1
|
Teichman EM, Hu J, Lin HY, Fisher-Foye RL, Blando A, Hu X, Kaniskan HÜ, Montgomery SE, Cai M, Parise LF, Wang J, Russo SJ, Han MH, Jin J, Morel C. Design and validation of novel brain-penetrant HCN channel inhibitors to ameliorate social stress-induced susceptible phenotype. Mol Psychiatry 2025:10.1038/s41380-025-02972-8. [PMID: 40199995 DOI: 10.1038/s41380-025-02972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 12/16/2024] [Accepted: 03/20/2025] [Indexed: 04/10/2025]
Abstract
Major Depressive Disorder (MDD) is a devastating, multifactorial disease with limited pharmacological treatment options. Patients with MDD exhibit alterations in their dopamine (DA) signaling pathways through the midbrain ventral tegmental area (VTA). A similar observation is also detected in preclinical models of stress - mice exhibit behavioral and physiological impairments following chronic social defeat stress (CSDS). Prior studies demonstrate that CSDS-susceptible mice have increased VTA DA neuronal excitability, in part driven by an upregulation in hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels. Inhibiting HCN channels with known inhibitors such as Cilobradine alleviates the negative behavioral effects of CSDS. Here, we aimed to identify Cilobradine analogs with improved neural tropism and inhibitory efficacy. Two compounds, MS7710 and MS7712, differing by their left-hand side moieties, have a similar, potent inhibitory effect on VTA DA Ih currents as compared to Cilobradine, and a greater inhibitory effect than Cilobradine on VTA DA firing rate. We demonstrate that MS7710 and MS7712 have superior brain/plasma concentration ratios as compared to Cilobradine. They were efficacious at inhibiting VTA DA neuron firing rate and bursting activity in CSDS-susceptible male mice at lower doses than Cilobradine, which was recapitulated in female CSDS-susceptible mice with MS7710. Finally, we define that a single intraperitoneal injection of MS7710 ameliorates CSDS-induced social interaction deficits and reward-associated cognitive inflexibility for at least two weeks in male and female mice. These findings yield a novel HCN channel inhibitor with improved neural tropism and stress-alleviating effects that could provide a basis for future antidepressant drug discovery.
Collapse
Affiliation(s)
- Emily M Teichman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jianping Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hsiao-Yun Lin
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rachel L Fisher-Foye
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anthony Blando
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoping Hu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - H Ümit Kaniskan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah E Montgomery
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Modendo Inc., 3415 Colorado Ave, Boulder, Colorado, 80303, USA
| | - Min Cai
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lyonna F Parise
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun Wang
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Geriatric Research, Education and Clinical Center, James J. Peters Veterans Affairs Medical Center, New York, NY, USA
| | - Scott J Russo
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Brain-Body Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology; Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Jian Jin
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Carole Morel
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Sripusanapan A, Yanpiset P, Sriwichaiin S, Siri-Angkul N, Chattipakorn SC, Chattipakorn N. Hyperpolarization-activated cyclic nucleotide-gated channel inhibitor in myocardial infarction: Potential benefits beyond heart rate modulation. Acta Physiol (Oxf) 2024; 240:e14085. [PMID: 38230890 DOI: 10.1111/apha.14085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
Myocardial infarction (MI) and its associated complications including ventricular arrhythmias and heart failure are responsible for a significant incidence of morbidity and mortality worldwide. The ensuing cardiomyocyte loss results in neurohormone-driven cardiac remodeling, which leads to chronic heart failure in MI survivors. Ivabradine is a heart rate modulation agent currently used in treatment of chronic heart failure with reduced ejection fraction. The canonical target of ivabradine is the hyperpolarization-activated cyclic nucleotide-gated channels (HCN) in cardiac pacemaker cells. However, in post-MI hearts, HCN can also be expressed ectopically in non-pacemaker cardiomyocytes. There is an accumulation of intriguing evidence to suggest that ivabradine also possesses cardioprotective effects that are independent of heart rate reduction. This review aims to summarize and discuss the reported cardioprotective mechanisms of ivabradine beyond heart rate modulation in myocardial infarction through various molecular mechanisms including the prevention of reactive oxygen species-induced mitochondrial damage, improvement of autophagy system, modulation of intracellular calcium cycling, modification of ventricular electrophysiology, and regulation of matrix metalloproteinases.
Collapse
Affiliation(s)
- Adivitch Sripusanapan
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Panat Yanpiset
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sirawit Sriwichaiin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Natthaphat Siri-Angkul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellent in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Mokrov GV. Linked biaromatic compounds as cardioprotective agents. Arch Pharm (Weinheim) 2021; 355:e2100428. [PMID: 34967027 DOI: 10.1002/ardp.202100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases (CVDs) are widespread in the modern world, and their number is constantly growing. For a long time, CVDs have been the leading cause of morbidity and mortality worldwide. Drugs for the treatment of CVD have been developed almost since the beginning of the 20th century, and a large number of effective cardioprotective agents of various classes have been created. Nevertheless, the need for the design and development of new safe drugs for the treatment of CVD remains. Literature data indicate that a huge number of cardioprotective agents of various generations and mechanisms correspond to a single generalized pharmacophore model containing two aromatic nuclei linked by a linear linker. In this regard, we put forward a concept for the design of a new generation of cardioprotective agents with a multitarget mechanism of action within the indicated pharmacophore model. This review is devoted to a generalization of the currently known compounds with cardioprotective properties and corresponding to the pharmacophore model of biaromatic compounds linked by a linear linker. Particular attention is paid to the history of the creation of these drugs, approaches to their design, and analysis of the structure-action relationship within each class.
Collapse
Affiliation(s)
- Grigory V Mokrov
- Department of Medicinal Chemistry, FSBI "Zakusov Institute of Pharmacology", Moscow, Russia
| |
Collapse
|
4
|
Bai X, Wang K, Boyett MR, Hancox JC, Zhang H. The Functional Role of Hyperpolarization Activated Current ( I f) on Cardiac Pacemaking in Human vs. in the Rabbit Sinoatrial Node: A Simulation and Theoretical Study. Front Physiol 2021; 12:582037. [PMID: 34489716 PMCID: PMC8417414 DOI: 10.3389/fphys.2021.582037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/23/2021] [Indexed: 01/01/2023] Open
Abstract
The cardiac hyperpolarization-activated "funny" current (I f), which contributes to sinoatrial node (SAN) pacemaking, has a more negative half-maximal activation voltage and smaller fully-activated macroscopic conductance in human than in rabbit SAN cells. The consequences of these differences for the relative roles of I f in the two species, and for their responses to the specific bradycardic agent ivabradine at clinical doses have not been systematically explored. This study aims to address these issues, through incorporating rabbit and human I f formulations developed by Fabbri et al. into the Severi et al. model of rabbit SAN cells. A theory was developed to correlate the effect of I f reduction with the total inward depolarising current (I total) during diastolic depolarization. Replacing the rabbit I f formulation with the human one increased the pacemaking cycle length (CL) from 355 to 1,139 ms. With up to 20% I f reduction (a level close to the inhibition of I f by ivabradine at clinical concentrations), a modest increase (~5%) in the pacemaking CL was observed with the rabbit I f formulation; however, the effect was doubled (~12.4%) for the human I f formulation, even though the latter has smaller I f density. When the action of acetylcholine (ACh, 0.1 nM) was considered, a 20% I f reduction markedly increased the pacemaking CL by 37.5% (~27.3% reduction in the pacing rate), which is similar to the ivabradine effect at clinical concentrations. Theoretical analysis showed that the resultant increase of the pacemaking CL is inversely proportional to the magnitude of I total during diastolic depolarization phase: a smaller I f in the model resulted in a smaller I total amplitude, resulting in a slower pacemaking rate; and the same reduction in I f resulted in a more significant change of CL in the cell model with a smaller I total. This explained the mechanism by which a low dose of ivabradine slows pacemaking rate more in humans than in the rabbit. Similar results were seen in the Fabbri et al. model of human SAN cells, suggesting our observations are model-independent. Collectively, the results of study explain why low dose ivabradine at clinically relevant concentrations acts as an effective bradycardic agent in modulating human SAN pacemaking.
