1
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 436] [Impact Index Per Article: 218.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
2
|
Zhao J, Santino F, Giacomini D, Gentilucci L. Integrin-Targeting Peptides for the Design of Functional Cell-Responsive Biomaterials. Biomedicines 2020; 8:E307. [PMID: 32854363 PMCID: PMC7555639 DOI: 10.3390/biomedicines8090307] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 01/17/2023] Open
Abstract
Integrins are a family of cell surface receptors crucial to fundamental cellular functions such as adhesion, signaling, and viability, deeply involved in a variety of diseases, including the initiation and progression of cancer, of coronary, inflammatory, or autoimmune diseases. The natural ligands of integrins are glycoproteins expressed on the cell surface or proteins of the extracellular matrix. For this reason, short peptides or peptidomimetic sequences that reproduce the integrin-binding motives have attracted much attention as potential drugs. When challenged in clinical trials, these peptides/peptidomimetics let to contrasting and disappointing results. In the search for alternative utilizations, the integrin peptide ligands have been conjugated onto nanoparticles, materials, or drugs and drug carrier systems, for specific recognition or delivery of drugs to cells overexpressing the targeted integrins. Recent research in peptidic integrin ligands is exploring new opportunities, in particular for the design of nanostructured, micro-fabricated, cell-responsive, stimuli-responsive, smart materials.
Collapse
Affiliation(s)
| | | | | | - Luca Gentilucci
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy; (J.Z.); (F.S.); (D.G.)
| |
Collapse
|
3
|
The quest for effective pharmacological suppression of neointimal hyperplasia. Curr Probl Surg 2020; 57:100807. [PMID: 32771085 DOI: 10.1016/j.cpsurg.2020.100807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022]
|
4
|
Tseng CN, Chang YT, Lengquist M, Kronqvist M, Hedin U, Eriksson EE. Platelet adhesion on endothelium early after vein grafting mediates leukocyte recruitment and intimal hyperplasia in a murine model. Thromb Haemost 2017; 113:813-25. [DOI: 10.1160/th14-07-0608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 11/08/2014] [Indexed: 12/23/2022]
Abstract
SummaryIntimal hyperplasia (IH) is the substrate for accelerated atherosclerosis and limited patency of vein grafts. However, there is still no specific treatment targeting IH following graft surgery. In this study, we used a mouse model of vein grafting to investigate the potential for early intervention with platelet function for later development of graft IH. We transferred the inferior vena cava (IVC) from donor C57BL/6 mice to the carotid artery in recipients using a cuff technique. We found extensive endothelial injury and platelet adhesion one hour following grafting. Adhesion of leukocytes was distinct in areas of platelet adhesion. Platelet and leukocyte adhesion was strongly reduced in mice receiving a function-blocking antibody against the integrin αIIbβ3. This was followed by a reduction of IH one month following grafting. Depletion of platelets using antiserum also reduced IH at later time points. These findings indicate platelets as pivotal to leukocyte recruitment to the wall of vein grafts. In conclusion, the data also highlight early intervention of platelets and inflammation as potential treatment for later formation of IH and accelerated atherosclerosis following bypass surgery.
