1
|
Li Y, Hao P, Duan H, Hao F, Zhao W, Gao Y, Yang Z, So KF, Li X. Activation of adult endogenous neurogenesis by a hyaluronic acid collagen gel containing basic fibroblast growth factor promotes remodeling and functional recovery of the injured cerebral cortex. Neural Regen Res 2025; 20:2923-2937. [PMID: 39610105 PMCID: PMC11826446 DOI: 10.4103/nrr.nrr-d-23-01706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 02/02/2024] [Accepted: 04/20/2024] [Indexed: 11/30/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202510000-00024/figure1/v/2024-11-26T163120Z/r/image-tiff The presence of endogenous neural stem/progenitor cells in the adult mammalian brain suggests that the central nervous system can be repaired and regenerated after injury. However, whether it is possible to stimulate neurogenesis and reconstruct cortical layers II to VI in non-neurogenic regions, such as the cortex, remains unknown. In this study, we implanted a hyaluronic acid collagen gel loaded with basic fibroblast growth factor into the motor cortex immediately following traumatic injury. Our findings reveal that this gel effectively stimulated the proliferation and migration of endogenous neural stem/progenitor cells, as well as their differentiation into mature and functionally integrated neurons. Importantly, these new neurons reconstructed the architecture of cortical layers II to VI, integrated into the existing neural circuitry, and ultimately led to improved brain function. These findings offer novel insight into potential clinical treatments for traumatic cerebral cortex injuries.
Collapse
Affiliation(s)
- Yan Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- China Rehabilitation Science Institute, China Rehabilitation Research Center, Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Hao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yudan Gao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Kwok-Fai So
- Guangdong–HongKong–Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, Guangdong Province, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
- Department of Ophthalmology and State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administration Region, China
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong–HongKong–Macao Greater Bay Area, Guangzhou, Guangdong Province, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiaoguang Li
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
2
|
Lungu CN, Mangalagiu II, Gurau G, Mehedinti MC. Variations of VEGFR2 Chemical Space: Stimulator and Inhibitory Peptides. Int J Mol Sci 2024; 25:7787. [PMID: 39063029 PMCID: PMC11276785 DOI: 10.3390/ijms25147787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The kinase pathway plays a crucial role in blood vessel function. Particular attention is paid to VEGFR type 2 angiogenesis and vascular morphogenesis as the tyrosine kinase pathway is preferentially activated. In silico studies were performed on several peptides that affect VEGFR2 in both stimulating and inhibitory ways. This investigation aims to examine the molecular properties of VEGFR2, a molecule primarily involved in the processes of vasculogenesis and angiogenesis. These relationships were defined by the interactions between Vascular Endothelial Growth Factor receptor 2 (VEGFR2) and the structural features of the systems. The chemical space of the inhibitory peptides and stimulators was described using topological and energetic properties. Furthermore, chimeric models of stimulating and inhibitory proteins (for VEGFR2) were computed using the protein system structures. The interaction between the chimeric proteins and VEGFR was computed. The chemical space was further characterized using complex manifolds and high-dimensional data visualization. The results show that a slightly similar chemical area is shared by VEGFR2 and stimulating and inhibitory proteins. On the other hand, the stimulator peptides and the inhibitors have distinct chemical spaces.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania; (G.G.); (M.C.M.)
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| | - Ionel I. Mangalagiu
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| | - Gabriela Gurau
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania; (G.G.); (M.C.M.)
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| | - Mihaela Cezarina Mehedinti
- Department of Functional and Morphological Science, Faculty of Medicine and Pharmacy, Dunarea de Jos University, 800010 Galati, Romania; (G.G.); (M.C.M.)
- Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Bvd, 700506 Iasi, Romania
| |
Collapse
|
3
|
Gaffar S, Tayara H, Chong KT. Stack-AAgP: Computational prediction and interpretation of anti-angiogenic peptides using a meta-learning framework. Comput Biol Med 2024; 174:108438. [PMID: 38613893 DOI: 10.1016/j.compbiomed.2024.108438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Angiogenesis plays a vital role in the pathogenesis of several human diseases, particularly in the case of solid tumors. In the realm of cancer treatment, recent investigations into peptides with anti-angiogenic properties have yielded encouraging outcomes, thereby creating a hopeful therapeutic avenue for the treatment of cancer. Therefore, correctly identifying the anti-angiogenic peptides is extremely important in comprehending their biophysical and biochemical traits, laying the groundwork for uncovering novel drugs to combat cancer. METHODS In this work, we present a novel ensemble-learning-based model, Stack-AAgP, specifically designed for the accurate identification and interpretation of anti-angiogenic peptides (AAPs). Initially, a feature representation approach is employed, generating 24 baseline models through six machine learning algorithms (random forest [RF], extra tree classifier [ETC], extreme gradient boosting [XGB], light gradient boosting machine [LGBM], CatBoost, and SVM) and four feature encodings (pseudo-amino acid composition [PAAC], amphiphilic pseudo-amino acid composition [APAAC], composition of k-spaced amino acid pairs [CKSAAP], and quasi-sequence-order [QSOrder]). Subsequently, the output (predicted probabilities) from 24 baseline models was inputted into the same six machine-learning classifiers to generate their respective meta-classifiers. Finally, the meta-classifiers were stacked together using the ensemble-learning framework to construct the final predictive model. RESULTS Findings from the independent test demonstrate that Stack-AAgP outperforms the state-of-the-art methods by a considerable margin. Systematic experiments were conducted to assess the influence of hyperparameters on the proposed model. Our model, Stack-AAgP, was evaluated on the independent NT15 dataset, revealing superiority over existing predictors with an accuracy improvement ranging from 5% to 7.5% and an increase in Matthews Correlation Coefficient (MCC) from 7.2% to 12.2%.
Collapse
Affiliation(s)
- Saima Gaffar
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea; Advances Electronics and Information Research Centre, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
4
|
Carnes ME, Gonyea CR, Coburn JM, Pins GD. A biomimetic approach to modulating the sustained release of fibroblast growth factor 2 from fibrin microthread scaffolds. EXPLORATION OF BIOMAT-X 2024; 1:58-83. [PMID: 39070763 PMCID: PMC11274095 DOI: 10.37349/ebmx.2024.00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2024]
Abstract
Aim The pleiotropic effect of fibroblast growth factor 2 (FGF2) on promoting myogenesis, angiogenesis, and innervation makes it an ideal growth factor for treating volumetric muscle loss (VML) injuries. While an initial delivery of FGF2 has demonstrated enhanced regenerative potential, the sustained delivery of FGF2 from scaffolds with robust structural properties as well as biophysical and biochemical signaling cues has yet to be explored for treating VML. The goal of this study is to develop an instructive fibrin microthread scaffold with intrinsic topographic alignment cues as well as regenerative signaling cues and a physiologically relevant, sustained release of FGF2 to direct myogenesis and ultimately enhance functional muscle regeneration. Methods Heparin was passively adsorbed or carbodiimide-conjugated to microthreads, creating a biomimetic binding strategy, mimicking FGF2 sequestration in the extracellular matrix (ECM). It was also evaluated whether FGF2 incorporated into fibrin microthreads would yield sustained release. It was hypothesized that heparin-conjugated and co-incorporated (co-inc) fibrin microthreads would facilitate sustained release of FGF2 from the scaffold and enhance in vitro myoblast proliferation and outgrowth. Results Toluidine blue staining and Fourier transform infrared spectroscopy confirmed that carbodiimide-conjugated heparin bound to fibrin microthreads in a dose-dependent manner. Release kinetics revealed that heparin-conjugated fibrin microthreads exhibited sustained release of FGF2 over a period of one week. An in vitro assay demonstrated that FGF2 released from microthreads remained bioactive, stimulating myoblast proliferation over four days. Finally, a cellular outgrowth assay suggests that FGF2 promotes increased outgrowth onto microthreads. Conclusions It was anticipated that the combined effects of fibrin microthread structural properties, topographic alignment cues, and FGF2 release profiles will facilitate the fabrication of a biomimetic scaffold that enhances the regeneration of functional muscle tissue for the treatment of VML injuries.
Collapse
Affiliation(s)
- Meagan E. Carnes
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Cailin R. Gonyea
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Jeannine M. Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - George D. Pins
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
5
|
Wolkersdorfer AM, Jugovic I, Scheller L, Gutmann M, Hahn L, Diessner J, Lühmann T, Meinel L. PEGylation of Human Vascular Endothelial Growth Factor. ACS Biomater Sci Eng 2024; 10:149-155. [PMID: 37296497 DOI: 10.1021/acsbiomaterials.3c00253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Vascular endothelial growth factor A-165 (VEGF-A165) positively modulates neointimal hyperplasia, lumen stenosis, and neovascularization. One challenge for the use of VEGF-A165 for potential therapy is its short serum half-life. Therefore, we are designing VEGF-A165 bioconjugates carrying polyethylene glycol (PEG). The purity of the recombinantly expressed human VEGF-A165 exceeded 90%. The growth factor had a half-maximal effective concentration of 0.9 ng/mL (EC50) and induced tube formation of human umbilical vein endothelial cells. PEGylation was conducted by Schiff base reaction followed by reductive amination. After purification, two species were obtained, with one or two PEG attached per VEGF-A165 dimer. Both resulting bioconjugates had a purity exceeding 90%, wild-type bioactivity, and increased hydrodynamic radii as required for prolonging the half-life.