Collapse
Affiliation(s)
- Xiangyun Bai
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, China
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kuanquan Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Mark R. Boyett
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Jules C. Hancox
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University Walk, Bristol, United Kingdom
| | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- Peng Cheng Laboratory, Shenzhen, China
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
5
|
Tanguay J, Callahan KM, D'Avanzo N. Characterization of drug binding within the HCN1 channel pore. Sci Rep 2019; 9:465. [PMID: 30679654 PMCID: PMC6345760 DOI: 10.1038/s41598-018-37116-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/29/2018] [Indexed: 11/09/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels mediate rhythmic electrical activity of cardiac pacemaker cells, and in neurons play important roles in setting resting membrane potentials, dendritic integration, neuronal pacemaking, and establishing action potential threshold. Block of HCN channels slows the heart rate and is currently used to treat angina. However, HCN block also provides a promising approach to the treatment of neuronal disorders including epilepsy and neuropathic pain. While several molecules that block HCN channels have been identified, including clonidine and its derivative alinidine, lidocaine, mepivacaine, bupivacaine, ZD7288, ivabradine, zatebradine, and cilobradine, their low affinity and lack of specificity prevents wide-spread use. Different studies suggest that the binding sites of these inhibitors are located in the inner vestibule of HCN channels, but the molecular details of their binding remain unknown. We used computational docking experiments to assess the binding sites and mode of binding of these inhibitors against the recently solved atomic structure of human HCN1 channels, and a homology model of the open pore derived from a closely related CNG channel. We identify a possible hydrophobic groove in the pore cavity that plays an important role in conformationally restricting the location and orientation of drugs bound to the inner vestibule. Our results also help explain the molecular basis of the low-affinity binding of these inhibitors, paving the way for the development of higher affinity molecules.
Collapse
Affiliation(s)
- Jérémie Tanguay
- Department of Physics, Université de Montréal, Montréal, Canada
| | - Karen M Callahan
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada
| | - Nazzareno D'Avanzo
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Canada.
| |
Collapse
|
6
|
Sartiani L, Mannaioni G, Masi A, Novella Romanelli M, Cerbai E. The Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels: from Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacol Rev 2017; 69:354-395. [PMID: 28878030 DOI: 10.1124/pr.117.014035] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/07/2017] [Indexed: 12/22/2022] Open
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels are important members of the voltage-gated pore loop channels family. They show unique features: they open at hyperpolarizing potential, carry a mixed Na/K current, and are regulated by cyclic nucleotides. Four different isoforms have been cloned (HCN1-4) that can assemble to form homo- or heterotetramers, characterized by different biophysical properties. These proteins are widely distributed throughout the body and involved in different physiologic processes, the most important being the generation of spontaneous electrical activity in the heart and the regulation of synaptic transmission in the brain. Their role in heart rate, neuronal pacemaking, dendritic integration, learning and memory, and visual and pain perceptions has been extensively studied; these channels have been found also in some peripheral tissues, where their functions still need to be fully elucidated. Genetic defects and altered expression of HCN channels are linked to several pathologies, which makes these proteins attractive targets for translational research; at the moment only one drug (ivabradine), which specifically blocks the hyperpolarization-activated current, is clinically available. This review discusses current knowledge about HCN channels, starting from their biophysical properties, origin, and developmental features, to (patho)physiologic role in different tissues and pharmacological modulation, ending with their present and future relevance as drug targets.
Collapse
Affiliation(s)
- Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Alessio Masi
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research, and Child Health, University of Florence, Firenze, Italy
| |
Collapse
|
7
|
Development of correction formula for field potential duration of human induced pluripotent stem cell-derived cardiomyocytes sheets. J Pharmacol Sci 2017; 135:44-50. [PMID: 28928053 DOI: 10.1016/j.jphs.2017.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/01/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been used in many studies to assess proarrhythmic risks of chemical compounds. In those studies, field potential durations (FPD) of hiPSC-CMs have been corrected by clinically used Fridericia's and/or Bazett's formulae, however, the rationale for the use of these formulae has not been well established. In the present study, we developed a correction formula for experiments using hiPSC-CMs. First, we analyzed the effect of beating rate on FPD in the hiPSC-CMs sheets with electrical stimuli and a HCN channel inhibitor zatebradine. Next, we examined the relationship between the electrophysiological properties and the expression levels of ion channel genes in the cell sheets. Zatebradine slowed the beating rate and allowed to analyze FPD changes at various pacing cycle lengths. Rate-dependent change in the repolarization period was smaller in the cell sheets than that reported on the human hearts, which can be partly explained by lower gene expression level of hKCNJ2 and hKCNE1. Thus, non-linear equation for correcting FPD in the cell sheet; FPDc = FPD/RR0.22 with RR given in second was obtained, which may make it feasible to assess net repolarization delay by various chemical compounds with a chronotropic action.
Collapse
|
8
|
Weisbrod D, Khun SH, Bueno H, Peretz A, Attali B. Mechanisms underlying the cardiac pacemaker: the role of SK4 calcium-activated potassium channels. Acta Pharmacol Sin 2016; 37:82-97. [PMID: 26725737 PMCID: PMC4722971 DOI: 10.1038/aps.2015.135] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/25/2015] [Indexed: 12/25/2022]
Abstract
The proper expression and function of the cardiac pacemaker is a critical feature of heart physiology. The sinoatrial node (SAN) in human right atrium generates an electrical stimulation approximately 70 times per minute, which propagates from a conductive network to the myocardium leading to chamber contractions during the systoles. Although the SAN and other nodal conductive structures were identified more than a century ago, the mechanisms involved in the generation of cardiac automaticity remain highly debated. In this short review, we survey the current data related to the development of the human cardiac conduction system and the various mechanisms that have been proposed to underlie the pacemaker activity. We also present the human embryonic stem cell-derived cardiomyocyte system, which is used as a model for studying the pacemaker. Finally, we describe our latest characterization of the previously unrecognized role of the SK4 Ca(2+)-activated K(+) channel conductance in pacemaker cells. By exquisitely balancing the inward currents during the diastolic depolarization, the SK4 channels appear to play a crucial role in human cardiac automaticity.
