1
|
Mahmud Z, Tikunova S, Belevych N, Wagg CS, Zhabyeyev P, Liu PB, Rasicci DV, Yengo CM, Oudit GY, Lopaschuk GD, Reiser PJ, Davis JP, Hwang PM. Small Molecule RPI-194 Stabilizes Activated Troponin to Increase the Calcium Sensitivity of Striated Muscle Contraction. Front Physiol 2022; 13:892979. [PMID: 35755445 PMCID: PMC9213791 DOI: 10.3389/fphys.2022.892979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Small molecule cardiac troponin activators could potentially enhance cardiac muscle contraction in the treatment of systolic heart failure. We designed a small molecule, RPI-194, to bind cardiac/slow skeletal muscle troponin (Cardiac muscle and slow skeletal muscle share a common isoform of the troponin C subunit.) Using solution NMR and stopped flow fluorescence spectroscopy, we determined that RPI-194 binds to cardiac troponin with a dissociation constant KD of 6-24 μM, stabilizing the activated complex between troponin C and the switch region of troponin I. The interaction between RPI-194 and troponin C is weak (KD 311 μM) in the absence of the switch region. RPI-194 acts as a calcium sensitizer, shifting the pCa50 of isometric contraction from 6.28 to 6.99 in mouse slow skeletal muscle fibers and from 5.68 to 5.96 in skinned cardiac trabeculae at 100 μM concentration. There is also some cross-reactivity with fast skeletal muscle fibers (pCa50 increases from 6.27 to 6.52). In the slack test performed on the same skinned skeletal muscle fibers, RPI-194 slowed the velocity of unloaded shortening at saturating calcium concentrations, suggesting that it slows the rate of actin-myosin cross-bridge cycling under these conditions. However, RPI-194 had no effect on the ATPase activity of purified actin-myosin. In isolated unloaded mouse cardiomyocytes, RPI-194 markedly decreased the velocity and amplitude of contractions. In contrast, cardiac function was preserved in mouse isolated perfused working hearts. In summary, the novel troponin activator RPI-194 acts as a calcium sensitizer in all striated muscle types. Surprisingly, it also slows the velocity of unloaded contraction, but the cause and significance of this is uncertain at this time. RPI-194 represents a new class of non-specific troponin activator that could potentially be used either to enhance cardiac muscle contractility in the setting of systolic heart failure or to enhance skeletal muscle contraction in neuromuscular disorders.
Collapse
Affiliation(s)
- Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Svetlana Tikunova
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Natalya Belevych
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Cory S Wagg
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Pavel Zhabyeyev
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Philip B Liu
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - David V Rasicci
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, University Park, PA, United States
| | - Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, University Park, PA, United States
| | - Gavin Y Oudit
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Peter J Reiser
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States
| | - Peter M Hwang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Abramochkin DV, Filatova TS, Pustovit KB, Voronina YA, Kuzmin VS, Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111204. [PMID: 35346823 DOI: 10.1016/j.cbpa.2022.111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Yana A Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3(rd) Cherepkovskaya str., 15A, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
3
|
Kim KH, Oh Y, Liu J, Dababneh S, Xia Y, Kim RY, Kim DK, Ban K, Husain M, Hui CC, Backx PH. Irx5 and transient outward K + currents contribute to transmural contractile heterogeneities in the mouse ventricle. Am J Physiol Heart Circ Physiol 2022; 322:H725-H741. [PMID: 35245131 DOI: 10.1152/ajpheart.00572.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have established that fast transmural gradients of transient outward K+ current (Ito,f) correlate with regional differences in action potential (AP) profile and excitation-contraction coupling (ECC) with high Ito,f expression in the epimyocardium (EPI) being associated with short APs and low contractility and vice versa. Herein, we investigated the effects of disrupted Ito,f gradient on contractile properties using mouse models of Irx5 knockout (Irx5-KO) for selective Ito,f elevation in the endomyocardium (ENDO) of the left ventricle (LV) and Kcnd2 ablation (KV4.2-KO) for selective Ito,freduction in the EPI. Irx5-KO mice exhibited decreased global LV contractility in association with reductions in cell shortening and Ca2+ transient amplitudes in isolated ENDO but not EPI cardiomyocytes. Moreover, transcriptional profiling revealed that the primary effect of Irx5 ablation on ECC-related genes was to increase Ito,f gene expression (i.e. Kcnd2 and Kcnip2) in the ENDO, but not the EPI. Indeed, KV4.2-KO mice showed selective increases in cell shortening and Ca2+ transients in isolated EPI cardiomyocytes, leading to enhanced ventricular contractility and mice lacking both Irx5 and Kcnd2 displayed elevated ventricular contractility comparable to KV4.2-KO mice. Our findings demonstrate that the transmural electromechanical heterogeneities in the healthy ventricles depend on the Irx5-dependent Ito,f gradients. These observations provide a useful framework for assessing the molecular mechanisms underlying the alterations in contractile heterogeneity seen in the diseased heart.
Collapse
Affiliation(s)
- Kyoung-Han Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yena Oh
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jie Liu
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | - Saif Dababneh
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ying Xia
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ri Youn Kim
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Dae-Kyum Kim
- University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Kiwon Ban
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Mansoor Husain
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter H Backx
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Biology, Faculty of Science, York University, Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Williams RB, Johnson CN. A Review of Calcineurin Biophysics with Implications for Cardiac Physiology. Int J Mol Sci 2021; 22:ijms222111565. [PMID: 34768996 PMCID: PMC8583826 DOI: 10.3390/ijms222111565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Calcineurin, also known as protein phosphatase 2B, is a heterodimeric serine threonine phosphatase involved in numerous signaling pathways. During the past 50 years, calcineurin has been the subject of extensive investigation. Many of its cellular and physiological functions have been described, and the underlying biophysical mechanisms are the subject of active investigation. With the abundance of techniques and experimental designs utilized to study calcineurin and its numerous substrates, it is difficult to reconcile the available information. There have been a plethora of reports describing the role of calcineurin in cardiac disease. However, a physiological role of calcineurin in healthy cardiomyocyte function requires clarification. Here, we review the seminal biophysical and structural details that are responsible for the molecular function and inhibition of calcineurin. We then focus on literature describing the roles of calcineurin in cardiomyocyte physiology and disease.
Collapse
Affiliation(s)
- Ryan B. Williams
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
| | - Christopher N. Johnson
- Department of Chemistry, Mississippi State University, Starkville, MS 39759, USA;
- Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence:
| |
Collapse
|
5
|
Filatova TS, Abramochkin DV, Pavlova NS, Pustovit KB, Konovalova OP, Kuzmin VS, Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: a novel translational model for cardiac electrophysiology. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110919. [PMID: 33582263 DOI: 10.1016/j.cbpa.2021.110919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
|
6
|
Wacker C, Dams N, Schauer A, Ritzer A, Volk T, Wagner M. Region-specific mechanisms of corticosteroid-mediated inotropy in rat cardiomyocytes. Sci Rep 2020; 10:11604. [PMID: 32665640 PMCID: PMC7360564 DOI: 10.1038/s41598-020-68308-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/23/2020] [Indexed: 11/09/2022] Open
Abstract
Regional differences in ion channel activity in the heart control the sequence of repolarization and may contribute to differences in contraction. Corticosteroids such as aldosterone or corticosterone increase the L-type Ca2+ current (ICaL) in the heart via the mineralocorticoid receptor (MR). Here, we investigate the differential impact of corticosteroid-mediated increase in ICaL on action potentials (AP), ion currents, intracellular Ca2+ handling and contractility in endo- and epicardial myocytes of the rat left ventricle. Dexamethasone led to a similar increase in ICaL in endocardial and epicardial myocytes, while the K+ currents Ito and IK were unaffected. However, AP duration (APD) and AP-induced Ca2+ influx (QCa) significantly increased exclusively in epicardial myocytes, thus abrogating the normal differences between the groups. Dexamethasone increased Ca2+ transients, contractility and SERCA activity in both regions, the latter possibly due to a decrease in total phospholamban (PLB) and an increase PLBpThr17. These results suggest that corticosteroids are powerful modulators of ICaL, Ca2+ transients and contractility in both endo- and epicardial myocytes, while APD and QCa are increased in epicardial myocytes only. This indicates that increased ICaL and SERCA activity rather than QCa are the primary drivers of contractility by adrenocorticoids.
Collapse
Affiliation(s)
- Caroline Wacker
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Niklas Dams
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Alexander Schauer
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Anne Ritzer
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany
| | - Tilmann Volk
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany. .,Muscle Research Center Erlangen (MURCE), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| | - Michael Wagner
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstraße 6, 91054, Erlangen, Germany. .,Abteilung für Rhythmologie, Herzzentrum Dresden, Fetscherstraße 76, 01307, Dresden, Germany.
| |
Collapse
|
7
|
Silencing of the Na+/H+ exchanger 1(NHE-1) prevents cardiac structural and functional remodeling induced by angiotensin II. Exp Mol Pathol 2019; 107:1-9. [DOI: 10.1016/j.yexmp.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/08/2019] [Accepted: 01/16/2019] [Indexed: 12/30/2022]
|
8
|
Joseph LC, Subramanyam P, Radlicz C, Trent CM, Iyer V, Colecraft HM, Morrow JP. Mitochondrial oxidative stress during cardiac lipid overload causes intracellular calcium leak and arrhythmia. Heart Rhythm 2016; 13:1699-706. [PMID: 27154230 DOI: 10.1016/j.hrthm.2016.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 01/29/2023]
Abstract
BACKGROUND Diabetes and obesity are associated with an increased risk of arrhythmia and sudden cardiac death. Abnormal lipid accumulation is observed in cardiomyocytes of obese and diabetic patients, which may contribute to arrhythmia, but the mechanisms are poorly understood. A transgenic mouse model of cardiac lipid overload, the peroxisome proliferator-activated receptor-γ (PPARg) cardiac overexpression mouse, has long QT and increased ventricular ectopy. OBJECTIVE The purpose of this study was to evaluate the hypothesis that the increase in ventricular ectopy during cardiac lipid overload is caused by abnormalities in calcium handling due to increased mitochondrial oxidative stress. METHODS Ventricular myocytes were isolated from adult mouse hearts to record sparks and calcium transients. Mice were implanted with heart rhythm monitors for in vivo recordings. RESULTS PPARg cardiomyocytes have more frequent triggered activity and increased sparks compared to control. Sparks and triggered activity are reduced by mitotempo, a mitochondrial-targeted antioxidant. This is explained by a significant increase in oxidation of RyR2. Calcium transients are increased in amplitude, and sarcoplasmic reticulum (SR) calcium stores are increased in PPARg cardiomyocytes. Computer modeling of the cardiac action potential demonstrates that long QT contributes to increased SR calcium. Mitotempo decreased ventricular ectopy in vivo. CONCLUSION During cardiac lipid overload, mitochondrial oxidative stress causes increased SR calcium leak by oxidizing RyR2 channels. This promotes ventricular ectopy, which is significantly reduced in vivo by a mitochondrial-targeted antioxidant. These results suggest a potential role for mitochondrial-targeted antioxidants in preventing arrhythmia and sudden cardiac death in obese and diabetic patients.