Collapse
Affiliation(s)
- Alena Maria Wolkersdorfer
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Isabelle Jugovic
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Lena Scheller
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Lukas Hahn
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Joachim Diessner
- University of Würzburg, Department of Obstetrics and Gynecology, Josef-Schneider-Straße 14, Würzburg DE-97080, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, University, Am Hubland, Würzburg DE-97074, Germany
- Helmholtz Centre for Infection Research, Helmholtz-Institute for RNA-based Infection Research (HIRI), Josef-Schneider-Strasse 2/D15, Würzburg 97080, Germany
| |
Collapse
|
6
|
Guo J, Wang H, Li Y, Zhu S, Hu H, Gu Z. Nanotechnology in coronary heart disease. Acta Biomater 2023; 171:37-67. [PMID: 37714246 DOI: 10.1016/j.actbio.2023.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Coronary heart disease (CHD) is one of the major causes of death and disability worldwide, especially in low- and middle-income countries and among older populations. Conventional diagnostic and therapeutic approaches have limitations such as low sensitivity, high cost and side effects. Nanotechnology offers promising alternative strategies for the diagnosis and treatment of CHD by exploiting the unique properties of nanomaterials. In this review, we use bibliometric analysis to identify research hotspots in the application of nanotechnology in CHD and provide a comprehensive overview of the current state of the art. Nanomaterials with enhanced imaging and biosensing capabilities can improve the early detection of CHD through advanced contrast agents and high-resolution imaging techniques. Moreover, nanomaterials can facilitate targeted drug delivery, tissue engineering and modulation of inflammation and oxidative stress, thus addressing multiple aspects of CHD pathophysiology. We discuss the application of nanotechnology in CHD diagnosis (imaging and sensors) and treatment (regulation of macrophages, cardiac repair, anti-oxidative stress), and provide insights into future research directions and clinical translation. This review serves as a valuable resource for researchers and clinicians seeking to harness the potential of nanotechnology in the management of CHD. STATEMENT OF SIGNIFICANCE: Coronary heart disease (CHD) is the one of leading cause of death and disability worldwide. Nanotechnology offers new strategies for diagnosing and treating CHD by exploiting the unique properties of nanomaterials. This review uses bibliometric analysis to uncover research trends in the use of nanotechnology for CHD. We discuss the potential of nanomaterials for early CHD detection through advanced imaging and biosensing, targeted drug delivery, tissue engineering, and modulation of inflammation and oxidative stress. We also offer insights into future research directions and potential clinical applications. This work aims to guide researchers and clinicians in leveraging nanotechnology to improve CHD patient outcomes and quality of life.
Collapse
Affiliation(s)
- Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Ying Li
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China.
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano-safety, Institute of High Energy Physics, Beijing 100049, China; Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
7
|
Adapala RK, Katari V, Kanugula AK, Ohanyan V, Paruchuri S, Thodeti CK. Deletion of Endothelial TRPV4 Protects Heart From Pressure Overload-Induced Hypertrophy. Hypertension 2023; 80:2345-2356. [PMID: 37702061 PMCID: PMC10705842 DOI: 10.1161/hypertensionaha.123.21528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Left ventricular hypertrophy is a bipolar response, starting as an adaptive response to the hemodynamic challenge, but over time develops maladaptive pathology partly due to microvascular rarefaction and impaired coronary angiogenesis. Despite the profound influence on cardiac function, the mechanotransduction mechanisms that regulate coronary angiogenesis, leading to heart failure, are not well known. METHODS We subjected endothelial-specific knockout mice of mechanically activated ion channel, TRPV4 (transient receptor potential cation channel subfamily V member 4; TRPV4ECKO) to pressure overload via transverse aortic constriction and examined cardiac function, cardiomyocyte hypertrophy, cardiac fibrosis, and apoptosis. Further, we measured microvascular density and underlying TRPV4 mechanotransduction mechanisms using human microvascular endothelial cells, extracellular matrix gels of varying stiffness, unbiased RNA sequencing, small interfering RNA, Western blot, quantitative-PCR, and confocal immunofluorescence techniques. RESULTS We demonstrate that endothelial-specific deletion of TRPV4 preserved cardiac function, cardiomyocyte structure, and reduced cardiac fibrosis compared with TRPV4lox/lox mice, 28 days post-transverse aortic constriction. Interestingly, comprehensive RNA sequencing analysis revealed an upregulation of proangiogenic factors (VEGFα [vascular endothelial growth factor α], NOS3 [nitric oxide synthase 3], and FGF2 [fibroblast growth factor 2]) with concomitant increase in microvascular density in TRPV4ECKO hearts after transverse aortic constriction compared with TRPV4lox/lox. Further, an increased expression of VEGFR2 (vascular endothelial growth factor receptor 2) and activation of the YAP (yes-associated protein) pathway were observed in TRPV4ECKO hearts. Mechanistically, we found that downregulation of TRPV4 in endothelial cells induced matrix stiffness-dependent activation of YAP and VEGFR2 via the Rho/Rho kinase/large tumor suppressor kinase pathway. CONCLUSIONS Our results suggest that endothelial TRPV4 acts as a mechanical break for coronary angiogenesis, and uncoupling endothelial TRPV4 mechanotransduction attenuates pathological cardiac hypertrophy by enhancing coronary angiogenesis.
Collapse
Affiliation(s)
- Ravi K. Adapala
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Venkatesh Katari
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Anantha K. Kanugula
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Sailaja Paruchuri
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Charles K. Thodeti
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| |
Collapse
|
8
|
Romeo FJ, Mavropoulos SA, Ishikawa K. Progress in Clinical Gene Therapy for Cardiac Disorders. Mol Diagn Ther 2023; 27:179-191. [PMID: 36641770 PMCID: PMC10023344 DOI: 10.1007/s40291-022-00632-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 01/16/2023]
Abstract
Despite significant advances in novel treatments and approaches, cardiovascular disease remains the leading cause of death globally. Gene therapy is a promising option for many diseases, including cardiovascular diseases. In the last 30 years, gene therapy has slowly proceeded towards clinical translation and recently reached US Food and Drug Administration approval for several diseases such as Leber congenital amaurosis and spinal muscular atrophy, among others. Previous attempts at developing gene therapies for cardiovascular diseases have yielded promising results in preclinical studies and early-phase clinical trials. However, larger trials failed to demonstrate consistent benefits in patients with ischemic heart disease and heart failure. In this review, we summarize the history and current status of clinical cardiac gene therapy. Starting with angiogenic gene therapy, we also cover more recent gene therapy trials for heart failure and cardiomyopathies. New programs are actively vying to be the first to get Food and Drug Administration approval for a cardiac gene therapy product by taking advantage of novel techniques.
Collapse
Affiliation(s)
- Francisco J Romeo
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, 1 Gustave L. Levy Place, Box 1014, New York, NY, 10029, USA
| | - Spyros A Mavropoulos
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, 1 Gustave L. Levy Place, Box 1014, New York, NY, 10029, USA
| | - Kiyotake Ishikawa
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, 1 Gustave L. Levy Place, Box 1014, New York, NY, 10029, USA.
| |
Collapse
|
9
|
Akbarian M, Bertassoni LE, Tayebi L. Biological aspects in controlling angiogenesis: current progress. Cell Mol Life Sci 2022; 79:349. [PMID: 35672585 PMCID: PMC10171722 DOI: 10.1007/s00018-022-04348-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/25/2022]
Abstract
All living beings continue their life by receiving energy and by excreting waste products. In animals, the arteries are the pathways of these transfers to the cells. Angiogenesis, the formation of the arteries by the development of pre-existed parental blood vessels, is a phenomenon that occurs naturally during puberty due to certain physiological processes such as menstruation, wound healing, or the adaptation of athletes' bodies during exercise. Nonetheless, the same life-giving process also occurs frequently in some patients and, conversely, occurs slowly in some physiological problems, such as cancer and diabetes, so inhibiting angiogenesis has been considered to be one of the important strategies to fight these diseases. Accordingly, in tissue engineering and regenerative medicine, the highly controlled process of angiogenesis is very important in tissue repairing. Excessive angiogenesis can promote tumor progression and lack of enough angiogensis can hinder tissue repair. Thereby, both excessive and deficient angiogenesis can be problematic, this review article introduces and describes the types of factors involved in controlling angiogenesis. Considering all of the existing strategies, we will try to lay out the latest knowledge that deals with stimulating/inhibiting the angiogenesis. At the end of the article, owing to the early-reviewed mechanical aspects that overshadow angiogenesis, the strategies of angiogenesis in tissue engineering will be discussed.
Collapse
Affiliation(s)
- Mohsen Akbarian
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
| | - Luiz E Bertassoni
- Division of Biomaterials and Biomechanics, Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, OR, USA
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
10
|
Vadakke‐Madathil S, Chaudhry HW. Concepts of Cell Therapy and Myocardial Regeneration. Interv Cardiol 2022. [DOI: 10.1002/9781119697367.ch30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
11
|
Narasimhan B, Narasimhan H, Lorente-Ros M, Romeo FJ, Bhatia K, Aronow WS. Therapeutic angiogenesis in coronary artery disease: a review of mechanisms and current approaches. Expert Opin Investig Drugs 2021; 30:947-963. [PMID: 34346802 DOI: 10.1080/13543784.2021.1964471] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Despite tremendous advances, the shortcomings of current therapies for coronary disease are evidenced by the fact that it remains the leading cause of death in many parts of the world. There is hence a drive to develop novel therapies to tackle this disease. Therapeutic approaches to coronary angiogenesis have long been an area of interest in lieu of its incredible, albeit unrealized potential. AREAS COVERED This paper offers an overview of mechanisms of native angiogenesis and a description of angiogenic growth factors. It progresses to outline the advances in gene and stem cell therapy and provides a brief description of other investigational approaches to promote angiogenesis. Finally, the hurdles and limitations unique to this particular area of study are discussed. EXPERT OPINION An effective, sustained, and safe therapeutic option for angiogenesis truly could be the paradigm shift for cardiovascular medicine. Unfortunately, clinically meaningful therapeutic options remain elusive because promising animal studies have not been replicated in human trials. The sheer complexity of this process means that numerous major hurdles remain before therapeutic angiogenesis truly makes its way from the bench to the bedside.