Collapse
Affiliation(s)
- David Weisbrod
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiraz Haron Khun
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hanna Bueno
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
9
|
Novella Romanelli M, Sartiani L, Masi A, Mannaioni G, Manetti D, Mugelli A, Cerbai E. HCN Channels Modulators: The Need for Selectivity. Curr Top Med Chem 2016; 16:1764-91. [PMID: 26975509 PMCID: PMC5374843 DOI: 10.2174/1568026616999160315130832] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 12/27/2022]
Abstract
Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- University of Florence, Department of Neurosciences, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | | | | | | | | | | | | |
Collapse
|
10
|
HCN2 Channels: A Permanent Open State and Conductance Changes. J Membr Biol 2014; 248:67-81. [DOI: 10.1007/s00232-014-9742-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022]
|
11
|
Kojima A, Kitagawa H, Omatsu-Kanbe M, Matsuura H, Nosaka S. Inhibitory effects of sevoflurane on pacemaking activity of sinoatrial node cells in guinea-pig heart. Br J Pharmacol 2012; 166:2117-35. [PMID: 22356456 DOI: 10.1111/j.1476-5381.2012.01914.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE The volatile anaesthetic sevoflurane affects heart rate in clinical settings. The present study investigated the effect of sevoflurane on sinoatrial (SA) node automaticity and its underlying ionic mechanisms. EXPERIMENTAL APPROACH Spontaneous action potentials and four ionic currents fundamental for pacemaking, namely, the hyperpolarization-activated cation current (I(f) ), T-type and L-type Ca²⁺ currents (I(Ca,T) and I(Ca,L) , respectively), and slowly activating delayed rectifier K⁺ current (I(Ks) ), were recorded in isolated guinea-pig SA node cells using perforated and conventional whole-cell patch-clamp techniques. Heart rate in guinea-pigs was recorded ex vivo in Langendorff mode and in vivo during sevoflurane inhalation. KEY RESULTS In isolated SA node cells, sevoflurane (0.12-0.71 mM) reduced the firing rate of spontaneous action potentials and its electrical basis, diastolic depolarization rate, in a qualitatively similar concentration-dependent manner. Sevoflurane (0.44 mM) reduced spontaneous firing rate by approximately 25% and decreased I(f) , I(Ca,T) , I(Ca,L) and I(Ks) by 14.4, 31.3, 30.3 and 37.1%, respectively, without significantly affecting voltage dependence of current activation. The negative chronotropic effect of sevoflurane was partly reproduced by a computer simulation of SA node cell electrophysiology. Sevoflurane reduced heart rate in Langendorff-perfused hearts, but not in vivo during sevoflurane inhalation in guinea-pigs. CONCLUSIONS AND IMPLICATIONS Sevoflurane at clinically relevant concentrations slowed diastolic depolarization and thereby reduced pacemaking activity in SA node cells, at least partly due to its inhibitory effect on I(f) , I(Ca,T) and I(Ca,L) . These findings provide an important electrophysiological basis of alterations in heart rate during sevoflurane anaesthesia in clinical settings.
Collapse
Affiliation(s)
- Akiko Kojima
- Department of Anesthesiology, Shiga University of Medical Science, Otsu, Shiga, Japan.
| | | | | | | | | |
Collapse
|
12
|
Yaniv Y, Maltsev VA, Ziman BD, Spurgeon HA, Lakatta EG. The "funny" current (I(f)) inhibition by ivabradine at membrane potentials encompassing spontaneous depolarization in pacemaker cells. Molecules 2012; 17:8241-54. [PMID: 22777191 PMCID: PMC4523892 DOI: 10.3390/molecules17078241] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 07/03/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022] Open
Abstract
Recent clinical trials have shown that ivabradine (IVA), a drug that inhibits the funny current (I(f)) in isolated sinoatrial nodal cells (SANC), decreases heart rate and reduces morbidity and mortality in patients with cardiovascular diseases. While IVA inhibits I(f), this effect has been reported at essentially unphysiological voltages, i.e., those more negative than the spontaneous diastolic depolarization (DD) between action potentials (APs). We tested the relative potency of IVA to block I(f) over a wide range of membrane potentials, including those that encompass DD governing to the SANC spontaneous firing rate. A clinically relevant IVA concentration of 3 μM to single, isolated rabbit SANC slowed the spontaneous AP firing rate by 15%. During voltage clamp the maximal I(f) was 18 ± 3 pA/pF (at -120 mV) and the maximal I(f) reduction by IVA was 60 ± 8% observed at -92 ± 4 mV. At the maximal diastolic depolarization (~-60 mV) I(f) amplitude was only -2.9 ± 0.4 pA/pF, and was reduced by only 41 ± 6% by IVA. Thus, I(f) amplitude and its inhibition by IVA at physiologically relevant membrane potentials are substantially less than that at unphysiological (hyperpolarized) membrane potentials. This novel finding more accurately describes how IVA affects SANC function and is of direct relevance to numerical modeling of SANC automaticity.
Collapse
Affiliation(s)
| | | | | | | | - Edward G. Lakatta
- Author to whom correspondence should be addressed; ; Tel.: +1-410-558-8202; Fax: +1-410-558-8150
| |
Collapse
|
13
|
Jonsson MK, Vos MA, Mirams GR, Duker G, Sartipy P, de Boer TP, van Veen TA. Application of human stem cell-derived cardiomyocytes in safety pharmacology requires caution beyond hERG. J Mol Cell Cardiol 2012; 52:998-1008. [DOI: 10.1016/j.yjmcc.2012.02.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 02/01/2012] [Accepted: 02/03/2012] [Indexed: 12/19/2022]
|
14
|
Jonsson MKB, Wang QD, Becker B. Impedance-based detection of beating rhythm and proarrhythmic effects of compounds on stem cell-derived cardiomyocytes. Assay Drug Dev Technol 2011; 9:589-99. [PMID: 22085047 DOI: 10.1089/adt.2011.0396] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The xCELLigence real time cell analyzer Cardio system offers a new system for real-time cell analysis that measures impedance-based signals in a label-free noninvasive manner. The aim of this study was to test whether impedance readings are a useful tool to detect compound effects on beating frequency (beats per minute, bpm) and arrhythmias of human induced pluripotent stem cell- and a mouse embryonic stem cell-derived cardiomyocyte line (hiPSC-CM and mESC-CM, respectively). Baseline values for control wells were 45±3 and 179±6 bpm, respectively (n=6). Correspondingly, isoproterenol increased beating frequency by 77% and 71%, whereas carbachol decreased frequency by 11% and 100% (stopped in 5/6 mESC-CM wells). E-4031 decreased beating rate and caused arrhythmias in both cell types, however, more pronounced in the human iPSC-CMs. Amlodipine inhibited contractions in both models, and T-type calcium channel block strongly reduced beating rate and eventually stopped beating in mESC-CM but caused a smaller effect in hiPSC-CM. The results of this initial study show that, under the right conditions, the beating frequency of a monolayer of cells can be stably recorded over several days. Additionally, the system detects changes in beating frequency and amplitude caused by added reference compounds. This assay system has the potential to enable medium-throughput screening, but for implementation into routine daily work, extended validation, testing of additional batches of cardiomyocytes, and further assay optimization (e.g., frequency of media exchange, growth matrix, seeding density, age of cells after plating, and temperature control) will be needed.
Collapse
Affiliation(s)
- Malin K B Jonsson
- Department of Medical Physiology, Heart & Lungs Division, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
15
|
Thollon C, Vilaine JP. I(f) inhibition in cardiovascular diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:53-92. [PMID: 20933199 DOI: 10.1016/s1054-3589(10)59003-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heart rate (HR) is determined by the pacemaker activity of cells from the sinoatrial node (SAN), located in the right atria. Spontaneous electrical activity of SAN cells results from a diastolic depolarization (DD). Despite controversy in the exact contribution of funny current (I(f)) in pacemaking, it is a major contributor of DD. I(f) is an inward Na(+)/K(+) current, activated upon hyperpolarization and directly modulated by cyclic adenosine monophosphate. The f-proteins are hyperpolarization-activated cyclic nucleotide-gated channels, HCN4 being the main isoform of SAN. Ivabradine (IVA) decreases DD and inhibits I(f) in a use-dependent manner. Under normal conditions IVA selectively reduces HR and limits exercise-induced tachycardia, in animals and young volunteers. Reduction in HR with IVA both decreases myocardial oxygen consumption and increases its supply due to prolongation of diastolic perfusion time. In animal models and in human with coronary artery disease (CAD), IVA has anti-anginal and anti-ischemic efficacy, equipotent to classical treatments, β-blockers, or calcium channel blockers. As expected from its selectivity for I(f), the drug is safe and well tolerated with minor visual side effects. As a consequence, IVA is the first inhibitor of I(f) approved for the treatment of stable angina. Available clinical data indicate that IVA could improve the management of stable angina in all patients including those treated with β-blockers. As chronic elevation of resting HR is an independent predictor of mortality, pure HR reduction by inhibition of I(f) could, beyond the control of anti-anginal symptoms, improve the prognosis of CAD and heart failure; this therapeutic potential is currently under evaluation with IVA.