Collapse
Affiliation(s)
- Leroy C Joseph
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Prakash Subramanyam
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Christopher Radlicz
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Chad M Trent
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Vivek Iyer
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York
| | - Henry M Colecraft
- Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons of Columbia University, New York, New York
| | - John P Morrow
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York,.
| |
Collapse
|
9
|
Grubb S, Aistrup GL, Koivumäki JT, Speerschneider T, Gottlieb LA, Mutsaers NAM, Olesen SP, Calloe K, Thomsen MB. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2. Am J Physiol Heart Circ Physiol 2015; 309:H481-9. [PMID: 26055791 DOI: 10.1152/ajpheart.00166.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/29/2015] [Indexed: 11/22/2022]
Abstract
Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions with both Kv4 to conduct the fast-recovering transient outward K(+) current (Ito,f) and with CaV1.2 to mediate the inward L-type Ca(2+) current (ICa,L). Anesthetized KChIP2(-/-) mice have normal cardiac contraction despite the lower ICa,L, and we hypothesized that the delayed repolarization could contribute to the preservation of contractile function. Detailed analysis of current kinetics shows that only ICa,L density is reduced, and immunoblots demonstrate unaltered CaV1.2 and CaVβ₂ protein levels. Computer modeling suggests that delayed repolarization would prolong the period of Ca(2+) entry into the cell, thereby augmenting Ca(2+)-induced Ca(2+) release. Ca(2+) transients in disaggregated KChIP2(-/-) cardiomyocytes are indeed comparable to wild-type transients, corroborating the preserved contractile function and suggesting that the compensatory mechanism lies in the Ca(2+)-induced Ca(2+) release event. We next functionally probed dyad structure, ryanodine receptor Ca(2+) sensitivity, and sarcoplasmic reticulum Ca(2+) load and found that increased temporal synchronicity of the Ca(2+) release in KChIP2(-/-) cardiomyocytes may reflect improved dyad structure aiding the compensatory mechanisms in preserving cardiac contractile force. Thus the bimodal effect of KChIP2 on Ito,f and ICa,L constitutes an important regulatory effect of KChIP2 on cardiac contractility, and we conclude that delayed repolarization and improved dyad structure function together to preserve cardiac contraction in KChIP2(-/-) mice.
Collapse
Affiliation(s)
- Søren Grubb
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gary L Aistrup
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, Illinois
| | - Jussi T Koivumäki
- Simula Research Laboratory, Center for Biomedical Computing and Center for Cardiological Innovation, Oslo, Norway
| | - Tobias Speerschneider
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lisa A Gottlieb
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nancy A M Mutsaers
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren-Peter Olesen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Calloe
- Department of Veterinary Clinical and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten B Thomsen
- The Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark;
| |
Collapse
|
10
|
|
11
|
Speerschneider T, Grubb S, Metoska A, Olesen SP, Calloe K, Thomsen MB. Development of heart failure is independent of K+ channel-interacting protein 2 expression. J Physiol 2013; 591:5923-37. [PMID: 24099801 DOI: 10.1113/jphysiol.2013.263483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abnormal ventricular repolarization in ion channelopathies and heart disease is a major cause of ventricular arrhythmias and sudden cardiac death. K(+) channel-interacting protein 2 (KChIP2) expression is significantly reduced in human heart failure (HF), contributing to a loss of the transient outward K(+) current (Ito). We aim to investigate the possible significance of a changed KChIP2 expression on the development of HF and proarrhythmia. Transverse aortic constrictions (TAC) and sham operations were performed in wild-type (WT) and KChIP2(-/-) mice. Echocardiography was performed before and every 2 weeks after the operation. Ten weeks post-surgery, surface ECG was recorded and we paced the heart in vivo to induce arrhythmias. Afterwards, tissue from the left ventricle was used for immunoblotting. Time courses of HF development were comparable in TAC-operated WT and KChIP2(-/-) mice. Ventricular protein expression of KChIP2 was reduced by 70% after 10 weeks TAC in WT mice. The amplitudes of the J and T waves were enlarged in KChIP2(-/-) control mice. Ventricular effective refractory period, RR, QRS and QT intervals were longer in mice with HF compared to sham-operated mice of either genotype. Pacing-induced ventricular tachycardia (VT) was observed in 5/10 sham-operated WT mice compared with 2/10 HF WT mice with HF. Interestingly, and contrary to previously published data, sham-operated KChIP2(-/-) mice were resistant to pacing-induced VT resulting in only 1/10 inducible mice. KChIP2(-/-) with HF mice had similar low vulnerability to inducible VT (1/9). Our results suggest that although KChIP2 is downregulated in HF, it is not orchestrating the development of HF. Moreover, KChIP2 affects ventricular repolarization and lowers arrhythmia susceptibility. Hence, downregulation of KChIP2 expression in HF may be antiarrhythmic in mice via reduction of the fast transient outward K(+) current.
Collapse
Affiliation(s)
- Tobias Speerschneider
- M. B. Thomsen: Danish National Research Foundation Centre for Cardiac Arrhythmia, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3b Blegdamsvej, building 12.5.36, Copenhagen N, Denmark.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Since diabetic cardiomyopathy was first reported four decades ago, substantial information on its pathogenesis and clinical features has accumulated. In the heart, diabetes enhances fatty acid metabolism, suppresses glucose oxidation, and modifies intracellular signaling, leading to impairments in multiple steps of excitation–contraction coupling, inefficient energy production, and increased susceptibility to ischemia/reperfusion injury. Loss of normal microvessels and remodeling of the extracellular matrix are also involved in contractile dysfunction of diabetic hearts. Use of sensitive echocardiographic techniques (tissue Doppler imaging and strain rate imaging) and magnetic resonance spectroscopy enables detection of diabetic cardiomyopathy at an early stage, and a combination of the modalities allows differentiation of this type of cardiomyopathy from other organic heart diseases. Circumstantial evidence to date indicates that diabetic cardiomyopathy is a common but frequently unrecognized pathological process in asymptomatic diabetic patients. However, a strategy for prevention or treatment of diabetic cardiomyopathy to improve its prognosis has not yet been established. Here, we review both basic and clinical studies on diabetic cardiomyopathy and summarize problems remaining to be solved for improving management of this type of cardiomyopathy.
Collapse
Affiliation(s)
- Takayuki Miki
- Division of Cardiology, Second Department of Internal Medicine, School of Medicine, Sapporo Medical University, South-1 West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | | | | | | |
Collapse
|
13
|
Ion channel-kinase TRPM7 is required for maintaining cardiac automaticity. Proc Natl Acad Sci U S A 2013; 110:E3037-46. [PMID: 23878236 DOI: 10.1073/pnas.1311865110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sick sinus syndrome and atrioventricular block are common clinical problems, often necessitating permanent pacemaker placement, yet the pathophysiology of these conditions remains poorly understood. Here we show that Transient Receptor Potential Melastatin 7 (TRPM7), a divalent-permeant channel-kinase of unknown function, is highly expressed in embryonic myocardium and sinoatrial node (SAN) and is required for cardiac automaticity in these specialized tissues. TRPM7 disruption in vitro, in cultured embryonic cardiomyocytes, significantly reduces spontaneous Ca(2+) transient firing rates and is associated with robust down-regulation of Hcn4, Cav3.1, and SERCA2a mRNA. TRPM7 knockdown in zebrafish, global murine cardiac Trpm7 deletion (KO(αMHC-Cre)), and tamoxifen-inducible SAN restricted Trpm7 deletion (KO(HCN4-CreERT2)) disrupts cardiac automaticity in vivo. Telemetered and sedated KO(αMHC-Cre) and KO(HCN4-CreERT2) mice show episodes of sinus pauses and atrioventricular block. Isolated SAN from KO(αMHC-Cre) mice exhibit diminished Ca(2+) transient firing rates with a blunted diastolic increase in Ca(2+). Action potential firing rates are diminished owing to slower diastolic depolarization. Accordingly, Hcn4 mRNA and the pacemaker current, I(f), are diminished in SAN from both KO(αMHC-Cre) and KO(HCN4-CreERT2) mice. Moreover, heart rates of KO(αMHC-Cre) mice are less sensitive to the selective I(f) blocker ivabradine, and acute application of the recently identified TRPM7 blocker FTY720 has no effect on action potential firing rates of wild-type SAN cells. We conclude that TRPM7 influences diastolic membrane depolarization and automaticity in SAN indirectly via regulation of Hcn4 expression.
Collapse
|
14
|
Sah R, Mesirca P, Mason X, Gibson W, Bates-Withers C, Van den Boogert M, Chaudhuri D, Pu WT, Mangoni ME, Clapham DE. Timing of myocardial trpm7 deletion during cardiogenesis variably disrupts adult ventricular function, conduction, and repolarization. Circulation 2013; 128:101-14. [PMID: 23734001 DOI: 10.1161/circulationaha.112.000768] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Transient receptor potential (TRP) channels are a superfamily of broadly expressed ion channels with diverse physiological roles. TRPC1, TRPC3, and TRPC6 are believed to contribute to cardiac hypertrophy in mouse models. Human mutations in TRPM4 have been linked to progressive familial heart block. TRPM7 is a divalent-permeant channel and kinase of unknown function, recently implicated in the pathogenesis of atrial fibrillation; however, its function in ventricular myocardium remains unexplored. METHODS AND RESULTS We generated multiple cardiac-targeted knockout mice to test the hypothesis that TRPM7 is required for normal ventricular function. Early cardiac Trpm7 deletion (before embryonic day 9; TnT/Isl1-Cre) results in congestive heart failure and death by embryonic day 11.5 as a result of hypoproliferation of the compact myocardium. Remarkably, Trpm7 deletion late in cardiogenesis (about embryonic day 13; αMHC-Cre) produces viable mice with normal adult ventricular size, function, and myocardial transcriptional profile. Trpm7 deletion at an intermediate time point results in 50% of mice developing cardiomyopathy associated with heart block, impaired repolarization, and ventricular arrhythmias. Microarray analysis reveals elevations in transcripts of hypertrophy/remodeling genes and reductions in genes important for suppressing hypertrophy (Hdac9) and for ventricular repolarization (Kcnd2) and conduction (Hcn4). These transcriptional changes are accompanied by action potential prolongation and reductions in transient outward current (Ito; Kcnd2). Similarly, the pacemaker current (If; Hcn4) is suppressed in atrioventricular nodal cells, accounting for the observed heart block. CONCLUSIONS Trpm7 is dispensable in adult ventricular myocardium under basal conditions but is critical for myocardial proliferation during early cardiogenesis. Loss of Trpm7 at an intermediate developmental time point alters the myocardial transcriptional profile in adulthood, impairing ventricular function, conduction, and repolarization.