Collapse
Affiliation(s)
- Bharat Narasimhan
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | | | - Marta Lorente-Ros
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Francisco Jose Romeo
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Kirtipal Bhatia
- Department Of Medicine, Mount Sinai St.Lukes-Roosevelt, Icahn School Of Medicine At Mount Sinai, New York, NY, USA
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| |
Collapse
|
12
|
Zhang Z, Ai S, Yang Z, Li X. Peptide-based supramolecular hydrogels for local drug delivery. Adv Drug Deliv Rev 2021; 174:482-503. [PMID: 34015417 DOI: 10.1016/j.addr.2021.05.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/26/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Peptide-based supramolecular hydrogels have shown great promise as drug delivery systems (DDSs) because of their excellent biocompatibility, biodegradability, biological function, synthetic feasibility, and responsiveness to external stimuli. Self-assembling peptide molecules are able rationally designed into specific nanoarchitectures in response to the different environmental factors under different circumstances. Among all stimuli that have been investigated, utilizing inherent biological microenvironment, such as metal ions, enzymes and endogenous redox species, to trigger self-assembly endows such systems spatiotemporal controllability to transport therapeutics more accurately. Materials formed by weak non-covalent interactions result in the shear-thinning and immediate recovery behavior. Thus, they are injectable via a syringe or catheter, making them the ideal vehicles to deliver drugs. Based on the above merits, self-assembling peptide-based DDSs have been applied to treat various diseases via direct administration at the lesion site. Herein, in this review, we outline the triggers for inducing peptide-based hydrogels formation and serving as DDSs. We also described the advancements of peptide-based supramolecular hydrogels for local drug delivery, including intratumoral, subcutaneous, ischemia-related tissue (intramyocardial, intrarenal, and ischemic hind limb), and ocular administration. Finally, we give a brief perspective about the prospects and challenges in this field.
Collapse
Affiliation(s)
- Zhenghao Zhang
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China
| | - Sifan Ai
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, PR China.
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou 325027, PR China.
| |
Collapse
|
13
|
Borrelli MA, Turnquist HR, Little SR. Biologics and their delivery systems: Trends in myocardial infarction. Adv Drug Deliv Rev 2021; 173:181-215. [PMID: 33775706 PMCID: PMC8178247 DOI: 10.1016/j.addr.2021.03.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular disease is the leading cause of death around the world, in which myocardial infarction (MI) is a precipitating event. However, current therapies do not adequately address the multiple dysregulated systems following MI. Consequently, recent studies have developed novel biologic delivery systems to more effectively address these maladies. This review utilizes a scientometric summary of the recent literature to identify trends among biologic delivery systems designed to treat MI. Emphasis is placed on sustained or targeted release of biologics (e.g. growth factors, nucleic acids, stem cells, chemokines) from common delivery systems (e.g. microparticles, nanocarriers, injectable hydrogels, implantable patches). We also evaluate biologic delivery system trends in the entire regenerative medicine field to identify emerging approaches that may translate to the treatment of MI. Future developments include immune system targeting through soluble factor or chemokine delivery, and the development of advanced delivery systems that facilitate the synergistic delivery of biologics.
Collapse
Affiliation(s)
- Matthew A Borrelli
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA.
| | - Heth R Turnquist
- Starzl Transplantation Institute, 200 Darragh St, Pittsburgh, PA 15213, USA; Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | - Steven R Little
- Department of Chemical Engineering, University of Pittsburgh, 940 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, 302 Benedum Hall, 3700 O'Hara Street, Pittsburgh, PA 15213, USA; Department of Clinical and Translational Science, University of Pittsburgh, Forbes Tower, Suite 7057, Pittsburgh, PA 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Suite 300, Pittsburgh, PA 15219, USA; Department of Immunology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA; Department of Pharmaceutical Science, University of Pittsburgh, 3501 Terrace Street, Pittsburgh, PA 15213, USA; Department of Ophthalmology, University of Pittsburgh, 203 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
14
|
Abune L, Wang Y. Affinity Hydrogels for Protein Delivery. Trends Pharmacol Sci 2021; 42:300-312. [PMID: 33632537 PMCID: PMC7954985 DOI: 10.1016/j.tips.2021.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/24/2022]
Abstract
Proteins have been studied as therapeutic agents for treatment of various human diseases. However, the delivery of protein drugs into the body is challenging. In this review, we summarize and highlight progress in developing affinity hydrogels (i.e., hydrogels functionalized with protein-bound ligands) for controlled protein release. Contrary to traditional hydrogels, which release proteins mainly through diffusion, affinity hydrogels stably retain and sustainably release proteins based mainly on diffusion coupled with a binding reaction. These hydrogels can also be modulated to release proteins in response to defined molecules in a triggered manner. Future research efforts may focus on the development of intelligent affinity hydrogels to mimic the properties of human tissues in sensing different environmental stimuli for on-demand release of single or multiple proteins (i.e., biomimetic intelligence for protein delivery).
Collapse
Affiliation(s)
- Lidya Abune
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
Congestive Heart Failure. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
16
|
Skeletal Muscle Tissue Engineering: Biomaterials-Based Strategies for the Treatment of Volumetric Muscle Loss. Bioengineering (Basel) 2020; 7:bioengineering7030085. [PMID: 32751847 PMCID: PMC7552659 DOI: 10.3390/bioengineering7030085] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Millions of Americans suffer from skeletal muscle injuries annually that can result in volumetric muscle loss (VML), where extensive musculoskeletal damage and tissue loss result in permanent functional deficits. In the case of small-scale injury skeletal muscle is capable of endogenous regeneration through activation of resident satellite cells (SCs). However, this is greatly reduced in VML injuries, which remove native biophysical and biochemical signaling cues and hinder the damaged tissue's ability to direct regeneration. The current clinical treatment for VML is autologous tissue transfer, but graft failure and scar tissue formation leave patients with limited functional recovery. Tissue engineering of instructive biomaterial scaffolds offers a promising approach for treating VML injuries. Herein, we review the strategic engineering of biophysical and biochemical cues in current scaffold designs that aid in restoring function to these preclinical VML injuries. We also discuss the successes and limitations of the three main biomaterial-based strategies to treat VML injuries: acellular scaffolds, cell-delivery scaffolds, and in vitro tissue engineered constructs. Finally, we examine several innovative approaches to enhancing the design of the next generation of engineered scaffolds to improve the functional regeneration of skeletal muscle following VML injuries.
Collapse
|
17
|
Thota C, Berger AA, Elomaa L, Nie C, Böttcher C, Koksch B. Coassembly Generates Peptide Hydrogel with Wound Dressing Material Properties. ACS OMEGA 2020; 5:8557-8563. [PMID: 32337417 PMCID: PMC7178367 DOI: 10.1021/acsomega.9b04371] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/05/2020] [Indexed: 05/21/2023]
Abstract
Multicomponent self-assembly of peptides is a powerful strategy to fabricate novel functional materials with synergetic properties that can be used for several nanobiotechnological applications. In the present study, we used a coassembly strategy to generate an injectable ultrashort bioactive peptide hydrogel formed by mixing a dipeptide hydrogelator with a macrophage attracting short chemotactic peptide ligand. Coassembly does not impede hydrogelation as shown by cryo-transmission electron microscopy (cryo-TEM), scanning electron microscopy, and rheology. Biocompatibility was shown by cytotoxicity assays and confocal microscopy. The hydrogels release the entrapped skin antibiotic ciprofloxacin, among others, in a slow and continuous manner. Such bioinspired advanced functional materials can find applications as wound dressing materials to treat chronic wound conditions like diabetic foot ulcer.
Collapse
Affiliation(s)
- Chaitanya
Kumar Thota
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Allison A. Berger
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Laura Elomaa
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Chaunxiong Nie
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| | - Christoph Böttcher
- Research
Center for Electron Microscopy, Freie Universität
Berlin, Fabeckstrasse
36a, 14195 Berlin, Germany
| | - Beate Koksch
- Department
of Chemistry and Biochemistry, Freie Universität
Berlin, Takustrasse 3, 14195 Berlin, Germany
| |
Collapse
|
18
|
Proangiogenic and Proarteriogenic Therapies in Coronary Microvasculature Dysfunction. Microcirculation 2020. [DOI: 10.1007/978-3-030-28199-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Mizuno Y, Taguchi T. A hydrophobic gelatin fiber sheet promotes secretion of endogenous vascular endothelial growth factor and stimulates angiogenesis. RSC Adv 2020; 10:24800-24807. [PMID: 35517459 PMCID: PMC9055140 DOI: 10.1039/d0ra03593a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/20/2020] [Indexed: 01/24/2023] Open
Abstract
In tissue engineering and regenerative medicine, the formation of vascular beds is an effective method to supply oxygen and nutrients to implanted cells or tissues to improve their survival and promote normal cellular functions. Various types of angiogenic materials have been developed by incorporating growth factors, such as vascular endothelial growth factor, in biocompatible materials. However, these exogenous growth factors suffer from instability and inactivation under physiological conditions. In this study, we designed a novel angiogenic electrospun fiber sheet (C16-FS) composed of Alaska pollock-derived gelatin (ApGltn) modified with hexadecyl (C16) groups to induce localized and sustained angiogenesis without growth factors. C16-FS was thermally crosslinked to enhance its stability. We demonstrated that C16-FS swells in phosphate-buffered saline for over 24 h and resists degradation. Laser doppler perfusion imaging showed that C16-FS induced increased blood perfusion when implanted subcutaneously in rats compared with unmodified ApGltn-fiber sheets (Org-FS) and the sham control. Furthermore, angiogenesis was sustained for up to 7 days following implantation. Immunohistochemical studies revealed elevated nuclear factor-κB and CD31 levels around the C16-FS implantation site compared with the Org-FS implantation site and the control incision site. These results demonstrate that C16-FS is a promising angiogenic material to promote the formation of vascular beds for cell and tissue transplantation without the need for growth factors. In vivo long-term growth factor-free angiogenesis by LPS-mimicking C16-modified gelatin based electrospun fiber sheet.![]()
Collapse
Affiliation(s)
- Yosuke Mizuno
- Graduate School of Science and Technology
- University of Tsukuba
- Tsukuba
- Japan
- Polymers and Biomaterials Field
| | - Tetsushi Taguchi
- Graduate School of Science and Technology
- University of Tsukuba
- Tsukuba
- Japan
- Polymers and Biomaterials Field
| |
Collapse
|
20
|
Non-infarct related chronically occluded coronary arteries and its association with diabetes and prediabetes. COR ET VASA 2019. [DOI: 10.33678/cor.2019.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Liu X, Liu Z, Chen J, Zhu L, Zhang H, Quan X, Yuan Y, Miao H, Huang B, Dong H, Zhang Z. Pigment Epithelium-Derived Factor Increases Native Collateral Blood Flow to Improve Cardiac Function and Induce Ventricular Remodeling After Acute Myocardial Infarction. J Am Heart Assoc 2019; 8:e013323. [PMID: 31718448 PMCID: PMC6915271 DOI: 10.1161/jaha.119.013323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background We previously found that the structural defects of the coronary collateral microcirculation reserve (CCMR) prevent these preformed collateral vessels from continuously delivering the native collateral blood and supporting the ischemic myocardium in rats. Here, we tested whether these native collaterals can be remodeled by artificially increasing pigment epithelium–derived factor (PEDF) expression and demonstrated the mechanism for this stimulation. Methods and Results We performed intramyocardial gene delivery (PEDF‐lentivirus, 2×107 TU) along the left anterior descending coronary artery to artificially increase the expression of PEDF in the tissue of the region for 2 weeks. By blocking the left anterior descending coronary artery, we examined the effects of PEDF on native collateral blood flow and CCMR. The results of positron emission tomography perfusion imaging showed that PEDF increased the native collateral blood flow and significantly inhibited its decline during acute myocardial infarction. In addition, the number of CCMR vessels decreased and the size increased. Similar results were obtained from in vitro experiments. We tested whether PEDF induces CCMR remodeling in a fluid shear stress–like manner by detecting proteins and signaling pathways that are closely related to fluid shear stress. The nitric oxide pathway and the Notch‐1 pathway participated in the process of CCMR remodeling induced by PEDF. Conclusions PEDF treatment activates the nitric oxide pathway, and the Notch‐1 pathway enabled CCMR remodeling. Increasing the native collateral blood flow can promote the ventricular remodeling process and improve prognosis after acute myocardial infarction.
