serine proteases signal through protease-activated receptors (PARs). Thrombin-dependent PAR signaling on platelets is essential for the hemostatic response and vascular thrombosis, but regulation of inflammation by PAR signaling is now recognized as an important aspect of the pro- and anti-coagulant pathways. In tissue factor (TF)-dependent initiation of coagulation, factor (F) Xa is the PAR-1 or PAR-2-activating protease when associated with the transient TF-FVIIa-FXa complex. In the anticoagulant protein C (PC) pathway, the thrombin-thrombomodulin complex activates PC bound to the endothelial cell PC receptor (EPCR), which functions as a required coreceptor for activated PC-mediated signaling through endothelial cell PAR-1. Thus, the pro- and anti-inflammatory receptor cascades are mechanistically coupled to immediate cell signaling, which precedes systemic coagulant or anticoagulant effects. In contrast to the substrate-like recognition of PARs by thrombin, TF- or EPCR-targeted activation of PARs generates cell-type specificity, PAR selectivity and protease receptor cosignaling with the G-protein-coupled PAR response. Protease receptors are thus major determinants of the biological outcome of coagulation factor signaling on vascular cells.
Collapse
Affiliation(s)
- W Ruf
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
7
|
Li JM, Singh MJ, Nelson PR, Hendricks GM, Itani M, Rohrer MJ, Cutler BS. Immobilization of human thrombomodulin to expanded polytetrafluoroethylene. J Surg Res 2002; 105:200-8. [PMID: 12121708 DOI: 10.1006/jsre.2002.6381] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The success of synthetic grafts for vascular reconstruction remains limited by thrombosis and intimal hyperplasia. In addition to the well-described antithrombotic effects of thrombomodulin, we have demonstrated that recombinant human thrombomodulin (rTM) inhibits arterial smooth muscle cell proliferation induced by thrombin. This study investigated the binding of functional rTM to expanded polytetrafluoroethylene (ePTFE). METHODS Immobilization of rTM was achieved by either (1) a direct coating or (2) a two-step binding process using a water-soluble condensing cross-reaction agent EDAC to modify the ePTFE surface followed by binding of rTM. The samples were then subjected to a tangential shaken wash. The evidence of bound rTM was evaluated by both morphologic and functional studies. RESULTS SEM, BSI, and X-ray microanalysis identified that the two-step binding method resulted in significantly greater binding of rTM molecules to ePTFE pre- and post a 7-h wash than the direct coating method. With the two-step binding method rTM ranging from 0.25 to 12.5 microg immobilized to ePTFE-activated protein C (APC) in a concentration-dependent manner by more than 6000-fold compared to the buffer control (P < 0.04) and 50-85% more than direct coating (P < 0.004). With direct coating, the level of APC dropped significantly to near 40% of the preshaken level at 2 h and diminished to 26% at 7 h. Whereas, the level of APC with the two-step binding stabilized at 51 and 49% after being shaken 2 and 7 h, respectively. CONCLUSION Functional rTM binding to ePTFE was significantly improved with a new two-step binding method.
Collapse
Affiliation(s)
- Jian-ming Li
- Department of Surgery, Division of Vascular Surgery, University of Massachusetts Medical School, Worcester, 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Li J, Garnette CS, Cahn M, Claytor RB, Rohrer MJ, Dobson JG, Gerlitz B, Cutler BS. Recombinant thrombomodulin inhibits arterial smooth muscle cell proliferation induced by thrombin. J Vasc Surg 2000; 32:804-13. [PMID: 11013045 DOI: 10.1067/mva.2000.107992] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE Restenosis after angioplasty or bypass grafting to restore circulation to ischemic organs is still an unsolved problem. Thrombin generated in high concentrations at the sites of vascular injury plays a central role in thrombosis and hemostasis. alpha-Thrombin has also been implicated as a mitogen for smooth muscle cell (SMC) proliferation that contributes to arterial restenosis. Thrombomodulin has a high affinity of binding with thrombin and converts thrombin from a procoagulant to an anticoagulant. This study was designed to examine whether thrombomodulin could also moderate the thrombin-mediated SMC proliferative response. METHODS Porcine carotid artery SMCs (passages 4-7) were plated onto 96-well plates and incubated for 3 days. After growth arrest in a defined serum-free medium for 2 to 3 days, SMCs were subjected to the reagents as follows: (1) human alpha-thrombin, (2) recombinant human soluble thrombomodulin containing a chondroitin sulfate