Collapse
Affiliation(s)
- Rajan Sah
- Howard Hughes Medical Institute, Department of Cardiology, Manton Center for Orphan Disease, Children's Hospital Boston, 320 Longwood Ave, Enders 1309, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Workman AJ, Marshall GE, Rankin AC, Smith GL, Dempster J. Transient outward K+ current reduction prolongs action potentials and promotes afterdepolarisations: a dynamic-clamp study in human and rabbit cardiac atrial myocytes. J Physiol 2012; 590:4289-305. [PMID: 22733660 DOI: 10.1113/jphysiol.2012.235986] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human atrial transient outward K(+) current (I(TO)) is decreased in a variety of cardiac pathologies, but how I(TO) reduction alters action potentials (APs) and arrhythmia mechanisms is poorly understood, owing to non-selectivity of I(TO) blockers. The aim of this study was to investigate effects of selective I(TO) changes on AP shape and duration (APD), and on afterdepolarisations or abnormal automaticity with β-adrenergic-stimulation, using the dynamic-clamp technique in atrial cells. Human and rabbit atrial cells were isolated by enzymatic dissociation, and electrical activity recorded by whole-cell-patch clamp (35-37°C). Dynamic-clamp-simulated I(TO) reduction or block slowed AP phase 1 and elevated the plateau, significantly prolonging APD, in both species. In human atrial cells, I(TO) block (100% I(TO) subtraction) increased APD(50) by 31%, APD(90) by 17%, and APD(-61 mV) (reflecting cellular effective refractory period) by 22% (P < 0.05 for each). Interrupting I(TO) block at various time points during repolarisation revealed that the APD(90) increase resulted mainly from plateau-elevation, rather than from phase 1-slowing or any residual I(TO). In rabbit atrial cells, partial I(TO) block (∼40% I(TO) subtraction) reversibly increased the incidence of cellular arrhythmic depolarisations (CADs; afterdepolarisations and/or abnormal automaticity) in the presence of the β-agonist isoproterenol (0.1 μm; ISO), from 0% to 64% (P < 0.05). ISO-induced CADs were significantly suppressed by dynamic-clamp increase in I(TO) (∼40% I(TO) addition). ISO+I(TO) decrease-induced CADs were abolished by β(1)-antagonism with atenolol at therapeutic concentration (1 μm). Atrial cell action potential changes from selective I(TO) modulation, shown for the first time using dynamic-clamp, have the potential to influence reentrant and non-reentrant arrhythmia mechanisms, with implications for both the development and treatment of atrial fibrillation.
Collapse
Affiliation(s)
- A J Workman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| | | | | | | | | |
Collapse
|
16
|
Schulte JS, Seidl MD, Nunes F, Freese C, Schneider M, Schmitz W, Müller FU. CREB critically regulates action potential shape and duration in the adult mouse ventricle. Am J Physiol Heart Circ Physiol 2012; 302:H1998-2007. [PMID: 22427515 DOI: 10.1152/ajpheart.00057.2011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The cAMP response element binding protein (CREB) belongs to the CREB/cAMP response element binding modulator/activating transcription factor 1 family of cAMP-dependent transcription factors mediating a regulation of gene transcription in response to cAMP. Chronic stimulation of β-adrenergic receptors and the cAMP-dependent signal transduction pathway by elevated plasma catecholamines play a central role in the pathogenesis of heart failure. Ion channel remodeling, particularly a decreased transient outward current (I(to)), and subsequent action potential (AP) prolongation are hallmarks of the failing heart. Here, we studied the role of CREB for ion channel regulation in mice with a cardiomyocyte-specific knockout of CREB (CREB KO). APs of CREB KO cardiomyocytes were prolonged with increased AP duration at 50 and 70% repolarization and accompanied by a by 51% reduction of I(to) peak amplitude as detected in voltage-clamp measurements. We observed a 29% reduction of Kcnd2/Kv4.2 mRNA in CREB KO cardiomyocytes mice while the other I(to)-related channel subunits Kv4.3 and KChIP2 were not different between groups. Accordingly, Kv4.2 protein was reduced by 37% in CREB KO. However, we were not able to detect a direct regulation of Kv4.2 by CREB. The I(to)-dependent AP prolongation went along with an increase of I(Na) and a decrease of I(Ca,L) associated with an upregulation of Scn8a/Nav1.6 and downregulation of Cacna1c/Cav1.2 mRNA in CREB KO cardiomyocytes. Our results from mice with cardiomyocyte-specific inactivation of CREB definitively indicate that CREB critically regulates the AP shape and duration in the mouse ventricle, which might have an impact on ion channel remodeling in situations of altered cAMP-dependent signaling like heart failure.
Collapse
Affiliation(s)
- J S Schulte
- Institute of Pharmacology and Toxicology, University of Münster, Münster, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Liu HB, Yang BF, Dong DL. Calcineurin and electrical remodeling in pathologic cardiac hypertrophy. Trends Cardiovasc Med 2011; 20:148-53. [PMID: 21742270 DOI: 10.1016/j.tcm.2010.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
Calcineurin is a cytoplasmic Ca(2+)/calmodulin-dependent protein phosphatase that contributes to cardiac hypertrophy. Numerous studies have demonstrated that calcineurin/nuclear factor of activated T cell pathway affects the architecture of the heart under pathologic conditions, and the effects of calcineurin/nuclear factor of activated T cell pathway on cardiac hypertrophy have been well reviewed. Cardiac electrical remodeling is generally accompanied with the cardiac hypertrophy, and alteration of cardiac ion channel activity also leads to the changes of calcineurin activity and cardiac hypertrophy. Many studies have linked calcineurin with changes of a variety of ion channels, but the therapeutic approaches to target calcineurin for correcting cardiac electrical disturbance have not been formulated. Here, we review the recent progress in calcineurin and electrical remodeling in pathologic cardiac hypertrophy.
Collapse
Affiliation(s)
- Hui-Bin Liu
- Department of Pharmacology, Harbin Medical University, Harbin 150086, PR China
| | | | | |
Collapse
|
18
|
Cingolani OH, Pérez NG, Ennis IL, Alvarez MC, Mosca SM, Schinella GR, Escudero EM, Cónsole G, Cingolani HE. In vivo key role of reactive oxygen species and NHE-1 activation in determining excessive cardiac hypertrophy. Pflugers Arch 2011; 462:733-43. [PMID: 21870055 DOI: 10.1007/s00424-011-1020-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 08/12/2011] [Accepted: 08/12/2011] [Indexed: 12/18/2022]
Abstract
Growing in vitro evidence suggests NHE-1, a known target for reactive oxygen species (ROS), as a key mediator in cardiac hypertrophy (CH). Moreover, NHE-1 inhibition was shown effective in preventing CH and failure; so has been the case for AT1 receptor (AT1R) blockers. Previous experiments indicate that myocardial stretch promotes angiotensin II release and post-translational NHE-1 activation; however, in vivo data supporting this mechanism and its long-term consequences are scanty. In this work, we thought of providing in vivo evidence linking AT1R with ROS and NHE-1 activation in mediating CH. CH was induced in mice by TAC. A group of animals was treated with the AT1R blocker losartan. Cardiac contractility was assessed by echocardiography and pressure-volume loop hemodynamics. After 7 weeks, TAC increased left ventricular (LV) mass by ~45% vs. sham and deteriorated LV systolic function. CH was accompanied by activation of the redox-sensitive kinase p90(RSK) with the consequent increase in NHE-1 phosphorylation. Losartan prevented p90(RSK) and NHE-1 phosphorylation, ameliorated CH and restored cardiac function despite decreased LV wall thickness and similar LV systolic pressures and diastolic dimensions (increased LV wall stress). In conclusion, AT1R blockade prevented excessive oxidative stress, p90(RSK) and NHE-1 phosphorylation, and decreased CH independently of hemodynamic changes. In addition, cardiac performance improved despite a higher work load.
Collapse
Affiliation(s)
- Oscar H Cingolani
- Division of Cardiology, Johns Hopkins University Hospital, 720 Rutland Avenue, Ross 835, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shintani-Ishida K, Yoshida KI. Ischemia induces phospholamban dephosphorylation via activation of calcineurin, PKC-α, and protein phosphatase 1, thereby inducing calcium overload in reperfusion. Biochim Biophys Acta Mol Basis Dis 2011; 1812:743-51. [DOI: 10.1016/j.bbadis.2011.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/23/2011] [Accepted: 03/21/2011] [Indexed: 11/30/2022]
|
20
|
Jin H, Hadri L, Palomeque J, Morel C, Karakikes I, Kaprielian R, Hajjar R, Lebeche D. KChIP2 attenuates cardiac hypertrophy through regulation of Ito and intracellular calcium signaling. J Mol Cell Cardiol 2010; 48:1169-79. [PMID: 20051248 DOI: 10.1016/j.yjmcc.2009.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 11/24/2009] [Accepted: 12/21/2009] [Indexed: 11/30/2022]
Abstract
Recent evidence shows that the auxiliary subunit KChIP2, which assembles with pore-forming Kv4-subunits, represents a new potential regulator of the cardiac calcium-independent transient outward potassium current (I(to)) density. In hypertrophy and heart failure, KChIP2 expression has been found to be significantly decreased. Our aim was to examine the role of KChIP2 in cardiac hypertrophy and the effect of restoring its expression on electrical remodeling and cardiac mechanical function using a combination of molecular, biochemical and gene targeting approaches. KChIP2 overexpression through gene transfer of Ad.KChIP2 in neonatal cardiomyocytes resulted in a significant increase in I(to)-channel forming Kv4.2 and Kv4.3 protein levels. In vivo gene transfer of KChIP2 in aortic banded adult rats showed that, compared to sham-operated or Ad.beta-gal-transduced hearts, KChIP2 significantly attenuated the developed left ventricular hypertrophy, robustly increased I(to) densities, shortened action potential duration, and significantly altered myocyte mechanics by shortening contraction amplitudes and maximal rates of contraction and relaxation velocities and decreasing Ca(2+) transients. Interestingly, blocking I(to) with 4-aminopyridine in KChIP2-overexpressing adult cardiomyocytes significantly increased the Ca(2+) transients to control levels. One-day-old rat pups intracardially transduced with KChIP2 for two months then subjected to aortic banding for 6-8 weeks (to induce hypertrophy) showed similar echocardiographic, electrical and mechanical remodeling parameters. In addition, in cultured adult cardiomyocytes, KChIP2 overexpression increased the expression of Ca(2+)-ATPase (SERCA2a) and sodium calcium exchanger but had no effect on ryanodine receptor 2 or phospholamban expression. In neonatal myocytes, KChIP2 notably reversed Ang II-induced hypertrophic changes in protein synthesis and MAP-kinase activation. It also significantly decreased calcineurin expression, NFATc1 expression and nuclear translocation and its downstream target, MCiP1.4. Altogether, these data show that KChIP2 can attenuate cardiac hypertrophy possibly through modulation of intracellular calcium concentration and calcineurin/NFAT pathway.