Collapse
Affiliation(s)
- Xiucheng Liu
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Zhiwei Liu
- Morphological Research Experiment CenterXuzhou Medical UniversityXuzhouChina
| | - Jiali Chen
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Lidong Zhu
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Hao Zhang
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Xiaoyu Quan
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Yanliang Yuan
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Haoran Miao
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Bing Huang
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| | - Hongyan Dong
- Morphological Research Experiment CenterXuzhou Medical UniversityXuzhouChina
| | - Zhongming Zhang
- Department of Thoracic Cardiovascular SurgeryAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
22
|
The Human Coronary Collateral Circulation, Its Extracardiac Anastomoses and Their Therapeutic Promotion. Int J Mol Sci 2019; 20:ijms20153726. [PMID: 31366096 PMCID: PMC6696371 DOI: 10.3390/ijms20153726] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 01/09/2023] Open
Abstract
Cardiovascular disease remains the leading global cause of death, and the number of patients with coronary artery disease (CAD) and exhausted therapeutic options (i.e., percutaneous coronary intervention (PCI), coronary artery bypass grafting (CABG) and medical treatment) is on the rise. Therefore, the evaluation of new therapeutic approaches to offer an alternative treatment strategy for these patients is necessary. A promising research field is the promotion of the coronary collateral circulation, an arterio-arterial network able to prevent or reduce myocardial ischemia in CAD. This review summarizes the basic principles of the human coronary collateral circulation, its extracardiac anastomoses as well as the different therapeutic approaches, especially that of stimulating the extracardiac collateral circulation via permanent occlusion of the internal mammary arteries.
Collapse
|
23
|
Arunkumar P, Dougherty JA, Weist J, Kumar N, Angelos MG, Powell HM, Khan M. Sustained Release of Basic Fibroblast Growth Factor (bFGF) Encapsulated Polycaprolactone (PCL) Microspheres Promote Angiogenesis In Vivo. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1037. [PMID: 31330782 PMCID: PMC6669517 DOI: 10.3390/nano9071037] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022]
Abstract
Coronary heart disease (CHD) is the leading cause of death in the Unites States and globally. The administration of growth factors to preserve cardiac function after myocardial infarction (MI) is currently being explored. Basic fibroblast growth factor (bFGF), a potent angiogenic factor has poor clinical efficacy due to its short biological half-life and low plasma stability. The goal of this study was to develop bFGF-loaded polycaprolactone (PCL) microspheres for sustained release of bFGF and to evaluate its angiogenic potential. The bFGF-PCL microspheres (bFGF-PCL-MS) were fabricated using the emulsion solvent-evaporation method and found to have spherical morphology with a mean size of 4.21 ± 1.28 µm. In vitro bFGF release studies showed a controlled release for up to 30 days. Treatment of HUVECs with bFGF-PCL-MS in vitro enhanced their cell proliferation and migration properties when compared to the untreated control group. Treatment of HUVECs with release media from bFGF-PCL-MS also significantly increased expression of angiogenic genes (bFGF and VEGFA) as compared to untreated cells. The in vivo angiogenic potential of these bFGF-PCL-MS was further confirmed in rats using a Matrigel plug assay with subsequent immunohistochemical staining showing increased expression of angiogenic markers. Overall, bFGF-PCL-MS could serve as a potential angiogenic agent to promote cell survival and angiogenesis following an acute myocardial infarction.
Collapse
Affiliation(s)
- Pala Arunkumar
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Julie A Dougherty
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jessica Weist
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Naresh Kumar
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Mark G Angelos
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Heather M Powell
- Department of Materials Science and Engineering, Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- Research Department, Shriners Hospitals for Children, Cincinnati, OH 43210, USA
| | - Mahmood Khan
- Department of Emergency Medicine, College of Medicine, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Kwee BJ, Seo BR, Najibi AJ, Li AW, Shih TY, White D, Mooney DJ. Treating ischemia via recruitment of antigen-specific T cells. SCIENCE ADVANCES 2019; 5:eaav6313. [PMID: 31392268 PMCID: PMC6669016 DOI: 10.1126/sciadv.aav6313] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 06/25/2019] [Indexed: 05/18/2023]
Abstract
Ischemic diseases are a leading cause of mortality and can result in autoamputation of lower limbs. We explored the hypothesis that implantation of an antigen-releasing scaffold, in animals previously vaccinated with the same antigen, can concentrate TH2 T cells and enhance vascularization of ischemic tissue. This approach may be clinically relevant, as all persons receiving childhood vaccines recommended by the Centers for Disease Control and Prevention have vaccines that contain aluminum, a TH2 adjuvant. To test the hypothesis, mice with hindlimb ischemia, previously vaccinated with ovalbumin (OVA) and aluminum, received OVA-releasing scaffolds. Vaccinated mice receiving OVA-releasing scaffolds locally concentrated antigen-specific TH2 T cells in the surrounding ischemic tissue. This resulted in local angiogenesis, increased perfusion in ischemic limbs, and reduced necrosis and enhanced regenerating myofibers in the muscle. These findings support the premise that antigen depots may provide a treatment for ischemic diseases in patients previously vaccinated with aluminum-containing adjuvants.
Collapse
Affiliation(s)
- Brian J. Kwee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Bo Ri Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alexander J. Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Aileen W. Li
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Des White
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J. Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Wyss Institute Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
25
|
Karki S, Farb MG, Sharma VM, Jash S, Zizza EJ, Hess DT, Carmine B, Carter CO, Pernar LI, Apovian CM, Puri V, Gokce N. Fat-Specific Protein 27 Regulation of Vascular Function in Human Obesity. J Am Heart Assoc 2019; 8:e011431. [PMID: 31433737 PMCID: PMC6585348 DOI: 10.1161/jaha.118.011431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022]
Abstract
Background Pathophysiological mechanisms that connect obesity to cardiovascular disease are incompletely understood. FSP27 (Fat-specific protein 27) is a lipid droplet-associated protein that regulates lipolysis and insulin sensitivity in adipocytes. We unexpectedly discovered extensive FSP27 expression in human endothelial cells that is downregulated in association with visceral obesity. We sought to examine the functional role of FSP27 in the control of vascular phenotype. Methods and Results We biopsied paired subcutaneous and visceral fat depots from 61 obese individuals (body mass index 44±8 kg/m2, age 48±4 years) during planned bariatric surgery. We characterized depot-specific FSP27 expression in relation to adipose tissue microvascular insulin resistance, endothelial function and angiogenesis, and examined differential effects of FSP27 modification on vascular function. We observed markedly reduced vasodilator and angiogenic capacity of microvessels isolated from the visceral compared with subcutaneous adipose depots. Recombinant FSP27 and/or adenoviral FSP27 overexpression in human tissue increased endothelial nitric oxide synthase phosphorylation and nitric oxide production, and rescued vasomotor and angiogenic dysfunction (P<0.05), while siRNA-mediated FSP27 knockdown had opposite effects. Mechanistically, we observed that FSP27 interacts with vascular endothelial growth factor-A and exerts robust regulatory control over its expression. Lastly, in a subset of subjects followed longitudinally for 12±3 months after their bariatric surgery, 30% weight loss improved metabolic parameters and increased angiogenic capacity that correlated positively with increased FSP27 expression (r=0.79, P<0.05). Conclusions Our data strongly support a key role and functional significance of FSP27 as a critical endogenous modulator of human microvascular function that has not been previously described. FSP27 may serve as a previously unrecognized regulator of arteriolar vasomotor capacity and angiogenesis which are pivotal in the pathogenesis of cardiometabolic diseases linked to obesity.
Collapse
Affiliation(s)
- Shakun Karki
- Evans Department of Medicine and Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Melissa G. Farb
- Evans Department of Medicine and Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Vishva M. Sharma
- Department of Biomedical Sciences and Diabetes InstituteOhio UniversityAthensOH
| | - Sukanta Jash
- Department of Biomedical Sciences and Diabetes InstituteOhio UniversityAthensOH
| | - Elaina J. Zizza
- Evans Department of Medicine and Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Donald T. Hess
- Department of General SurgeryBoston University School of MedicineBostonMA
| | - Brian Carmine
- Department of General SurgeryBoston University School of MedicineBostonMA
| | - Cullen O. Carter
- Department of General SurgeryBoston University School of MedicineBostonMA
| | - Luise I. Pernar
- Department of General SurgeryBoston University School of MedicineBostonMA
| | - Caroline M. Apovian
- Evans Department of Medicine and Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| | - Vishwajeet Puri
- Department of Biomedical Sciences and Diabetes InstituteOhio UniversityAthensOH
| | - Noyan Gokce
- Evans Department of Medicine and Whitaker Cardiovascular InstituteBoston University School of MedicineBostonMA
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Refractory angina (RA), which is characterized by tissue ischemia along with neurological, mitochondrial, and psychogenic dysfunction, is becoming a major cause of morbidity in patients with advanced coronary artery disease. In this review, we discuss in detail the invasive mechanical non-cell therapy-based options, the evidence behind these therapies, and future trends. RECENT FINDINGS There is extensive ongoing research in the areas of spinal-cord stimulation, transmyocardial laser revascularization, sympathectomy, angiogenesis, and other non-cell-based therapies to explore the best therapy for refractory angina. There is conflicting data in the literature suggesting subjective improvement in angina, but very few studies boast improvement in core objective parameters such as myocardial blood flow, survival, or rehospitalizations. Patients with refractory angina are a complex group of patients that need novel approaches to help alleviate their symptoms and reduce mortality. A carefully selected sequence of therapies may provide the best results in this patient population.