Collapse
|
5
|
Molecular Ultrasound Imaging of αvβ3-Integrin Expression in Carotid Arteries of Pigs After Vessel Injury. Invest Radiol 2017; 51:767-775. [PMID: 27119438 DOI: 10.1097/rli.0000000000000282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Interventions such as balloon angioplasty can cause vascular injury leading to platelet activation, thrombus formation, and inflammatory response. This induces vascular smooth muscle cell activation and subsequent re-endothelialization with expression of αvβ3-integrin by endothelial cells and vascular smooth muscle cell. Thus, poly-N-butylcyanoacrylate microbubbles (MBs) targeted to αvβ3-integrin were evaluated for monitoring vascular healing after vessel injury in pigs using molecular ultrasound imaging. MATERIALS AND METHODS Approval for animal experiments was obtained. The binding specificity of αvβ3-integrin-targeted MB to human umbilical vein endothelial cells was tested with fluorescence microscopy. In vivo imaging was performed using a clinical ultrasound system and an 8-MHz probe. Six mini pigs were examined after vessel injury in the left carotid artery. The right carotid served as control. Uncoated MB, cDRG-coated MB, and αvβ3-integrin-specific cRGD-coated MB were injected sequentially. Bound MBs were assessed 8 minutes after injection using ultrasound replenishment analysis. Measurements were performed 2 hours, 1 and 5 weeks, and 3 and 6 months after injury. In vivo data were validated by immunohistochemistry. RESULTS Significantly stronger binding of cRGD-MB than MB and cDRG-MB to human umbilical vein endothelial cells was found (P < 0.01). As vessel injury leads to upregulation of αvβ3-integrin, cRGD-MBs bound significantly stronger (P < 0.05) in injured carotid arteries than at the counter side 1 week after vessel injury and significant differences could also be observed after 5 weeks. After 3 months, αvβ3-integrin expression decreased to baseline and binding of cRGD-MB was comparable in both vessels. Values remained at baseline also after 6 months. CONCLUSIONS Ultrasound imaging with RGD-MB is promising for monitoring vascular healing after vessel injury. This may open new perspectives to assess vascular damage after radiological interventions.
Collapse
|
6
|
Fan Z, Ley K. Leukocyte arrest: Biomechanics and molecular mechanisms of β2 integrin activation. Biorheology 2016; 52:353-77. [PMID: 26684674 DOI: 10.3233/bir-15085] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Integrins are a group of heterodimeric transmembrane receptors that play essential roles in cell-cell and cell-matrix interaction. Integrins are important in many physiological processes and diseases. Integrins acquire affinity to their ligand by undergoing molecular conformational changes called activation. Here we review the molecular biomechanics during conformational changes of integrins, integrin functions in leukocyte biorheology (adhesive functions during rolling and arrest) and molecules involved in integrin activation.
Collapse
Affiliation(s)
- Zhichao Fan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.,Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
From Histology and Imaging Data to Models for In-Stent Restenosis. Int J Artif Organs 2014; 37:786-800. [DOI: 10.5301/ijao.5000336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2014] [Indexed: 11/20/2022]
Abstract
The implantation of stents has been used to treat coronary artery stenosis for several decades. Although stenting is successful in restoring the vessel lumen and is a minimally invasive approach, the long-term outcomes are often compromised by in-stent restenosis (ISR). Animal models have provided insights into the pathophysiology of ISR and are widely used to evaluate candidate drug inhibitors of ISR. Such biological models allow the response of the vessel to stent implantation to be studied without the variation of lesion characteristics encountered in patient studies. This paper describes the development of complementary in silico models employed to improve the understanding of the biological response to stenting using a porcine model of restenosis. This includes experimental quantification using microCT imaging and histology and the use of this data to establish numerical models of restenosis. Comparison of in silico results with histology is used to examine the relationship between spatial localization of fluid and solid mechanics stimuli immediately post-stenting. Multi-scale simulation methods are employed to study the evolution of neointimal growth over time and the variation in the extent of neointimal hyperplasia within the stented region. Interpretation of model results through direct comparison with the biological response contributes to more detailed understanding of the pathophysiology of ISR, and suggests the focus for follow-up studies. In conclusion we outline the challenges which remain to both complete our understanding of the mechanisms responsible for restenosis and translate these models to applications in stent design and treatment planning at both population-based and patient-specific levels.
Collapse
|
8
|
Sheldrake HM, Patterson LH. Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. J Med Chem 2014; 57:6301-15. [PMID: 24568695 DOI: 10.1021/jm5000547] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions: thrombosis, angiogenesis, and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress toward development of antagonists targeting two or more members of the Arg-Gly-Asp (RGD) binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics.
