1
|
Vigmond EJ, Massé S, Roney CH, Bayer JD, Nanthakumar K. The Accuracy of Cardiac Surface Conduction Velocity Measurements. JACC Clin Electrophysiol 2025; 11:694-705. [PMID: 39818672 DOI: 10.1016/j.jacep.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND Conduction velocity (CV) is a measure of the health of myocardial tissue. It can be measured by taking differences in local activation times from intracardiac electrodes. Several factors introduce error into the measurement, among which ignoring the 3-dimensional aspect is a major detriment. OBJECTIVES The purpose of this study was to determine if, nonetheless, there was a specific region where CV could be accurately measured. METHODS Computer simulations of 3-dimensional ventricles with a realistic His-Purkinje system were performed. Ventricles also included a dense scar or diffuse fibrosis. RESULTS A finer spatial sampling produced better agreement with true CV. Using an error limit of 10 cm/s as a threshold, measurements taken within a region <2 cm from the pacing site proved to be accurate. Error increased abruptly beyond this distance. The Purkinje system and tissue fiber orientation played equally major roles in leading to a surface CV that was not reflective of the CV propagation through the tissue. CONCLUSIONS In general, surface CV correlates poorly with tissue CV. Only surface CV measurements close to the pacing site, taken with an electrode spacing of ≤1 mm, give reasonable estimates.
Collapse
Affiliation(s)
- Edward J Vigmond
- IHU Institut LIRYC, Fondation University Bordeaux, Talence, France; Institute of Mathematics of Bordeaux, UMR 5251, University of Bordeaux, Talence, France.
| | - Stéphane Massé
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Caroline H Roney
- School of Engineering and Materials Science, Queen Mary University London, London, United Kingdom
| | - Jason D Bayer
- IHU Institut LIRYC, Fondation University Bordeaux, Talence, France; Institute of Mathematics of Bordeaux, UMR 5251, University of Bordeaux, Talence, France
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Zeppenfeld K, Rademaker R, Al-Ahmad A, Carbucicchio C, De Chillou C, Cvek J, Ebert M, Ho G, Kautzner J, Lambiase P, Merino JL, Lloyd M, Misra S, Pruvot E, Sapp J, Schiappacasse L, Sramko M, Stevenson WG, Zei PC, Wichterle D, Chrispin J, Siklody CH, Neuwirth R, Pelargonio G, Reichlin T, Robinson C, Tondo C. Patient selection, ventricular tachycardia substrate delineation, and data transfer for stereotactic arrhythmia radioablation: a clinical consensus statement of the European Heart Rhythm Association of the European Society of Cardiology and the Heart Rhythm Society. Europace 2025; 27:euae214. [PMID: 39177652 DOI: 10.1093/europace/euae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
Stereotactic arrhythmia radioablation (STAR) is a novel, non-invasive, and promising treatment option for ventricular arrhythmias (VAs). It has been applied in highly selected patients mainly as bailout procedure, when (multiple) catheter ablations, together with anti-arrhythmic drugs, were unable to control the VAs. Despite the increasing clinical use, there is still limited knowledge of the acute and long-term response of normal and diseased myocardium to STAR. Acute toxicity appeared to be reasonably low, but potential late adverse effects may be underreported. Among published studies, the provided methodological information is often limited, and patient selection, target volume definition, methods for determination and transfer of target volume, and techniques for treatment planning and execution differ across studies, hampering the pooling of data and comparison across studies. In addition, STAR requires close and new collaboration between clinical electrophysiologists and radiation oncologists, which is facilitated by shared knowledge in each collaborator's area of expertise and a common language. This clinical consensus statement provides uniform definition of cardiac target volumes. It aims to provide advice in patient selection for STAR including aetiology-specific aspects and advice in optimal cardiac target volume identification based on available evidence. Safety concerns and the advice for acute and long-term monitoring including the importance of standardized reporting and follow-up are covered by this document. Areas of uncertainty are listed, which require high-quality, reliable pre-clinical and clinical evidence before the expansion of STAR beyond clinical scenarios in which proven therapies are ineffective or unavailable.
Collapse
Affiliation(s)
- Katja Zeppenfeld
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Robert Rademaker
- Department of Cardiology, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
| | - Amin Al-Ahmad
- Electrophysiology, Texas Cardiac Arrhythmia Institute, Austin, TX, USA
| | | | - Christian De Chillou
- CHU de Nancy, Cardiology, Institut Lorrain du Coeur et des Vaisseaux, Vandoeuvre Les Nancy, France
| | - Jakub Cvek
- Radiation Oncology, University of Ostrava, Ostrava, Czech Republic
| | - Micaela Ebert
- Electrophysiology, Heart Center Leipzig, Leipzig, Germany
| | - Gordon Ho
- Division of Cardiology, Section of Cardiac Electrophysiology, University of California San Diego, La Jolla, CA, USA
| | - Josef Kautzner
- Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Pier Lambiase
- Cardiology Department, University College London, London, UK
| | | | - Michael Lloyd
- Emory Electrophysiology, Electrophysiology Lab Director, EUH, Emory University Hospital, Atlanta, GA, USA
| | - Satish Misra
- Atrium Health Sanger Heart Vascular Institute Kenilworth, Charlotte, NC, USA
| | - Etienne Pruvot
- Department of Cardiology, Lausanne University Hospital, CHUV, Lausanne, Switzerland
| | - John Sapp
- QEII Health Sciences Center, Halifax Infirmary Site, Halifax, NS, Canada
| | - Luis Schiappacasse
- Department of Cardiology, Service de Radio-Oncologie, Lausanne University Hospital, CHUV, Lausanne, Switzerland
| | - Marek Sramko
- Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | | | - Paul C Zei
- Professor of Medicine, Cardiac Electrophysiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dan Wichterle
- Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jonathan Chrispin
- Assistant Professor of Medicine, Johns Hopkins Medicine Division of Cardiology, Baltimore, MD, USA
| | | | - Radek Neuwirth
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
- AGEL Hospital Trinec-Podlesi, Trinec, Czech Republic
| | | | - Tobias Reichlin
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Clifford Robinson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Claudio Tondo
- Department of Clinical Electrophysiology and Pacing, Monzino Cardiac Center, Milan, Italy
| |
Collapse
|
3
|
Wang M, Li W, Shao Y, Wang F, Huang Y, Wei C, Li P, Sun K, Yan X, Gou Z. Connexin 43 dephosphorylation mediates the Dchs1/YAP/TEAD signaling pathway to induce cardiac fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119919. [PMID: 39938686 DOI: 10.1016/j.bbamcr.2025.119919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND The gap junction protein connexin 43 (Cx43) has been implicated in the development of cardiac fibrosis. Our previous findings revealed that Cx43 dephosphorylation at serine 282 (S282) is related to cardiomyocyte apoptosis and arrhythmias in hearts damaged by ischemia/reperfusion. In this study, we investigated the role of Cx43 S282 phosphorylation in cardiac fibrosis. METHODS We used angiotensin II (Ang II) intervention in mice to establish an in vivo cardiac fibrosis model and transforming growth factor β-1 (TGF-β1) intervention in cardiac myofibroblasts to establish an in vitro fibrosis model. The expression of Cx43 S282 phosphorylation was examined in the in vivo and in vitro models. To further confirm the effect of Cx43 S282 phosphorylation on cardiac fibrosis, we transfected cardiac myofibroblasts with lentiviral bodies in vitro, and injected myocardium with adenovirus in vivo to establish the over-expression of phosphorylation of Cx43 S282 locus and mutant groups. We sequenced the mRNA of the in vitro group using gene set enrichment analysis (GSEA) and normalized enrichment scoring (NES) to investigate the signaling pathway by which p282-Cx43 affects myocardial fibrosis (MF). The role of the Hippo signaling pathway in phosphorylation at the Cx43 282 site was further validated. RESULTS In an in vivo and in vitro model of cardiac fibrosis, the level of phosphorylation of Cx43 S282 was reduced. Mutation of Cx43 S282 to a less phosphorylatable form (S282A) resulted in elevated levels of fibrosis markers, suggesting a critical antifibrotic role for phosphorylated Cx43 S282. Increased phosphorylation of Cx43 S282 produced an inhibitory effect on fibrosis. Enrichment analysis of mRNA sequencing in the mutant model group indicated that the Hippo signaling pathway was involved in the fibrosis process. Cx43 S282 phosphorylation increased the expression of Dchs1 gene, which activates the phosphorylation of yes-associated protein (YAP) and inhibits the YAP/TEAD signaling pathway to inhibit fibrosis development. CONCLUSIONS This study suggests that the phosphorylation of Cx43 S282 could be an effective antifibrotic target in cardiac fibroblasts. This indicates a novel mechanism and a molecular target that may hold promise for treating cardiac fibrosis.
Collapse
Affiliation(s)
- Min Wang
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Wanning Li
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Yaqing Shao
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Feng Wang
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China; Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Ying Huang
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Chenchen Wei
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Ping Li
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Kangyun Sun
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Xinxin Yan
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China; Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China.
| | - Zhongshan Gou
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China.
| |
Collapse
|
4
|
Ciaccio EJ, Hsia HH, Saluja DS, Garan H, Coromilas J, Yarmohammadi H, Biviano AB, Peters NS. Ventricular tachycardia substrate mapping: What's been done and what needs to be done. Heart Rhythm 2025:S1547-5271(25)00204-8. [PMID: 39988104 DOI: 10.1016/j.hrthm.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/25/2025]
Abstract
Substrate mapping is an important component of electrophysiological (EP) study for the treatment of reentrant ventricular tachycardia (VT). It is used to detect characteristics of the electrical circuit and, in particular, the location and properties of the central common pathway, aka the isthmus, where multiple circuit loops can coincide. Typically, reentrant circuits are single or double loop, but as the common pathway size increases, 4-loop patterns may emerge, consisting of 2 parallel isthmuses or a single isthmus with 4 loops. Arrhythmogenic substrate contains a mixture of scar, calcification, and fibrofatty regions blended with viable ventricular myocytes, which can slow conduction. It is identified in the EP laboratory in part by the presence of low-amplitude electrograms and a zone of uniform slow conduction resulting from a sparsity of remaining viable myocytes and molecular-level remodeling. The electrograms recorded near isthmus boundaries frequently exhibit an abnormal morphology, such as fractionation and late or split deflections, due to the separation of muscle fiber bundles by fibroadipose tissue or calcification, and due to other conduction impediments such as source-sink mismatch, wherein topographic changes to the viable myocardial structure occur. Substrate mapping facilitates the identification of arrhythmogenic regions during sinus rhythm, whereas inducible VT with periods of ongoing reentry, when recordable, can be used for further assessment. Substrate modeling augments substrate mapping by seeking to predict electrogram morphology and mapped features and properties to be encountered during EP study based on an accurate depiction of arrhythmogenic tissue. Herein, we elaborate on the details of VT substrate mapping and modeling to the present time.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom.
| | - Henry H Hsia
- Cardiac Electrophysiology and Arrhythmia Service, University of California San Francisco, San Francisco, California
| | - Deepak S Saluja
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - James Coromilas
- Department of Medicine, Division of Cardiovascular Disease and Hypertension, Rutgers University, New Brunswick, New Jersey
| | - Hirad Yarmohammadi
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Angelo B Biviano
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Bader Eddin L, Nagoor Meeran MF, Kumar Jha N, Goyal SN, Ojha S. Isoproterenol mechanisms in inducing myocardial fibrosis and its application as an experimental model for the evaluation of therapeutic potential of phytochemicals and pharmaceuticals. Animal Model Exp Med 2025; 8:67-91. [PMID: 39690876 PMCID: PMC11798751 DOI: 10.1002/ame2.12496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/14/2024] [Indexed: 12/19/2024] Open
Abstract
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fibrosis, which appears to be a leading cause of cardiovascular diseases. Cardiac fibrosis is characterized by the accumulation of extracellular matrix proteins, mainly collagen in the cardiac interstitium. Many experimental studies have demonstrated that fibrotic injury in the heart is reversible; therefore, it is vital to understand different molecular mechanisms that are involved in the initiation, progression, and resolution of cardiac fibrosis to enable the development of antifibrotic agents. Of the many experimental models, one of the recent models that has gained renewed interest is isoproterenol (ISP)-induced cardiac fibrosis. ISP is a synthetic catecholamine, sympathomimetic, and nonselective β-adrenergic receptor agonist. The overstimulated and sustained activation of β-adrenergic receptors has been reported to induce biochemical and physiological alterations and ultimately result in cardiac remodeling. ISP has been used for decades to induce acute myocardial infarction. However, the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis; this practice has increased in recent years. Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy. The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is considered the initiating mechanism of myocardial fibrosis. ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals. In recent years, numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis. The present review exclusively provides a comprehensive summary of the pathological biochemical, histological, and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy. It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as synthetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
Collapse
Affiliation(s)
- Lujain Bader Eddin
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
| | - Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
| | - Niraj Kumar Jha
- School of Bioengineering & BiosciencesLovely Professional UniversityPhagwaraIndia
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha UniversityChennaiIndia
| | - Samer N. Goyal
- Shri Vile Parle Kelvani Mandal's Institute of PharmacyDhuleMaharashtraIndia
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health SciencesUAE UniversityAl AinUnited Arab Emirates
- Zayed Bin Sultan Center for Health SciencesUnited Arab Emirates UniversityAl AinUnited Arab Emirates
| |
Collapse
|
6
|
Stevenson WG, Richardson TD, Kanagasundram AN, Tandri H. State of the Art: Mapping Strategies to Guide Ablation in Ischemic Heart Disease. JACC Clin Electrophysiol 2024; 10:2744-2761. [PMID: 39520431 DOI: 10.1016/j.jacep.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 11/16/2024]
Abstract
Catheter ablation to prevent ventricular tachycardia (VT) that emerges late after a myocardial infarction aims to interrupt the re-entry substrate. Interruption of potential channels and regions of slow conduction that can be identified during stable sinus or paced rhythm is often effective and a number of substrate markers for guiding this approach have been described. While there is substantial agreement with different markers in some patients, the different markers select different regions for ablation in others. Mapping during VT to identify critical re-entry circuit isthmuses is likely more specific, and most useful when VT is incessant or frequent during the procedure or when sinus rhythm substrate ablation fails. Both approaches are often combined. These methods for identifying and characterizing post-infarct-related arrhythmia substrate and the re-entry circuits are reviewed.