moiety, (3) thrombin receptor agonist peptide (SFLLRNPNDKYEPF), and (4) alpha-thrombin or thrombin receptor agonist peptide combined with recombinant thrombomodulin (rTM). The viability and proliferation status of SMCs were quantified with MTT (thiazolyl blue) mitochondrial function and bromodeoxyuridine (BrdU)-DNA incorporation assays. RESULTS Human alpha-thrombin increased SMC proliferation in a dose dependent manner by more than 25% and 30% with thrombin 1 U/mL to 3 U/mL compared with control groups on day 7 (P <.006). rTM concentrations from 0.5 microg/mL to 3 microg/mL have no significant effect on SMC growth. The stimulation of SMC proliferation induced by alpha-thrombin at 0.5 U/mL, 1 U/mL, and 2 U/mL was significantly inhibited with rTM at 2 microg/mL and 3 microg/mL on days 3, 7, and 10 as evaluated with MTT assay (P <.01 to <.05) and BrdU-DNA incorporation assay on day 3 (P <.008). Thrombin receptor agonist peptide increased SMC BrdU-DNA incorporation at 48 hours (P <.007), and its effect was not altered by rTM. CONCLUSION rTM containing all of the extracellular domains of thrombomodulin inhibits the effect of thrombin on SMC proliferation in vitro. Because thrombin is a mitogenic mediator of SMC in vascular injury, inhibition of its function in vivo could help to prevent SMC hyperplasia. The success of further studies in vivo may lead to use of rTM for decreasing or preventing arterial restenosis.
Collapse
Affiliation(s)
- J Li
- Division of Vascular Surgery, Department of Surgery, University of Massachusetts Medical School, Worcester, 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Ma SF, Garcia JG, Reuning U, Little SP, Bang NU, Dixon EP. Thrombin induces thrombomodulin mRNA expression via the proteolytically activated thrombin receptor in cultured bovine smooth muscle cells. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1997; 129:611-9. [PMID: 9178727 DOI: 10.1016/s0022-2143(97)90195-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thrombin, an important mitogen governing smooth muscle cell proliferation, binds to cultured bovine aortic smooth muscle cells (BASMCs) via both the proteolytically activated thrombin receptor (PATR) and thrombomodulin (TM). Although TM mRNA expression and functional activity is regulated by thrombin in human endothelial cells and mouse hemangioma cells, it remains unclear in those models whether the increased TM mRNA expression observed upon thrombin stimulation is mediated through the activation of PATR or via TM occupancy. We observed in cultured BASMCs that TM mRNA is increased threefold to sixfold by either thrombin, basic fibroblast growth factor (bFGF), or platelet-derived growth factor (PDGF). The increase in TM mRNA with thrombin is time dependent (maximal at 3 hours), a consequence of increased mRNA stability, and accompanied by increases in cell surface TM functional activity. Thrombin-induced TM mRNA was reproduced by the hexameric thrombin receptor-activating peptide (TRAP6) and augmented by a TM-specific antibody. Together, these data suggest that up-regulation of TM mRNA by thrombin is mediated via the PATR. We speculate that increases in BASMC TM mRNA and activity after thrombin may contribute to the impaired thrombus formation observed after atherosclerotic vascular injury.
Collapse
Affiliation(s)
- S F Ma
- Department of Physiology and Biophysics, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
It is increasingly realised that fibrin deposition and fibrin lysis are major factors in vascular pathology. In addition to thrombotic occlusion fibrin is a component of atherosclerotic lesions, but the increased interest in components of the haemostatic system was mainly triggered by clinical use of fribrinolytic agents, and the problems of re-stenosis following angioplasty. This review focuses on the main components of the fibrinolytic system--tissue plasminogen activator (tPA), urokinase (uPA) and plasminogen activator inhibitor (PAI-1)--and on thrombin. These factors are not only involved in fluid phase clotting and clot lysis; they react specifically with cells and matrix components. During the last 5 years, the main period under review, there have been numerous studies on their interactions with endothelial and smooth muscle cells in culture, in whole tissues and in vivo, and with arterial extracellular matrix of which a major component is fibrin. Plasminogen activators bind to cell surface receptors, influence cell migration and release active thrombin from fibrin. Thrombin emerges as a pluripotent factor which modulates many aspects of endothelial and smooth muscle cell behaviour, including release and synthesis of fibrinolytic components, and stimulation of cell proliferation.