Collapse
Affiliation(s)
- Amod Amritphale
- Oklahoma University Health Sciences Center, Oklahoma City, OK, USA.
| | | |
Collapse
|
27
|
Zahiri J, Khorsand B, Yousefi AA, Kargar M, Shirali Hossein Zade R, Mahdevar G. AntAngioCOOL: computational detection of anti-angiogenic peptides. J Transl Med 2019; 17:71. [PMID: 30832671 PMCID: PMC6399940 DOI: 10.1186/s12967-019-1813-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 02/21/2019] [Indexed: 01/01/2023] Open
Abstract
Background Angiogenesis inhibition research is a cutting edge area in angiogenesis-dependent disease therapy, especially in cancer therapy. Recently, studies on anti-angiogenic peptides have provided promising results in the field of cancer treatment. Methods A non-redundant dataset of 135 anti-angiogenic peptides (positive instances) and 135 non anti-angiogenic peptides (negative instances) was used in this study. Also, 20% of each class were selected to construct an independent test dataset (see Additional files 1, 2). We proposed an effective machine learning based R package (AntAngioCOOL) to predict anti-angiogenic peptides. We have examined more than 200 different classifiers to build an efficient predictor. Also, more than 17,000 features were extracted to encode the peptides. Results Finally, more than 2000 informative features were selected to train the classifiers for detecting anti-angiogenic peptides. AntAngioCOOL includes three different models that can be selected by the user for different purposes; it is the most sensitive, most specific and most accurate. According to the obtained results AntAngioCOOL can effectively suggest anti-angiogenic peptides; this tool achieved sensitivity of 88%, specificity of 77% and accuracy of 75% on the independent test set. AntAngioCOOL can be accessed at https://cran.r-project.org/. Conclusions Only 2% of the extracted descriptors were used to build the predictor models. The results revealed that physico-chemical profile is the most important feature type in predicting anti-angiogenic peptides. Also, atomic profile and PseAAC are the other important features. Electronic supplementary material The online version of this article (10.1186/s12967-019-1813-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Javad Zahiri
- Bioinformatics and Computational Omics. Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University (TMU), Tehran, Iran.
| | - Babak Khorsand
- Computer Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Akbar Yousefi
- Department of Computer Engineering, Faculty of Engineering, University of Science and Culture, Tehran, Iran
| | - Mohammadjavad Kargar
- Department of Computer Engineering, Faculty of Engineering, University of Science and Culture, Tehran, Iran
| | | | - Ghasem Mahdevar
- Department of Mathematics, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| |
Collapse
|
28
|
Pillarisetti P, Myers KA. Identification and characterization of agnuside, a natural proangiogenic small molecule. Eur J Med Chem 2018; 160:193-206. [PMID: 30340142 PMCID: PMC6287603 DOI: 10.1016/j.ejmech.2018.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 12/29/2022]
Abstract
Due to its important role in regulating angiogenesis, vascular homeostasis and remodeling, and arteriogenesis in blood vascular and lymphatic endothelial cells, VEGFR2 stimulation has demonstrated promise in preclinical studies as an endovascular treatment for ischemic myocardial and peripheral disease. However, the short half-life of protein- and cytokine-based strategies and transduction inefficiency of vector-based modalities have hindered its clinical therapeutic applications. In the present study, we used a streamlined bioinformatics strategy combining ligand-based pharmacophore development and validation, virtual screening, and molecular docking to identify agnuside, a non-toxic, natural small molecule extract of Vitex agnus-castus possessing strong binding affinity, druggable physiochemical properties, and conformationally stable hydrogen bond and hydrophobic interactions with catalytically important residues within VEGFR2's active and allosteric sites. In-vitro proliferation, tube formation, and scratch wound migration assays provide evidence that agnuside promotes endothelial cell angiogenesis. Agnuside increases HUVEC proliferation with an EC50 of 1.376 μg/mL, stimulates tubulogenesis dose-dependently, and increases scratch wound migration rate. An additional angiogenesis assay suggests that agnuside may actively compete with a VEGFR2 inhibitor for VEGFR2 binding site occupancy to increase total length and branching length of HUVEC tubular networks. Chemometric analysis of molecular interaction fields (MIFs) by partial least squares (PLS)-derived quantitative structure activity relationship (QSAR) analysis and MIF contours provides the framework for the formulation of agnuside analogues possessing greater potency. Our research supports that agnuside may be a lead molecule for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Piyush Pillarisetti
- Department of Biology, University of Pennsylvania, 433 S University Avenue, Philadelphia, PA, 19104, USA.
| | - Kenneth A Myers
- Department of Biological Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
29
|
Abstract
Programmable hydrogels are defined as hydrogels that are able to change their properties and functions periodically, reversibly and/or sequentially on demand. They are different from those responsive hydrogels whose changes are passive or cannot be stopped or reversed once started and vice versa. The purpose of this review is to summarize major progress in developing programmable hydrogels from the viewpoints of principles, functions and biomedical applications. The principles are first introduced in three categories including biological, chemical and physical stimulation. With the stimulation, programmable hydrogels can undergo functional changes in dimension, mechanical support, cell attachment and molecular sequestration, which are introduced in the middle of this review. The last section is focused on the introduction and discussion of four biomedical applications including mechanistic studies in mechanobiology, tissue engineering, cell separation and protein delivery.
Collapse
Affiliation(s)
- Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University University Park, PA 16802, USA.
| |
Collapse
|
30
|
Schanza LM, Seles M, Stotz M, Fosselteder J, Hutterer GC, Pichler M, Stiegelbauer V. MicroRNAs Associated with Von Hippel-Lindau Pathway in Renal Cell Carcinoma: A Comprehensive Review. Int J Mol Sci 2017; 18:ijms18112495. [PMID: 29165391 PMCID: PMC5713461 DOI: 10.3390/ijms18112495] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/07/2017] [Accepted: 11/17/2017] [Indexed: 02/08/2023] Open
Abstract
Renal cell carcinoma (RCC) are the most common renal neoplasia and can be divided into three main histologic subtypes, among which clear cell RCC is by far the most common form of kidney cancer. Despite substantial advances over the last decade in the understanding of RCC biology, surgical treatments, and targeted and immuno-therapies in the metastatic setting, the prognosis for advanced RCC patients remains poor. One of the major problems with RCC treatment strategies is inherent or acquired resistance towards therapeutic agents over time. The discovery of microRNAs (miRNAs), a class of small, non-coding, single-stranded RNAs that play a crucial role in post-transcriptional regulation, has added new dimensions to the development of novel diagnostic and treatment tools. Because of an association between Von Hippel–Lindau (VHL) genes with chromosomal loss in 3p25-26 and clear cell RCC, miRNAs have attracted considerable scientific interest over the last years. The loss of VHL function leads to constitutional activation of the hypoxia inducible factor (HIF) pathway and to consequent expression of numerous angiogenic and carcinogenic factors. Since miRNAs represent key players of carcinogenesis, tumor cell invasion, angiogenesis, as well as in development of metastases in RCC, they might serve as potential therapeutic targets. Several miRNAs are already known to be dysregulated in RCC and have been linked to biological processes involved in tumor angiogenesis and response to anti-cancer therapies. This review summarizes the role of different miRNAs in RCC angiogenesis and their association with the VHL gene, highlighting their potential role as novel drug targets.
Collapse
Affiliation(s)
- Lisa-Maria Schanza
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Maximilian Seles
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| | - Michael Stotz
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Johannes Fosselteder
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
| | - Georg C Hutterer
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Verena Stiegelbauer
- Research Unit of Non-Coding RNA and Genome Editing in Cancer, Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria.
- Department of Urology, Medical University of Graz, 8036 Graz, Austria.
| |
Collapse
|
31
|
Hedhli J, Konopka CJ, Schuh S, Bouvin H, Cole JA, Huntsman HD, Kilian KA, Dobrucki IT, Boppart MD, Dobrucki LW. Multimodal Assessment of Mesenchymal Stem Cell Therapy for Diabetic Vascular Complications. Theranostics 2017; 7:3876-3888. [PMID: 29109784 PMCID: PMC5667411 DOI: 10.7150/thno.19547] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022] Open
Abstract
Peripheral arterial disease (PAD) is a debilitating complication of diabetes mellitus (DM) that leads to thousands of injuries, amputations, and deaths each year. The use of mesenchymal stem cells (MSCs) as a regenerative therapy holds the promise of regrowing injured vasculature, helping DM patients live healthier and longer lives. We report the use of muscle-derived MSCs to treat surgically-induced hindlimb ischemia in a mouse model of type 1 diabetes (DM-1). We serially evaluate several facets of the recovery process, including αVβ3-integrin expression (a marker of angiogenesis), blood perfusion, and muscle function. We also perform microarray transcriptomics experiments to characterize the gene expression states of the MSC-treated is- chemic tissues, and compare the results with those of non-ischemic tissues, as well as ischemic tissues from a saline-treated control group. The results show a multifaceted impact of mMSCs on hindlimb ischemia. We determined that the angiogenic activity one week after mMSC treatment was enhanced by approximately 80% relative to the saline group, which resulted in relative increases in blood perfusion and muscle strength of approximately 42% and 1.7-fold, respectively. At the transcriptomics level, we found that several classes of genes were affected by mMSC treatment. The mMSCs appeared to enhance both pro-angiogenic and metabolic genes, while suppressing anti-angiogenic genes and certain genes involved in the inflammatory response. All told, mMSC treatment appears to exert far-reaching effects on the microenvironment of ischemic tissue, enabling faster and more complete recovery from vascular occlusion.