Collapse
Affiliation(s)
- William G Stevenson
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
| | - Travis D Richardson
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Arvindh N Kanagasundram
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Harikrishna Tandri
- Cardiac Electrophysiology Section, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Denham NC, Selvaraj R, Kakarla J, Patloori SCS, Roche SL, Thorne S, Oechslin E, Massarella D, Wald R, Alonso-Gonzalez R, Silversides C, Downar E, Nair K. Intracardiac Echocardiography to Assist Anatomical Isthmus Ablation in Repaired Tetralogy of Fallot Patients With Ventricular Tachycardia: Technique and Outcomes. JACC. ADVANCES 2024; 3:101329. [PMID: 39493314 PMCID: PMC11530823 DOI: 10.1016/j.jacadv.2024.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 11/05/2024]
Abstract
Background Successful catheter ablation of ventricular tachycardia (VT) in repaired tetralogy of Fallot (TOF) can be achieved by targeting 1 or more anatomical isthmuses. However, significant interindividual variability in the size and location of surgical patches means careful mapping is required to design ablation lines to block the isthmus. Intracardiac echocardiography (ICE) may assist ablation by accurate identification of individual TOF anatomy. Objectives The authors hypothesized ICE-guided VT ablation improved isthmus recognition, ablation, and procedural outcomes. Methods Retrospective study of adults with repaired TOF undergoing VT ablation between January 1, 2017 and December 31, 2022. ICE integration was compared to a strategy using electroanatomical mapping only to identify anatomic boundaries. All cases underwent ablation and had proven isthmus block as the procedural endpoint. Results Twenty-three patients (age 47 ± 14 years; 61% male) underwent 27 VT ablations (ICE: 16/27 [59%]; no ICE: 11/27 [41%]). ICE improved the ability to localize and ablate the anatomical isthmus (ICE: 13/15 [87%] vs no ICE: 4/11 [36%]; P = 0.014); however, there was no difference in long-term freedom from VT (ICE: 9/12 [75%] vs no ICE: 8/11 [73%]; P = 0.901). ICE had no impact on procedural times (ICE: 173 ± 48 minutes vs no ICE: 157 ± 47 minutes; P = 0.399), fluoroscopy time (ICE: 30 ± 16 minutes vs no ICE: 29 ± 10 minutes; P = 0.864), or major complications (ICE: 1/16 [6%] vs no ICE 0/11; P = 1.000). Conclusions ICE improves ablation of the anatomical isthmus for sustaining VT in patients with repaired TOF by demonstrating the individual anatomy but does not improve long-term outcomes.
Collapse
Affiliation(s)
- Nathan C. Denham
- University Health Network Toronto, Peter Munk Cardiac Centre, and University of Toronto, Toronto, Ontario, Canada
| | | | - Jayant Kakarla
- University Health Network Toronto, Peter Munk Cardiac Centre, and University of Toronto, Toronto, Ontario, Canada
| | | | - S Lucy Roche
- University Health Network Toronto, Peter Munk Cardiac Centre, and University of Toronto, Toronto, Ontario, Canada
| | - Sara Thorne
- University Health Network Toronto, Peter Munk Cardiac Centre, and University of Toronto, Toronto, Ontario, Canada
| | - Erwin Oechslin
- University Health Network Toronto, Peter Munk Cardiac Centre, and University of Toronto, Toronto, Ontario, Canada
| | - Danielle Massarella
- University Health Network Toronto, Peter Munk Cardiac Centre, and University of Toronto, Toronto, Ontario, Canada
| | - Rachel Wald
- University Health Network Toronto, Peter Munk Cardiac Centre, and University of Toronto, Toronto, Ontario, Canada
| | - Rafael Alonso-Gonzalez
- University Health Network Toronto, Peter Munk Cardiac Centre, and University of Toronto, Toronto, Ontario, Canada
| | - Candice Silversides
- University Health Network Toronto, Peter Munk Cardiac Centre, and University of Toronto, Toronto, Ontario, Canada
| | - Eugene Downar
- University Health Network Toronto, Peter Munk Cardiac Centre, and University of Toronto, Toronto, Ontario, Canada
| | - Krishnakumar Nair
- University Health Network Toronto, Peter Munk Cardiac Centre, and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Maher TR, Freedman BL, Yang S, Locke AH, D'Angelo R, Galvao M, Buxton AE, Waks JW, d'Avila A. Targeting Wavefront Discontinuity Lines for Scar-Related Ventricular Tachycardia Ablation: A Novel Functional Substrate Ablation Approach. JACC Clin Electrophysiol 2024; 10:1255-1270. [PMID: 38819346 DOI: 10.1016/j.jacep.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND The boundaries of critical isthmuses for re-entrant ventricular tachycardia (VT) are formed by wavefront discontinuities (fixed lines of block, slow propagation, and rotational propagation) seen during baseline rhythm. It is unknown whether wavefront discontinuities can be automatically identified and targeted for ablation using electroanatomic mapping systems. OBJECTIVES The purpose of this study was to assess the electrophysiologic characteristics of automatically projected wavefront discontinuity lines (WADLs) and outcomes of an ablation strategy targeting WADLs in a mixed cohort of VT patients. METHODS Late activation substrate maps were analyzed from 1 or more baseline rhythm wavefronts. WADLs were identified using the Carto Extended Early Meets Late module. Number, total length, and distance to critical VT sites were measured. VT recurrence and VT-free survival were followed. RESULTS In total, 49 patients underwent 52 ablations with 71 unique substrate maps analyzed (18.8% epicardial; 62.0% right ventricular paced, 28.2% sinus rhythm, 9.9% left ventricular paced). A total of 28 VT critical sites were identified in 24 patients. WADLs were present in 49 of 71 (69.0%) maps. WADLs were present regardless of cardiomyopathy etiology, mapping wavefront, or surface. At a WADL threshold of 30%, 73.9% of critical VT sites were in close proximity (≤15 mm) to a WADL. VT-free survival was 62% at 1 year, with a competing risk model estimating a 1-year risk of VT recurrence of 23%. CONCLUSIONS WADLs can be automatically projected in a majority of patients in a mixed cohort of cardiomyopathy etiology, mapped wavefronts, and myocardial surfaces mapped. Targeting WADLs results in low rate of VT recurrence at 1 year.
Collapse
Affiliation(s)
- Timothy R Maher
- Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Division of Cardiovascular Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| | - Benjamin L Freedman
- CardioVascular Center, Tufts Medical Center, Tufts University Medical School, Boston, Massachusetts, USA
| | - Shu Yang
- Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Division of Cardiovascular Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew H Locke
- Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Division of Cardiovascular Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert D'Angelo
- Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Division of Cardiovascular Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Alfred E Buxton
- Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Division of Cardiovascular Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan W Waks
- Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Division of Cardiovascular Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andre d'Avila
- Harvard-Thorndike Electrophysiology Institute and Arrhythmia Service, Division of Cardiovascular Diseases, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Santangeli P, Higuchi K, Sroubek J. Ventricular Tachycardia Ablation Endpoints: Moving Beyond Noninducibility. JACC Clin Electrophysiol 2024; 10:981-999. [PMID: 38385913 DOI: 10.1016/j.jacep.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/08/2023] [Accepted: 12/30/2023] [Indexed: 02/23/2024]
Abstract
In patients with structural heart disease and ventricular tachycardia (VT) undergoing catheter ablation, the response to programmed electrical stimulation (PES) at the end of the procedure has been traditionally used to evaluate the acute success and predict long-term outcomes. Although noninducibility at PES has been extensively investigated and validated in clinical trials and large multicenter registries, its performance in predicting long-term freedom from VT is suboptimal. In addition, PES has inherent limitations related to the influence of background antiarrhythmic drug therapy, periprocedural use of anesthesia, and the heterogeneity in PES protocols. The increased utilization of substrate-based ablation approaches that focus on ablation of abnormal electrograms identified with mapping in sinus or paced rhythm has been paralleled by a need for additional procedural endpoints beyond VT noninducibility at PES. This article critically appraises the relative merits and limitations of different procedural endpoints according to different ablation techniques for catheter ablation of scar-related VT.
Collapse
Affiliation(s)
- Pasquale Santangeli
- Section of Cardiac Pacing and Electrophysiology, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA.
| | - Koji Higuchi
- Section of Cardiac Pacing and Electrophysiology, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jakub Sroubek
- Section of Cardiac Pacing and Electrophysiology, Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Grade Santos J, Mills MT, Calvert P, Worthington N, Phenton C, Modi S, Ashrafi R, Todd D, Waktare J, Mahida S, Gupta D, Luther V. Delineating postinfarct ventricular tachycardia substrate with dynamic voltage mapping in areas of omnipolar vector disarray. Heart Rhythm O2 2024; 5:224-233. [PMID: 38690145 PMCID: PMC11056467 DOI: 10.1016/j.hroo.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024] Open
Abstract
Background Defining postinfarct ventricular arrhythmic substrate is challenging with voltage mapping alone, though it may be improved in combination with an activation map. Omnipolar technology on the EnSite X system displays activation as vectors that can be superimposed onto a voltage map. Objective The study sought to optimize voltage map settings during ventricular tachycardia (VT) ablation, adjusting them dynamically using omnipolar vectors. Methods Consecutive patients undergoing substrate mapping were retrospectively studied. We categorized omnipolar vectors as uniform when pointing in one direction, or in disarray when pointing in multiple directions. We superimposed vectors onto voltage maps colored purple in tissue >1.5 mV, and the voltage settings were adjusted so that uniform vectors appeared within purple voltages, a process termed dynamic voltage mapping (DVM). Vectors in disarray appeared within red-blue lower voltages. Results A total of 17 substrate maps were studied in 14 patients (mean age 63 ± 13 years; mean left ventricular ejection fraction 35 ± 6%, median 4 [interquartile range 2-8.5] recent VT episodes). The DVM mean voltage threshold that differentiated tissue supporting uniform vectors from disarray was 0.27 mV, ranging between patients from 0.18 to 0.50 mV, with good interobserver agreement (median difference: 0.00 mV). We found that VT isthmus components, as well as sites of latest activation, isochronal crowding, and excellent pace maps colocated with tissue along the DVM border zone surrounding areas of disarray. Conclusion DVM, guided by areas of omnipolar vector disarray, allows for individualized postinfarct ventricular substrate characterization. Tissue bordering areas of disarray may harbor greater arrhythmogenic potential.
Collapse
Affiliation(s)
- Joao Grade Santos
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Cardiology, Hospital Garcia de Orta, Almada, Portugal
| | - Mark T. Mills
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom
| | - Peter Calvert
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Simon Modi
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Reza Ashrafi
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Derick Todd
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Johan Waktare
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Saagar Mahida
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Cardiology, Hospital Garcia de Orta, Almada, Portugal
| | - Dhiraj Gupta
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom
| | - Vishal Luther
- Department of Cardiology, Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
11
|
Stanciulescu LA, Vatasescu R. Ventricular Tachycardia Catheter Ablation: Retrospective Analysis and Prospective Outlooks-A Comprehensive Review. Biomedicines 2024; 12:266. [PMID: 38397868 PMCID: PMC10886924 DOI: 10.3390/biomedicines12020266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Ventricular tachycardia is a potentially life-threatening arrhythmia associated with an overall high morbi-mortality, particularly in patients with structural heart disease. Despite their pivotal role in preventing sudden cardiac death, implantable cardioverter-defibrillators, although a guideline-based class I recommendation, are unable to prevent arrhythmic episodes and significantly alter the quality of life by delivering recurrent therapies. From open-heart surgical ablation to the currently widely used percutaneous approach, catheter ablation is a safe and effective procedure able to target the responsible re-entry myocardial circuit from both the endocardium and the epicardium. There are four main mapping strategies, activation, entrainment, pace, and substrate mapping, each of them with their own advantages and limitations. The contemporary guideline-based recommendations for VT ablation primarily apply to patients experiencing antiarrhythmic drug ineffectiveness or those intolerant to the pharmacological treatment. Although highly effective in most cases of scar-related VTs, the traditional approach may sometimes be insufficient, especially in patients with nonischemic cardiomyopathies, where circuits may be unmappable using the classic techniques. Alternative methods have been proposed, such as stereotactic arrhythmia radioablation or radiotherapy ablation, surgical ablation, needle ablation, transarterial coronary ethanol ablation, and retrograde coronary venous ethanol ablation, with promising results. Further studies are needed in order to prove the overall efficacy of these methods in comparison to standard radiofrequency delivery. Nevertheless, as the field of cardiac electrophysiology continues to evolve, it is important to acknowledge the role of artificial intelligence in both the pre-procedural planning and the intervention itself.