Collapse
Affiliation(s)
- Hongwei Jin
- Cardiovascular Research Center, Mount Sinai School of Medicine, Atran Building AB5-10, One Gustave L. Levy Place, Box 1030, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Garciarena CD, Pinilla OA, Nolly MB, Laguens RP, Escudero EM, Cingolani HE, Ennis IL. Endurance Training in the Spontaneously Hypertensive Rat. Hypertension 2009; 53:708-14. [DOI: 10.1161/hypertensionaha.108.126805] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of endurance training (swimming 90 min/d for 5 days a week for 60 days) on cardiac hypertrophy was investigated in the spontaneously hypertensive rat (SHR). Sedentary SHRs (SHR-Cs) and normotensive Wistar rats were used as controls. Exercise training enhanced myocardial hypertrophy assessed by left ventricular weight/tibial length (228±7 versus 251±5 mg/cm in SHR-Cs and exercised SHRs [SHR-Es], respectively). Myocyte cross-sectional area increased ≈40%, collagen volume fraction decreased ≈50%, and capillary density increased ≈45% in SHR-Es compared with SHR-Cs. The mRNA abundance of atrial natriuretic factor and myosin light chain 2 was decreased by the swimming routine (100±19% versus 41±10% and 100±8% versus 61±9% for atrial natriuretic factor and myosin light chain 2 in SHR-Cs and SHR-Es, respectively). The expression of sarcoplasmic reticulum Ca
2+
pump was significantly augmented, whereas that of Na
+
/Ca
2+
exchanger was unchanged (93±7% versus 167±8% and 158±13% versus 157±7%, sarcoplasmic reticulum Ca
2+
pump and Na
+
/Ca
2+
exchanger in SHR-Cs and SHR-Es, respectively;
P
<0.05). Endurance training inhibited apoptosis, as reflected by a decrease in caspase 3 activation and poly(ADP-ribose) polymerase-1 cleavage, and normalized calcineurin activity without inducing significant changes in the phosphatidylinositol 3-kinase/Akt pathway. The swimming routine improved midventricular shortening determined by echocardiography (32.4±0.9% versus 36.9±1.1% in SHR-Cs and SHR-Es, respectively;
P
<0.05) and decreased the left ventricular free wall thickness/left ventricular cavity radius toward an eccentric model of cardiac hypertrophy (0.59±0.02 versus 0.53±0.01 in SHR-Cs and SHR-Es, respectively;
P
<0.05). In conclusion, we present data demonstrating the effectiveness of endurance training to convert pathological into physiological hypertrophy improving cardiac performance. The reduction of myocardial fibrosis and calcineurin activity plus the increase in capillary density represent factors to be considered in determining this beneficial effect.
Collapse
Affiliation(s)
- Carolina D. Garciarena
- From the Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Oscar A. Pinilla
- From the Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Mariela B. Nolly
- From the Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Ruben P. Laguens
- From the Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Eduardo M. Escudero
- From the Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Horacio E. Cingolani
- From the Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Irene L. Ennis
- From the Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| |
Collapse
|
22
|
Receptor-independent sensitization of the adenylyl cylase after chronic treatment with cyclosporine A. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:253-60. [DOI: 10.1007/s00210-008-0319-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 05/24/2008] [Indexed: 10/22/2022]
|
23
|
Sun H, Xu B, Sheveleva E, Chen QM. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism. Toxicol Appl Pharmacol 2008; 232:25-32. [PMID: 18657281 DOI: 10.1016/j.taap.2008.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 05/19/2008] [Accepted: 05/27/2008] [Indexed: 01/08/2023]
Abstract
Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca(2+) concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes.
Collapse
Affiliation(s)
- Haipeng Sun
- Interdisciplinary Graduate Program of Pharmacology and Toxicology, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
24
|
Reduced delayed rectifier K+ current, altered electrophysiology, and increased ventricular vulnerability in MLP-deficient mice. J Card Fail 2007; 13:687-93. [PMID: 17923363 DOI: 10.1016/j.cardfail.2007.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 03/04/2007] [Accepted: 04/26/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mice with a knockout (KO) of muscle LIM protein (MLP) exhibit many morphologic and clinical features of human cardiomyopathy. In humans, MLP-expression is downregulated both in ischemic and dilative cardiomyopathy. In this study, we investigated the effects of MLP on the electrophysiologic phenotype in vivo and on outward potassium currents. METHODS AND RESULTS MLP-deficient (MLPKO) and wild-type (MLPWT) mice were subjected to long-term electrocardiogram (ECG) recording and in vivo electrophysiologic study. The whole-cell, patch-clamp technique was applied to measure voltage dependent outward K+ currents in isolated cardiomyocytes. Long-term ECG revealed a significant prolongation of RR mean (108 +/- 9 versus 99 +/- 5 ms), P (16 +/- 3 versus 14 +/- 1 ms), QRS (17 +/- 3 versus 13 +/- 1 ms), QT (68 +/- 8 versus 46 +/- 7 ms), QTc (66 +/- 6 versus 46 +/- 7 ms), JT (51 +/- 7 versus 34 +/- 7 ms), and JTc (49 +/- 5 versus 33 +/- 7 ms) in MLPKO versus MLPWT mice (P < .05). During EP study, QT (80 +/- 8 versus 58 +/- 7 ms), QTc (61 +/- 6 versus 45 +/- 5 ms), JT (62 +/- 9 versus 43 +/- 6 ms), and JTc (47 +/- 5 versus 34 +/- 5 ms) were also significantly prolonged in MLPKO mice (P < .05). Nonsustained VT was inducible in 9/16 MLPKO versus 2/15 MLPWT mice (P < .05). Analysis of outward K+ currents in revealed a significantly reduced density of the slowly inactivating outward K+ current IK, slow in MLPKO mice (11 +/- 5 pA/pF versus 18 +/- 7 pA/pF; P < .05). CONCLUSION Mice with KO of MLP exhibit significant prolongation of atrial and ventricular conduction and an increased ventricular vulnerability. A reduction in repolarizing outward K+ currents may be responsible for these alterations.
Collapse
|
25
|
Schroder E, Magyar J, Burgess D, Andres D, Satin J. Chronic verapamil treatment remodelsICa,Lin mouse ventricle. Am J Physiol Heart Circ Physiol 2007; 292:H1906-16. [PMID: 17158651 DOI: 10.1152/ajpheart.00793.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study we tested the hypothesis that ventricular homeostasis of L-type Ca2+current ( ICa,L) minimally involves regulation of the main pore-forming α-subunit (CaV1.2) and auxiliary proteins that serve as positive or negative regulators of ICa,L. We treated animals for 24 h with verapamil (Ver, 3.6 mg·kg−1·day−1), isoproterenol (Iso, 30 mg·kg−1·day−1), or Iso + Ver via osmotic minipumps. To test for alterations of Ca2+channel complex components we performed real-time PCR and Western blot analysis on ventricle. In addition, cardiac myocytes (CMs) were dispersed and current was recorded in the whole cell configuration to evaluate ICa,L. Surprisingly, 24- to 48-h Ver increased CaV1.2 mRNA and protein and ICa,Lcurrent (Ver 11 ± 1pA/pF vs. control 7 ± 0.5pA/pF; P < 0.01). ICa,Lfrom CMs in Ver mice showed no change in whole cell capacitance. To examine the in vivo effects of a physiologically relevant Ca2+channel agonist, we treated mice with Iso. Twenty-four-hour Iso infusion increased heart rate; CaV1.2- and CaVβ2mRNA levels were constant, but the Ca2+channel subunit mRNA Rem was increased twofold. Cells isolated from 24-h Iso hearts showed no change in basal ICa,Ldensity and diminished responsiveness to acute 1 μM Iso. To further examine the homeostatic regulation of the Ca2+channel, we treated animals for 24 h with Iso + Ver. The influence of Iso + Ver was similar that of to Iso alone on Ca2+channel mRNAs and ICa,L, with the exception that it prevented the increase in Rem seen with Iso treatment. Long-term Ca2+channel blockade induces an increase of CaV1.2 mRNA and protein and significantly increases ICa,L.