Collapse
|
32
|
Rubert Pérez CM, Álvarez Z, Chen F, Aytun T, Stupp SI. Mimicking the Bioactivity of Fibroblast Growth Factor-2 Using Supramolecular Nanoribbons. ACS Biomater Sci Eng 2017; 3:2166-2175. [PMID: 28920077 PMCID: PMC5596412 DOI: 10.1021/acsbiomaterials.7b00347] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/16/2017] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factor (FGF-2) is a multifunctional growth factor that has pleiotropic effects in different tissues and organs. In particular, FGF-2 has a special role in angiogenesis, an important process in development, wound healing, cell survival, and differentiation. Therefore, incorporating biological agents like FGF-2 within therapeutic biomaterials is a potential strategy to create angiogenic bioactivity for the repair of damaged tissue caused by trauma or complications that arise from age and/or disease. However, the use of growth factors as therapeutic agents can be costly and does not always bring about efficient tissue repair due to rapid clearance from the targeted site. An alternative would be a stable supramolecular nanostructure with the capacity to activate the FGF-2 receptor that can also assemble into a scaffold deliverable to tissue. We report here on peptide amphiphiles that incorporate a peptide known to activate the FGF-2 receptor and peptide domains that drive its self-assembly into supramolecular nanoribbons. These FGF2-PA nanoribbons displayed the ability to increase the proliferation and migration of the human umbilical vein endothelial cells (HUVECs) in vitro to the same extent as the native FGF-2 protein at certain concentrations. We confirmed that this activity was specific to the FGFR1 signaling pathway by tracking the phosphorylation of downstream signaling effectors such ERK1/2 and pH3. These results indicated the specificity of FGF2-PA nanoribbons in activating the FGF-2 signaling pathway and its potential application as a supramolecular scaffold that can be used in vivo as an alternative to the encapsulation and delivery of the native FGF-2 protein.
Collapse
Affiliation(s)
- Charles M Rubert Pérez
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Feng Chen
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| | - Taner Aytun
- Department of Materials and Science & Engineering, Department of Chemistry, and Department of Biomedical Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Simpson Querrey Institute for Bionanotechnology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States.,Department of Materials and Science & Engineering, Department of Chemistry, and Department of Biomedical Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Materials and Science & Engineering, Department of Chemistry, and Department of Biomedical Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Materials and Science & Engineering, Department of Chemistry, and Department of Biomedical Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, 251 E. Huron Street, Chicago, Illinois 60611, United States
| |
Collapse
|
33
|
Feng Y, Li Q, Wu D, Niu Y, Yang C, Dong L, Wang C. A macrophage-activating, injectable hydrogel to sequester endogenous growth factors for in situ angiogenesis. Biomaterials 2017; 134:128-142. [DOI: 10.1016/j.biomaterials.2017.04.042] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 12/11/2022]
|
34
|
Hayashi M, Li TS, Ito H, Mikamo A, Hamano K. Comparison of Intramyocardial and Intravenous Routes of Delivering Bone Marrow Cells for the Treatment of Ischemic Heart Disease: An Experimental Study. Cell Transplant 2017; 13:639-47. [PMID: 15648734 DOI: 10.3727/000000004783983558] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The implantation of bone marrow cells (BMCs) into ischemic heart after myocardial infarction can induce angiogenesis and improve heart function. We compared the advantages of delivering BMCs intramyocardially and intravenously. An acute myocardial infarction model was created by the ligation of left anterior descending artery in female Dark Agouti rats. The rats were then randomly divided into four treatment groups: one given an intramyocardial injection of phosphate-buffered saline (PBS group), one given an intravenous injection of 2 × 107 BMCs from male rats (IV group), one given an intramyocardial injection with total of 2 × 107 BMCs from male rats at four points in the infarction area (IM group), and one given an intravenous injection of 10-fold the number of BMCs from male rats (10xIV group). Quantitative analysis of the SRY gene by real-time PCR showed that the survival of BMCs in the infarcted area was significantly higher in the IM group than in the IV and 10xIV groups, 3 days after treatment (p < 0.05), but not thereafter. However, the blood flow in the infarcted myocardium was significantly better in the IM and 10xIV groups than in the PBS and IV groups 14 days after treatment (p < 0.05). Echocardiography showed that the LVEF continued to decrease in the PBS and IV groups, but was stable after 3 days in the IM and 10xIV groups. By 14 days after treatment, the LVEF was significantly higher in the IM and 10xIV groups than in the PBS and IV groups (p < 0.01). Our results showed that BMCs were more effective delivered intramyocardially than intravenously for inducing angiogenesis and repairing injured myocardium.
Collapse
Affiliation(s)
- Masanori Hayashi
- Division of Cardiovascular Surgery, Department of Medical Bioregulation, Yamaguchi University School of Medicine, Minami-Kogushi 1-1-1, Ube, Yamaguchi, Japan 755-8505
| | | | | | | | | |
Collapse
|
35
|
Eshun D, Saraf R, Bae S, Jeganathan J, Mahmood F, Dilmen S, Ke Q, Lee D, Kang PM, Matyal R. Neuropeptide Y 3-36 incorporated into PVAX nanoparticle improves functional blood flow in a murine model of hind limb ischemia. J Appl Physiol (1985) 2017; 122:1388-1397. [PMID: 28302707 DOI: 10.1152/japplphysiol.00467.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 02/21/2017] [Accepted: 03/12/2017] [Indexed: 02/07/2023] Open
Abstract
We generated a novel nanoparticle called PVAX, which has intrinsic antiapoptotic and anti-inflammatory properties. This nanoparticle was loaded with neuropeptide Y3-36 (NPY3-36), an angiogenic neurohormone that plays a central role in angiogenesis. Subsequently, we investigated whether PVAX-NPY3-36 could act as a therapeutic agent and induce angiogenesis and vascular remodeling in a murine model of hind limb ischemia. Adult C57BL/J6 mice (n = 40) were assigned to treatment groups: control, ischemia PBS, ischemia PVAX, ischemia NPY3-36, and Ischemia PVAX-NPY3-36 Ischemia was induced by ligation of the femoral artery in all groups except control and given relevant treatments (PBS, PVAX, NPY3-36, and PVAX-NPY3-36). Blood flow was quantified using laser Doppler imaging. On days 3 and 14 posttreatment, mice were euthanized to harvest gastrocnemius muscle for immunohistochemistry and immunoblotting. Blood flow was significantly improved in the PVAX-NPY3-36 group after 14 days. Western blot showed an increase in angiogenic factors VEGF-R2 and PDGF-β (P = 0.0035 and P = 0.031, respectively) and antiapoptotic marker Bcl-2 in the PVAX-NPY3-36 group compared with ischemia PBS group (P = 0.023). Proapoptotic marker Smad5 was significantly decreased in the PVAX-NPY3-36 group as compared with the ischemia PBS group (P = 0.028). Furthermore, Y2 receptors were visualized in endothelial cells of newly formed arteries in the PVAX-NPY3-36 group. In conclusion, we were able to show that PVAX-NPY3-36 can induce angiogenesis and arteriogenesis as well as improve functional blood flow in a murine model of hind limb ischemia.NEW & NOTEWORTHY Our research project proposes a novel method for drug delivery. Our patented PVAX nanoparticle can detect areas of ischemia and oxidative stress. Although there have been studies about delivering angiogenic molecules to areas of ischemic injury, there are drawbacks of nonspecific delivery as well as short half-lives. Our study is unique because it can specifically deliver NPY3-36 to ischemic tissue and appears to extend the amount of time therapy is available, despite NPY3-36's short half-life.
Collapse
Affiliation(s)
- Derek Eshun
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Rabya Saraf
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Soochan Bae
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Jelliffe Jeganathan
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
| | - Feroze Mahmood
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
| | - Serkan Dilmen
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Qingen Ke
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Dongwon Lee
- Department of Polymer⋅Nano Science and Technology, Chonbuk National University, Jeonju, South Korea
| | - Peter M Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Robina Matyal
- Department of Anesthesia, Critical Care & Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and
| |
Collapse
|
36
|
|
37
|
Suarez S, Almutairi A, Christman KL. Micro- and Nanoparticles for Treating Cardiovascular Disease. Biomater Sci 2016; 3:564-80. [PMID: 26146548 DOI: 10.1039/c4bm00441h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cardiovascular disease, including myocardial infarction (MI) and peripheral artery disease (PAD), afflicts millions of people in Unites States. Current therapies are insufficient to restore blood flow and repair the injured heart or skeletal muscle, respectively, which is subjected to ischemic damage following vessel occlusion. Micro- and nano-particles are being designed as delivery vehicles for growth factors, enzymes and/or small molecules to provide a sustained therapeutic stimulus at the injured tissue. Depending on the formulation, the particles can be injected directly into the heart or skeletal muscle, or accumulate at the site of injury following an intravenous injection. In this article we review existing particle based therapies for treating MI and PAD.
Collapse
Affiliation(s)
- S Suarez
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California, United States
| | - A Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences and KACST UCSD Center of Excellence in Nanomedicine, University of California, San Diego, La Jolla, California, United States
| | - K L Christman
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California, United States
| |
Collapse
|
38
|
Schirmer L, Atallah P, Werner C, Freudenberg U. StarPEG-Heparin Hydrogels to Protect and Sustainably Deliver IL-4. Adv Healthc Mater 2016; 5:3157-3164. [PMID: 27860466 DOI: 10.1002/adhm.201600797] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/04/2016] [Indexed: 12/31/2022]
Abstract
A major limitation for the therapeutic applications of cytokines is their short half-life time. Glycosaminoglycans (GAGs), known to complex and stabilize cytokines in vivo, are therefore used to form 3D-biohybrid polymer networks capable of aiding the effective administration of Interleukin-4, a key regulator of the inflammatory response. Mimicking the in vivo situation of a protease-rich inflammatory milieu, star-shaped poly(ethylene glycol) (starPEG)-heparin hydrogels and starPEG reference hydrogels without heparin are loaded with Interleukin-4 and subsequently exposed to trypsin as a model protease. Heparin-containing hydrogels retain significantly higher amounts of the Interleukin-4 protein thus exhibiting a significantly higher specific activity than the heparin-free controls. StarPEG-heparin hydrogels are furthermore shown to enable a sustained delivery of the cytokine for time periods of more than two weeks. Primary murine macrophages adopt a wound healing supporting (M2) phenotype when conditioned with Interleukin-4 releasing starPEG-heparin hydrogels. The reported results suggest that GAG-based hydrogels offer valuable options for the effective administration of cytokines in protease-rich proinflammatory milieus such as chronic wounds of diabetic patients.