Collapse
Affiliation(s)
- Laura Adina Stanciulescu
- Cardio-Thoracic Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Clinical Emergency Hospital, 014461 Bucharest, Romania
| | - Radu Vatasescu
- Cardio-Thoracic Department, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cardiology Department, Clinical Emergency Hospital, 014461 Bucharest, Romania
| |
Collapse
|
12
|
Soejima K. When Trash Becomes Treasure. JACC Clin Electrophysiol 2023; 9:2534-2535. [PMID: 37897470 DOI: 10.1016/j.jacep.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/30/2023]
Affiliation(s)
- Kyoko Soejima
- Department of Cardiology, Kyorin University School of Medicine, Kyorin University Hospital, Tokyo, Japan.
| |
Collapse
|
13
|
Dhakal BP, Patel NA, Garg L, Frankel DS, Hyman MC, Guandalini GS, Supple GE, Nazarian S, Kumareswaran R, Riley MP, Santangeli P, Lin D, Callans DJ, Arkles J, Schaller RD, Tschabrunn CM, Zado ES, Marchlinski FE, Dixit S. Utility of Very High-Output Pacing to Identify VT Circuits in Patients Manifesting Traditionally Inexcitable Scar. JACC Clin Electrophysiol 2023; 9:2523-2533. [PMID: 37715743 DOI: 10.1016/j.jacep.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Entrainment and pace mapping are used to identify critical components (CCs) of ventricular tachycardia (VT) circuits. In patients with dense myocardial scarring, VT circuits may elude capture at standard high pacing outputs (up to 10 mA at a 2-millisecond pulse width). OBJECTIVES The purpose of this study was to assess the utility of very high-output pacing (V-HOP, 50 mA at 2 milliseconds) for identifying CCs of VT circuits after standard high pacing output failed to elicit capture in densely scarred myocardial tissue. METHODS Our standard VT ablation approach included electroanatomic mapping for substrate characterization and entrainment and/or pace mapping to identify CCs of VT circuits. Patients that required V-HOP to capture sites of interest comprised the study cohort. Ablation endpoints were VT termination and noninducibility. RESULTS Twenty-five patients (71 ± 10 years of age, all males) undergoing 26 VT ablations met the inclusion criteria. The mean left ventricular ejection fraction was 30% ± 14%, and 85% had ischemic cardiomyopathy. V-HOP was used to successfully entrain VT in 17 patients, yielding central isthmus sites in 10 and entrance/exit sites in 4. VT terminated with radiofrequency ablation at these sites in 15 patients. In 9 patients, V-HOP identified scar locations with a delayed exit. Acute procedural success was achieved in 24 patients without any adverse events. Over a follow-up period of 16 ± 21 months, 2 patients experienced VT recurrence requiring repeat ablation during which the same location was targeted successfully in 1 patient. CONCLUSIONS In VT patients with a dense scar that is traditionally inexcitable, V-HOP can identify CCs of the re-entrant circuit and guide successful ablation.
Collapse
Affiliation(s)
- Bishnu P Dhakal
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neel A Patel
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lohit Garg
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David S Frankel
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matthew C Hyman
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gustavo S Guandalini
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory E Supple
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Saman Nazarian
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ramanan Kumareswaran
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael P Riley
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pasquale Santangeli
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David Lin
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David J Callans
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeffrey Arkles
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert D Schaller
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cory M Tschabrunn
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erica S Zado
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Francis E Marchlinski
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sanjay Dixit
- Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
14
|
Stevenson WG, Tandri H, Roden DM. The Shape of Ventricular Tachycardia. Circulation 2023; 148:1368-1370. [PMID: 37903185 DOI: 10.1161/circulationaha.123.066574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Affiliation(s)
- William G Stevenson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Harikrishna Tandri
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Dan M Roden
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
15
|
Nishimura T, Shatz N, Weiss JP, Zawaneh M, Bai R, Beaser AD, Upadhyay GA, Aziz ZA, Nayak HM, Shatz DY, Miyazaki S, Goya M, Sasano T, Su W, Raiman M, Tung R. Identification of Human Ventricular Tachycardia Demarcated by Fixed Lines of Conduction Block in a 3-Dimensional Hyperboloid Circuit. Circulation 2023; 148:1354-1367. [PMID: 37638389 DOI: 10.1161/circulationaha.123.065525] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND The circuit boundaries for reentrant ventricular tachycardia (VT) have been historically conceptualized within a 2-dimensional (2D) construct, with their fixed or functional nature unresolved. This study aimed to examine the correlation between localized lines of conduction block (LOB) evident during baseline rhythm with lateral isthmus boundaries that 3-dimensionally constrain the VT isthmus as a hyperboloid structure. METHODS A total of 175 VT activation maps were correlated with isochronal late activation maps during baseline rhythm in 106 patients who underwent catheter ablation for scar-related VT from 3 centers (42% nonischemic cardiomyopathy). An overt LOB was defined by a deceleration zone with split potentials (≥20 ms isoelectric segment) during baseline rhythm. A novel application of pacing within deceleration zone (≥600 ms) was implemented to unmask a concealed LOB not evident during baseline rhythm. LOB identified during baseline rhythm or pacing were correlated with isthmus boundaries during VT. RESULTS Among 202 deceleration zones analyzed during baseline rhythm, an overt LOB was evident in 47%. When differential pacing was performed in 38 deceleration zones without overt LOB, an underlying concealed LOB was exposed in 84%. In 152 VT activation maps (2D=53, 3-dimensional [3D]=99), 69% of lateral boundaries colocalized with an LOB in 2D activation patterns, and the depth boundary during 3D VT colocalized with an LOB in 79%. In VT circuits with isthmus regions that colocalized with a U-shaped LOB (n=28), the boundary invariably served as both lateral boundaries in 2D and 3D. Overall, 74% of isthmus boundaries were identifiable as fixed LOB during baseline rhythm or differential pacing. CONCLUSIONS The majority of VT circuit boundaries can be identified as fixed LOB from intrinsic or paced activation during sinus rhythm. Analysis of activation while pacing within the scar substrate is a novel technique that may unmask concealed LOB, previously interpreted to be functional in nature. An LOB from the perspective of a myocardial surface is frequently associated with intramural conduction, supporting the existence of a 3D hyperboloid VT circuit structure. Catheter ablation may be simplified to targeting both sides around an identified LOB during sinus rhythm.
Collapse
Affiliation(s)
- Takuro Nishimura
- The University of Chicago Medicine, Pritzker School of Medicine, Illinois (T.N., A.D.B., G.A.U., Z.A.A., H.M.N., D.Y.S., R.T.)
- Tokyo Medical and Dental University, Department of Cardiovascular Medicine, Japan (T.N., S.M., M.G., T.S.)
| | - Nathan Shatz
- Abbott Laboratories, Abbott Park, Illinois (N.S., M.R.)
| | - J Peter Weiss
- The University of Arizona College of Medicine - Phoenix, Banner - University Medical Center, Phoenix (J.P.W., M.Z., R.B., D.Y.S., W.S., R.T.)
| | - Michael Zawaneh
- The University of Arizona College of Medicine - Phoenix, Banner - University Medical Center, Phoenix (J.P.W., M.Z., R.B., D.Y.S., W.S., R.T.)
| | - Rong Bai
- The University of Arizona College of Medicine - Phoenix, Banner - University Medical Center, Phoenix (J.P.W., M.Z., R.B., D.Y.S., W.S., R.T.)
| | - Andrew D Beaser
- The University of Chicago Medicine, Pritzker School of Medicine, Illinois (T.N., A.D.B., G.A.U., Z.A.A., H.M.N., D.Y.S., R.T.)
| | - Gaurav A Upadhyay
- The University of Chicago Medicine, Pritzker School of Medicine, Illinois (T.N., A.D.B., G.A.U., Z.A.A., H.M.N., D.Y.S., R.T.)
| | - Zaid A Aziz
- The University of Chicago Medicine, Pritzker School of Medicine, Illinois (T.N., A.D.B., G.A.U., Z.A.A., H.M.N., D.Y.S., R.T.)
| | - Hemal M Nayak
- The University of Chicago Medicine, Pritzker School of Medicine, Illinois (T.N., A.D.B., G.A.U., Z.A.A., H.M.N., D.Y.S., R.T.)
| | - Dalise Y Shatz
- The University of Chicago Medicine, Pritzker School of Medicine, Illinois (T.N., A.D.B., G.A.U., Z.A.A., H.M.N., D.Y.S., R.T.)
- The University of Arizona College of Medicine - Phoenix, Banner - University Medical Center, Phoenix (J.P.W., M.Z., R.B., D.Y.S., W.S., R.T.)
| | - Shinsuke Miyazaki
- Tokyo Medical and Dental University, Department of Cardiovascular Medicine, Japan (T.N., S.M., M.G., T.S.)
| | - Masahiko Goya
- Tokyo Medical and Dental University, Department of Cardiovascular Medicine, Japan (T.N., S.M., M.G., T.S.)
| | - Tetsuo Sasano
- Tokyo Medical and Dental University, Department of Cardiovascular Medicine, Japan (T.N., S.M., M.G., T.S.)
| | - Wilber Su
- The University of Arizona College of Medicine - Phoenix, Banner - University Medical Center, Phoenix (J.P.W., M.Z., R.B., D.Y.S., W.S., R.T.)
| | | | - Roderick Tung
- The University of Chicago Medicine, Pritzker School of Medicine, Illinois (T.N., A.D.B., G.A.U., Z.A.A., H.M.N., D.Y.S., R.T.)
- The University of Arizona College of Medicine - Phoenix, Banner - University Medical Center, Phoenix (J.P.W., M.Z., R.B., D.Y.S., W.S., R.T.)
| |
Collapse
|
16
|
Iqbal MB, Robinson SD, Nadra IJ, Das D, van Zyl M, Sikkel MB, Della Siega A. The Efficacy and Safety of an Adjunctive Transcoronary Pacing Strategy During Rotational Atherectomy: ROTA-PACE Study. JACC Cardiovasc Interv 2023; 16:2189-2190. [PMID: 37409992 DOI: 10.1016/j.jcin.2023.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023]
|
17
|
Marin-Neto JA, Rassi A, Oliveira GMM, Correia LCL, Ramos Júnior AN, Luquetti AO, Hasslocher-Moreno AM, Sousa ASD, Paola AAVD, Sousa ACS, Ribeiro ALP, Correia Filho D, Souza DDSMD, Cunha-Neto E, Ramires FJA, Bacal F, Nunes MDCP, Martinelli Filho M, Scanavacca MI, Saraiva RM, Oliveira Júnior WAD, Lorga-Filho AM, Guimarães ADJBDA, Braga ALL, Oliveira ASD, Sarabanda AVL, Pinto AYDN, Carmo AALD, Schmidt A, Costa ARD, Ianni BM, Markman Filho B, Rochitte CE, Macêdo CT, Mady C, Chevillard C, Virgens CMBD, Castro CND, Britto CFDPDC, Pisani C, Rassi DDC, Sobral Filho DC, Almeida DRD, Bocchi EA, Mesquita ET, Mendes FDSNS, Gondim FTP, Silva GMSD, Peixoto GDL, Lima GGD, Veloso HH, Moreira HT, Lopes HB, Pinto IMF, Ferreira JMBB, Nunes JPS, Barreto-Filho JAS, Saraiva JFK, Lannes-Vieira J, Oliveira JLM, Armaganijan LV, Martins LC, Sangenis LHC, Barbosa MPT, Almeida-Santos MA, Simões MV, Yasuda MAS, Moreira MDCV, Higuchi MDL, Monteiro MRDCC, Mediano MFF, Lima MM, Oliveira MTD, Romano MMD, Araujo NNSLD, Medeiros PDTJ, Alves RV, Teixeira RA, Pedrosa RC, Aras Junior R, Torres RM, Povoa RMDS, Rassi SG, Alves SMM, Tavares SBDN, Palmeira SL, Silva Júnior TLD, Rodrigues TDR, Madrini Junior V, Brant VMDC, Dutra WO, Dias JCP. SBC Guideline on the Diagnosis and Treatment of Patients with Cardiomyopathy of Chagas Disease - 2023. Arq Bras Cardiol 2023; 120:e20230269. [PMID: 37377258 PMCID: PMC10344417 DOI: 10.36660/abc.20230269] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Affiliation(s)
- José Antonio Marin-Neto
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Anis Rassi
- Hospital do Coração Anis Rassi , Goiânia , GO - Brasil
| | | | | | | | - Alejandro Ostermayer Luquetti
- Centro de Estudos da Doença de Chagas , Hospital das Clínicas da Universidade Federal de Goiás , Goiânia , GO - Brasil
| | | | - Andréa Silvestre de Sousa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Antônio Carlos Sobral Sousa
- Universidade Federal de Sergipe , São Cristóvão , SE - Brasil
- Hospital São Lucas , Rede D`Or São Luiz , Aracaju , SE - Brasil
| | | | | | | | - Edecio Cunha-Neto
- Universidade de São Paulo , Faculdade de Medicina da Universidade, São Paulo , SP - Brasil
| | - Felix Jose Alvarez Ramires
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Fernando Bacal
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Martino Martinelli Filho
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Maurício Ibrahim Scanavacca
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Magalhães Saraiva
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Adalberto Menezes Lorga-Filho
- Instituto de Moléstias Cardiovasculares , São José do Rio Preto , SP - Brasil
- Hospital de Base de Rio Preto , São José do Rio Preto , SP - Brasil
| | | | | | - Adriana Sarmento de Oliveira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Ana Yecê das Neves Pinto
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | | | - Andre Schmidt
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | - Andréa Rodrigues da Costa
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Barbara Maria Ianni
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Carlos Eduardo Rochitte
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Hcor , Associação Beneficente Síria , São Paulo , SP - Brasil
| | | | - Charles Mady
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Marselha - França
| | | | | | | | - Cristiano Pisani
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | - Edimar Alcides Bocchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Evandro Tinoco Mesquita
- Hospital Universitário Antônio Pedro da Faculdade Federal Fluminense , Niterói , RJ - Brasil
| | | | | | | | | | | | - Henrique Horta Veloso
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| | - Henrique Turin Moreira
- Hospital das Clínicas , Faculdade de Medicina de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto , SP - Brasil
| | | | | | | | - João Paulo Silva Nunes
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
- Fundação Zerbini, Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | | | | | | | - Luiz Cláudio Martins
- Universidade Estadual de Campinas , Faculdade de Ciências Médicas , Campinas , SP - Brasil
| | | | | | | | - Marcos Vinicius Simões
- Universidade de São Paulo , Faculdade de Medicina de Ribeirão Preto , Ribeirão Preto , SP - Brasil
| | | | | | - Maria de Lourdes Higuchi
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | - Mauro Felippe Felix Mediano
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brasil
| | - Mayara Maia Lima
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | | | | | - Renato Vieira Alves
- Instituto René Rachou , Fundação Oswaldo Cruz , Belo Horizonte , MG - Brasil
| | - Ricardo Alkmim Teixeira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Roberto Coury Pedrosa
- Hospital Universitário Clementino Fraga Filho , Instituto do Coração Edson Saad - Universidade Federal do Rio de Janeiro , RJ - Brasil
| | | | | | | | | | - Silvia Marinho Martins Alves
- Ambulatório de Doença de Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico Universitário da Universidade de Pernambuco (PROCAPE/UPE), Recife , PE - Brasil
| | | | - Swamy Lima Palmeira
- Secretaria de Vigilância em Saúde , Ministério da Saúde , Brasília , DF - Brasil
| | | | | | - Vagner Madrini Junior
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | | | | | - João Carlos Pinto Dias
- Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz , Rio de Janeiro , RJ - Brasil
| |
Collapse
|
18
|
Kitamura T, Fukamizu S, Arai T, Kawajiri K, Tanabe S, Tokioka S, Inagaki D, Hojo R. Long-term outcome of ventricular tachycardia ablation in patients who did not undergo programmed electrical stimulation after ablation. JOURNAL OF INTERVENTIONAL CARDIAC ELECTROPHYSIOLOGY : AN INTERNATIONAL JOURNAL OF ARRHYTHMIAS AND PACING 2023; 66:215-220. [PMID: 34319492 DOI: 10.1007/s10840-021-01037-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Ventricular arrhythmia inducibility is one of the ideal endpoints of ventricular tachycardia (VT) ablation. However, it may be challenging to implement programmed electrical stimulation (PES) at the end of the procedure under several circumstances. The long-term outcome of patients who did not undergo PES after VT ablation remains largely unknown. PURPOSE To investigate the details and long-term outcome of VT ablation in patients who did not undergo PES at the end of the ablation procedure. METHODS Among 183 VT ablation procedures in patients with structural heart disease who underwent VT ablation using an irrigated catheter, we enrolled those who did not undergo PES after VT ablation. VT ablation strategy involved targeting clinical VT plus pacemap-guided substrate ablation if inducible. When VT was not inducible, substrate-based ablation was performed. The primary endpoint was VT recurrence. RESULTS In 58 procedures, post-ablation VT inducibility was not assessed. The causes were non-inducibility of sustained VT before ablation (27/58, 46.6%), long procedure time (27.6%, mean 392 min), complications (10.3%), intolerant hemodynamic state (10.3%), and inaccessible or unsafe target (6.9%). With regard to the primary endpoint, 23 recurrences (39.7%) were observed during a mean follow-up period of 2.5 years. Patients with non-inducibility before ablation showed less VT recurrences (4/27, 14.8%) during follow-up than patients with other causes of untested PES after ablation (19/31, 61.2%) (Log-rank < 0.001). CONCLUSIONS VT recurrence was not observed in approximately 60% of the patients who did not undergo PES at the end of the ablation procedure. PES after VT ablation may be not needed among patients with pre-ablation non-inducibility.