Collapse
Affiliation(s)
- Helen M Sheldrake
- Institute of Cancer Therapeutics, University of Bradford , Bradford, BD7 1DP, U.K
| | | |
Collapse
|
9
|
Abstract
Thrombosis following venous stent placement is a morbid clinical outcome. Whether to target platelets or coagulation factors for venous stent thromboprophylaxis remains unclear. We sought to determine whether integrin α(IIb)β3 antagonism with lamifiban would inhibit platelet recruitment to venous stent thrombosis. Anti-thrombotic efficacy was compared between venous and arterial circulations. Pigs received either lamifiban (0.2 mg/kg bolus plus 0.2 mg/kg/h infusion; n = 6) or saline (n = 12). Carotid arteries were crush injured and then harvested 30 min later to provide an assessment of antithrombotic efficacy in the arterial circulation. Iliac venous stents were then deployed and thrombi allowed to propagate for 2 h before harvesting. Platelet deposition was measured by scintillation detection of autologous (111)In-platelets. Venous thrombi were quantified by weight and compared to platelet, Von Willebrand factor (VWF) and fibrinogen content. Arterial platelet deposition (×10(6)/cm(2)) was reduced >80% by lamifiban (398 ± 437) compared to controls (1,540 ± 883; p < 0.005). Lamifiban also reduced venous thrombus platelet deposition (139 ± 88 vs. 281 ± 167) however did not prevent thrombosis. In control animals, venous stent platelet deposition correlated with plasma fibrinogen content (R(2) = 0.29; p = 0.03). Fibrinogen content correlated directly with venous stent platelet deposition (p = 0.03) but not thrombus weight. Neither venous platelet deposition nor thrombus weights varied by VWF content. Platelet recruitment to venous stent thrombi occurs in part through the integrin α(IIb)β3 receptor. Unlike arterial thrombosis, inhibition of this receptor is insufficient to prevent venous stent thrombosis.
Collapse
|
10
|
Tahir H, Hoekstra AG, Lorenz E, Lawford PV, Hose DR, Gunn J, Evans DJW. Multi-scale simulations of the dynamics of in-stent restenosis: impact of stent deployment and design. Interface Focus 2011; 1:365-73. [PMID: 22670206 DOI: 10.1098/rsfs.2010.0024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 03/03/2011] [Indexed: 12/11/2022] Open
Abstract
Neointimal hyperplasia, a process of smooth muscle cell re-growth, is the result of a natural wound healing response of the injured artery after stent deployment. Excessive neointimal hyperplasia following coronary artery stenting results in in-stent restenosis (ISR). Regardless of recent developments in the field of coronary stent design, ISR remains a significant complication of this interventional therapy. The influence of stent design parameters such as strut thickness, shape and the depth of strut deployment within the vessel wall on the severity of restenosis has already been highlighted but the detail of this influence is unclear. These factors impact on local haemodynamics and vessel structure and affect the rate of neointima formation. This paper presents the first results of a multi-scale model of ISR. The development of the simulated restenosis as a function of stent deployment depth is compared with an in vivo porcine dataset. Moreover, the influence of strut size and shape is investigated, and the effect of a drug released at the site of injury, by means of a drug-eluting stent, is also examined. A strong correlation between strut thickness and the rate of smooth muscle cell proliferation has been observed. Simulation results also suggest that the growth of the restenotic lesion is strongly dependent on the stent strut cross-sectional profile.