Collapse
Affiliation(s)
- Elizabeth Schroder
- Department of Physiology, University of Kentucky, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | |
Collapse
|
26
|
Ennis IL, Garciarena CD, Escudero EM, Pérez NG, Dulce RA, Camilión de Hurtado MC, Cingolani HE. Normalization of the calcineurin pathway underlies the regression of hypertensive hypertrophy induced by Na+/H+exchanger-1 (NHE-1) inhibitionThis paper is one of a selection of papers published in this Special Issue, entitled The Cellular and Molecular Basis of Cardiovascular Dysfunction, Dhalla 70th Birthday Tribute. Can J Physiol Pharmacol 2007; 85:301-10. [PMID: 17612638 DOI: 10.1139/y06-072] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Na+/H+exchanger-1 (NHE-1) inhibition induces cardiac hypertrophy regression and (or) prevention in several experimental models, although the intracellular events involved remain unclarified. We aimed to determine whether the calcineurin/NFAT pathway mediates this effect of NHE-1 inhibitors. Spontaneously hypertensive rats (SHR) with cardiac hypertrophy were treated with the NHE-1 inhibitors cariporide and BIIB723 for 30 days. Wistar rats served as normotensive controls. Their hearts were studied by echocardiography, immunoblotting, and real-time RT-PCR. Cytoplasmic Ca2+and calcineurin Aβ expression were measured in cultured neonatal rat ventricular myocytes (NRVM) stimulated with endothelin-1 for 24 h. NHE-1 blockade induced cardiac hypertrophy regression (heart mass/body mass = 3.63 ± 0.07 vs. 3.06 ± 0.05 and 3.02 ± 0.13 for untreated vs. cariporide- and BIIB723-treated SHR, respectively; p < 0.05) and decreased myocardial brain natriuretic peptide, calcineurin Aβ, and nuclear NFAT expressions. Echocardiographic evaluation demonstrated a reduction in left ventricular wall thickness without changes in cavity dimensions or a significant decrease in blood pressure. NHE-1-inhibitor treatment did not affect myocardial stiffness or endocardial shortening, but increased mid-wall shortening, suggesting that a positive inotropic effect develops after hypertrophy regression. Cariporide normalized the increased diastolic Ca2+and calcineurin Aβ expression observed in ET-1-stimulated NRVM. In conclusion, our data suggest that inactivation of calcineurin/NFAT pathway may underlie the regression of cardiac hyper-trophy induced by NHE-1 inhibition.
Collapse
Affiliation(s)
- Irene L Ennis
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina.
| | | | | | | | | | | | | |
Collapse
|
27
|
Funakoshi H, Chan TO, Good JC, Libonati JR, Piuhola J, Chen X, MacDonnell SM, Lee LL, Herrmann DE, Zhang J, Martini J, Palmer TM, Sanbe A, Robbins J, Houser SR, Koch WJ, Feldman AM. Regulated Overexpression of the A
1
-Adenosine Receptor in Mice Results in Adverse but Reversible Changes in Cardiac Morphology and Function. Circulation 2006; 114:2240-50. [PMID: 17088462 DOI: 10.1161/circulationaha.106.620211] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Background—
Both the A
1
- and A
3
-adenosine receptors (ARs) have been implicated in mediating the cardioprotective effects of adenosine. Paradoxically, overexpression of both A
1
-AR and A
3
-AR is associated with changes in the cardiac phenotype. To evaluate the temporal relationship between AR signaling and cardiac remodeling, we studied the effects of controlled overexpression of the A
1
-AR using a cardiac-specific and tetracycline-transactivating factor–regulated promoter.
Methods and Results—
Constitutive A
1
-AR overexpression caused the development of cardiac dilatation and death within 6 to 12 weeks. These mice developed diminished ventricular function and decreased heart rate. In contrast, when A
1
-AR expression was delayed until 3 weeks of age, mice remained phenotypically normal at 6 weeks, and >90% of the mice survived at 30 weeks. However, late induction of A
1
-AR still caused mild cardiomyopathy at older ages (20 weeks) and accelerated cardiac hypertrophy and the development of dilatation after pressure overload. These changes were accompanied by gene expression changes associated with cardiomyopathy and fibrosis and by decreased Akt phosphorylation. Discontinuation of A
1
-AR induction mitigated cardiac dysfunction and significantly improved survival rate.
Conclusions—
These data suggest that robust constitutive myocardial A
1
-AR overexpression induces a dilated cardiomyopathy, whereas delaying A
1
-AR expression until adulthood ameliorated but did not eliminate the development of cardiac pathology. Thus, the inducible A
1
-AR transgenic mouse model provides novel insights into the role of adenosine signaling in heart failure and illustrates the potentially deleterious consequences of selective versus nonselective activation of adenosine-signaling pathways in the heart.
Collapse
Affiliation(s)
- Hajime Funakoshi
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gong N, Bodi I, Zobel C, Schwartz A, Molkentin JD, Backx PH. Calcineurin increases cardiac transient outward K+ currents via transcriptional up-regulation of Kv4.2 channel subunits. J Biol Chem 2006; 281:38498-506. [PMID: 17060317 DOI: 10.1074/jbc.m607774200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fast transient outward potassium currents (I(to,f)) are critical determinants of regional heterogeneity of cardiomyocyte repolarization as well as cardiomyocyte contractility. Additionally, I(to,f) densities are markedly down-regulated in cardiac hypertrophy and heart disease, conditions associated with activation of the serine/threonine phosphatase calcineurin (Cn). In this study, we investigated the regulation of I(to,f) expression by Cn in cultured neonatal rat ventricular myocytes (NRVMs) with and without alpha(1)-adrenoreceptor stimulation with phenylephrine (PE). Overexpression of constitutively active Cn in NRVMs induced hypertrophy and caused profound increases in I(to,f) density as well as Kv4.2 mRNA and protein expression and promoter activity, without affecting Kv4.3 or KChIP2 levels. The effects of Cn on hypertrophy, I(to,f), and Kv4.2 transcription were associated with NFAT activation and were abrogated by NFAT inhibition. Despite activating Cn and inducing hypertrophy in NRVMs, PE resulted in profound down-regulation of I(to,f) densities as well as Kv4.2, Kv4.3, and KChIP2 expression. Although hypertrophy and NFAT activation were inhibited by the Cn inhibitory peptide CAIN, I(to,f) and Kv4.2 expression were further reduced by CAIN, whereas Cn overexpression eliminated PE-induced reductions in I(to,f) and Kv4.2 expression without affecting Kv4.3 or KChIP2 levels. We conclude that Cn increases cardiac I(to,f) densities by positively regulating Kv4.2 gene transcription. Consistent with this conclusion, we found that I(to,f) was increased in myocytes isolated from young mice overexpressing Cn prior to the development of heart disease. This positive regulation of Kv4.2 transcription by Cn activation is expected to minimize the reductions in I(to,f) and Kv4.2 expression observed in hypertrophic cardiomyocytes.
Collapse
Affiliation(s)
- Nanling Gong
- Departments of Physiology and Medicine, Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, 150 College Street, Toronto, Ontario M5S 3E2, Canada
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Sun H, Kerfant BG, Zhao D, Trivieri MG, Oudit GY, Penninger JM, Backx PH. Insulin-like growth factor-1 and PTEN deletion enhance cardiac L-type Ca2+ currents via increased PI3Kalpha/PKB signaling. Circ Res 2006; 98:1390-7. [PMID: 16627784 DOI: 10.1161/01.res.0000223321.34482.8c] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ca2+ influx through the L-type Ca2+ channel (I(Ca,L)) is a key determinant of cardiac contractility and is modulated by multiple signaling pathways. Because the regulation of I(Ca,L) by phosphoinositide-3-kinases (PI3Ks) and phosphoinositide-3-phosphatase (PTEN) is unknown, despite their involvement in the regulation of myocardial growth and contractility, I(Ca,L) was recorded in myocytes isolated from mice overexpressing a dominant-negative p110alpha mutant (DN-p110alpha) in the heart, lacking the PI3Kgamma gene (PI3Kgamma(-/-)) or with muscle-specific ablation of PTEN (PTEN(-/-)). Combinations of these genetically altered mice were also examined. Although there were no differences in the expression level of CaV1.2 proteins, basal I(Ca,L) densities were larger (P<0.01) in PTEN(-/-) myocytes compared with littermate controls, PI3Kgamma(-/-), or DN-p110alpha myocytes and showed negative shifts in voltage dependence of current activation. The I(Ca,L) differences seen in PTEN(-/-) mice were eliminated by pharmacological inhibition of either PI3Ks or protein kinase B (PKB) as well as in PTEN(-/-)/DN-p110alpha double mutant mice but not in PTEN(-/-)/PI3Kgamma(-/-) mice. On the other hand, application of insulin-like growth factor-1 (IGF-1), an activator of PKB, increased I(Ca,L) in control and PI3Kgamma(-/-), while having no effects on I(Ca,L) in DN-p110alpha or PTEN(-/-) mice. The I(Ca,L) increases induced by IGF-1 were abolished by PKB inhibition. Our results demonstrate that IGF-1 treatment or inactivation of PTEN enhances I(Ca,L) via PI3Kalpha-dependent increase in PKB activation.
Collapse
Affiliation(s)
- Hui Sun
- Department of Physiology, University Health Network, University of Toronto, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Oudit GY, Trivieri MG, Khaper N, Liu PP, Backx PH. Role of L-type Ca2+ channels in iron transport and iron-overload cardiomyopathy. J Mol Med (Berl) 2006; 84:349-64. [PMID: 16604332 PMCID: PMC7095819 DOI: 10.1007/s00109-005-0029-x] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 10/21/2005] [Indexed: 02/07/2023]
Abstract
Excessive body iron or iron overload occurs under conditions such as primary (hereditary) hemochromatosis and secondary iron overload (hemosiderosis), which are reaching epidemic levels worldwide. Primary hemochromatosis is the most common genetic disorder with an allele frequency greater than 10% in individuals of European ancestry, while hemosiderosis is less common but associated with a much higher morbidity and mortality. Iron overload leads to iron deposition in many tissues especially the liver, brain, heart and endocrine tissues. Elevated cardiac iron leads to diastolic dysfunction, arrhythmias and dilated cardiomyopathy, and is the primary determinant of survival in patients with secondary iron overload as well as a leading cause of morbidity and mortality in primary hemochromatosis patients. In addition, iron-induced cardiac injury plays a role in acute iron toxicosis (iron poisoning), myocardial ischemia–reperfusion injury, Friedreich ataxia and neurodegenerative diseases. Patients with iron overload also routinely suffer from a range of endocrinopathies, including diabetes mellitus and anterior pituitary dysfunction. Despite clear connections between elevated iron and clinical disease, iron transport remains poorly understood. While low-capacity divalent metal and transferrin-bound transporters are critical under normal physiological conditions, L-type Ca2+ channels (LTCC) are high-capacity pathways of ferrous iron (Fe2+) uptake into cardiomyocytes especially under iron overload conditions. Fe2+ uptake through L-type Ca2+ channels may also be crucial in other excitable cells such as pancreatic beta cells, anterior pituitary cells and neurons. Consequently, LTCC blockers represent a potential new therapy to reduce the toxic effects of excess iron.