Collapse
Affiliation(s)
- Takeshi Kitamura
- Department of Cardiology, Tokyo Metropolitan Hiroo Hospital, 2 - 34 - 10 Ebisu, Shibuya-ku, Tokyo, Japan.
| | - Seiji Fukamizu
- Department of Cardiology, Tokyo Metropolitan Hiroo Hospital, 2 - 34 - 10 Ebisu, Shibuya-ku, Tokyo, Japan
| | - Tomoyuki Arai
- Department of Cardiology, Tokyo Metropolitan Hiroo Hospital, 2 - 34 - 10 Ebisu, Shibuya-ku, Tokyo, Japan
| | - Kohei Kawajiri
- Department of Cardiology, Tokyo Metropolitan Hiroo Hospital, 2 - 34 - 10 Ebisu, Shibuya-ku, Tokyo, Japan
| | - Sho Tanabe
- Department of Cardiology, Tokyo Metropolitan Hiroo Hospital, 2 - 34 - 10 Ebisu, Shibuya-ku, Tokyo, Japan
| | - Sayuri Tokioka
- Department of Cardiology, Tokyo Metropolitan Hiroo Hospital, 2 - 34 - 10 Ebisu, Shibuya-ku, Tokyo, Japan
| | - Dai Inagaki
- Department of Cardiology, Tokyo Metropolitan Hiroo Hospital, 2 - 34 - 10 Ebisu, Shibuya-ku, Tokyo, Japan
| | - Rintaro Hojo
- Department of Cardiology, Tokyo Metropolitan Hiroo Hospital, 2 - 34 - 10 Ebisu, Shibuya-ku, Tokyo, Japan
| |
Collapse
|
19
|
Impact of sex on clinical, procedural characteristics and outcomes of catheter ablation for ventricular arrhythmias according to underlying heart disease. JOURNAL OF INTERVENTIONAL CARDIAC ELECTROPHYSIOLOGY : AN INTERNATIONAL JOURNAL OF ARRHYTHMIAS AND PACING 2023; 66:203-213. [PMID: 35353320 DOI: 10.1007/s10840-022-01188-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Women are under-represented in many key studies and trials examining outcomes of catheter ablation (CA) for ventricular arrhythmias (VA). We compared characteristics between men and women undergoing their first catheter ablation for VA at a single centre over 10 years. METHODS The clinical, procedural characteristics and outcomes of 287 consecutive patients (male = 182, female = 105), undergoing their first CA at our centre over 10 years were compared according to sex and underlying heart disease. RESULTS In the ablation population, women were younger, had fewer co-morbidities, were less likely to have ischemic cardiomyopathy (ICM) and VA storm and were more likely to have idiopathic VA and premature ventricular complexes as the indication for ablation (P < 0.05 for all). Amongst idiopathic and non-ischemic cardiomyopathy (NICM) subgroups, baseline characteristics were similar; amongst ICM, women were younger and had higher numbers of drug failure pre-ablation (P = 0.05). Women were similar to men in all procedural characteristics, acute procedural success and complications, regardless of underlying heart disease. At median follow-up of 666 days, VA-free survival, overall mortality and survival free of death or transplant were comparable in both groups. Sex was not a predictor of these outcomes, after accounting for clinical and procedural characteristics. CONCLUSION Women represented 36% of the real-world population at our centre referred for CA of VA. There are key differences in clinical features of women versus men referred for VA ablation. Despite these differences, VA ablation in women can be accomplished with similar success and complication rates to men, regardless of underlying heart disease.
Collapse
|
20
|
Boonstra MJ, Oostendorp TF, Roudijk RW, Kloosterman M, Asselbergs FW, Loh P, Van Dam PM. Incorporating structural abnormalities in equivalent dipole layer based ECG simulations. Front Physiol 2022; 13:1089343. [PMID: 36620207 PMCID: PMC9814485 DOI: 10.3389/fphys.2022.1089343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Electrical activity of the myocardium is recorded with the 12-lead ECG. ECG simulations can improve our understanding of the relation between abnormal ventricular activation in diseased myocardium and body surface potentials (BSP). However, in equivalent dipole layer (EDL)-based ECG simulations, the presence of diseased myocardium breaks the equivalence of the dipole layer. To simulate diseased myocardium, patches with altered electrophysiological characteristics were incorporated within the model. The relation between diseased myocardium and corresponding BSP was investigated in a simulation study. Methods: Activation sequences in normal and diseased myocardium were simulated and corresponding 64-lead BSP were computed in four models with distinct patch locations. QRS-complexes were compared using correlation coefficient (CC). The effect of different types of patch activation was assessed. Of one patient, simulated electrograms were compared to electrograms recorded during invasive electro-anatomical mapping. Results: Hundred-fifty-three abnormal activation sequences were simulated. Median QRS-CC of delayed versus dyssynchronous were significantly different (1.00 vs. 0.97, p < 0.001). Depending on the location of the patch, BSP leads were affected differently. Within diseased regions, fragmentation, low bipolar voltages and late potentials were observed in both recorded and simulated electrograms. Discussion: A novel method to simulate cardiomyopathy in EDL-based ECG simulations was established and evaluated. The new patch-based approach created a realistic relation between ECG waveforms and underlying activation sequences. Findings in the simulated cases were in agreement with clinical observations. With this method, our understanding of disease progression in cardiomyopathies may be further improved and used in advanced inverse ECG procedures.
Collapse
Affiliation(s)
- Machteld J Boonstra
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,*Correspondence: Machteld J Boonstra,
| | - Thom F Oostendorp
- Radboud University Nijmegen Medical Centre, Donders Institute for Brain, Cognition and Behavior, Nijmegen, Netherlands
| | - Rob W Roudijk
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon Kloosterman
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, United Kingdom,Health Data Research UK and Institute of Health Informatics, University College London, London, United Kingdom
| | - Peter Loh
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Peter M Van Dam
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands,ECG Excellence BV, Nieuwerbrug aan den Rijn, Weijland, Netherlands
| |
Collapse
|
21
|
Muser D, Santangeli P, Liang JJ. Mechanisms of Ventricular Arrhythmias and Implications for Catheter Ablation. Card Electrophysiol Clin 2022; 14:547-558. [PMID: 36396177 DOI: 10.1016/j.ccep.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ventricular arrhythmias present with a wide spectrum of clinical manifestations, from mildly symptomatic frequent premature ventricular contractions to life-threatening events. Pathophysiologically, idiopathic ventricular arrhythmias occur in the absence of structural heart disease or ion channelopathies. Ventricular arrhythmias in the context of structural heart disease are usually determined by scar-related reentry and are associated with increased mortality. Catheter ablation is safe and highly effective in treating ventricular arrhythmias. The proper characterization of the arrhythmogenic substrate is essential for accurate procedural planning. We provide an overview on the main mechanisms of ventricular arrhythmias and their implications for catheter ablation.
Collapse
Affiliation(s)
- Daniele Muser
- Cardiothoracic Department, Udine University Hospital, Udine 33100, Italy; Electrophysiology Section, Division of Cardiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Pasquale Santangeli
- Electrophysiology Section, Division of Cardiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Jackson J Liang
- Electrophysiology Section, Division of Cardiology, University of Michigan, Frankel Cardiovascular Center, 1425 E. Ann Street, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Nayyar S. Intracardiac Electrogram Targets for Ventricular Tachycardia Ablation. Card Electrophysiol Clin 2022; 14:559-570. [PMID: 36396178 DOI: 10.1016/j.ccep.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The pathogenesis of ventricular tachycardia (VT) in most patients with a prior myocardial scarring is reentry involving compartmentalized muscle fibers protected within the scar. Often the 12-lead ECG morphology of the VT itself is not available when treated with a defibrillator. Consequently, VT ablation takes on an interesting challenge of finding critical targets in sinus rhythm. High-density recordings are essential to evaluate a substrate based on whole electrogram voltage and activation delay, supplemented with substrate perturbation through alternate site pacing or introducing an extra stimulation. In this article, we discuss contemporary intracardiac electrogram targets for VT ablation, with explanation on each of their specific fundamental physiology.
Collapse
Affiliation(s)
- Sachin Nayyar
- Townsville University Hospital, James Cook University, Townsville, Queensland, Australia.
| |
Collapse
|
23
|
Flautt T, Valderrábano M. Chemical Ablation of Ventricular Tachycardia Using Coronary Arterial and Venous Systems. Card Electrophysiol Clin 2022; 14:743-756. [PMID: 36396190 DOI: 10.1016/j.ccep.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Radiofrequency catheter ablation (RFCA) is the first-line therapy for treatment of drug refractory ventricular arrhythmias (VAs), however, creating a safe, transmural lesion can be difficult. Ethanol in the arterial system has been used as an adjunctive therapy to RFCA since 1986, but with limited use due to technical and efficacy limitations. Venous ethanol is emerging as powerful alternative.
Collapse
Affiliation(s)
- Thomas Flautt
- Division of Cardiac Electrophysiology, Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Miguel Valderrábano
- Division of Cardiac Electrophysiology, Department of Cardiology, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
24
|
Ghannam M, Bogun F. Improving Outcomes in Ventricular Tachycardia Ablation Using Imaging to Identify Arrhythmic Substrates. Card Electrophysiol Clin 2022; 14:609-620. [PMID: 36396180 DOI: 10.1016/j.ccep.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ventricular tachycardia (VT) ablation is limited by modest acute and long-term success rates, in part due to the challenges in accurately identifying the arrhythmogenic substrate. The combination of multimodality imaging along with information from electroanatomic mapping allows for a more comprehensive assessment of the arrhythmogenic substrate which facilitates VT ablation, and the use of preprocedural imaging has been shown to improve long-term ablation outcomes. Beyond regional recognition of the arrhythmogenic substrate, advanced imaging techniques can be used to create tailored ablation strategies preprocedurally. This review will focus on how imaging can be used to guide ablation planning and execution with a focus on clinical applications aimed at improving the outcome of VT ablation procedures.