Collapse
Affiliation(s)
- Catherine Thollon
- Cardiovascular Department, Institut de Recherches Servier, Suresnes, France
| | | |
Collapse
|
16
|
Suffredini S, Mugelli A, Cerbai E. I(f) channels as a therapeutic target in heart disease. Future Cardiol 2009; 3:657-66. [PMID: 19804286 DOI: 10.2217/14796678.3.6.657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In the normal heart, impulses are generated from the sinoatrial node. It is generally accepted that the pacemaker current, I(f), plays a major role in the spontaneous rhythmic activity. Recently, several electrophysiological and molecular data demonstrate that I(f) channels are present in embryonic and post-natal ventricular myocytes and undergo a downregulation during maturation. Interestingly, the I(f) current is re-expressed in some pathological conditions such as cardiac hypertrophy and heart failure. In these conditions, the overexpression of f-channels is a consequence of electrophysiological remodeling and may represent an arrhythmogenic mechanism in heart failure, a condition associated with high risk for sudden cardiac death. For its physiological and pathophysiological role and the availability of selective f-channel blockers, I(f) may be a suitable therapeutic target in heart failure.
Collapse
Affiliation(s)
- Silvia Suffredini
- University of Florence, Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA) & Department of Pharmacology, Italy.
| | | | | |
Collapse
|
17
|
Nof E, Antzelevitch C, Glikson M. The Contribution of HCN4 to normal sinus node function in humans and animal models. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2009; 33:100-6. [PMID: 19796353 DOI: 10.1111/j.1540-8159.2009.02563.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although sinus node bradycardia is a very common clinical condition, the cellular mechanisms contributing to abnormal sinus node function are not clearly delineated. In recent publications, mutations in the hyperpolarization-activated, cyclic nucleotide-gated (HCN) 4 channels have been associated with sinus bradycardia. These channels are thought to be crucial in generating the spontaneous sinus node action potential, in accelerating the heart rate during sympathetic drive, and decelerating heart rate during vagal stimulation. Humans carrying HCN4 mutations indeed display significant bradycardia. Recent studies generating HCN4 knock out mice suggested that although HCN4 is crucial in early development, other mechanisms may also play a role in the accelerated heat rate achieved during sympathetic drive. In this review, we focus on genotype-phenotype correlation of these mutations and discuss the relative contribution of various ion channels to sinus node function. We also discuss the importance of HCN in treating clinical conditions such as brady- and tachycardia.
Collapse
Affiliation(s)
- Eyal Nof
- Masonic Medical Research Laboratory, Utica New York, USA
| | | | | |
Collapse
|
18
|
Baruscotti M, Barbuti A, Bucchi A. The cardiac pacemaker current. J Mol Cell Cardiol 2009; 48:55-64. [PMID: 19591835 DOI: 10.1016/j.yjmcc.2009.06.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/15/2009] [Accepted: 06/26/2009] [Indexed: 12/17/2022]
Abstract
In mammals cardiac rate is determined by the duration of the diastolic depolarization of sinoatrial node (SAN) cells which is mainly determined by the pacemaker I(f) current. f-channels are encoded by four members of the hyperpolarization-activated cyclic nucleotide-gated gene (HCN1-4) family. HCN4 is the most abundant isoform in the SAN, and its relevance to pacemaking has been further supported by the discovery of four loss-of-function mutations in patients with mild or severe forms of cardiac rate disturbances. Due to its selective contribution to pacemaking, the I(f) current is also the pharmacological target of a selective heart rate-reducing agent (ivabradine) currently used in the clinical practice. Albeit to a minor extent, the I(f) current is also present in other spontaneously active myocytes of the cardiac conduction system (atrioventricular node and Purkinje fibres). In working atrial and ventricular myocytes f-channels are expressed at a very low level and do not play any physiological role; however in certain pathological conditions over-expression of HCN proteins may represent an arrhythmogenic mechanism. In this review some of the most recent findings on f/HCN channels contribution to pacemaking are described.
Collapse
Affiliation(s)
- Mirko Baruscotti
- Department of Biomolecular Sciences and Biotechnology, Laboratory of Molecular Physiology and Neurobiology, Università degli Studi di Milano, Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (CIMMBA), via Celoria 26, 20133 Milano, Italy.
| | | | | |
Collapse
|
19
|
Pacemaker activity of the human sinoatrial node: role of the hyperpolarization-activated current, I(f). Int J Cardiol 2009; 132:318-36. [PMID: 19181406 DOI: 10.1016/j.ijcard.2008.12.196] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 12/16/2008] [Accepted: 12/22/2008] [Indexed: 11/20/2022]
Abstract
The mechanism of primary, spontaneous cardiac pacemaker activity of the sinoatrial node (SAN) has extensively been studied in several animal species, but is virtually unexplored in man. Understanding the mechanisms of human SAN pacemaker activity is important for developing new therapeutic approaches for controlling the heart rate in the sick sinus syndrome and in diseased myocardium. Here we review the functional role of the hyperpolarization-activated 'funny' current, I(f), in human SAN pacemaker activity. Despite the many animal studies performed over the years, the contribution of I(f) to pacemaker activity is still controversial and not fully established. However, recent clinical data on mutations in the I(f) encoding HCN4 gene, which is thought to be the most abundant isoform of the HCN gene family in SAN, suggest a functional role of I(f) in human pacemaker activity. These clinical findings are supported by recent experimental data from single isolated human SAN cells that provide direct evidence that I(f) contributes to human SAN pacemaker activity. Therefore, controlling heart rate in clinical practice via I(f) blockers offers a valuable approach to lowering heart rate and provides an attractive alternative to conventional treatment for a wide range of patients with confirmed stable angina, while upregulation or artificial expression of I(f) may relieve disease-causing bradycardias.
Collapse
|
20
|
Abstract
The heart automaticity is a fundamental physiological function in higher organisms. The spontaneous activity is initiated by specialized populations of cardiac cells generating periodical electrical oscillations. The exact cascade of steps initiating the pacemaker cycle in automatic cells has not yet been entirely elucidated. Nevertheless, ion channels and intracellular Ca(2+) signaling are necessary for the proper setting of the pacemaker mechanism. Here, we review the current knowledge on the cellular mechanisms underlying the generation and regulation of cardiac automaticity. We discuss evidence on the functional role of different families of ion channels in cardiac pacemaking and review recent results obtained on genetically engineered mouse strains displaying dysfunction in heart automaticity. Beside ion channels, intracellular Ca(2+) release has been indicated as an important mechanism for promoting automaticity at rest as well as for acceleration of the heart rate under sympathetic nerve input. The potential links between the activity of ion channels and Ca(2+) release will be discussed with the aim to propose an integrated framework of the mechanism of automaticity.