Collapse
Affiliation(s)
- Lucas Schirmer
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| | - Passant Atallah
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
- Center for Regenerative Therapies Dresden (CRTD); Technische Universität Dresden; Fetscherstraße 105 01307 Dresden Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF); Max Bergmann Center of Biomaterials Dresden (MBC); Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
39
|
van Royen N, Piek JJ, Legemate DA, Schaper W, Oskam J, Atasever B, Voskuil M, Ubbink D, Schirmer SH, Buschmann I, Bode C, Buschmann EE. Design of the START-trial: STimulation of ARTeriogenesis using subcutaneous application of GM-CSF as a new treatment for peripheral vascular disease. A randomized, double-blind, placebo-controlled trial. Vasc Med 2016; 8:191-6. [PMID: 14989560 DOI: 10.1191/1358863x03vm496oa] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peripheral arterial disease (PAD) affects a large percentage of the elderly population. Standard invasive treatment, apart from risk factor modulation, consists of bypass surgery or percutaneous transluminal angioplasty. However, symptomatic recurrence rates are high for both procedures and a substantial part of the patient population with PAD is not a candidate for invasive revascularization due to complexity of the lesion and/or co-morbidity. Therapeutic arteriogenesis has been proposed as an alternative treatment option. The present paper describes the design of the START-trial. This trial aims to determine the potential of the proarteriogenic substance granulocyte/macrophage colony stimulating factor (GM-CSF) to increase maximal walking distance in patients with intermittent claudication. A double-blinded, randomized, placebo-controlled study will be performed in 40 patients with peripheral obstructive arterial disease Rutherford grade I, category 2 or 3, that are candidates for bypass surgery or percutaneous transluminal angioplasty. Based on pharmacokinetic and toxicologic studies, a dose of 10 mg/kg will be used. Patients will be treated for a period of 14 days on each consecutive day, with the last injection applied on day 12. The primary endpoint will be the change in walking distance from day 0 to day 14 as assessed by an exercise treadmill test. Secondary endpoints will be the ankle-brachial index at rest and after exercise, the pain-free walking distance and cutaneous microcirculatory alterations as assessed by laser Doppler fluxmetry. Iliac flow reserve and conductance will be measured by magnetic resonance imaging.
Collapse
Affiliation(s)
- Niels van Royen
- Department of Cardiology, University of Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
SPECT and PET imaging of angiogenesis and arteriogenesis in pre-clinical models of myocardial ischemia and peripheral vascular disease. Eur J Nucl Med Mol Imaging 2016; 43:2433-2447. [PMID: 27517840 PMCID: PMC5095166 DOI: 10.1007/s00259-016-3480-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/28/2016] [Indexed: 01/03/2023]
Abstract
Purpose The extent of neovascularization determines the clinical outcome of coronary artery disease and other occlusive cardiovascular disorders. Monitoring of neovascularization is therefore highly important. This review article will elaborately discuss preclinical studies aimed at validating new nuclear angiogenesis and arteriogenesis tracers. Additionally, we will briefly address possible obstacles that should be considered when designing an arteriogenesis radiotracer. Methods A structured medline search was the base of this review, which gives an overview on different radiopharmaceuticals that have been evaluated in preclinical models. Results Neovascularization is a collective term used to indicate different processes such as angiogenesis and arteriogenesis. However, while it is assumed that sensitive detection through nuclear imaging will facilitate translation of successful therapeutic interventions in preclinical models to the bedside, we still lack specific tracers for neovascularization imaging. Most nuclear imaging research to date has focused on angiogenesis, leaving nuclear arteriogenesis imaging largely overlooked. Conclusion Although angiogenesis is the process which is best understood, there is no scarcity in theoretical targets for arteriogenesis imaging.
Collapse
|
41
|
Harnessing the Potential of Human Autologous Stem Cells to Treat Refractory Angina. JACC Cardiovasc Interv 2016; 9:1586-8. [DOI: 10.1016/j.jcin.2016.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/02/2016] [Indexed: 11/22/2022]
|
42
|
Chen HH, Matkar PN, Afrasiabi K, Kuliszewski MA, Leong-Poi H. Prospect of ultrasound-mediated gene delivery in cardiovascular applications. Expert Opin Biol Ther 2016; 16:815-26. [DOI: 10.1517/14712598.2016.1169268] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
43
|
Sinnathamby T, Yun J, Clavet-Lanthier MÉ, Cheong C, Sirois MG. VEGF and angiopoietins promote inflammatory cell recruitment and mature blood vessel formation in murine sponge/Matrigel model. J Cell Biochem 2016; 116:45-57. [PMID: 25145474 DOI: 10.1002/jcb.24941] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/15/2014] [Indexed: 12/21/2022]
Abstract
A key feature in the induction of pathological angiogenesis is that inflammation precedes and accompanies the formation of neovessels as evidenced by increased vascular permeability and the recruitment of inflammatory cells. Previously, we and other groups have shown that selected growth factors, namely vascular endothelial growth factor (VEGF) and angiopoietins (Ang1 and Ang2) do not only promote angiogenesis, but can also induce inflammatory response. Herein, given a pro-inflammatory environment, we addressed the individual capacity of VEGF and angiopoietins to promote the formation of mature neovessels and to identify the different types of inflammatory cells accompanying the angiogenic process over time. Sterilized polyvinyl alcohol (PVA) sponges soaked in growth factor-depleted Matrigel mixed with PBS, VEGF, Ang1, or Ang2 (200 ng/200 µl) were subcutaneously inserted into anesthetized mice. Sponges were removed at day 4, 7, 14, or 21 post-procedure for histological, immunohistological (IHC), and flow cytometry analyses. As compared to PBS-treated sponges, the three growth factors promoted the recruitment of inflammatory cells, mainly neutrophils and macrophages, and to a lesser extent, T- and B-cells. In addition, they were more potent and more rapid in the recruitment of endothelial cells (ECs) and in the formation and maturation (ensheating of smooth muscle cells around ECs) of neovessels. Thus, the autocrine/paracrine interaction among the different inflammatory cells in combination with VEGF, Ang1, or Ang2 provides a suitable microenvironment for the formation and maturation of blood vessels.
Collapse
Affiliation(s)
- Tharsika Sinnathamby
- Research Center, Montreal Heart Institute, Montréal, Canada; Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | | | | | | | | |
Collapse
|
44
|
Yue X, Lin X, Yang T, Yang X, Yi X, Jiang X, Li X, Li T, Guo J, Dai Y, Shi J, Wei L, Youker KA, Torre-Amione G, Yu Y, Andrade KC, Chang J. Rnd3/RhoE Modulates Hypoxia-Inducible Factor 1α/Vascular Endothelial Growth Factor Signaling by Stabilizing Hypoxia-Inducible Factor 1α and Regulates Responsive Cardiac Angiogenesis. Hypertension 2016; 67:597-605. [PMID: 26781283 DOI: 10.1161/hypertensionaha.115.06412] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/16/2015] [Indexed: 12/25/2022]
Abstract
The insufficiency of compensatory angiogenesis in the heart of patients with hypertension contributes to heart failure transition. The hypoxia-inducible factor 1α-vascular endothelial growth factor (HIF1α-VEGF) signaling cascade controls responsive angiogenesis. One of the challenges in reprograming the insufficient angiogenesis is to achieve a sustainable tissue exposure to the proangiogenic factors, such as HIF1α stabilization. In this study, we identified Rnd3, a small Rho GTPase, as a proangiogenic factor participating in the regulation of the HIF1α-VEGF signaling cascade. Rnd3 physically interacted with and stabilized HIF1α, and consequently promoted VEGFA expression and endothelial cell tube formation. To demonstrate this proangiogenic role of Rnd3 in vivo, we generated Rnd3 knockout mice. Rnd3 haploinsufficient (Rnd3(+/-)) mice were viable, yet developed dilated cardiomyopathy with heart failure after transverse aortic constriction stress. The poststress Rnd3(+/-) hearts showed significantly impaired angiogenesis and decreased HIF1α and VEGFA expression. The angiogenesis defect and heart failure phenotype were partially rescued by cobalt chloride treatment, a HIF1α stabilizer, confirming a critical role of Rnd3 in stress-responsive angiogenesis. Furthermore, we generated Rnd3 transgenic mice and demonstrated that Rnd3 overexpression in heart had a cardioprotective effect through reserved cardiac function and preserved responsive angiogenesis after pressure overload. Finally, we assessed the expression levels of Rnd3 in the human heart and detected significant downregulation of Rnd3 in patients with end-stage heart failure. We concluded that Rnd3 acted as a novel proangiogenic factor involved in cardiac responsive angiogenesis through HIF1α-VEGFA signaling promotion. Rnd3 downregulation observed in patients with heart failure may explain the insufficient compensatory angiogenesis involved in the transition to heart failure.