Collapse
Affiliation(s)
- Michael Ghannam
- Division of Cardiovascular Medicine, University of Michigan, 1500 E. Medical Center Dr., SPC5853, Ann Arbor, Michigan 48109-5853, USA.
| | - Frank Bogun
- Division of Cardiovascular Medicine, University of Michigan, 1500 E. Medical Center Dr., SPC5853, Ann Arbor, Michigan 48109-5853, USA
| |
Collapse
|
25
|
Kattel S, Enriquez AD. Contemporary approach to catheter ablation of ventricular tachycardia in nonischemic cardiomyopathy. J Interv Card Electrophysiol 2022; 66:793-805. [PMID: 36056222 DOI: 10.1007/s10840-022-01363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022]
Abstract
Nonischemic cardiomyopathy (NICM) comprises a heterogenous group of disorders with myocardial dysfunction unrelated to significant coronary disease. As the use of implantable defibrillators has increased in this patient population, catheter ablation is being utilized more frequently to treat NICM patients with ventricular tachycardia (VT). Progress has been made in identifying multiple subtypes of NICM with variable scar patterns. The distribution of scar is often mid-myocardial and subepicardial, and identifying and ablating this substrate can be challenging. Here, we will review the current understanding of NICM subtypes and the outcomes of VT ablation in this population. We will discuss the use of cardiac imaging, electrocardiography, and electroanatomic mapping to define the VT substrate and the ablation techniques required to successfully prevent VT recurrence.
Collapse
Affiliation(s)
- Sharma Kattel
- Cardiovascular Medicine, Yale University School of Medicine, PO Box 208017, New Haven, CT, 06520-8017, USA
| | - Alan D Enriquez
- Cardiovascular Medicine, Yale University School of Medicine, PO Box 208017, New Haven, CT, 06520-8017, USA.
| |
Collapse
|
26
|
Hawson J, Al-Kaisey A, Anderson RD, Watts T, Morton J, Kumar S, Kistler P, Kalman J, Lee G. Substrate-based approaches in ventricular tachycardia ablation. Indian Pacing Electrophysiol J 2022; 22:273-285. [PMID: 36007824 PMCID: PMC9649336 DOI: 10.1016/j.ipej.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/23/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
Catheter ablation for ventricular tachycardia (VT) in patients with structural heart disease is now part of standard care. Mapping and ablation of the clinical VT is often limited when the VT is noninducible, nonsustained or not haemodynamically tolerated. Substrate-based ablation strategies have been developed in an aim to treat VT in this setting and, subsequently, have been shown to improve outcomes in VT ablation when compared to focused ablation of mapped VTs. Since the initial description of linear ablation lines targeting ventricular scar, many different approaches to substrate-based VT ablation have been developed. Strategies can broadly be divided into three categories: 1) targeting abnormal electrograms, 2) anatomical targeting of conduction channels between areas of myocardial scar, and 3) targeting areas of slow and/or decremental conduction, identified with “functional” substrate mapping techniques. This review summarises contemporary substrate-based ablation strategies, along with their strengths and weaknesses.
Collapse
Affiliation(s)
- Joshua Hawson
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Ahmed Al-Kaisey
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert D Anderson
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Troy Watts
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Joseph Morton
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital and Westmead Applied Research Centre, Westmead, New South Wales, Australia; Western Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter Kistler
- Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia; Department of Cardiology, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Geoffrey Lee
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia; Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
27
|
Fink T, Sciacca V, Sommer P. CT-imaging vs. high-density mapping in ischemic cardiomyopathy VT ablation: in whom do we trust? J Cardiovasc Electrophysiol 2022; 33:2181-2182. [PMID: 35938389 DOI: 10.1111/jce.15650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/26/2022]
Abstract
Ablation of ventricular tachycardia (VT) has emerged an effective therapy in patients with ischemic heart disease. Electroanatomical mapping is currently considered the gold standard in terms of VT ablation This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Thomas Fink
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Vanessa Sciacca
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Philipp Sommer
- Clinic for Electrophysiology, Herz- und Diabeteszentrum NRW, Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| |
Collapse
|
28
|
Zacharia EM, Istvanic F, Mulukutla S, Thoma F, Aronis KN, Bhonsale A, Kancharla K, Voigt A, Shalaby A, Estes NAM, Jain SK, Saba S. Predictors of Hospital Admissions for Ventricular Arrhythmia or Cardiac Arrest in Patients With Cardiomyopathy. Am J Cardiol 2022; 171:127-131. [PMID: 35292146 DOI: 10.1016/j.amjcard.2022.01.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 11/19/2022]
Abstract
Although ventricular dysfunction is associated with the occurrence of ventricular arrhythmia (VA), most patients with cardiomyopathy do not experience VA. We therefore investigated other predictors of VA in a large contemporary cohort of patients with cardiomyopathy. All patients at a large academic medical system with left ventricular ejection fraction (LVEF) ≤50% were enrolled at the time of first documented low LVEF. Predictors of hospital admission for VA were examined using multivariable Cox models. The incidence of implantable defibrillator (ICD) placement was also examined. A total of 18,003 patients were enrolled. Over a median follow-up of 3.35 years, 389 patients (2.2%) were admitted for VA (304 of 12,037 [2.5%] among patients with LVEF ≤35% vs 85 of 5,966 [1.4%] among those with LVEF 36% to 50%). Predictors of VA hospitalization included lower LVEF (hazard ratio (HR) = 1.43 per 10% decrease, p <0.001), the presence of an ICD at baseline (HR = 1.63, p = 0.010), higher blood glucose (HR = 1.02 per 10 mg/100 ml increase, p = 0.050), the presence of end-stage renal disease (HR = 3.59, p <0.001), and the presence of liver cirrhosis (HR = 1.93, p = 0.013). During follow-up, 626 patients were implanted with a new ICD. In addition to being admitted with VA, a lower LVEF and a history of coronary artery disease or heart failure were the main predictors of ICD therapy in this population. In conclusion, in addition to more severe cardiomyopathy and the presence of an implanted ICD, metabolic derangements on initial contact are independent predictors of hospital admissions for VA in patients with cardiomyopathy. Noncardiac co-morbidities play an important role in stratifying patients with cardiomyopathy for their risk of VA or cardiac arrest.
Collapse
Affiliation(s)
- Effimia M Zacharia
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Filip Istvanic
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Suresh Mulukutla
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Floyd Thoma
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Konstantinos N Aronis
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Aditya Bhonsale
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Krishna Kancharla
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Andrew Voigt
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Alaa Shalaby
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - N A Mark Estes
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sandeep K Jain
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Samir Saba
- Cardiology Division of the Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
29
|
Ghannam M, Liang J, Attili A, Cochet H, Jais P, Latchamsetty R, Jongnarangsin K, Morady F, Bogun F. Late Gadolinium Enhancement Cardiac Magnetic Resonance Imaging of Ablation Lesions after Post‐Infarction Ventricular Tachycardia Ablation:Implications for VT Recurrence. J Cardiovasc Electrophysiol 2022; 33:715-721. [DOI: 10.1111/jce.15386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/06/2021] [Accepted: 12/09/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Michael Ghannam
- Division of Cardiovascular Medicine, Department of RadiologyUniversity of MichiganAnn ArborMIUSA
| | - Jackson Liang
- University of Michigan, CardiologyAnn ArborMichiganUnited States
| | - Anil Attili
- Division of Cardiovascular Medicine, Department of RadiologyUniversity of MichiganAnn ArborMIUSA
| | - Hubert Cochet
- Bordeaux University Hospital and University of BordeauxBordeauxFrance
| | - Pierre Jais
- Bordeaux University Hospital and University of BordeauxBordeauxFrance
| | - Rakesh Latchamsetty
- Division of Cardiovascular Medicine, Department of RadiologyUniversity of MichiganAnn ArborMIUSA
| | | | - Fred Morady
- University of Michigan, Internal medicineAnn ArborMichiganUnited States
| | - Frank Bogun
- University of Michigan, ElectrophysiologyAnn ArborMichiganUnited States
| |
Collapse
|
30
|
Ciaccio EJ, Anter E, Coromilas J, Wan EY, Yarmohammadi H, Wit AL, Peters NS, Garan H. Structure and function of the ventricular tachycardia isthmus. Heart Rhythm 2022; 19:137-153. [PMID: 34371192 DOI: 10.1016/j.hrthm.2021.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 12/24/2022]
Abstract
Catheter ablation of postinfarction reentrant ventricular tachycardia (VT) has received renewed interest owing to the increased availability of high-resolution electroanatomic mapping systems that can describe the VT circuits in greater detail, and the emergence and need to target noninvasive external beam radioablation. These recent advancements provide optimism for improving the clinical outcome of VT ablation in patients with postinfarction and potentially other scar-related VTs. The combination of analyses gleaned from studies in swine and canine models of postinfarction reentrant VT, and in human studies, suggests the existence of common electroanatomic properties for reentrant VT circuits. Characterizing these properties may be useful for increasing the specificity of substrate mapping techniques and for noninvasive identification to guide ablation. Herein, we describe properties of reentrant VT circuits that may assist in elucidating the mechanisms of onset and maintenance, as well as a means to localize and delineate optimal catheter ablation targets.
Collapse
Affiliation(s)
- Edward J Ciaccio
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York; ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom.
| | - Elad Anter
- Department of Cardiovascular Medicine, Cardiac Electrophysiology, Cleveland Clinic, Cleveland, Ohio
| | - James Coromilas
- Department of Medicine, Division of Cardiovascular Disease and Hypertension, Rutgers University, New Brunswick, New Jersey
| | - Elaine Y Wan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Hirad Yarmohammadi
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Andrew L Wit
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York
| | - Nicholas S Peters
- ElectroCardioMaths Programme, Imperial Centre for Cardiac Engineering, Imperial College London, London, United Kingdom
| | - Hasan Garan
- Department of Medicine, Division of Cardiology, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
31
|
de Oliveira Dietrich C, de Oliveira Hollanda L, Cirenza C, de Paola AAV. Epicardial and Endocardial Ablation Based on Channel Mapping in Patients With Ventricular Tachycardia and Chronic Chagasic Cardiomyopathy: Importance of Late Potential Mapping During Sinus Rhythm to Recognize the Critical Substrate. J Am Heart Assoc 2021; 11:e021889. [PMID: 34927451 PMCID: PMC9075208 DOI: 10.1161/jaha.121.021889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background Ventricular tachycardia (VT) in patients with chronic chagasic cardiomyopathy (CCC) is associated with considerable morbidity and mortality. Catheter ablation of VT in patients with CCC is very complex and challenging. The main goal of this work was to assess the efficacy of VT catheter ablation guided by late potentials (LPs) in patients with CCC. Methods and Results Seventeen consecutive patients with refractory VT and CCC were prospectively included in the study. Combined endo‐epicardial voltage and late activation mapping were obtained during baseline rhythm to define scarred and LP areas, respectively. The end point of the ablation procedure was the elimination of all identified LPs. Epicardial and endocardial dense scars (<0.5 mV) were detected in 17/17 and 15/17 patients, respectively. LPs were detected in the epicardial scars of 16/17 patients and in the endocardial scars of 14/15 patients. A total of 63 VTs were induced in 17 patients; 22/63 (33%) were stable and entrained, presenting LPs recorded in the isthmus sites. The end point of ablation was achieved in 15 of 17 patients. Ablation was not completed in 2 patients because of cardiac tamponade or vicinity of the phrenic nerve and circumflex artery. Three patients (2 with unsuccessful ablation) had VT recurrence during follow‐up (39 months). Conclusions Endo‐epicardial LP mapping allows us to identify the putative isthmuses of different VTs and effectively perform catheter ablation in patients with CCC and drug‐refractory VTs.
Collapse
Affiliation(s)
- Cristiano de Oliveira Dietrich
- Clinical Cardiac Electrophysiology Cardiology Division Department of Medicine Hospital São Paulo Escola Paulista de Medicina - Universidade Federal of São Paulo São Paulo Brazil
| | - Lucas de Oliveira Hollanda
- Clinical Cardiac Electrophysiology Cardiology Division Department of Medicine Hospital São Paulo Escola Paulista de Medicina - Universidade Federal of São Paulo São Paulo Brazil
| | - Claudio Cirenza
- Clinical Cardiac Electrophysiology Cardiology Division Department of Medicine Hospital São Paulo Escola Paulista de Medicina - Universidade Federal of São Paulo São Paulo Brazil
| | - Angelo Amato Vincenzo de Paola
- Clinical Cardiac Electrophysiology Cardiology Division Department of Medicine Hospital São Paulo Escola Paulista de Medicina - Universidade Federal of São Paulo São Paulo Brazil
| |
Collapse
|
32
|
Bennett RG, Campbell T, Sood A, Bhaskaran A, De Silva K, Davis L, Qian P, Sivagangabalan G, Cooper MJ, Chow CK, Thiagalingam A, Denniss AR, Thomas SP, Kizana E, Kumar S. Remote magnetic navigation compared to contemporary manual techniques for the catheter ablation of ventricular arrhythmias in structural heart disease. Heliyon 2021; 7:e08538. [PMID: 34917813 PMCID: PMC8666643 DOI: 10.1016/j.heliyon.2021.e08538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND There are limited data comparing remote magnetic navigation (RMN) to contemporary techniques of manual-guided ventricular arrhythmia (VA) catheter ablation. OBJECTIVES We compared acute and long-term outcomes of VA ablation guided by either RMN or contemporary manual techniques in patients with structural heart disease. METHODS From 2010-2019, 192 consecutive patients, with ischemic cardiomyopathy (ICM) or non-ischemic cardiomyopathy (NICM) underwent catheter ablation for sustained ventricular tachycardia (VT) or premature ventricular complexes (PVCs), using either RMN (n = 60) or manual (n = 132) guided techniques. Acute success and VA-free survival were compared. RESULTS In ICM, acute procedural success was comparable between the 2 techniques (manual 43.5% vs. RMN 29%, P = 0.11), as was VA-free survival (manual 83% vs. RMN 74%, P = 0.88), and survival free from cardiac transplantation and all-cause mortality (manual 88% vs. RMN 87%, P = 0.47), both at 12-months after final ablation. In NICM, manual compared to RMN guided, had superior acute procedural success (manual 46% vs. RMN 19%, P = 0.003) and VA-free survival 12-months after final ablation (manual 79% vs. RMN 41%, P = 0.004), but comparable survival free from cardiac transplantation and all-cause mortality 12-months after final ablation (manual 95% vs. RMN 90%, P = 0.52). Procedural duration was shorter in both subgroups undergoing manual guided ablation, whereas fluoroscopy dose and complication rates were comparable. CONCLUSION RMN provides similar outcomes to manual ablation in patients with ICM. In NICM however, acute success, and long-term VA-free survival was better with manual ablation. Prospective, multi-centre randomised trials comparing contemporary manual and RMN systems for VA catheter ablation are needed.