Collapse
Affiliation(s)
- Hannan Tahir
- Computational Science, Faculty of Science , University of Amsterdam , Amsterdam , The Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
Silverman AP, Kariolis MS, Cochran JR. Cystine-knot peptides engineered with specificities for αIIbβ3 or αIIbβ3 and αvβ3 integrins are potent inhibitors of platelet aggregation. J Mol Recognit 2010; 24:127-35. [DOI: 10.1002/jmr.1036] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Zhao Y, Bachelier R, Treilleux I, Pujuguet P, Peyruchaud O, Baron R, Clément-Lacroix P, Clézardin P. Tumor alphavbeta3 integrin is a therapeutic target for breast cancer bone metastases. Cancer Res 2007; 67:5821-30. [PMID: 17575150 DOI: 10.1158/0008-5472.can-06-4499] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In breast cancer bone metastasis, tumor cells stimulate osteoclast-mediated bone resorption, and bone-derived growth factors released from resorbed bone stimulate tumor growth. The alphavbeta3 integrin is an adhesion receptor expressed by breast cancer cells and osteoclasts. It is implicated in tumor cell invasion and osteoclast-mediated bone resorption. Here, we hypothesized that the therapeutic targeting of tumor alphavbeta3 integrin would prevent bone metastasis formation. We first showed that, compared with mock-transfected cells, the i.v. inoculation of alphavbeta3-overexpressing MDA-MB-231 breast cancer cells in animals increased bone metastasis incidence and promoted both skeletal tumor burden and bone destruction. The direct inoculation of alphavbeta3-overexpressing transfectants into the tibial bone marrow cavity did not however enhance skeletal tumor burden and bone destruction, suggesting that alphavbeta3 controls earlier events during bone metastasis formation. We next examined whether a nonpeptide antagonist of alphavbeta3 (PSK1404) exhibits meaningful antitumor effects in experimental breast and ovarian cancer bone metastasis. A continuous PSK1404 treatment, which inhibited osteoclast-mediated bone resorption in an animal model of bone loss, substantially reduced bone destruction and decreased skeletal tumor burden. Importantly, a short-term PSK1404 treatment that did not inhibit osteoclast activity also decreased skeletal tumor burden and bone destruction. This dosing regimen caused a profound and specific inhibition of bone marrow colonization by green fluorescent protein, alphavbeta3-expressing tumor cells in vivo and blocked tumor cell invasion in vitro. Overall, our data show that tumor alphavbeta3 integrin stands as a therapeutic target for the prevention of skeletal metastases.
Collapse
Affiliation(s)
- Yingshe Zhao
- Institut National de la Sante et de la Recherche Medicale, UMR 664, IFR62, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sadeghi MM, Bender JR. Activated alphavbeta3 integrin targeting in injury-induced vascular remodeling. Trends Cardiovasc Med 2007; 17:5-10. [PMID: 17210471 DOI: 10.1016/j.tcm.2006.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/12/2006] [Accepted: 07/14/2006] [Indexed: 10/23/2022]
Abstract
There is currently no imaging modality to track the remodeling process, a common feature of a broad spectrum of vasculopathies, in vivo. alphavbeta3 Integrin is up-regulated in proliferating vascular cells. RP748, a novel peptidomimetic tracer, binds specifically to the activated alphavbeta3 conformer and exhibits favorable binding characteristics for in vivo imaging. In a model of injury-induced vascular remodeling in apoE null mice, RP748 localization to the injured carotid arteries parallels vascular cell proliferation, providing an opportunity to image the remodeling process in vivo.
Collapse
Affiliation(s)
- Mehran M Sadeghi
- Raymond and Beverly Sackler Cardiovascular Molecular Imaging Laboratory, Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
14
|
Ishikawa M, Kubota D, Yamamoto M, Kuroda C, Iguchi M, Koyanagi A, Murakami S, Ajito K. Tricyclic pharmacophore-based molecules as novel integrin alpha(v)beta3 antagonists. Part 2: synthesis of potent alpha(v)beta3/alpha(IIb)beta3 dual antagonists. Bioorg Med Chem 2005; 14:2109-30. [PMID: 16309912 DOI: 10.1016/j.bmc.2005.10.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2005] [Revised: 10/31/2005] [Accepted: 10/31/2005] [Indexed: 10/25/2022]
Abstract
We synthesized 4-aminopiperidine derivatives of our prototype integrin alpha(v)beta3 antagonist 1 in an attempt to increase the activity and water solubility. Introduction of one or two hydrophilic moieties into the central aromatic ring and/or the benzene ring at the C-terminus of 1 increased water solubility and enhanced inhibition of cell adhesion. The results of a structure-activity relationships (SAR) study indicated that the torsion angle between the central aromatic ring and the piperidine ring, and the acidity at the sulfonamide moiety, might be important for alpha(v)beta3 receptor binding activity. Some of these compounds are novel and potent alpha(v)beta3/alpha(IIb)beta3 dual antagonists with acceptable water solubility and a satisfactory early absorption, distribution, metabolism, excretion, and toxicity (ADMET) profile.