Collapse
Affiliation(s)
- Matteo E Mangoni
- Institute of Functional Genomics, Department of Physiology, Centre National de la Recherche Scientifique UMR5203, INSERM U661, University of Montpellier I and II, Montpellier, France.
| | | |
Collapse
|
21
|
Tamoxifen-inducible gene deletion in the cardiac conduction system. J Mol Cell Cardiol 2008; 45:62-9. [DOI: 10.1016/j.yjmcc.2008.04.008] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/18/2008] [Accepted: 04/18/2008] [Indexed: 12/18/2022]
|
22
|
Lee YT, Vasilyev DV, Shan QJ, Dunlop J, Mayer S, Bowlby MR. Novel pharmacological activity of loperamide and CP-339,818 on human HCN channels characterized with an automated electrophysiology assay. Eur J Pharmacol 2007; 581:97-104. [PMID: 18162181 DOI: 10.1016/j.ejphar.2007.11.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 11/08/2007] [Accepted: 11/21/2007] [Indexed: 11/17/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels underlie the pacemaker currents in neurons (I(h)) and cardiac (I(f)) cells. As such, the identification and characterization of novel blockers of HCN channels is important to enable the dissection of their function in vivo. Using a new IonWorks HT electrophysiology assay with human HCN1 and HCN4 expressed stably in cell lines, four HCN channel blockers are characterized. Two blockers known for their activity at opioid/Ca(2+) channels and K(+) channels, loperamide and CP-339,818 (respectively), are described to block HCN1 more potently than HCN4. The known HCN blocker ZD7288 was also found to be more selective for HCN1 over HCN4, while the HCN blocker DK-AH269 was equipotent on HCN4 and HCN1. Partial replacement of the intracellular Cl(-) with gluconate reduced the potency on both channels, but to varying degrees. For both HCN1 and HCN4, ZD7288 was most sensitive in lower Cl(-) solutions, while the potency of loperamide was not affected by the differing solutions. The block of HCN1 for all compounds was voltage-dependent, being relieved at more negative potentials. The voltage-dependent, Cl(-) dependent, HCN1 preferring compounds described here elaborate on the current known pharmacology of HCN channels and may help provide novel tools and chemical starting points for the investigation of HCN channel function in natively expressing systems.
Collapse
Affiliation(s)
- Yan T Lee
- Discovery Neuroscience, Wyeth Research, CN 8000, Princeton, NJ 08543-8000, United States
| | | | | | | | | | | |
Collapse
|
23
|
Thollon C, Bedut S, Villeneuve N, Cogé F, Piffard L, Guillaumin JP, Brunel-Jacquemin C, Chomarat P, Boutin JA, Peglion JL, Vilaine JP. Use-dependent inhibition of hHCN4 by ivabradine and relationship with reduction in pacemaker activity. Br J Pharmacol 2006; 150:37-46. [PMID: 17128289 PMCID: PMC2013855 DOI: 10.1038/sj.bjp.0706940] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Ivabradine, a specific and use-dependent I(f) inhibitor, exerts anti-ischaemic activity purely by reducing heart rate. The aim of this work was to characterize its effect on the predominant HCN channel isoform expressed in human sino-atrial nodes (hSAN), to determine its kinetics in HCN channels from multicellular preparations and rate-dependency of its action. EXPERIMENTAL APPROACH RT-PCR analysis of the four HCN channel isoforms was carried out on RNAs from hSAN. Patch-clamp and intracellular recordings were obtained from CHO cells stably expressing hHCN4 and isolated SAN, respectively. Beating rate of rat isolated atria was followed using a transducer. KEY RESULTS hHCN4 mRNAs were predominant in hSAN. Ivabradine induced a time-dependent inhibition of hHCN4 with an IC(50) of 0.5 microM. In rabbit SAN, ivabradine progressively reduced the frequency of action potentials: by 10% after 3 h at 0.1 microM, by 14% after 2 h at 0.3 microM and by 17% after 1.5 h at 1 microM. After 3h, ivabradine reduced the beating rate of rat right atria with an IC(30) of 0.2 microM. The onset of action of ivabradine was use-dependent rather than time-dependent with slower effects than caesium, an extracellular I (f) blocker. Ivabradine 3 microM decreased the frequency of action potentials in SAN from guinea-pig, rabbit and pig by 33%, 21% and 15% at 40 min, respectively. CONCLUSIONS AND IMPLICATIONS The use-dependent inhibition of hHCN4 current by ivabradine probably contributes to its slow developing effect in isolated SAN and right atria and to its increased effectiveness in species with rapid SAN activity.
Collapse
Affiliation(s)
- C Thollon
- Division Pathologies Cardiaques et Vasculaires, Institut de Recherches Servier, 11 rue des Moulineaux, Suresnes 92150, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Rosen MR, Bucchi A, Robinson RB. I f modulation: perspectives in clinical medicine. Eur Heart J Suppl 2006. [DOI: 10.1093/eurheartj/sul018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
25
|
Stieber J, Wieland K, Stöckl G, Ludwig A, Hofmann F. Bradycardic and proarrhythmic properties of sinus node inhibitors. Mol Pharmacol 2006; 69:1328-37. [PMID: 16387796 DOI: 10.1124/mol.105.020701] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sinus node inhibitors reduce the heart rate presumably by blocking the pacemaker current If in the cardiac conduction system. This pacemaker current is carried by four hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. We tested the potential subtype-specificity of the sinus node inhibitors cilobradine, ivabradine, and zatebradine using cloned HCN channels. All three substances blocked the slow inward current through human HCN1, HCN2, HCN3, and HCN4 channels. There was no subtype-specificity for the steady-state block, with mean IC50 values of 0.99, 2.25, and 1.96 microM for cilobradine, ivabradine, and zatebradine, respectively. Native If, recorded from mouse sinoatrial node cells, was slightly more efficiently blocked by cilobradine (IC50 value of 0.62 microM) than were the HCN currents. The block of I(f) in sinoatrial node cells resulted in slower and dysrhythmic spontaneous action potentials. The in vivo action of these blockers was analyzed using telemetric ECG recordings in mice. Each compound reduced the heart rate dose-dependently from 600 to 200 bpm with ED50 values of 1.2, 4.7, and 1.8 mg/kg for cilobradine, ivabradine, and zatebradine, respectively. beta-Adrenergic stimulation or forced physical activity only partly reversed this bradycardia. In addition to bradycardia, all three drugs induced increasing arrhythmia at concentrations greater than 5 mg/kg for cilobradine, greater than 10 mg/kg for zatebradine, or greater than 15 mg/kg for ivabradine. This dysrhythmic heart rate is characterized by periodic fluctuations of the duration between the T and P wave, resembling a form of sick sinus syndrome in humans. Hence, all available sinus node inhibitors possess an as-yet-unrecognized proarrhythmic potential.
Collapse
Affiliation(s)
- Juliane Stieber
- Institut für Pharmakologie und Toxikologie, TU München, Biedersteiner Str. 29, 80802 München, Germany.
| | | | | | | | | |
Collapse
|
26
|
Kijtawornrat A, Ozkanlar Y, Keene BW, Roche BM, Hamlin DM, Hamlin RL. Assessment of drug-induced QT interval prolongation in conscious rabbits. J Pharmacol Toxicol Methods 2006; 53:168-73. [PMID: 16290300 DOI: 10.1016/j.vascn.2005.04.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Accepted: 04/13/2005] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Most preclinical trials are designed to identify potential torsadogenicity test only for surrogates of torsade de pointes, most commonly prolongation of the heart rate corrected QT interval (QTc). This study was conducted to determine which correction method best accounts for the effects of changes in the RR interval on the QT interval of conscious rabbits. This study was also conducted to validate the use of conscious, sling-trained rabbits to assess the QTc interval, and to evaluate the reliability and accuracy of this preparation in predicting drug-induced QTc prolongation in humans. METHODS ECGs were recorded via bipolar transthoracic ECG leads in 7 conscious rabbits previously trained to rest quietly in slings. The heart rate was slowed with 2.0 mg/kg zatebradine to assess the effects of heart rate on the QT interval. The same ECG and sling preparation was used to evaluate the effects in of three drugs known to be torsadogenic in humans (cisapride, dofetilide and haloperidol), two drugs known to be non-torsadogenic in humans (propranolol and enalaprilat) and a control article (vehicle). All of the test articles were administered intravenously to 4 rabbits, and both RR and QT intervals were measured and the corrected QT values were calculated by an investigator blinded to the test article, utilizing our own algorithm (QTc=QT/(RR)(0.72)) which permitted the least dependency of QTc on RR interval. RESULTS The following regression equations were obtained relating QT to RR: QT=2.4RR(0.72), r(2)=0.79, with RR intervals varying between 210 and 350 ms. QTc lengthened significantly in all conscious rabbits given intravenous cisapride, dofetilide and haloperidol (p<0.05), and QTc did not change with DMSO (vehicle control), propranolol or enalaprilat. DISCUSSION Results indicate that a bipolar transthoracic ECG recorded in conscious, sling-trained rabbits may provide an easy and economical methodology useful in predicting QTc lengthening of novel pharmacological entities.