Collapse
Affiliation(s)
- Richard G. Bennett
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Timothy Campbell
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Ashish Sood
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | | | - Kasun De Silva
- Department of Cardiology, Westmead Hospital, Sydney, Australia
| | - Lloyd Davis
- Department of Cardiology, Westmead Hospital, Sydney, Australia
| | - Pierre Qian
- Department of Cardiology, Westmead Hospital, Sydney, Australia
| | | | - Mark J. Cooper
- Department of Cardiology, Westmead Hospital, Sydney, Australia
| | - Clara K. Chow
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | | | | | - Stuart P. Thomas
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Eddy Kizana
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Institute of Medical Research, Westmead, Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Zhou S, AbdelWahab A, Sapp JL, Sung E, Aronis KN, Warren JW, MacInnis PJ, Shah R, Horáček BM, Berger R, Tandri H, Trayanova NA, Chrispin J. Assessment of an ECG-Based System for Localizing Ventricular Arrhythmias in Patients With Structural Heart Disease. J Am Heart Assoc 2021; 10:e022217. [PMID: 34612085 PMCID: PMC8751877 DOI: 10.1161/jaha.121.022217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background We have previously developed an intraprocedural automatic arrhythmia‐origin localization (AAOL) system to identify idiopathic ventricular arrhythmia origins in real time using a 3‐lead ECG. The objective was to assess the localization accuracy of ventricular tachycardia (VT) exit and premature ventricular contraction (PVC) origin sites in patients with structural heart disease using the AAOL system. Methods and Results In retrospective and prospective case series studies, a total of 42 patients who underwent VT/PVC ablation in the setting of structural heart disease were recruited at 2 different centers. The AAOL system combines 120‐ms QRS integrals of 3 leads (III, V2, V6) with pace mapping to predict VT exit/PVC origin site and projects that site onto the patient‐specific electroanatomic mapping surface. VT exit/PVC origin sites were clinically identified by activation mapping and/or pace mapping. The localization error of the VT exit/PVC origin site was assessed by the distance between the clinically identified site and the estimated site. In the retrospective study of 19 patients with structural heart disease, the AAOL system achieved a mean localization accuracy of 6.5±2.6 mm for 25 induced VTs. In the prospective study with 23 patients, mean localization accuracy was 5.9±2.6 mm for 26 VT exit and PVC origin sites. There was no difference in mean localization error in epicardial sites compared with endocardial sites using the AAOL system (6.0 versus 5.8 mm, P=0.895). Conclusions The AAOL system achieved accurate localization of VT exit/PVC origin sites in patients with structural heart disease; its performance is superior to current systems, and thus, it promises to have potential clinical utility.
Collapse
Affiliation(s)
- Shijie Zhou
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD
| | - Amir AbdelWahab
- Department of Medicine Queen Elizabeth II Health Sciences Centre Halifax NS Canada
| | - John L Sapp
- Department of Medicine Queen Elizabeth II Health Sciences Centre Halifax NS Canada.,Department of Physiology and Biophysics Dalhousie University Halifax NS Canada
| | - Eric Sung
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD.,Department of Biomedical Engineering Johns Hopkins University Baltimore MD
| | - Konstantinos N Aronis
- Division of Cardiology Department of Medicine Section of Cardiac Electrophysiology Johns Hopkins Hospital Baltimore MD.,Department of Biomedical Engineering Johns Hopkins University Baltimore MD
| | - James W Warren
- Department of Physiology and Biophysics Dalhousie University Halifax NS Canada
| | - Paul J MacInnis
- Department of Physiology and Biophysics Dalhousie University Halifax NS Canada
| | - Rushil Shah
- Division of Cardiology Department of Medicine Section of Cardiac Electrophysiology Johns Hopkins Hospital Baltimore MD
| | - B Milan Horáček
- School of Biomedical Engineering Dalhousie University Halifax NS Canada
| | - Ronald Berger
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD.,Division of Cardiology Department of Medicine Section of Cardiac Electrophysiology Johns Hopkins Hospital Baltimore MD
| | - Harikrishna Tandri
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD.,Division of Cardiology Department of Medicine Section of Cardiac Electrophysiology Johns Hopkins Hospital Baltimore MD
| | - Natalia A Trayanova
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD.,Department of Biomedical Engineering Johns Hopkins University Baltimore MD
| | - Jonathan Chrispin
- Alliance for Cardiovascular Diagnostic and Treatment Innovation Johns Hopkins University Baltimore MD.,Division of Cardiology Department of Medicine Section of Cardiac Electrophysiology Johns Hopkins Hospital Baltimore MD
| |
Collapse
|
34
|
Nogami A, Kurita T, Abe H, Ando K, Ishikawa T, Imai K, Usui A, Okishige K, Kusano K, Kumagai K, Goya M, Kobayashi Y, Shimizu A, Shimizu W, Shoda M, Sumitomo N, Seo Y, Takahashi A, Tada H, Naito S, Nakazato Y, Nishimura T, Nitta T, Niwano S, Hagiwara N, Murakawa Y, Yamane T, Aiba T, Inoue K, Iwasaki Y, Inden Y, Uno K, Ogano M, Kimura M, Sakamoto S, Sasaki S, Satomi K, Shiga T, Suzuki T, Sekiguchi Y, Soejima K, Takagi M, Chinushi M, Nishi N, Noda T, Hachiya H, Mitsuno M, Mitsuhashi T, Miyauchi Y, Miyazaki A, Morimoto T, Yamasaki H, Aizawa Y, Ohe T, Kimura T, Tanemoto K, Tsutsui H, Mitamura H. JCS/JHRS 2019 guideline on non-pharmacotherapy of cardiac arrhythmias. J Arrhythm 2021; 37:709-870. [PMID: 34386109 PMCID: PMC8339126 DOI: 10.1002/joa3.12491] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
35
|
Beavers DL, Ghannam M, Liang J, Cochet H, Attili A, Sharaf-Dabbagh G, Latchamsetty R, Jongnarangsin K, Morady F, Bogun F. Diagnosis, significance, and management of ventricular thrombi in patients referred for VT ablation. J Cardiovasc Electrophysiol 2021; 32:2473-2483. [PMID: 34270148 DOI: 10.1111/jce.15177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/01/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION In patients with structural heart disease presenting with ventricular tachycardia (VT), detection of ventricular thrombi and subsequent management can be challenging. This study aimed to assess the value of multimodality imaging with cardiac magnetic resonance imaging (CMR), contrast-enhanced transthoracic echocardiography (TTE), and computed tomography (CT) for thrombus detection as well as a management algorithm geared towards anticoagulation and deferred ablation for patients referred for VT ablation. METHODS AND RESULTS A total of 154 consecutive patients referred for VT ablation underwent preprocedural multimodality imaging with CMR, CT, and TTE. In 9 patients (6%) a new ventricular thrombus was detected and anticoagulation was initiated. Thrombi were detected by CMR in nine patients, by CT in seven patients, and by TTE in two patients. Five patients eventually underwent endocardial VT ablation procedures 6.0 ± 2.0 months after initiation of anticoagulation with one patient also requiring an epicardial approach. Two patients died while on anticoagulation, unrelated to ventricular arrhythmia. Four of five patients were rendered non-inducible and no testing was performed in 1/5 patients. Areas containing left ventricular thrombi were non-excitable with pacing. Six of thirty-two inducible VTs were mapped in close vicinity of ventricular thrombi. No clinical embolic events occurred during the ablation procedures. CONCLUSIONS Ventricular thrombus was detected in 6% of consecutive patients with structural heart disease undergoing VT ablation. CMR was the most sensitive modality, while contrast-enhanced TTE failed to detect the majority of thrombi. Anticoagulation followed by ablation can be safely and successfully performed in patients with ventricular thrombi.
Collapse
Affiliation(s)
- David L Beavers
- Division of Cardiovascular Medicine and Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Ghannam
- Division of Cardiovascular Medicine and Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jackson Liang
- Division of Cardiovascular Medicine and Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Hubert Cochet
- Department of Radiology, University of Bordeaux, Bordeaux, France
| | - Anil Attili
- Division of Cardiovascular Medicine and Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ghaith Sharaf-Dabbagh
- Division of Cardiovascular Medicine and Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rakesh Latchamsetty
- Division of Cardiovascular Medicine and Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Krit Jongnarangsin
- Division of Cardiovascular Medicine and Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Fred Morady
- Division of Cardiovascular Medicine and Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank Bogun
- Division of Cardiovascular Medicine and Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
van Schie MS, Kharbanda RK, Houck CA, Lanters EAH, Taverne YJHJ, Bogers AJJC, de Groot NMS. Identification of Low-Voltage Areas: A Unipolar, Bipolar, and Omnipolar Perspective. Circ Arrhythm Electrophysiol 2021; 14:e009912. [PMID: 34143644 PMCID: PMC8294660 DOI: 10.1161/circep.121.009912] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Low-voltage areas (LVAs) are commonly considered surrogate markers for an arrhythmogenic substrate underlying tachyarrhythmias. It remains challenging to define a proper threshold to classify LVA, and it is unknown whether unipolar, bipolar, and the recently introduced omnipolar voltage mapping techniques are complementary or contradictory in classifying LVAs. Therefore, this study examined similarities and dissimilarities in unipolar, bipolar, and omnipolar voltage mapping and explored the relation between various types of voltages and conduction velocity (CV).