Collapse
Affiliation(s)
- Minoru Ishikawa
- Pharmaceutical Research Department, Meiji Seika Kaisha, Ltd., 760 Morooka-cho, Kohoku-ku, Yokohama 222-8567, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Koschnick S, Konstantinides S, Schäfer K, Crain K, Loskutoff DJ. Thrombotic phenotype of mice with a combined deficiency in plasminogen activator inhibitor 1 and vitronectin. J Thromb Haemost 2005; 3:2290-5. [PMID: 16194205 DOI: 10.1111/j.1538-7836.2005.01479.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The role of vitronectin (VN) in thrombosis is not fully understood, primarily because this adhesive glycoprotein not only stabilizes plasminogen activator inhibitor 1 (PAI-1) and thus protects fibrin from premature lysis, but also because it binds to platelet integrins and may influence platelet aggregation. The absence of quantitative approaches to characterize the thrombi formed in animal models under different conditions further complicates this analysis. METHODS In this report, we describe a more comprehensive approach to assess the stability of thrombi formed in mice deficient in PAI-1 (PAI-1(-/-)), VN (VN(-/-)) or both (PAI-1(-/-)/VN(-/-)). RESULTS We observed that all deficient mice developed unstable thrombi compared with wild type (WT) mice. Thus, only 31% of the thrombi formed in WT mice were unstable compared with 74% of PAI-1(-/-), 80% of VN(-/-), and 87% of PAI-1(-/-)/VN(-/-) mice. In this regard, the average number of emboli per WT mouse was significantly lower (0.55) compared with VN(-/-) (2.66), PAI-1(-/-) (2.1), and VN(-/-)/PAI-1(-/-) (2.35) mice. Finally, the total duration of complete vascular occlusion was higher and the rate of vascular patency was lower in the WT mice compared with the deficient mice. CONCLUSIONS Taken together, these observations indicate that the thrombotic phenotype of mice with a combined deficiency in PAI-1 and VN does not differ significantly from the phenotype of mice with deficiencies in only PAI-1 or VN. This observation suggests that PAI-1 and VN may influence thrombus stability by regulating a common pathway.
Collapse
Affiliation(s)
- S Koschnick
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
16
|
Linde J, Strauss BH. Pharmacological treatment for prevention of restenosis. Expert Opin Emerg Drugs 2005; 6:281-302. [PMID: 15989527 DOI: 10.1517/14728214.6.2.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of mortality and morbidity among adults in the Western world. Coronary artery bypass grafting and percutaneous coronary interventions (PCI) have gained widespread acceptance for the treatment of symptomatic CAD. There has been an explosive growth worldwide in the utilisation of PCI, such as balloon angioplasty and stenting, which now accounts for over 50% of coronary revascularisation. Despite the popularity of PCI, the problem of recurrent narrowing of the dilated artery (restenosis) continues to vex investigators. In recent years, significant advances have occurred in the understanding of restenosis. Two processes seem to contribute to restenosis: remodelling (vessel size changes) and intimal hyperplasia (vascular smooth muscle cell [VSMC] proliferation and extracellular matrix [ECM] deposition). Despite considerable efforts, pharmacological approaches to decrease restenosis have been largely unsuccessful and the only currently applied modality to reduce the restenosis rate is stenting. However, stenting only prevents remodelling and does not inhibit intimal hyperplasia. Several potential targets for inhibiting restenosis are currently under investigation including platelet activation, the coagulation cascade, VSMC proliferation and migration, and ECM synthesis. In addition, new approaches for local drug therapy, such as drug eluting stents, are currently being evaluated in preclinical and clinical studies. In this article, we critically review the current status of drugs that are being evaluated for restenosis at various stages of development (in vitro, preclinical animal models and human trials).
Collapse
Affiliation(s)
- J Linde
- The Roy and Ann Foss Interventional Cardiology Research Program, Terrence Donnelly Heart Center, 30 Bond Street, St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
| | | |
Collapse
|
17
|
|
18
|
Abstract
Inflammation plays a critical role in the vascular response to injury. In particular, mechanical injury using techniques such as balloon angioplasty and stenting results in complex inflammatory reactions which influence proliferation of vessel wall constituents such as endothelial cells, smooth muscle cells, and extracellular matrix proteins. Inflammatory cells are recruited to the injured vessel wall initially as a reparative mechanism; however, these same inflammatory processes are also pivotal in the development of restenotic lesions. Leukocytes serve as the primary inflammatory cells but we now know that platelets produce a number of important inflammatory mediators. This review describes the mechanisms that regulate endothelial cell migration, smooth muscle cell activation, and extracellular matrix protein production, all of which are key components in the inflammatory response to vascular injury.