Collapse
Affiliation(s)
- A Kijtawornrat
- Department of Veterinary Biosciences, The Ohio State University, VMAB 480, 1900 Coffey Road, Columbus, OH 43210-1093, USA
| | | | | | | | | | | |
Collapse
|
27
|
Bucchi A, Tognati A, Milanesi R, Baruscotti M, DiFrancesco D. Properties of ivabradine-induced block of HCN1 and HCN4 pacemaker channels. J Physiol 2006; 572:335-46. [PMID: 16484306 PMCID: PMC1779671 DOI: 10.1113/jphysiol.2005.100776] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ivabradine is a 'heart rate-reducing' agent able to slow heart rate, without complicating side-effects. Its action results from a selective and specific block of pacemaker f-channels of the cardiac sinoatrial node (SAN). Investigation has shown that block by ivabradine requires open f-channels, is use dependent, and is affected by the direction of current flow. The constitutive elements of native pacemaker channels are the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, of which four isoforms (HCN1-4) are known; in rabbit SAN tissue HCN4 is expressed strongly, and HCN1 weakly. In this study we have investigated the blocking action of ivabradine on mouse (m) HCN1 and human (h) HCN4 channels heterologously expressed in HEK 293 cells. Ivabradine blocked both channels in a dose-dependent way with half-block concentrations of 0.94 microm for mHCN1 and 2.0 microm for hHCN4. Properties of block changed substantially for the two channels. Block of hHCN4 required open channels, was strengthened by depolarization and was relieved by hyperpolarization. Block of mHCN1 did not occur, nor was it relieved, when channels were in the open state during hyperpolarization; block required channels to be either closed, or in a transitional state between open and closed configurations. The dependence of block upon current flow was limited for hHCN4, and not significant for mHCN1 channels. In summary our results indicate that ivabradine is an 'open-channel' blocker of hHCN4, and a 'closed-channel' blocker of mHCN1 channels. The mode of action of ivabradine on the two channels is discussed by implementing a simplified version of a previously developed model of f-channel kinetics.
Collapse
Affiliation(s)
- A Bucchi
- Laboratory of Molecular Physiology and Neurobiology, Department of Biomolecular Sciences and Biotechnology, University of Milano, Italy
| | | | | | | | | |
Collapse
|
28
|
Létienne R, Vié B, Le Grand B. Pharmacological characterisation of sodium channels in sinoatrial node pacemaking in the rat heart. Eur J Pharmacol 2006; 530:243-9. [PMID: 16368090 DOI: 10.1016/j.ejphar.2005.11.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 11/08/2005] [Accepted: 11/14/2005] [Indexed: 11/30/2022]
Abstract
Blockade of sodium channels located in the sinoatrial node can slow diastolic depolarisation rate, recorded in vitro. The objective was therefore to determine whether these blockers could slow heart rate in vivo. The heart rate was firstly measured in spontaneously beating, isolated rat heart atria in the presence of different voltage gated sodium channel blockers. Tetrodotoxin and lidocaine slightly reduced heart rate whereas KC 12291 and R 56865, which mainly interact with the persistent component of the sodium current, concentration dependently and potently induced bradycardia. In the pithed rat, tetrodotoxin induced statistically significant decreases heart rate, maximal effects were: -32.2+/-6.1 beat per min. KC 12291 and R 56865 dose-dependently induced bradycardia (Delta heart rate obtained, -55.1+/-5.2 beat per min, P<0.05, and -71.9+/-8.5 bpm, P<0.05, respectively). In conclusion, voltage gated sodium channel blockers rather selective for the persistent current, exert a potent bradycardic effect in the rat.
Collapse
Affiliation(s)
- Robert Létienne
- Centre de Recherche Pierre Fabre, Division of Cardiovascular Diseases, 17, Avenue Jean Moulin, 81106 Castres Cedex, France.
| | | | | |
Collapse
|
29
|
Borer JS. Heart rate slowing by If inhibition: therapeutic utility from clinical trials. Eur Heart J Suppl 2005. [DOI: 10.1093/eurheartj/sui050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Romanelli MN, Cerbai E, Dei S, Guandalini L, Martelli C, Martini E, Scapecchi S, Teodori E, Mugelli A. Design, synthesis and preliminary biological evaluation of zatebradine analogues as potential blockers of the hyperpolarization-activated current. Bioorg Med Chem 2005; 13:1211-20. [PMID: 15670930 DOI: 10.1016/j.bmc.2004.11.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2004] [Accepted: 11/09/2004] [Indexed: 10/26/2022]
Abstract
A series of zatebradine analogues, differing in the basic moiety and in the methylene spacer, have been synthesized; their negative chronotropic activity has been determined in guinea pig atria. The most active compounds have been studied for their blocking properties on the hyperpolarization-activated current If (which is one of the main currents underlying automatic activity in the sinus node) measured on ventricular myocytes of old spontaneously-hypertensive rats (SHR) by means of the patch-clamp technique. The majority of the substances were able to block If, with one of them (15) being slightly more potent than zatebradine. Surprisingly one analogue (6), while showing good negative chronotropic activity, was found to inhibit If only at high concentration and to markedly reduce outward currents, suggesting for this substance a different mechanism of action responsible for the negative chronotropic effect.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Dipartimento di Scienze Farmaceutiche, Università di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Baruscotti M, Bucchi A, Difrancesco D. Physiology and pharmacology of the cardiac pacemaker (“funny”) current. Pharmacol Ther 2005; 107:59-79. [PMID: 15963351 DOI: 10.1016/j.pharmthera.2005.01.005] [Citation(s) in RCA: 221] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Accepted: 01/26/2005] [Indexed: 12/19/2022]
Abstract
First described over a quarter of a century ago, the cardiac pacemaker "funny" (I(f)) current has been extensively characterized since, and its role in cardiac pacemaking has been thoroughly demonstrated. A similar current, termed I(h), was later described in different types of neurons, where it has a variety of functions and contributes to the control of cell excitability and plasticity. I(f) is an inward current activated by both voltage hyperpolarization and intracellular cAMP. In the heart, as well as generating spontaneous activity, f-channels mediate autonomic-dependent modulation of heart rate: beta-adrenergic stimulation accelerates, and vagal stimulation slows, cardiac rate by increasing and decreasing, respectively, the intracellular cAMP concentration and, consequently, the f-channel degree of activation. Four isoforms of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels have been cloned more recently and shown to be the molecular correlates of native f-channels in the heart and h-channels in the brain. Individual HCN isoforms have kinetic and modulatory properties which differ quantitatively. A comparison of their biophysical properties with those of native pacemaker channels provides insight into the molecular basis of the pacemaker current properties and, together with immunolabelling and other detection techniques, gives information on the pattern of HCN isoform distribution in different tissues. Because of their relevance to cardiac pacemaker activity, f-channels are a natural target of drugs aimed at the pharmacological control of heart rate. Several agents developed for their ability to selectively reduce heart rate act by a specific inhibition of f-channel function; these substances have a potential for the treatment of diseases such as angina and heart failure. In the near future, devices based on the delivery of f-channels in situ, or of a cellular source of f-channels (biological pacemakers), will likely be developed for use in therapies for diseases of heart rhythm with the aim of replacing electronic pacemakers.