Collapse
Affiliation(s)
- Mathijs S van Schie
- Department of Cardiology (M.S.v.S., R.K.K., C.A.H., E.A.H.L., N.M.S.d.G.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rohit K Kharbanda
- Department of Cardiology (M.S.v.S., R.K.K., C.A.H., E.A.H.L., N.M.S.d.G.), Erasmus Medical Center, Rotterdam, the Netherlands.,Department of Cardiothoracic Surgery (R.K.K., C.A.H., Y.J.H.J.T., A.J.J.C.B.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Charlotte A Houck
- Department of Cardiothoracic Surgery (R.K.K., C.A.H., Y.J.H.J.T., A.J.J.C.B.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Eva A H Lanters
- Department of Cardiology (M.S.v.S., R.K.K., C.A.H., E.A.H.L., N.M.S.d.G.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yannick J H J Taverne
- Department of Cardiothoracic Surgery (R.K.K., C.A.H., Y.J.H.J.T., A.J.J.C.B.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Ad J J C Bogers
- Department of Cardiothoracic Surgery (R.K.K., C.A.H., Y.J.H.J.T., A.J.J.C.B.), Erasmus Medical Center, Rotterdam, the Netherlands
| | - Natasja M S de Groot
- Department of Cardiology (M.S.v.S., R.K.K., C.A.H., E.A.H.L., N.M.S.d.G.), Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
37
|
Nogami A, Kurita T, Abe H, Ando K, Ishikawa T, Imai K, Usui A, Okishige K, Kusano K, Kumagai K, Goya M, Kobayashi Y, Shimizu A, Shimizu W, Shoda M, Sumitomo N, Seo Y, Takahashi A, Tada H, Naito S, Nakazato Y, Nishimura T, Nitta T, Niwano S, Hagiwara N, Murakawa Y, Yamane T, Aiba T, Inoue K, Iwasaki Y, Inden Y, Uno K, Ogano M, Kimura M, Sakamoto SI, Sasaki S, Satomi K, Shiga T, Suzuki T, Sekiguchi Y, Soejima K, Takagi M, Chinushi M, Nishi N, Noda T, Hachiya H, Mitsuno M, Mitsuhashi T, Miyauchi Y, Miyazaki A, Morimoto T, Yamasaki H, Aizawa Y, Ohe T, Kimura T, Tanemoto K, Tsutsui H, Mitamura H. JCS/JHRS 2019 Guideline on Non-Pharmacotherapy of Cardiac Arrhythmias. Circ J 2021; 85:1104-1244. [PMID: 34078838 DOI: 10.1253/circj.cj-20-0637] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Akihiko Nogami
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | | | - Haruhiko Abe
- Department of Heart Rhythm Management, University of Occupational and Environmental Health, Japan
| | - Kenji Ando
- Department of Cardiology, Kokura Memorial Hospital
| | - Toshiyuki Ishikawa
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University
| | - Katsuhiko Imai
- Department of Cardiovascular Surgery, Kure Medical Center and Chugoku Cancer Center
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine
| | - Kaoru Okishige
- Department of Cardiology, Yokohama City Minato Red Cross Hospital
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | | | - Masahiko Goya
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | | | | | - Wataru Shimizu
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School
| | - Morio Shoda
- Department of Cardiology, Tokyo Women's Medical University
| | - Naokata Sumitomo
- Department of Pediatric Cardiology, Saitama Medical University International Medical Center
| | - Yoshihiro Seo
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | | | - Hiroshi Tada
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, University of Fukui
| | | | - Yuji Nakazato
- Department of Cardiovascular Medicine, Juntendo University Urayasu Hospital
| | - Takashi Nishimura
- Department of Cardiac Surgery, Tokyo Metropolitan Geriatric Hospital
| | - Takashi Nitta
- Department of Cardiovascular Surgery, Nippon Medical School
| | - Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | | | - Yuji Murakawa
- Fourth Department of Internal Medicine, Teikyo University Hospital Mizonokuchi
| | - Teiichi Yamane
- Department of Cardiology, Jikei University School of Medicine
| | - Takeshi Aiba
- Division of Arrhythmia, Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Koichi Inoue
- Division of Arrhythmia, Cardiovascular Center, Sakurabashi Watanabe Hospital
| | - Yuki Iwasaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, Nippon Medical School
| | - Yasuya Inden
- Department of Cardiology, Nagoya University Graduate School of Medicine
| | - Kikuya Uno
- Arrhythmia Center, Chiba Nishi General Hospital
| | - Michio Ogano
- Department of Cardiovascular Medicine, Shizuoka Medical Center
| | - Masaomi Kimura
- Advanced Management of Cardiac Arrhythmias, Hirosaki University Graduate School of Medicine
| | | | - Shingo Sasaki
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine
| | | | - Tsuyoshi Shiga
- Department of Cardiology, Tokyo Women's Medical University
| | - Tsugutoshi Suzuki
- Departments of Pediatric Electrophysiology, Osaka City General Hospital
| | - Yukio Sekiguchi
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | - Kyoko Soejima
- Arrhythmia Center, Second Department of Internal Medicine, Kyorin University Hospital
| | - Masahiko Takagi
- Division of Cardiac Arrhythmia, Department of Internal Medicine II, Kansai Medical University
| | - Masaomi Chinushi
- School of Health Sciences, Faculty of Medicine, Niigata University
| | - Nobuhiro Nishi
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Takashi Noda
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hitoshi Hachiya
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital
| | | | | | - Yasushi Miyauchi
- Department of Cardiovascular Medicine, Nippon Medical School Chiba-Hokusoh Hospital
| | - Aya Miyazaki
- Department of Pediatric Cardiology, Congenital Heart Disease Center, Tenri Hospital
| | - Tomoshige Morimoto
- Department of Thoracic and Cardiovascular Surgery, Osaka Medical College
| | - Hiro Yamasaki
- Department of Cardiology, Faculty of Medicine, University of Tsukuba
| | | | | | - Takeshi Kimura
- Department of Cardiology, Graduate School of Medicine and Faculty of Medicine, Kyoto University
| | - Kazuo Tanemoto
- Department of Cardiovascular Surgery, Kawasaki Medical School
| | | | | | | |
Collapse
|
38
|
Papageorgiou N, Srinivasan NT. Dynamic High-density Functional Substrate Mapping Improves Outcomes in Ischaemic Ventricular Tachycardia Ablation: Sense Protocol Functional Substrate Mapping and Other Functional Mapping Techniques. Arrhythm Electrophysiol Rev 2021; 10:38-44. [PMID: 33936742 PMCID: PMC8076974 DOI: 10.15420/aer.2020.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Post-infarct-related ventricular tachycardia (VT) occurs due to reentry over surviving fibres within ventricular scar tissue. The mapping and ablation of patients in VT remains a challenge when VT is poorly tolerated and in cases in which VT is non-sustained or not inducible. Conventional substrate mapping techniques are limited by the ambiguity of substrate characterisation methods and the variety of mapping tools, which may record signals differently based on their bipolar spacing and electrode size. Real world data suggest that outcomes from VT ablation remain poor in terms of freedom from recurrent therapy using conventional techniques. Functional substrate mapping techniques, such as single extrastimulus protocol mapping, identify regions of unmasked delayed potentials, which, by nature of their dynamic and functional components, may play a critical role in sustaining VT. These methods may improve substrate mapping of VT, potentially making ablation safer and more reproducible, and thereby improving the outcomes. Further large-scale studies are needed.
Collapse
Affiliation(s)
- Nikolaos Papageorgiou
- Department of Cardiac Electrophysiology, Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Neil T Srinivasan
- Department of Cardiac Electrophysiology, Barts Heart Centre, St Bartholomew's Hospital, London, UK.,Institute of Cardiovascular Science, University College London, London, UK.,Department of Cardiac Electrophysiology, Essex Cardiothoracic Centre, Basildon, UK
| |
Collapse
|
39
|
Bennett R, Campbell T, De Silva K, Bhaskaran A, Kumar S. Catheter Ablation of Ventricular Tachycardia Guided by Substrate Electrical Inexcitability. Circ Arrhythm Electrophysiol 2021; 14:e009408. [PMID: 33685209 DOI: 10.1161/circep.120.009408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Richard Bennett
- Department of Cardiology, Westmead Hospital, Westmead Applied Research Centre, University of Sydney, Australia
| | - Timothy Campbell
- Department of Cardiology, Westmead Hospital, Westmead Applied Research Centre, University of Sydney, Australia
| | - Kasun De Silva
- Department of Cardiology, Westmead Hospital, Westmead Applied Research Centre, University of Sydney, Australia
| | - Ashwin Bhaskaran
- Department of Cardiology, Westmead Hospital, Westmead Applied Research Centre, University of Sydney, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Westmead Applied Research Centre, University of Sydney, Australia
| |
Collapse
|
40
|
Zhou S, Sung E, Prakosa A, Aronis KN, Chrispin J, Tandri H, AbdelWahab A, Horáček BM, Sapp JL, Trayanova NA. Feasibility study shows concordance between image-based virtual-heart ablation targets and predicted ECG-based arrhythmia exit-sites. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2021; 44:432-441. [PMID: 33527422 DOI: 10.1111/pace.14181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/05/2021] [Accepted: 01/24/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION We recently developed two noninvasive methodologies to help guide VT ablation: population-derived automated VT exit localization (PAVEL) and virtual-heart arrhythmia ablation targeting (VAAT). We hypothesized that while very different in their nature, limitations, and type of ablation targets (substrate-based vs. clinical VT), the image-based VAAT and the ECG-based PAVEL technologies would be spatially concordant in their predictions. OBJECTIVE The objective is to test this hypothesis in ischemic cardiomyopathy patients in a retrospective feasibility study. METHODS Four post-infarct patients who underwent LV VT ablation and had pre-procedural LGE-CMRs were enrolled. Virtual hearts with patient-specific scar and border zone identified potential VTs and ablation targets. Patient-specific PAVEL based on a population-derived statistical method localized VT exit sites onto a patient-specific 238-triangle LV endocardial surface. RESULTS Ten induced VTs were analyzed and 9-exit sites were localized by PAVEL onto the patient-specific LV endocardial surface. All nine predicted VT exit sites were in the scar border zone defined by voltage mapping and spatially correlated with successful clinical lesions. There were 2.3 ± 1.9 VTs per patient in the models. All five VAAT lesions fell within regions ablated clinically. VAAT targets correlated well with 6 PAVEL-predicted VT exit sites. The distance between the center of the predicted VT-exit-site triangle and nearest corresponding VAAT ablation lesion was 10.7 ± 7.3 mm. CONCLUSIONS VAAT targets are concordant with the patient-specific PAVEL-predicted VT exit sites. These findings support investigation into combining these two complementary technologies as a noninvasive, clinical tool for targeting clinically induced VTs and regions likely to harbor potential VTs.
Collapse
Affiliation(s)
- Shijie Zhou
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, USA
| | - Eric Sung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, USA
| | - Adityo Prakosa
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, USA
| | - Konstantinos N Aronis
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA.,Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jonathan Chrispin
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA.,Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, USA
| | - Harikrishna Tandri
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, USA.,Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, USA
| | - Amir AbdelWahab
- Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - B Milan Horáček
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - John L Sapp
- Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
| | - Natalia A Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Alliance for Cardiovascular Diagnostic and Treatment Innovation, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Conte E, Mushtaq S, Carbucicchio C, Piperno G, Catto V, Mancini ME, Formenti A, Annoni A, Guglielmo M, Baggiano A, Muscogiuri G, Belmonte M, Cattani F, Pontone G, Jereczek-Fossa BA, Orecchia R, Tondo C, Andreini D. State of the art paper: Cardiovascular CT for planning ventricular tachycardia ablation procedures. J Cardiovasc Comput Tomogr 2021; 15:394-402. [PMID: 33563533 DOI: 10.1016/j.jcct.2021.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
In the last 20 years coronary computed tomography angiography (CCTA) gained a pivotal role in the evaluation of patients with suspected coronary artery disease (CAD) as finally recognized by the ESC guidelines on stable CAD. Technological advances have progressively improved the temporal resolution of CT scanners, contemporary reducing acquisition time, radiation dose and contrast volume needed for the whole heart volume acquisition, further expanding the role of cardiac CT beyond coronary anatomy evaluation. Aim of the present review is to discuss use and benefit of cardiac CT for the planning and preparation of VT ablation.
Collapse
Affiliation(s)
| | | | | | - Gaia Piperno
- Division of Radiotherapy IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | | | | | | | | | | | | | | | | | - Federica Cattani
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | | | - Barbara Alicja Jereczek-Fossa
- Unit of Medical Physics, IEO European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Roberto Orecchia
- Scientific Directorate, IEO European Institute of Oncology, IRCCS, Milan, Italy
| | - Claudio Tondo
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy
| | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Milan, Italy.
| |
Collapse
|
42
|
Campbell T, Bennett RG, Kotake Y, Kumar S. Updates in Ventricular Tachycardia Ablation. Korean Circ J 2021; 51:15-42. [PMID: 33377327 PMCID: PMC7779814 DOI: 10.4070/kcj.2020.0436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Sudden cardiac death (SCD) due to recurrent ventricular tachycardia is an important clinical sequela in patients with structural heart disease. As a result, ventricular tachycardia (VT) has emerged as a major clinical and public health problem. The mechanism of VT is predominantly mediated by re-entry in the presence of arrhythmogenic substrate (scar), though focal mechanisms are also important. Catheter ablation for VT, when compared to standard medical therapy, has been shown to improve VT-free survival and burden of device therapies. Approaches to VT ablation are dependent on the underlying disease process, broadly classified into idiopathic (no structural heart disease) or structural heart disease (ischemic or non-ischemic heart disease). This update aims to review recent advances made for the treatment of VT ablation, with respect to current clinical trials, peri-procedure risk assessments, pre-procedural cardiac imaging, electro-anatomic mapping and advances in catheter and non-catheter based ablation techniques.
Collapse
Affiliation(s)
- Timothy Campbell
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Richard G Bennett
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Yasuhito Kotake
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Sydney, Australia
- Westmead Applied Research Centre, University of Sydney, New South Wales, Australia.
| |
Collapse
|
43
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Della Bella P, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Sáenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. Europace 2020; 21:1143-1144. [PMID: 31075787 DOI: 10.1093/europace/euz132] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, California
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Porta-Sánchez A, Magtibay K, Nayyar S, Bhaskaran A, Lai PFH, Massé S, Labos C, Qiang B, Romagnuolo R, Masoudpour H, Biswas L, Ghugre N, Laflamme M, Deno DC, Nanthakumar K. Omnipolarity applied to equi-spaced electrode array for ventricular tachycardia substrate mapping. Europace 2020; 21:813-821. [PMID: 30726937 PMCID: PMC6479413 DOI: 10.1093/europace/euy304] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022] Open
Abstract
Aims Bipolar electrogram (BiEGM)-based substrate maps are heavily influenced by direction of a wavefront to the mapping bipole. In this study, we evaluate high-resolution, orientation-independent peak-to-peak voltage (Vpp) maps obtained with an equi-spaced electrode array and omnipolar EGMs (OTEGMs), measure its beat-to-beat consistency, and assess its ability to delineate diseased areas within the myocardium compared against traditional BiEGMs on two orientations: along (AL) and across (AC) array splines. Methods and results The endocardium of the left ventricle of 10 pigs (three healthy and seven infarcted) were each mapped using an Advisor™ HD grid with a research EnSite Precision™ system. Cardiac magnetic resonance images with late gadolinium enhancement were registered with electroanatomical maps and were used for gross scar delineation. Over healthy areas, OTEGM Vpp values are larger than AL bipoles by 27% and AC bipoles by 26%, and over infarcted areas OTEGM Vpp values are 23% larger than AL bipoles and 27% larger than AC bipoles (P < 0.05). Omnipolar EGM voltage maps were 37% denser than BiEGM maps. In addition, OTEGM Vpp values are more consistent than bipolar Vpps showing less beat-by-beat variation than BiEGM by 39% and 47% over both infarcted and healthy areas, respectively (P < 0.01). Omnipolar EGM better delineate infarcted areas than traditional BiEGMs from both orientations. Conclusion An equi-spaced electrode grid when combined with omnipolar methodology yielded the largest detectable bipolar-like voltage and is void of directional influences, providing reliable voltage assessment within infarcted and non-infarcted regions of the heart.