Collapse
Affiliation(s)
- Gavin Y. Oudit
- Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Departments of Medicine and Physiology, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Division of Cardiology and the Division of Cellular and Molecular Biology, University Health Network, University of Toronto, Ontario, Canada M5S 3E2
- Heart and Stroke/Richard Lewar Centre of Excellence, 150 College Street, Rm 68, Fitzgerald Building, Toronto, Ontario Canada M5S 3E2
| | - Maria G. Trivieri
- Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Departments of Medicine and Physiology, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
| | - Neelam Khaper
- Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
| | - Peter P. Liu
- Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Departments of Medicine and Physiology, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
| | - Peter H. Backx
- Heart and Stroke/Richard Lewar Centre of Excellence, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Departments of Medicine and Physiology, University Health Network, University of Toronto, Ontario, M5S 3E2 Canada
- Division of Cardiology and the Division of Cellular and Molecular Biology, University Health Network, University of Toronto, Ontario, Canada M5S 3E2
- Heart and Stroke/Richard Lewar Centre of Excellence, 150 College Street, Rm 68, Fitzgerald Building, Toronto, Ontario Canada M5S 3E2
| |
Collapse
|
32
|
Frank D, Kuhn C, Katus HA, Frey N. The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med (Berl) 2006; 84:446-68. [PMID: 16416311 DOI: 10.1007/s00109-005-0033-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 11/23/2005] [Indexed: 12/11/2022]
Abstract
The perception of the Z-disc in striated muscle has undergone significant changes in the past decade. Traditionally, the Z-disc has been viewed as a passive constituent of the sarcomere, which is important only for the cross-linking of thin filaments and transmission of force generated by the myofilaments. The recent discovery of multiple novel molecular components, however, has shed light on an emerging role for the Z-disc in signal transduction in both cardiac and skeletal muscles. Strikingly, mutations in several Z-disc proteins have been shown to cause cardiomyopathies and/or muscular dystrophies. In addition, the elusive cardiac stretch receptor appears to localize to the Z-disc. Various signalling molecules have been shown to interact with Z-disc proteins, several of which shuttle between the Z-disc and other cellular compartments such as the nucleus, underlining the dynamic nature of Z-disc-dependent signalling. In this review, we provide a systematic view on the currently known Z-disc components and the functional significance of the Z-disc as an interface between biomechanical sensing and signalling in cardiac and skeletal muscle functions and diseases.
Collapse
Affiliation(s)
- Derk Frank
- Department of Internal Medicine III, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | | | | | | |
Collapse
|
33
|
Kawada H, Niwano S, Niwano H, Yumoto Y, Wakisaka Y, Yuge M, Kawahara K, Izumi T. Tumor Necrosis Factor-.ALPHA. Downregulates the Voltage Gated Outward K+ Current in Cultured Neonatal Rat Cardiomyocytes A Possible Cause of Electrical Remodeling in Diseased Hearts. Circ J 2006; 70:605-9. [PMID: 16636498 DOI: 10.1253/circj.70.605] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Inflammatory cytokines have been reported to contribute to the progression of cardiac remodeling in various heart diseases and a remarkable prolongation of the monophasic action potential duration and reductions in the expression of Kv4.2 and K+ channel-interacting protein-2 (KChIP-2) in a rat autoimmune myocarditis model have been documented. In this study, the effect of tumor necrosis factor-alpha (TNF-alpha) on cultured cardiomyocytes was evaluated, focusing on the change in the voltage-gated outward K+ current and expression of related molecules. METHODS AND RESULTS Cardiomyocytes isolated from 1-day-old Lewis rats were cultured for 72 h and treated with TNF-alpha (50 ng/ml) for an additional 48 h. The myocytes treated with TNF-alpha showed a 22% reduction in the peak K+ current, which consisted of a transient outward K+ current (Ito) and 1.4-fold enhancement of the cell-capacitance in comparison with the control. Among the cardiac ion channel related molecules evaluated in this study, Kv4.2 and KChIP-2 mRNA exhibited remarkable reductions (p < 0.05). CONCLUSIONS Treatment with TNF-alpha induced reductions in Ito as well as cellular hypertrophy in neonatal cultured myocytes, which indicates that TNF-alpha might play a role in promoting electrical remodeling of cardiomyocytes under inflammatory conditions.
Collapse
MESH Headings
- Action Potentials
- Animals
- Animals, Newborn
- Cells, Cultured
- Disease Models, Animal
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Heart Diseases/pathology
- Heart Diseases/physiopathology
- Hypertrophy/chemically induced
- Hypertrophy/pathology
- Kv Channel-Interacting Proteins/drug effects
- Kv Channel-Interacting Proteins/genetics
- Myocarditis/immunology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Potassium/metabolism
- Potassium Channels, Voltage-Gated/drug effects
- Potassium Channels, Voltage-Gated/genetics
- RNA, Messenger/analysis
- Rats
- Rats, Inbred Lew
- Shal Potassium Channels/drug effects
- Shal Potassium Channels/genetics
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Hideaki Kawada
- Department of Angio-cardiology, Kitasato University School of Medicine, Sagamihara, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Guo W, Jung WE, Marionneau C, Aimond F, Xu H, Yamada KA, Schwarz TL, Demolombe S, Nerbonne JM. Targeted deletion of Kv4.2 eliminates I(to,f) and results in electrical and molecular remodeling, with no evidence of ventricular hypertrophy or myocardial dysfunction. Circ Res 2005; 97:1342-50. [PMID: 16293790 DOI: 10.1161/01.res.0000196559.63223.aa] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have demonstrated a role for voltage-gated K+ (Kv) channel alpha subunits of the Kv4 subfamily in the generation of rapidly inactivating/recovering cardiac transient outward K+ current, I(to,f), channels. Biochemical studies suggest that mouse ventricular I(to,f) channels reflect the heteromeric assembly of Kv4.2 and Kv4.3 with the accessory subunits, KChIP2 and Kvbeta1, and that Kv4.2 is the primary determinant of regional differences in (mouse ventricular) I(to,f) densities. Interestingly, the phenotypic consequences of manipulating I(to,f) expression in different mouse models are distinct. In the experiments here, the effects of the targeted deletion of Kv4.2 (Kv4.2(-/-)) were examined. Unexpectedly, voltage-clamp recordings from Kv4.2(-/-) ventricular myocytes revealed that I(to,f) is eliminated. In addition, the slow transient outward K+ current, I(to,s), and the Kv1.4 protein (which encodes I(to,s)) are upregulated in Kv4.2(-/-) ventricles. Although Kv4.3 mRNA/protein expression is not measurably affected, KChIP2 expression is markedly reduced in Kv4.2(-/-) ventricles. Similar to Kv4.3, expression of Kvbeta1, as well as Kv1.5 and Kv2.1, is similar in wild-type and Kv4.2(-/-) ventricles. In addition, and in marked contrast to previous findings in mice expressing a truncated Kv4.2 transgene, the elimination I(to,f) in Kv4.2(-/-) mice does not result in ventricular hypertrophy. Taken together, these findings demonstrate not only an essential role for Kv4.2 in the generation of mouse ventricular I(to,f) channels but also that the loss of I(to,f) per se does not have overt pathophysiological consequences.
Collapse
Affiliation(s)
- Weinong Guo
- Department of Molecular Biology and Pharmacology, Washington University Medical School, St Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kerfant BG, Gidrewicz D, Sun H, Oudit GY, Penninger JM, Backx PH. Cardiac sarcoplasmic reticulum calcium release and load are enhanced by subcellular cAMP elevations in PI3Kgamma-deficient mice. Circ Res 2005; 96:1079-86. [PMID: 15860757 DOI: 10.1161/01.res.0000168066.06333.df] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We recently showed that phosphoinositide-3-kinase-gamma-deficient (PI3Kgamma-/-) mice have increased cardiac contractility without changes in heart size compared with control mice (ie, PI3Kgamma+/+ or PI3Kgamma+/-). In this study, we show that PI3Kgamma-/- cardiomyocytes have elevated Ca2+ transient amplitudes with abbreviated decay kinetics compared with control under field-stimulation and voltage-clamp conditions. When Ca2+ transients were eliminated with high Ca2+ buffering, L-type Ca2+ currents (I(Ca,L)), K+ currents, and action potential duration (APD) were not different between the groups, whereas, in the presence of Ca2+ transients, Ca2+-dependent phase of I(Ca,L) inactivation was abbreviated and APD at 90% repolarization was prolonged in PI3Kgamma-/- mice. Excitation-contraction coupling (ECC) gain, sarcoplasmic reticulum (SR) Ca2+ load, and SR Ca(2+) release fluxes measured as Ca2+ spikes, were also increased in PI3Kgamma-/- cardiomyocytes without detectable changes in Ca2+ spikes kinetics. The cAMP inhibitor Rp-cAMP eliminated enhanced ECC and SR Ca2+ load in PI3Kgamma-/- without effects in control myocytes. On the other hand, the beta-adrenergic receptor agonist isoproterenol increased I(Ca,L) and Ca2+ transient equally by approximately 2-fold in both PI3Kgamma-/- and PI3Kgamma+/- cardiomyocytes. Our results establish that PI3Kgamma reduces cardiac contractility in a highly compartmentalized manner by inhibiting cAMP-mediated SR Ca2+ loading without directly affecting other major modulators of ECC, such as AP and I(Ca,L).
Collapse
Affiliation(s)
- Benoit-Gilles Kerfant
- Department of Physiology, Heart & Stroke Richard Lewar Centre, and Division of Cardiology, University Health Network, University of Toronto, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
36
|
Wilkins BJ, Molkentin JD. Calcium-calcineurin signaling in the regulation of cardiac hypertrophy. Biochem Biophys Res Commun 2004; 322:1178-91. [PMID: 15336966 DOI: 10.1016/j.bbrc.2004.07.121] [Citation(s) in RCA: 348] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Indexed: 12/21/2022]
Abstract
Cardiac hypertrophy is a leading predicator of progressive heart disease that often leads to heart failure and a loss of cardiac contractile performance associated with profound alterations in intracellular calcium handling. Recent investigation has centered on identifying the molecular signaling pathways that regulate cardiac myocyte hypertrophy, as well as the mechanisms whereby alterations in calcium handling are associated with progressive heart failure. One potential focal regulator of cardiomyocyte hypertrophy that also responds to altered calcium handling is the calmodulin-activated serine/threonine protein phosphatase calcineurin (PP2B). Once activated by increases in calcium, calcineurin mediates the hypertrophic response through its downstream transcriptional effector nuclear factor of activated T cells (NFAT), which is directly dephosphorylated by calcineurin resulting in nuclear translocation. While previous studies have convincingly demonstrated the sufficiency of calcineurin to mediate cardiac hypertrophy and progressive heart failure, its necessity remains an area of ongoing investigation. Here we weigh an increasing body of literature that suggests a causal link between calcineurin signaling and the cardiac hypertrophic response and heart failure through the use of pharmacologic inhibitors (cyclosporine A and FK506) and genetic approaches. We will also discuss the manner in which calcineurin-NFAT signaling is negatively regulated in the heart through a diverse array of kinases and inhibitory proteins. Finally, we will discuss emerging theories as to the mechanisms whereby alterations in intracellular calcium handling might stimulate calcineurin within the context of a contractile cell continually experiencing calcium flux.