Collapse
Affiliation(s)
- Mirko Baruscotti
- Laboratory of Molecular Physiology and Neurobiology, Department of Biomolecular Sciences and Biotechnology, University of Milano, via Celoria 26, 20133 Milan, Italy
| | | | | |
Collapse
|
32
|
Mahlberg-Gaudin FH, Bouly M, Chezaubernard C, Lerebours G. Pharmacological Basics of ƒ-Current Inhibition. ACTA ACUST UNITED AC 2005. [DOI: 10.1159/000083381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Kubota H, Watanabe T, Kakefuda A, Masuda N, Wada K, Ishii N, Sakamoto S, Tsukamoto S. Synthesis and pharmacological evaluation of N-acyl-1,2,3,4-tetrahydroisoquinoline derivatives as novel specific bradycardic agents. Bioorg Med Chem 2004; 12:871-82. [PMID: 14980599 DOI: 10.1016/j.bmc.2003.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Accepted: 12/26/2003] [Indexed: 11/20/2022]
Abstract
A series of N-acyl-1,2,3,4-tetrahydroisoquinoline derivatives were synthesized and evaluated for their bradycardic activities in isolated guinea pig right atria and in urethane-anesthetized rats. These efforts resulted in identification of the compound 8a, which exhibits potent bradycardic activity with minimal influence on mean blood pressure in urethane-anesthetized rats. Oral administration of compound 8a to conscious rats revealed increased potency and prolonged duration of action when compared to Zatebradine.
Collapse
Affiliation(s)
- Hideki Kubota
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co. Ltd., 21Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Van Bogaert PP, Pittoors F. Use-dependent blockade of cardiac pacemaker current (If) by cilobradine and zatebradine. Eur J Pharmacol 2004; 478:161-71. [PMID: 14575801 DOI: 10.1016/j.ejphar.2003.08.083] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The action of the bradycardiac agents, cilobradine (DK-AH269) and zatebradine (UL-FS49), on the cardiac pacemaker current (If) was investigated on short Purkinje fibres from sheep hearts, using the two-microelectrode voltage-clamp technique, and on isolated rabbit sino-atrial cells with the patch clamp technique. These drugs reduce dose dependently the amplitude of the If, without modifying either the voltage dependence or the kinetics of channel activation. When voltage-clamp pulse trains were applied, cilobradine induced a use-dependent blockade of If that was stronger and faster than that with zatebradine. Recovery from blockade during prolonged hyperpolarization was significantly faster with zatebradine. Presumably, both drugs block the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel by gaining access to a binding site within the open channel pore, and are removed from the blocking site by strong hyperpolarization with large inward If through the open channel. Cilobradine, compared to zatebradine blocks If more effectively and faster in both preparations. Consequently cilobradine strongly reduces the pacemaker diastolic depolarization rate and the cell's firing frequency.
Collapse
Affiliation(s)
- Pierre Paul Van Bogaert
- Laboratory for Electrophysiology, Department of Physiology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | |
Collapse
|
35
|
Kubota H, Watanabe T, Kakefuda A, Masuda N, Wada K, Ishii N, Sakamoto S, Tsukamoto SI. Synthesis and pharmacological evaluation of piperidinoalkanoyl-1,2,3,4-tetrahydroisoquinoline derivatives as novel specific bradycardic agents. Bioorg Med Chem Lett 2004; 14:3049-52. [PMID: 15149642 DOI: 10.1016/j.bmcl.2004.04.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2004] [Revised: 04/12/2004] [Accepted: 04/13/2004] [Indexed: 11/20/2022]
Abstract
A series of piperidinoalkanoyl-1,2,3,4-tetrahydroisoquinoline derivatives were synthesized, and their bradycardic activities were investigated in the isolated right atria of guinea pigs and in conscious rats. These efforts identified the achiral compound 2f, which exhibited potent and long-lasting bradycardic activity with minimal effects on mean blood pressure in conscious rats.
Collapse
Affiliation(s)
- Hideki Kubota
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co Ltd, 21 Miyukigaoka, Tsukuba-shi, Ibaraki 305-8585, Japan. kubota.hideki @yamanouchi.co.jp
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hamlin RL, Cruze CA, Mittelstadt SW, Kijtawornrat A, Keene BW, Roche BM, Nakayama T, Nakayama H, Hamlin DM, Arnold T. Sensitivity and specificity of isolated perfused guinea pig heart to test for drug-induced lengthening of QTc. J Pharmacol Toxicol Methods 2004; 49:15-23. [PMID: 14670690 DOI: 10.1016/j.vascn.2003.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The purpose of this study was to determine the sensitivity and specificity for predicting the liability of a compound to lengthen QTc using isolated, perfused guinea pig hearts (Langendorff preparation). METHODS QTc (Fridericia correction) was calculated from bipolar transventricular electrograms. Hearts were exposed to escalating concentrations of 26 compounds thought to lengthen, and 13 compounds thought not to lengthen, QTc in humans. RESULTS In this preparation, QTc was found to lengthen in 26 of 26 compounds thought to be positive (sensitivity 1.00) and not to lengthen or to lengthen insignificantly in 13 of 13 compounds thought to be negative (specificity 1.0) in man. Probucol and ontazolast could not be studied because of limited solubility. Successful experiments were conducted on over 98% of guinea pigs anesthetized. DISCUSSION We believe that the isolated perfused guinea pig heart is an in vitro preparation that could be utilized early in preclinical testing for identifying a liability to lengthen QTc in humans, but we do not believe--as is true also for other in vitro methods--that the concentration at which the liability is demonstrated in vitro necessarily predicts the concentration at which a liability exists in man.
Collapse
Affiliation(s)
- R L Hamlin
- QTest Labs, 6456 Fiesta Drive, Columbus, OH 43235, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Cardiac pacemaker activity is regulated by at least five different classes of ion channels and by the opposing influence of sympathetic and parasympathetic stimulation. Inactivation of several genes, including a subunit coding for the potassium channel activated by the muscarinic receptor, I(KACh); the calcium channel, I(Ca,); and the hyperpolarization-activated channel, I(f), results in sinus node arrhythmia. Inactivation of the gene for the hyperpolarization-activated, cyclic nucleotide-gated channel isoform HCN2 or HCN4 and the use of pacemaker channel blockers show that (a) HCN2 prevents the diastolic membrane potential from becoming too negative, (b) HCN4 is the major channel mediating sympathetic stimulation of the pacemaker activity, and (3) complete blockage of the I(f) current is compatible with slow sinus node rhythm.
Collapse
Affiliation(s)
- Juliane Stieber
- Institut für Pharmakologie und Toxikologie, Technische Universität München, Munich, Germany
| | | | | |
Collapse
|
38
|
Kubota H, Kakefuda A, Watanabe T, Ishii N, Wada K, Masuda N, Sakamoto S, Tsukamoto SI. Synthesis and pharmacological evaluation of 1-oxo-2-(3-piperidyl)-1,2,3,4- tetrahydroisoquinolines and related analogues as a new class of specific bradycardic agents possessing I(f) channel inhibitory activity. J Med Chem 2003; 46:4728-40. [PMID: 14561092 DOI: 10.1021/jm0301742] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of 1-oxo-2-(3-piperidyl)-1,2,3,4-tetrahydroisoquinolines and related analogues were prepared and evaluated for their bradycardic activities in isolated right atrium and in anesthetized rats. (+/-)-6,7-Dimethoxy-2-[1-[3-(3,4-methylenedioxyphenoxy)propyl]-3-piperidyl]-1,2,3,4-tetrahydroisoquinoline (4) was chosen as a lead, and structural modifications were performed on the tetrahydroisoquinoline ring and the terminal aromatic ring. The modifications on the tetrahydroisoquinoline ring revealed that the 1-oxo-1,2,3,4-tetrahydroisoquinoline ring system was optimum structure for both in vitro potency and in vivo efficacy. Furthermore, methoxy, ethoxy, and methoxycarbonyl groups were identified as preferable substituents on the terminal aromatic ring. One of the 1-oxo-1,2,3,4-tetrahydroisoquinoline derivatives, (R)-10a, was further evaluated for its bradycardic activity and inhibitory activity against I(f) currents. Compound (R)-10a demonstrated potent bradycardic activity in rats with minimal influence on blood pressure after oral administration. The compound also showed inhibition of I(f) currents (IC(50) = 0.32 muM) in guinea pig pacemaker cells.