Collapse
Affiliation(s)
- C Davis
- Department of Medicine, Cardiovascular Research Center, University of Virginia Health System, Charlottesville, VA 22908-0158, USA
| | | | | | | |
Collapse
|
19
|
Massberg S, Vogt F, Dickfeld T, Brand K, Page S, Gawaz M. Activated platelets trigger an inflammatory response and enhance migration of aortic smooth muscle cells. Thromb Res 2003; 110:187-94. [PMID: 14512080 DOI: 10.1016/s0049-3848(03)00342-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Exposure of the subendothelium to flowing blood following rupture of atherosclerotic lesions or during balloon angioplasty initiates platelet adhesion to the vascular wall. Because activated platelets release proinflammatory mediators (e.g., interleukin (IL)-1beta) and secrete growth factors, platelet adhesion to the subendothelial matrix might contribute to the recruitment of inflammatory cells and promote migration and proliferation of vascular smooth muscle cells (SMCs). METHODS AND RESULTS Here, we demonstrate that incubation of cultured monolayers of aortic SMCs with alpha-thrombin-activated platelets significantly enhances the secretion of monocyte chemoattractant protein-1 (MCP-1) (P<0.05) and promotes SMC migration (P<0.05). Platelet-induced secretion of MCP-1 was abolished by anti-IL-1alpha and beta monoclonal antibodies or the IL-1 receptor antagonist (IL-1RA). In contrast, platelet-mediated SMC migration was attenuated only by anti-platelet-derived growth factor (PDGF)-mAb but not by IL-1RA. Correspondingly, recombinant human interleukin-1 (rhIL-1) beta increased MCP release by SMCs but had no effect on SMC migration. Platelet-mediated MCP secretion by SMCs involved the activation and nuclear translocation of the transcription factor nuclear factor-kappaB (NF-kappaB). CONCLUSION Therefore, platelet adhesion to the subendothelium increases the chemotactic and migratory properties of SMC and is likely to contribute substantially to the process of atherosclerosis and vessel (re-)stenosis.
Collapse
Affiliation(s)
- Steffen Massberg
- Medizinische Klinik and Deutsches Herzzentrum, Technische Universität München, Lazarettstrasse 36, 80636 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Kling A, Backfisch G, Delzer J, Geneste H, Graef C, Hornberger W, Lange UEW, Lauterbach A, Seitz W, Subkowski T. Design and synthesis of 1,5- and 2,5-substituted tetrahydrobenzazepinones as novel potent and selective integrin alphaVbeta3 antagonists. Bioorg Med Chem 2003; 11:1319-41. [PMID: 12628659 DOI: 10.1016/s0968-0896(02)00616-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The design and synthesis of novel integrin alpha(V)beta(3) antagonists based on a 1,5- or 2,5-substituted tetrahydrobenzaezpinone core is described. In vitro activity of respective compounds was determined via alpha(V)beta(3) binding assay, and selected derivatives were submitted to further characterization in functional cellular assays. SAR was obtained by modification of the benzazepinone core, variation of the spacer linking guanidine moiety and core, and modification of the guanidine mimetic. These efforts led to the identification of novel alpha(V)beta(3) inhibitors displaying potency in the subnanomolar range, selectivity versus alpha(IIb)beta(3) and functional efficacy in relevant cellular assays. A method for the preparation of enantiomerically pure derivatives was developed, and respective enantiomers evaluated in vitro. Compounds 31 and 37 were assessed for metabolic stability, resorption in the Caco-2 assay and pharmacokinetics.
Collapse
Affiliation(s)
- Andreas Kling
- Neuroscience, Medicinal Chemistry, Abbott GmbH and Co KG, Discovery Research, D-67008, PO Box 210805, Ludwigshafen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|