Collapse
Affiliation(s)
- Benjamin J Wilkins
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
37
|
Lebeche D, Kaprielian R, del Monte F, Tomaselli G, Gwathmey JK, Schwartz A, Hajjar RJ. In vivo cardiac gene transfer of Kv4.3 abrogates the hypertrophic response in rats after aortic stenosis. Circulation 2004; 110:3435-43. [PMID: 15557376 DOI: 10.1161/01.cir.0000148176.33730.3f] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Prolongation of the action potential duration (APD) and decreased transient outward K+ current (I(to)) have been consistently observed in cardiac hypertrophy. The relation between electrical remodeling and cardiac hypertrophy in vivo is unknown. METHODS AND RESULTS We studied rat hearts subjected to pressure overload by surgical ascending aortic stenosis (AS) and simultaneously infected these hearts with an adenovirus carrying either the Kv4.3 gene (Ad.Kv4.3) or the beta-galactosidase gene (Ad.beta-gal). I(to) density was reduced and APD50 was prolonged (P<0.05) in AS rats compared with sham rats. Kv4.2 and Kv4.3 expressions were decreased by 58% and 51%, respectively (P<0.05). AS rats infected with Ad.beta-gal developed cardiac hypertrophy compared with sham rats, as assessed by cellular capacitance and heart weight-body weight ratio. Associated with the development of cardiac hypertrophy, the expression of calcineurin and its downstream transcription factor nuclear factor of activated T cells (NFAT) c1 was persistently increased by 47% and 36%, respectively (P<0.05) in AS myocytes infected with Ad.beta-gal compared with sham myocytes. In vivo gene transfer of Kv4.3 in AS rats was shown to increase Kv4.3 expression, increase I(to) density, and shorten APD50 by 1.6-fold, 5.3-fold, and 3.6-fold, respectively (P<0.05). Furthermore, AS rats infected with Ad.Kv4.3 showed significant reductions in calcineurin and NFAT expression. (P<0.05). CONCLUSIONS Downregulation of I(to), APD prolongation, and cardiac hypertrophy occur early after AS, and in vivo gene transfer of Kv4.3 can restore these electrical parameters and abrogate the hypertrophic response via the calcineurin pathway.
Collapse
Affiliation(s)
- Djamel Lebeche
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Mass 02129, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Frey N, Barrientos T, Shelton JM, Frank D, Rütten H, Gehring D, Kuhn C, Lutz M, Rothermel B, Bassel-Duby R, Richardson JA, Katus HA, Hill JA, Olson EN. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat Med 2004; 10:1336-43. [PMID: 15543153 DOI: 10.1038/nm1132] [Citation(s) in RCA: 162] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 09/27/2004] [Indexed: 11/08/2022]
Abstract
Signaling by the calcium-dependent phosphatase calcineurin profoundly influences the growth and gene expression of cardiac and skeletal muscle. Calcineurin binds to calsarcins, a family of muscle-specific proteins of the sarcomeric Z-disc, a focal point in the pathogenesis of human cardiomyopathies. We show that calsarcin-1 negatively modulates the functions of calcineurin, such that calcineurin signaling was enhanced in striated muscles of mice that do not express calsarcin-1. As a consequence of inappropriate calcineurin activation, mice with a null mutation in calsarcin-1 showed an excess of slow skeletal muscle fibers. The absence of calsarcin-1 also activated a hypertrophic gene program, despite the absence of hypertrophy, and enhanced the cardiac growth response to pressure overload. In contrast, cardiac adaptation to other hypertrophic stimuli, such as chronic catecholamine stimulation or exercise, was not affected. These findings show important roles for calsarcins as modulators of calcineurin signaling and the transmission of a specific subset of stress signals leading to cardiac remodeling in vivo.
Collapse
Affiliation(s)
- Norbert Frey
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9148, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Volk T, Noble PJ, Wagner M, Noble D, Ehmke H. Ascending aortic stenosis selectively increases action potential-induced Ca2+ influx in epicardial myocytes of the rat left ventricle. Exp Physiol 2004; 90:111-21. [PMID: 15466456 DOI: 10.1113/expphysiol.2004.028712] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A decrease of the transient outward potassium current (Ito) has been observed in cardiac hypertrophy and contributes to the altered shape of the action potential (AP) of hypertrophied ventricular myocytes. Since the shape and duration of the ventricular AP are important determinants of the Ca2+ influx during the AP (QCa), we investigated the effect of ascending aortic stenosis (AS) on QCa in endo- and epicardial myocytes of the left ventricular free wall using the AP voltage-clamp technique. In sham-operated animals, QCa was significantly larger in endocardial compared to epicardial myocytes (803 +/- 65 fC pF(-1), n = 27 vs. 167 +/- 32 fC pF(-1), n = 38, P < 0.001). Ascending aortic stenosis significantly increased QCa in epicardial myocytes (368 +/- 54 fC pF(-1), n = 42, P < 0.05), but did not alter QCa in endocardial myocytes (696 +/- 65 fC pF(-1), n = 26). Peak and current-voltage relation of the AP-induced Ca2+ current were unaffected by AS. However, the time course of the current-voltage relation was significantly prolonged in epicardial myocytes of AS animals. Model calculations revealed that the increase in QCa can be ascribed to a prolonged opening of the activation gate, whereas an increase in inactivation prevents an excessive increase in QCa. In conclusion, AS significantly increased AP-induced Ca2+ influx in epicardial but not in endocardial myocytes of the rat left ventricle.
Collapse
Affiliation(s)
- Tilmann Volk
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstrasse 6, 91054 Erlangen, Germany.
| | | | | | | | | |
Collapse
|
40
|
Turcani M, Thormaehlen D, Rupp H. Tedisamil attenuates foetal transformation of myosin in the hypertrophied rat myocardium. Br J Pharmacol 2004; 143:561-72. [PMID: 15466442 PMCID: PMC1575437 DOI: 10.1038/sj.bjp.0705992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1 Reduction in repolarizing potassium currents has controversial effects on hypertrophic responses in cardiomyocytes of transgenic models and cultured cardiomyocytes. It remains thus unknown whether a blockade of potassium channels with tedisamil (N,N'dicyclopropylmethylene-9,9-tetramethylene-3,7-diazabicyclo(3.3.1)nonane dihydrochloride) has any effects on cardiac growth during postnatal development or pressure overload. 2 To test the hypothesis that a treatment with tedisamil affects cardiac growth or protein phenotype, sham-operated rats and rats with ascending aorta constriction were treated with tedisamil (36 mg kg day(-1)) for 7 weeks. Left ventricular mass and geometry, relative expression of myosin isoforms, hydroxyproline concentration and isovolumic ventricular function were assessed. 3 Rats with aortic constriction exhibited a marked increase in left ventricular weight and the diastolic pressure-volume relationship was shifted to smaller volumes. The hydroxyproline concentration remained unaltered. The proportion of alpha-myosin heavy chains was, however, reduced (P<0.05). Hypertrophied left ventricles manifested an enhanced overall performance but depressed myocardial contractility. 4 Administration of tedisamil was associated with decreased heart rate (P<0.05). In contrast, cardiac growth in sham-operated rats and concentric left ventricular hypertrophy of pressure-overloaded animals was not significantly altered. Hypertrophied hearts from rats treated with tedisamil expressed more alpha-myosin heavy chains (65+/-4 versus 57+/-4%; P<0.05). Also, maximal rate of wall stress rise and decline was higher (P<0.05) in tedisamil-treated pressure-overloaded rats. 5 In the rat model of pressure-overloaded hypertrophy, tedisamil had no effect on cardiac growth but partially corrected myocardial dysfunction. Postulated mechanism of this effect is the phenotype modification of myosin filaments in hypertrophied myocardium.
Collapse
Affiliation(s)
- Marian Turcani
- Department of Physiology, Faculty of Medicine, Kuwait University, PO Box 24923, Safat 13110, Kuwait.
| | | | | |
Collapse
|
41
|
Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA. Structure and function of Kv4-family transient potassium channels. Physiol Rev 2004; 84:803-33. [PMID: 15269337 DOI: 10.1152/physrev.00039.2003] [Citation(s) in RCA: 268] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Shal-type (Kv4.x) K(+) channels are expressed in a variety of tissue, with particularly high levels in the brain and heart. These channels are the primary subunits that contribute to transient, voltage-dependent K(+) currents in the nervous system (A currents) and the heart (transient outward current). Recent studies have revealed an enormous degree of complexity in the regulation of these channels. In this review, we describe the surprisingly large number of ancillary subunits and scaffolding proteins that can interact with the primary subunits, resulting in alterations in channel trafficking and kinetic properties. Furthermore, we discuss posttranslational modification of Kv4.x channel function with an emphasis on the role of kinase modulation of these channels in regulating membrane properties. This concept is especially intriguing as Kv4.2 channels may integrate a variety of intracellular signaling cascades into a coordinated output that dynamically modulates membrane excitability. Finally, the pathophysiology that may arise from dysregulation of these channels is also reviewed.
Collapse
Affiliation(s)
- Shari G Birnbaum
- Div. of Neuroscience, S607, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Rossow CF, Minami E, Chase EG, Murry CE, Santana LF. NFATc3-Induced Reductions in Voltage-Gated K
+
Currents After Myocardial Infarction. Circ Res 2004; 94:1340-50. [PMID: 15087419 DOI: 10.1161/01.res.0000128406.08418.34] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reductions in voltage-activated K
+
(Kv) currents may underlie arrhythmias after myocardial infarction (MI). We investigated the role of β-adrenergic signaling and the calcineurin/NFAT pathway in mediating the reductions in Kv currents observed after MI in mouse ventricular myocytes. Kv currents were produced by the summation of 3 distinct currents: I
to
, I
Kslow1
, and I
Kslow2
. At 48 hours after MI, we found a 4-fold increase in NFAT activity, which coincided with a decrease in the amplitudes of I
to
, I
Kslow1
, and I
Kslow2
. Consistent with this, mRNA and protein levels of Kv1.5, 2.1, 4.2, and 4.3, which underlie I
Kslow1
, I
Kslow2
, and I
to
, were decreased after MI. Administration of the β-blocker metoprolol prevented the activation of NFAT and the reductions in I
to
, I
Kslow1
, and I
Kslow2
after MI. Cyclosporine, an inhibitor of calcineurin, also prevented the reductions in these currents after MI. Importantly, Kv currents did not change after MI in ventricular myocytes from NFATc3 knockout mice. Conversely, chronic β-adrenergic stimulation or expression of an activated NFATc3 decreased Kv currents to a similar extent as MI. Taken together, these data indicate that NFATc3 plays an essential role in the signaling pathway leading to reduced I
to
, I
Kslow1
, and I
Kslow2
after MI. We propose that increased β-adrenergic signaling after MI activates calcineurin and NFATc3, which decreases I
to
, I
Kslow1
, and I
Kslow2
via a reduction in Kv1.5, Kv2.1, Kv4.2, and Kv4.3 expression.