Collapse
Affiliation(s)
- Andreu Porta-Sánchez
- Dept de Medicina, Universitat de Barcelona, Barcelona and Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.,Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Karl Magtibay
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Sachin Nayyar
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Abhishek Bhaskaran
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Patrick F H Lai
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Stéphane Massé
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Christopher Labos
- Office for Science and Society, McGill University, Montreal, Quebec, Canada
| | - Beiping Qiang
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Rocco Romagnuolo
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Hassan Masoudpour
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Nilesh Ghugre
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Michael Laflamme
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Kumaraswamy Nanthakumar
- Department of Medicine, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Outer loop and isthmus in ventricular tachycardia circuits: Characteristics and implications. Heart Rhythm 2020; 17:1719-1728. [DOI: 10.1016/j.hrthm.2020.05.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/06/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022]
|
46
|
Cronin EM, Bogun FM, Maury P, Peichl P, Chen M, Namboodiri N, Aguinaga L, Leite LR, Al-Khatib SM, Anter E, Berruezo A, Callans DJ, Chung MK, Cuculich P, d'Avila A, Deal BJ, Bella PD, Deneke T, Dickfeld TM, Hadid C, Haqqani HM, Kay GN, Latchamsetty R, Marchlinski F, Miller JM, Nogami A, Patel AR, Pathak RK, Saenz Morales LC, Santangeli P, Sapp JL, Sarkozy A, Soejima K, Stevenson WG, Tedrow UB, Tzou WS, Varma N, Zeppenfeld K. 2019 HRS/EHRA/APHRS/LAHRS expert consensus statement on catheter ablation of ventricular arrhythmias. J Interv Card Electrophysiol 2020; 59:145-298. [PMID: 31984466 PMCID: PMC7223859 DOI: 10.1007/s10840-019-00663-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ventricular arrhythmias are an important cause of morbidity and mortality and come in a variety of forms, from single premature ventricular complexes to sustained ventricular tachycardia and fibrillation. Rapid developments have taken place over the past decade in our understanding of these arrhythmias and in our ability to diagnose and treat them. The field of catheter ablation has progressed with the development of new methods and tools, and with the publication of large clinical trials. Therefore, global cardiac electrophysiology professional societies undertook to outline recommendations and best practices for these procedures in a document that will update and replace the 2009 EHRA/HRS Expert Consensus on Catheter Ablation of Ventricular Arrhythmias. An expert writing group, after reviewing and discussing the literature, including a systematic review and meta-analysis published in conjunction with this document, and drawing on their own experience, drafted and voted on recommendations and summarized current knowledge and practice in the field. Each recommendation is presented in knowledge byte format and is accompanied by supportive text and references. Further sections provide a practical synopsis of the various techniques and of the specific ventricular arrhythmia sites and substrates encountered in the electrophysiology lab. The purpose of this document is to help electrophysiologists around the world to appropriately select patients for catheter ablation, to perform procedures in a safe and efficacious manner, and to provide follow-up and adjunctive care in order to obtain the best possible outcomes for patients with ventricular arrhythmias.
Collapse
Affiliation(s)
| | | | | | - Petr Peichl
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Minglong Chen
- Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Narayanan Namboodiri
- Sree Chitra Institute for Medical Sciences and Technology, Thiruvananthapuram, India
| | | | | | | | - Elad Anter
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | | - Andre d'Avila
- Hospital Cardiologico SOS Cardio, Florianopolis, Brazil
| | - Barbara J Deal
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | - Claudio Hadid
- Hospital General de Agudos Cosme Argerich, Buenos Aires, Argentina
| | - Haris M Haqqani
- University of Queensland, The Prince Charles Hospital, Chermside, Australia
| | - G Neal Kay
- University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - John M Miller
- Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, IN, USA
| | | | - Akash R Patel
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA, USA
| | | | | | | | - John L Sapp
- Queen Elizabeth II Health Sciences Centre, Halifax, Canada
| | - Andrea Sarkozy
- University Hospital Antwerp, University of Antwerp, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|
47
|
Campbell T, Bennett RG, Garikapati K, Turnbull S, Bhaskaran A, De Silva K, Kumar S. Prognostic significance of extensive versus limited induction protocol during catheter ablation of scar-related ventricular tachycardia. J Cardiovasc Electrophysiol 2020; 31:2909-2919. [PMID: 32905634 DOI: 10.1111/jce.14740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Testing for inducible ventricular tachycardia (VT) pre- and postablation forms the cornerstone of contemporary scar-related VT ablation procedures. There is significant heterogeneity in reported VT induction protocols. We examined the utility of an extensive induction protocol (up to 4 extra-stimuli [ES] ± burst ventricular pacing) compared to the current guideline-recommended protocol (up to 3ES, defined as limited induction protocol) in patients with scar-related VT. METHODS AND RESULTS Sixty-two patients (age: 64 ± 14 years; left ventricular ejection fraction: 37 ± 13%, ischemic cardiomyopathy: 31, nonischemic cardiomyopathy: 31) with at least one inducible VT were included. An extensive testing protocol induced 11%-17% more VTs, compared to the limited induction protocol before, and after the final ablation. VT recurred in 48% of patients during a mean follow up of 566 ± 428 days. Patients who were noninducible for any VT using the limited induction protocol had worse ventricular arrhythmia (VA)-free survival (12 months, 43% vs. 82%; p = .03) and worse survival free of VA, transplantation and mortality (12 months 46% vs. 82%; p = .02), compared to patients who were noninducible for any VT using the extensive induction protocol. CONCLUSIONS Between 11% and 17% of inducible VTs may be missed if 4ES and burst pacing are not performed in induction protocols before and after ablation. Noninducibility for any VT after an extensive induction protocol after the final ablation portends more favorable prognostic outcomes when compared with the current guideline-recommended induction protocol of up to 3ES. This data suggests that the adoption of an extensive induction protocol is of prognostic benefit after VT ablation.
Collapse
Affiliation(s)
- Timothy Campbell
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Richard G Bennett
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | | | - Samual Turnbull
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | | | - Kasun De Silva
- Department of Cardiology, Westmead Hospital, Sydney, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
48
|
Anderson RD, Lee G, Campbell T, Bennett RG, Kizana E, Watts T, Kalman J, Kumar S. Scar nonexcitability using simultaneous pacing for substrate ablation of ventricular tachycardia. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2020; 43:1219-1234. [PMID: 32720390 DOI: 10.1111/pace.14025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/21/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To describe an expedited strategy of simultaneous high-output pacing during radiofrequency ablation to achieve scar homogenization and electrical inexcitability as an approach for substrate ablation for scar-related ventricular tachycardia (VT). BACKGROUND Scar homogenization with additional testing for electrical inexcitability is known endpoints for catheter ablation, but achieving both can be time consuming. We describe a strategy of simultaneous pacing during radiofrequency ablation to expedite this approach. METHODS AND RESULTS Ten patients (age 74 ± 6 years; all men, (LV) ejection fraction of 33% ± 8%, ischemic cardiomyopathy, 9; VT storm, 7) underwent scar homogenization with electrical inexcitability to pacing (10 mA, 9 ms pulse width), as well as noninducibility of any VT as an acute procedural endpoint. Thirty-four VTs were inducible in 10 patients with a total of 1127 ablation lesions applied. Median ablation lesions per patient were 97 (interquartile range [IQR]25-75 71-151), and the total ablation time was 49 minutes (IQR25-75 45-56 minutes) with average duration per lesion of 32.2 seconds (IQR25-75 25.8-37.8 seconds). Average power was 33 W (IQR25-75 32-38 W), average contact force was 13 g (IQR25-75 11.9-14.6 g) with a median impedance drop of 9.6 Ω/lesion (IQR25-75 8.1-10.0 Ω). There were no ventricular fibrillation episodes using this strategy. The median procedure time was 246 minutes (IQR25-75 214-293 minutes). Acute procedural success was seen in nine patients with 97% of VTs noninducible. CONCLUSION Simultaneous ablation with high output pacing to achieve scar inexcitability, when combined with scar homogenization and noninducibility of any VT may be an expeditious, safe, and effective technique for catheter ablation.
Collapse
Affiliation(s)
- Robert D Anderson
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia.,Faculty of Medicine, Dentistry, and Health Science, University of Melbourne, Melbourne, Victoria, Australia.,Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Geoffrey Lee
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia.,Faculty of Medicine, Dentistry, and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Timothy Campbell
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Richard G Bennett
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Eddy Kizana
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Troy Watts
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia.,Faculty of Medicine, Dentistry, and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Australia.,Faculty of Medicine, Dentistry, and Health Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Saurabh Kumar
- Department of Cardiology, Westmead Hospital, Sydney, Australia.,Westmead Applied Research Centre, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Oikawa J, Fukaya H, Niwano S, Saito D, Sato T, Matsuura G, Arakawa Y, Shirakawa Y, Kobayashi S, Horiguchi A, Nishinarita R, Ishizue N, Kishihara J, Ako J. Precise Signals with a High-Density Grid Mapping Catheter Are Useful for an Entrainment Study. Int Heart J 2020; 61:838-842. [PMID: 32684601 DOI: 10.1536/ihj.20-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Complex atrial tachycardias (ATs) after catheter ablation or a MAZE procedure is sometimes difficult to determine the circuits of the tachycardia. A high-density, grid-shapes mapping catheter has been launched, which can be useful for detecting the detail circuits of tachycardias on three-dimensional mapping systems. The signal quality is also important for performing electrophysiological studies (EPSs), such as entrainment mapping, to identify the circuit. This unique mapping catheter has 1 mm electrodes on 2.5 Fr shafts, which improve the signal quality. The high-quality intracardiac electrograms facilitate differentiating small critical potentials, which allows us to perform detailed entrainment mapping in targeted narrow areas. Here, we describe a patient with a perimetral AT with epi-endocardium breakthrough after a MAZE surgery and catheter ablation, which was treated successfully along with detailed entrainment mapping using the HD Grid. This catheter with high-quality signals could be a significant diagnostic tool for a classic EPS as well as for the construction of 3D mapping.
Collapse
Affiliation(s)
- Jun Oikawa
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Hidehira Fukaya
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Shinichi Niwano
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Daiki Saito
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Tetsuro Sato
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Gen Matsuura
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Yuki Arakawa
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Yuki Shirakawa
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Shuhei Kobayashi
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Ai Horiguchi
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Ryo Nishinarita
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Naruya Ishizue
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Jun Kishihara
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Junya Ako
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| |
Collapse
|
50
|
Zhou S, AbdelWahab A, Horáček BM, MacInnis PJ, Warren JW, Davis JS, Elsokkari I, Lee DC, MacIntyre CJ, Parkash R, Gray CJ, Gardner MJ, Marcoux C, Choudhury R, Trayanova NA, Sapp JL. Prospective Assessment of an Automated Intraprocedural 12-Lead ECG-Based System for Localization of Early Left Ventricular Activation. Circ Arrhythm Electrophysiol 2020; 13:e008262. [PMID: 32538133 DOI: 10.1161/circep.119.008262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND To facilitate ablation of ventricular tachycardia (VT), an automated localization system to identify the site of origin of left ventricular activation in real time using the 12-lead ECG was developed. The objective of this study was to prospectively assess its accuracy. METHODS The automated site of origin localization system consists of 3 steps: (1) localization of ventricular segment based on population templates, (2) population-based localization within a segment, and (3) patient-specific site localization. Localization error was assessed by the distance between the known reference site and the estimated site. RESULTS In 19 patients undergoing 21 catheter ablation procedures of scar-related VT, site of origin localization accuracy was estimated using 552 left ventricular endocardial pacing sites pooled together and 25 VT-exit sites identified by contact mapping. For the 25 VT-exit sites, localization error of the population-based localization steps was within 10 mm. Patient-specific site localization achieved accuracy of within 3.5 mm after including up to 11 pacing (training) sites. Using 3 remotes (67.8±17.0 mm from the reference VT-exit site), and then 5 close pacing sites, resulted in localization error of 7.2±4.1 mm for the 25 identified VT-exit sites. In 2 emulated clinical procedure with 2 induced VTs, the site of origin localization system achieved accuracy within 4 mm. CONCLUSIONS In this prospective validation study, the automated localization system achieved estimated accuracy within 10 mm and could thus provide clinical utility.
Collapse
Affiliation(s)
- Shijie Zhou
- Department of Biomedical Engineering (S.Z., N.A.T.), Johns Hopkins University, Baltimore, MD.,Alliance for Cardiovascular Diagnostic and Treatment Innovation (S.Z., N.A.T.), Johns Hopkins University, Baltimore, MD.,Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.)
| | - Amir AbdelWahab
- Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.)
| | - B Milan Horáček
- School of Biomedical Engineering (B.M.H.), Dalhousie University, Halifax, NS, Canada
| | - Paul J MacInnis
- Departments of Physiology and Biophysics (P.J.M., J.W.W., J.L.S.), Dalhousie University, Halifax, NS, Canada
| | - James W Warren
- Departments of Physiology and Biophysics (P.J.M., J.W.W., J.L.S.), Dalhousie University, Halifax, NS, Canada
| | - Jason S Davis
- Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.)
| | - Ihab Elsokkari
- Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.)
| | - David C Lee
- Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.)
| | - Ciorsti J MacIntyre
- Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.)
| | - Ratika Parkash
- Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.)
| | - Chris J Gray
- Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.)
| | - Martin J Gardner
- Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.)
| | - Curtis Marcoux
- Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.)
| | - Rajin Choudhury
- Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.)
| | - Natalia A Trayanova
- Department of Biomedical Engineering (S.Z., N.A.T.), Johns Hopkins University, Baltimore, MD.,Alliance for Cardiovascular Diagnostic and Treatment Innovation (S.Z., N.A.T.), Johns Hopkins University, Baltimore, MD
| | - John L Sapp
- Heart Rhythm Service, Cardiology Division, Department of Medicine, Queen Elizabeth II Health Sciences Centre, Halifax, NS, Canada (S.Z., A.A., J.S.D., I.E., D.C.L., C.J.M., R.P., C.J.G., M.J.G., C.M., R.C., J.L.S.).,Departments of Physiology and Biophysics (P.J.M., J.W.W., J.L.S.), Dalhousie University, Halifax, NS, Canada.,Medicine (J.L.S.), Dalhousie University, Halifax, NS, Canada
| |
Collapse
|