Collapse
Affiliation(s)
- Xiaojing Yue
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xi Lin
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Tingli Yang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xiangsheng Yang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xin Yi
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xuejun Jiang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Xiaoyan Li
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Tianfa Li
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Junli Guo
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Yuan Dai
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Jianjian Shi
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Lei Wei
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Keith A Youker
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Guillermo Torre-Amione
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Yanhong Yu
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Kelsey C Andrade
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.)
| | - Jiang Chang
- From the Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (X.Y., Y.Y.); Texas A&M University Health Science Center, Institute of Biosciences and Technology, Houston (X.Y., X.L., T.Y., X.Y., Y.D., K.C.A., J.C.); Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (X.Y., X.J., X.L.); Cardiovascular Disease and Research Institute, Affiliated Hospital of Hainan Medical College, Haikou, Hainan, China (T.L., J.G.); Department of Pediatrics, Indiana University School of Medicine, Indianapolis (J.S., L.W.); and Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX (K.A.Y., G.T.-A.).
| |
Collapse
|
45
|
Sun H, Shen D, Zhang C, Huang D, Wang Y, Zhang L. Meta-Analysis on the Correlation Between APOM rs805296 Polymorphism and Risk of Coronary Artery Disease. Med Sci Monit 2016; 22:8-13. [PMID: 26723879 PMCID: PMC4702609 DOI: 10.12659/msm.894829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The present meta-analysis aimed to summarize the inconsistent findings on the association of apolipoprotein M gene (ApoM) rs805296 polymorphism with the risk of coronary artery disease (CAD), and to obtain a more authentic result about this topic. MATERIAL/METHODS A total of 7 available articles were identified through electronic databases--PubMed, EMBASE, and Chinese National Knowledge Infrastructure (CNKI)--and their useful data were carefully extracted. The relationship between ApoM rs805296 polymorphism and CAD risk was assessed by odds ratios (ORs) and corresponding 95% confidence intervals (95% CIs), which were calculated using the fixed- or random-effects model, according to the degree of heterogeneity. Hardy-Weinberg equilibrium test, sensitivity test, and publication bias examination were also performed in this meta-analysis. RESULTS According to the pooled results, ApoM rs805296 polymorphism conferred an increased risk of CAD under all the genetic contrasts: CC versus TT, CC + TC versus TT, CC versus TT+TC, C versus T, and TC versus TT (OR=2.13, 95% CI=1.16-3.91; OR=1.80, 95% CI=1.50-2.17; OR=1.91, 95% CI=1.04-3.51; OR=1.72, 95% CI=1.45-2.04; OR=1.78, 95% CI=1.47-2.15). CONCLUSIONS ApoM rs805296 polymorphism may be a risk factor for developing CAD.
Collapse
|
46
|
Goto K, Takemura G, Takahashi T, Okada H, Kanamori H, Kawamura I, Watanabe T, Morishita K, Tsujimoto A, Miyazaki N, Ushikoshi H, Kawasaki M, Mikami A, Kosai KI, Minatoguchi S. Intravenous Administration of Endothelial Colony-Forming Cells Overexpressing Integrin β1 Augments Angiogenesis in Ischemic Legs. Stem Cells Transl Med 2015; 5:218-26. [PMID: 26702126 DOI: 10.5966/sctm.2015-0096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 10/23/2015] [Indexed: 01/16/2023] Open
Abstract
When injected directly into ischemic tissue in patients with peripheral artery disease, the reparative capacity of endothelial progenitor cells (EPCs) appears to be limited by their poor survival. We, therefore, attempted to improve the survival of transplanted EPCs through intravenous injection and gene modification. We anticipated that overexpression of integrin β1 will enable injected EPCs to home to ischemic tissue, which abundantly express extracellular matrix proteins, the ligands for integrins. In addition, integrin β1 has an independent angiogenesis-stimulating function. Human endothelial colony-forming cells (ECFCs; late-outgrowth EPCs) were transduced using a lentiviral vector encoding integrin β1 (ITGB1) or enhanced green fluorescent protein (GFP). We then locally or systemically injected phosphate-buffered saline or the genetically modified ECFCs (GFP-ECFCs or ITGB1-ECFCs; 1 × 10(5) cells each) into NOD/Shi-scid, IL-2Rγnull mice whose right femoral arteries had been occluded 24 hours earlier. Upregulation of extracellular matrix proteins, including fibronectin, was apparent in the ischemic legs. Four weeks later, blood perfusion of the ischemic limb was significantly augmented only in the ITGB1-ECFC group. Scanning electron microscopy of vascular casts revealed increases in the perfused blood vessels in the ischemic legs of mice in the ITGB1-ECFC group and significant increases in the density of both capillaries and arterioles. Transplanted ECFC-derived vessels accounted for 28% ± 4.2% of the vessels in the ITGB1-ECFC group, with no cell fusion. Intravenous administration of ECFCs engineered to home to ischemic tissue appears to efficiently mediate therapeutic angiogenesis in a mouse model of peripheral artery disease. Significance: The intravenous administration of endothelial colony-forming cells (ECFCs) genetically modified to overexpress integrin β1 effectively stimulated angiogenesis in ischemic mouse hindlimbs. Transplanted ECFCs were observed in the ischemic leg tissue, even at the chronic stage. Moreover, the cells appeared functional, as evidenced by the improved blood flow. The cell type used (ECFCs), the route of administration (intravenous, not directly injected into the affected area), and the use of ligand-receptor interactions (extracellular matrix and integrins) for homing represent substantial advantages over previously reported cell therapies for the treatment of peripheral artery disease.
Collapse
Affiliation(s)
- Kazuko Goto
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Genzou Takemura
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan Department of Internal Medicine, School of Dentistry, Asahi University, Mizuho, Japan
| | - Tomoyuki Takahashi
- Department of Pediatrics and Child Health, School of Medicine, Kurume University, Kurume, Japan
| | - Hideshi Okada
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan Department of Internal Medicine, School of Dentistry, Asahi University, Mizuho, Japan Department of Emergency and Disaster Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Hiromitsu Kanamori
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Itta Kawamura
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Takatomo Watanabe
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan Department of Emergency and Disaster Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Kentaro Morishita
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan Department of Emergency and Disaster Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Akiko Tsujimoto
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Nagisa Miyazaki
- Department of Internal Medicine, School of Dentistry, Asahi University, Mizuho, Japan
| | - Hiroaki Ushikoshi
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan Department of Emergency and Disaster Medicine, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Masanori Kawasaki
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Atsushi Mikami
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Ken-ichiro Kosai
- Department of Gene Therapy and Regenerative Medicine, Graduate School of Medicine and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shinya Minatoguchi
- Department of Cardiology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
47
|
Sicari BM, Londono R, Badylak SF. Strategies for skeletal muscle tissue engineering: seed vs. soil. J Mater Chem B 2015; 3:7881-7895. [PMID: 32262901 DOI: 10.1039/c5tb01714a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The most commonly used tissue engineering approach includes the ex vivo combination of site-appropriate cell(s) and scaffold material(s) to create three-dimensional constructs for tissue replacement or reconstruction. These three-dimensional combinations are typically subjected to a period of culture and conditioning (i.e., self-assembly and maturation) to promote the development of ex vivo constructs which closely mimic native target tissue. This cell-based approach is challenged by the host response to the engineered tissue construct following surgical implantation. As an alternative to the cell-based approach, acellular biologic scaffolds attract endogenous cells and remodel into partially functional mimics of native tissue upon implantation. The present review examines cell-types (i.e., seed), scaffold materials (i.e., soil), and challenges associated with functional tissue engineering. Skeletal muscle is used as the target tissue prototype but the discussed principles will largely apply to most body systems.
Collapse
Affiliation(s)
- Brian M Sicari
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Suite 300, 450 Technology Drive, Pittsburgh, PA 15218, USA.
| | | | | |
Collapse
|
48
|
Ambrose C. Muscle weakness during aging: a deficiency state involving declining angiogenesis. Ageing Res Rev 2015; 23:139-53. [PMID: 26093038 DOI: 10.1016/j.arr.2015.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/19/2015] [Accepted: 03/30/2015] [Indexed: 12/12/2022]
Abstract
This essay begins by proposing that muscle weakness of old age from sarcopenia is due in large part to reduced capillary density in the muscles, as documented in 9 reports of aged persons and animals. Capillary density (CD) is determined by local levels of various angiogenic factors, which also decline in muscles with aging, as reported in 7 studies of old persons and animals. There are also numerous reports of reduced CD in the aged brain and other studies showing reduced CD in the kidney and heart of aged animals. Thus a waning angiogenesis throughout the body may be a natural occurrence in later years and may account significantly for the lesser ailments (physical and cognitive) of elderly people. Old age is regarded here as a deficiency state which may be corrected by therapeutic angiogenesis, much as a hormonal deficiency can be relieved by the appropriate hormone therapy. Such therapy could employ recombinant angiogenic factors which are now commercially available.
Collapse
|
49
|
Wickremasinghe NC, Kumar VA, Shi S, Hartgerink JD. Controlled Angiogenesis in Peptide Nanofiber Composite Hydrogels. ACS Biomater Sci Eng 2015; 1:845-854. [PMID: 26925462 DOI: 10.1021/acsbiomaterials.5b00210] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multidomain peptide (MDP) nanofibers create scaffolds that can present bioactive cues to promote biological responses. Orthogonal self-assembly of MDPs and growth-factor-loaded liposomes generate supramolecular composite hydrogels. These composites can act as delivery vehicles with time-controlled release. Here we examine the controlled release of placental growth factor-1 (PlGF-1) for its ability to induce angiogenic responses. PlGF-1 was loaded either in MDP matrices or within liposomes bound inside MDP matrices. Scaffolds showed expected rapid infiltration of macrophages. When released through liposomes incorporated in MDP gels (MDP(Lipo)), PlGF-1 modulates HUVEC VEGF receptor activation in vitro and robust vessel formation in vivo. These loaded MDP(Lipo) hydrogels induce a high level of growth-factor-mediated neovascular maturity. MDP(Lipo) hydrogels offer a biocompatible and injectable platform to tailor drug delivery and treat ischemic tissue diseases.
Collapse
Affiliation(s)
- Navindee C Wickremasinghe
- Department of Chemistry, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| | - Vivek A Kumar
- Department of Chemistry, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| | - Siyu Shi
- Department of Chemistry, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States; Department of Bioengineering, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| |
Collapse
|
50
|
Abstract
Chronic angina is a common manifestation of ischaemic heart disease. Medical treatments are the mainstay approach to reduce the occurrence of angina and improve patients' quality of life. This Series paper focuses on commonly used standard treatments (eg, nitrates, β blockers, and calcium-channel blockers), emerging anti-angina treatments (which are not available in all parts of the world), and experimental treatments. Although many emerging treatments are available, evidence is scarce about their ability to reduce angina and ischaemia.
Collapse
Affiliation(s)
- Steen E Husted
- Department of Medicine, Hospital Unit West, Herning, Denmark; Department of Clinical Pharmacology, Institute of Biomedicine, Aarhus University, Aarhus, Denmark
| | - E Magnus Ohman
- The Program for Advanced Coronary Disease, Division of Cardiology, Duke University and Duke Clinical Research Institute, Durham, NC, USA.
| |
Collapse
|