Collapse
Affiliation(s)
- Charles F Rossow
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
43
|
Vega RB, Bassel-Duby R, Olson EN. Control of cardiac growth and function by calcineurin signaling. J Biol Chem 2003; 278:36981-4. [PMID: 12881512 DOI: 10.1074/jbc.r300023200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Rick B Vega
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | | | |
Collapse
|
44
|
Bodi I, Muth JN, Hahn HS, Petrashevskaya NN, Rubio M, Koch SE, Varadi G, Schwartz A. Electrical remodeling in hearts from a calcium-dependent mouse model of hypertrophy and failure: complex nature of K+ current changes and action potential duration. J Am Coll Cardiol 2003; 41:1611-22. [PMID: 12742305 DOI: 10.1016/s0735-1097(03)00244-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
OBJECTIVES This study was designed to identify possible electrical remodeling (ER) in transgenic (Tg) mice with over-expressed L-type Ca(2+) channels. Transient outward K(+) current (I(to)) and action potential duration (APD) were studied in 2-, 4-, 8-, and 9- to 12-month-old mice to determine linkage to ventricular remodeling (VR), ER, and heart failure (HF). BACKGROUND Prolongation of APD and reduction in current density of I(to) are thought to be hallmarks of VR and HF. Mechanisms are not understood. METHODS Patch-clamp, perfused hearts, echocardiography, and Western blots were employed using 2-, 4-, 8-, and 9- to 12-month-old Tg mice. RESULTS Transgenic mice developed slow VR statistically manifesting at four months and continuing through death at 12 to 14 months, despite a slight up-regulation of I(to). A slight decrease or no change in APD was observed up to eight months; however, at 9 to 12 months, a small increase in APD was detected. Early afterdepolarizations were observed after application of 4-aminopyridine in Tg mice. No change was detected in protein of Kv4.3 and Kv4.2 up to eight months. At 9 to 12 months, Tg mice showed a slight decrease (41.4 +/- 6.9%, p < 0.05) in Kv4.2, consistent with a decrease in I(to). Surprisingly, Kv1.4 (the "fetal" K(+)-channel form) was up-regulated, and restitution of I(to) was slowed. Echocardiography revealed cardiac enlargement with impaired chamber function in hearts that were taken from the older animals. CONCLUSIONS Contrary to accepted dogma, APD and I(to) in a mouse model of hypertrophy and HF are not hallmarks of pathophysiology. We suggest that [Ca(2+)](i) (i.e., [Ca(2+)] concentration) is the primary factor in triggering cardiac enlargement and arrhythmogenesis.
Collapse
Affiliation(s)
- Ilona Bodi
- Institute of Molecular Pharmacology and Biophysics, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0828, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Sah R, Ramirez RJ, Oudit GY, Gidrewicz D, Trivieri MG, Zobel C, Backx PH. Regulation of cardiac excitation-contraction coupling by action potential repolarization: role of the transient outward potassium current (I(to)). J Physiol 2003; 546:5-18. [PMID: 12509475 PMCID: PMC2342473 DOI: 10.1113/jphysiol.2002.026468] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cardiac action potential (AP) is critical for initiating and coordinating myocyte contraction. In particular, the early repolarization period of the AP (phase 1) strongly influences the time course and magnitude of the whole-cell intracellular Ca(2+) transient by modulating trans-sarcolemmal Ca(2+) influx through L-type Ca(2+) channels (I(Ca,L)) and Na-Ca exchangers (I(Ca,NCX)). The transient outward potassium current (I(to)) has kinetic properties that make it especially effective in modulating the trajectory of phase 1 repolarization and thereby cardiac excitation-contraction coupling (ECC). The magnitude of I(to) varies greatly during cardiac development, between different regions of the heart, and is invariably reduced as a result of heart disease, leading to corresponding variations in ECC. In this article, we review evidence supporting a modulatory role of I(to) in ECC through its influence on I(Ca,L), and possibly I(Ca,NCX). We also discuss differential effects of I(to) on ECC between different species, between different regions of the heart and in heart disease.
Collapse
Affiliation(s)
- Rajan Sah
- Department of Physiology, University of Toronto, Heart & Stroke/Richard Lewar Centre, Room 68, Fitzgerald Building, 150 College Street, Toronto, Ontario, M5S 3E2, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Wilkins BJ, De Windt LJ, Bueno OF, Braz JC, Glascock BJ, Kimball TF, Molkentin JD. Targeted disruption of NFATc3, but not NFATc4, reveals an intrinsic defect in calcineurin-mediated cardiac hypertrophic growth. Mol Cell Biol 2002; 22:7603-13. [PMID: 12370307 PMCID: PMC135666 DOI: 10.1128/mcb.22.21.7603-7613.2002] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A calcineurin-nuclear factor of activated T cells (NFAT) regulatory pathway has been implicated in the control of cardiac hypertrophy, suggesting one mechanism whereby alterations in intracellular calcium handling are linked to the expression of hypertrophy-associated genes. Although recent studies have demonstrated a necessary role for calcineurin as a mediator of cardiac hypertrophy, the potential involvement of NFAT transcription factors as downstream effectors of calcineurin signaling has not been evaluated. Accordingly, mice with targeted disruptions in NFATc3 and NFATc4 genes were characterized. Whereas the loss of NFATc4 did not compromise the ability of the myocardium to undergo hypertrophic growth, NFATc3-null mice demonstrated a significant reduction in calcineurin transgene-induced cardiac hypertrophy at 19 days, 26 days, 6 weeks, 8 weeks, and 10 weeks of age. NFATc3-null mice also demonstrated attenuated pressure overload- and angiotensin II-induced cardiac hypertrophy. These results provide genetic evidence that calcineurin-regulated responses require NFAT effectors in vivo.
Collapse
Affiliation(s)
- Benjamin J Wilkins
- Division of Molecular Cardiovascular Biology, Department of Pediatrics, Children's Hospital Medical Center, Cincinnati Ohio 45229-3039, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Zobel C, Kassiri Z, Nguyen TTT, Meng Y, Backx PH. Prevention of hypertrophy by overexpression of Kv4.2 in cultured neonatal cardiomyocytes. Circulation 2002; 106:2385-91. [PMID: 12403671 DOI: 10.1161/01.cir.0000033970.22130.93] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Prolonged action potentials (APs) and decreased transient outward K+ currents (I(to)) are consistent findings in hypertrophic myocardium. However, the connection of these changes with cardiac hypertrophy is unknown. The present study investigated the effects of changes in I(to) and the associated alterations in AP on myocyte hypertrophy induced by phenylephrine. METHODS AND RESULTS Chronic incubation of cultured neonatal ventricular rat myocytes (NVRMs) with phenylephrine (PE) reduced I(to) density and prolonged AP duration, leading to a 2-fold increase in the net Ca2+ influx per beat and a 1.4-fold increase in Ca2+-transient amplitude. PE treatment of chronically paced (2-Hz) NVRM also induced increases in cell size, protein/DNA ratio, atrial natriuretic factor mRNA expression, as well as beta/alpha myosin mRNA ratio. These hypertrophic changes were associated with a 2.4-fold increase in activation of nuclear factor of activated T-cells (NFAT), indicating increased activity of the Ca2+-dependent phosphatase calcineurin. Overexpression of Kv4.2 channels using adenovirus prevented the AP duration prolongation as well as the increases in Ca2+ influx and Ca2+-transient amplitude induced by PE. Kv4.2 overexpression also prohibited the PE-induced increases in cell size, protein/DNA ratio, atrial natriuretic factor expression, beta/alpha myosin mRNA ratio, and NFAT activation. CONCLUSIONS Our results demonstrate that PE-mediated hypertrophy in NRVMs seems to require I(to) reductions and AP prolongation associated with increased Ca2+ influx and Ca2+ transients as well as calcineurin activation. The clinical implications of these studies and the possible involvement of other signaling pathways are discussed.
Collapse
Affiliation(s)
- Carsten Zobel
- Department of Physiology, Division of Cardiology University Health Network and Heart & Stroke Richard Lewar Centre, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
48
|
Crackower MA, Oudit GY, Kozieradzki I, Sarao R, Sun H, Sasaki T, Hirsch E, Suzuki A, Shioi T, Irie-Sasaki J, Sah R, Cheng HYM, Rybin VO, Lembo G, Fratta L, Oliveira-dos-Santos AJ, Benovic JL, Kahn CR, Izumo S, Steinberg SF, Wymann MP, Backx PH, Penninger JM. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 2002; 110:737-49. [PMID: 12297047 DOI: 10.1016/s0092-8674(02)00969-8] [Citation(s) in RCA: 447] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PTEN/PI3K signaling pathway regulates a vast array of fundamental cellular responses. We show that cardiomyocyte-specific inactivation of tumor suppressor PTEN results in hypertrophy, and unexpectedly, a dramatic decrease in cardiac contractility. Analysis of double-mutant mice revealed that the cardiac hypertrophy and the contractility defects could be genetically uncoupled. PI3Kalpha mediates the alteration in cell size while PI3Kgamma acts as a negative regulator of cardiac contractility. Mechanistically, PI3Kgamma inhibits cAMP production and hypercontractility can be reverted by blocking cAMP function. These data show that PTEN has an important in vivo role in cardiomyocyte hypertrophy and GPCR signaling and identify a function for the PTEN-PI3Kgamma pathway in the modulation of heart muscle contractility.
Collapse
Affiliation(s)
- Michael A Crackower
- IMBA, Institute for Molecular Biotechnology of the Austrian Academy of Sciences, c/o Dr. Bohr Gasse 7, A-1030, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|