Collapse
Affiliation(s)
- E B Smith
- Department of Clinical Biochemistry, Medical School, Foresterhill, Aberdeen, UK
| |
Collapse
|
11
|
Kazakoff PW, McGuire TR, Hoie EB, Cano M, Iversen PL. An in vitro model for endothelial permeability: assessment of monolayer integrity. In Vitro Cell Dev Biol Anim 1995; 31:846-52. [PMID: 8826088 DOI: 10.1007/bf02634568] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An essential component of any in vitro model for endothelial permeability is a confluent cell monolayer. The model reported here utilizes primary human umbilical vein endothelial cells (HUVEC) cultured on recently developed polyethylene terephthalate micropore membranes. Using a modification of the Wright-Giemsa stain, confluent HUVEC monolayers grown on micropore membranes were routinely assessed using light microscopy. Determination of confluence using this method was confirmed by scanning electron microscopy. Transendothelial electrical resistance of HUVEC monolayers averaged 27.9 +/- 11.4 omega.cm2, 10 to 21% higher than literature values. Studies characterizing the permeability of the endothelial cell monolayer to 3H-inulin demonstrated a linear relationship between the luminal concentration of 3H-inulin and its flux across HUVEC monolayers. The slope of the flux versus concentration plot, which represents endothelial clearance of 3H-inulin, was 2.01 +/- 0.076 x 10(-4) ml/min (r2 = .9957). The permeability coefficient for the HUVEC monolayer-micropore membrane barrier was 3.17 +/- 0.427 x 10(-6) cm/s with a calculated permeability coefficient of the HUVEC monolayer alone of 4.07 +/- 0.617 x 10(-6) cm/s. The HUVEC monolayer reduced the permeability of the micropore membrane alone to 3H-inulin (1.43 +/- 0.445 x 10(-5) cm/s) by 78%. Evans blue dye-labeled bovine serum albumin could not be detected on the abluminal side without disruption of the HUVEC monolayer. These results demonstrate a model for endothelial permeability that can be extensively assessed for monolayer integrity by direct visualization, transendothelial electrical resistance, and the permeability of indicator macromolecules.
Collapse
Affiliation(s)
- P W Kazakoff
- Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha 68198-6260, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
The vessel wall is constantly subjected to, and affected by, the stresses resulting from the hemodynamic stimuli of transmural pressure and flow. At the interface between blood and the vessel wall, the endothelial cell plays a crucial role in controlling vessel structure and function in response to changes in hemodynamic conditions. Using bovine aortic endothelium monolayers, we show that fluid shear stress causes simultaneous differential regulation of endothelial-derived products. We also report that the downregulation of endothelin-1 mRNA by flow is a reversible process, and through the use of uncharged dextran supplementation demonstrate it to be shear stress- rather than shear rate-dependent. Recent work on the effect of fluid shear stress on endothelial cell gene expression of a number of potent endothelial products is reviewed, including vasoactive substances, autocrine and paracrine growth factors, thrombosis/fibrinolysis modulators, chemotactic factors, surface receptors and immediate-early genes. The encountered patterns of gene expression responses are classified into three categories: a transient increase with return to baseline (type I), a sustained increase (type II) and a biphasic response consisting of an early transient increase of varying extent followed by a pronounced and sustained decrease (type III). The importance of the dynamic character of the flow stimulus and the magnitude dependence of the response are presented. Potential molecular mechanisms of shear-induced gene regulation, including putative shear stress response elements (SSRE), are discussed. These results suggest exquisite modulation of endothelial cell phenotype by local fluid shear stress and may offer insight into the mechanism of flow-dependent vascular remodeling and the observed propensity of atherosclerosis formation around bifurcations and areas of low shear stress.
Collapse
Affiliation(s)
- A M Malek
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02215, USA.
| | | |
Collapse
|
13
|
Abstract
Mechanical forces associated with blood flow play important roles in the acute control of vascular tone, the regulation of arterial structure and remodeling, and the localization of atherosclerotic lesions. Major regulation of the blood vessel responses occurs by the action of hemodynamic shear stresses on the endothelium. The transmission of hemodynamic forces throughout the endothelium and the mechanotransduction mechanisms that lead to biophysical, biochemical, and gene regulatory responses of endothelial cells to hemodynamic shear stresses are reviewed.
Collapse
Affiliation(s)
- P F Davies
- Department of Pathology, Pritzker School of Medicine, University of Chicago, Illinois, USA
| |
Collapse
|
14
|
Conway E, Liu L, Nowakowski B, Steiner-Mosonyi M, Jackman R. Heat shock of vascular endothelial cells induces an up-regulatory transcriptional response of the thrombomodulin gene that is delayed in onset and does not attenuate. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31716-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|