Collapse
Affiliation(s)
- Hideki Kubota
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co. Ltd., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kubota H, Kakefuda A, Watanabe T, Taguchi Y, Ishii N, Masuda N, Sakamoto S, Tsukamoto SI. (+/-)-2-(3-Piperidyl)-1,2,3,4-tetrahydroisoquinolines as a new class of specific bradycardic agents. Bioorg Med Chem Lett 2003; 13:2155-8. [PMID: 12798325 DOI: 10.1016/s0960-894x(03)00349-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A series of (+/-)-2-(3-piperidyl)-1,2,3,4-tetrahydroisoquinolines were prepared and their bradycardic activities were examined in isolated guinea-pigs' right atria and in anesthetized rats. Modifications on the benzyl moiety of the parent compound, 1, led to the identification of compound 11e as a potent and specific bradycardic agent.
Collapse
Affiliation(s)
- Hideki Kubota
- Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co. Ltd., 21Miyukigaoka, Tsukuba, 305-8585, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Robinson RB, Siegelbaum SA. Hyperpolarization-activated cation currents: from molecules to physiological function. Annu Rev Physiol 2003; 65:453-80. [PMID: 12471170 DOI: 10.1146/annurev.physiol.65.092101.142734] [Citation(s) in RCA: 897] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hyperpolarization-activated cation currents, termed If, Ih, or Iq, were initially discovered in heart and nerve cells over 20 years ago. These currents contribute to a wide range of physiological functions, including cardiac and neuronal pacemaker activity, the setting of resting potentials, input conductance and length constants, and dendritic integration. The hyperpolarization-activated, cation nonselective (HCN) gene family encodes the channels that underlie Ih. Here we review the relation between the biophysical properties of recombinant HCN channels and the pattern of HCN mRNA expression with the properties of native Ih in neurons and cardiac muscle. Moreover, we consider selected examples of the expanding physiological functions of Ih with a view toward understanding how the properties of HCN channels contribute to these diverse functional roles.
Collapse
Affiliation(s)
- Richard B Robinson
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
41
|
Hamlin RL, Nakayama T, Nakayama H, Carnes CA. Effects of changing heart rate on electrophysiological and hemodynamic function in the dog. Life Sci 2003; 72:1919-30. [PMID: 12597991 DOI: 10.1016/s0024-3205(03)00015-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cardiovascular parameters were measured in dogs after RR interval was changed from 0.25 s to 1.2 s with atropine and graded doses of zatebradine, an I(f)-channel blocker. Left ventricular (LV) pre-ejection period (PEP), systemic vascular resistance, tau (an estimate of myocardial stiffness), PQ, QTc, dLVP/dt(max) and dLVP/dt(min), aortic pressure, and right atrial pressure did not change when each parameter was plotted against RR interval (r(2)'s < or = 0.5). LV end-diastolic pressure, stroke volume index, LV ejection time (ET), and QT all increased either linearly or curvilinearly as RR interval prolonged. Cardiac output index and PEP/ET decreased curvilinearly. When heart rate (HR) was fixed by pacing, and graded doses of zatebradine were given, changes in cardiovascular function were minimal. Thus zatebradine affects cardiovascular function principally by changing HR and not by affecting function directly. This study provides data on the effects of changing HR, alone, on cardiovascular parameters measured frequently during pharmacological and toxicological studies. It should prove useful when physiological variables, including HR, change, and there is need to know what change in HR, alone, contributes.
Collapse
Affiliation(s)
- Robert L Hamlin
- Department of Veterinary Biosciences, The Ohio State University, 1900 Coffey Road, Columbus 43212-1092, USA.
| | | | | | | |
Collapse
|
42
|
Bucchi A, Baruscotti M, DiFrancesco D. Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J Gen Physiol 2002; 120:1-13. [PMID: 12084770 PMCID: PMC2238187 DOI: 10.1085/jgp.20028593] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2002] [Revised: 04/29/2002] [Accepted: 05/06/2002] [Indexed: 11/30/2022] Open
Abstract
"Funny" (f-) channels have a key role in generation of spontaneous activity of pacemaker cells and mediate autonomic control of cardiac rate; f-channels and the related neuronal h-channels are composed of hyperpolarization-activated, cyclic nucleotide-gated (HCN) channel subunits. We have investigated the block of f-channels of rabbit cardiac sino-atrial node cells by ivabradine, a novel heart rate-reducing agent. Ivabradine is an open-channel blocker; however, block is exerted preferentially when channels deactivate on depolarization, and is relieved by long hyperpolarizing steps. These features give rise to use-dependent behavior. In this, the action of ivabradine on f-channels is similar to that reported of other rate-reducing agents such as UL-FS49 and ZD7288. However, other features of ivabradine-induced block are peculiar and do not comply with the hypothesis that the voltage-dependence of block is entirely attributable to either the sensitivity of ivabradine-charged molecules to the electrical field in the channel pore, or to differential affinity to different channel states, as has been proposed for UL-FS49 (DiFrancesco, D. 1994. Pflugers Arch. 427:64-70) and ZD7288 (Shin, S.K., B.S. Rotheberg, and G. Yellen. 2001. J. Gen. Physiol. 117:91-101), respectively. Experiments where current flows through channels is modified without changing membrane voltage reveal that the ivabradine block depends on the current driving force, rather than voltage alone, a feature typical of block induced in inwardly rectifying K(+) channels by intracellular cations. Bound drug molecules do not detach from the binding site in the absence of inward current through channels, even if channels are open and the drug is therefore not "trapped" by closed gates. Our data suggest that permeation through f-channel pores occurs according to a multiion, single-file mechanism, and that block/unblock by ivabradine is coupled to ionic flow. The use-dependence resulting from specific features of I(f) block by ivabradine amplifies its rate-reducing ability at high spontaneous rates and may be useful to clinical applications.
Collapse
Affiliation(s)
- Annalisa Bucchi
- Department of General Physiology and Biochemistry, Laboratory of Molecular Physiology and Neurobiology, and INFM-Unità Milano Università, 20133 Milano, Italy
| | | | | |
Collapse
|
43
|
Sen L, Cui G, Zhou LM, Sakaguchi Y, Singh BN. Acute effects of zatebradine on cardiac conduction and repolarization. J Cardiovasc Pharmacol Ther 2002; 7:29-38. [PMID: 12000976 DOI: 10.1177/107424840200700i105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Zatebradine, a potent bradycardic agent, is believed to act selectively at the sinoatrial node. The selectivity of such a property relative to various electrophysiologic classes of action is not well defined. To characterize the electrophysiologic properties of zatebradine, the corrected sinus node recovery time, sinoatrial conduction time, conduction intervals, atrial effective refractory period and monophasic action potential duration in the ventricle were measured before and after incremental doses of zatebradine (0.1-1.5 mg/kg) in 15 anesthetized dogs. The electrophysiologic effects of zatebradine developed immediately after a single i.v. bolus dose, reaching steady-steady-state at 15 minutes with the maximum effect evident at 0.75 mg/kg. The IC(50) was 0.23 mg/kg. There was no significant effect on the sinus node recovery time. The PR interval on the electrocardiogram was significantly increased when the dose was higher than 0.25 mg/kg. The duration of the P wave and the PA interval were not changed. Zatebridine greatly increased the AH (from 135 to 178 milliseconds) without changing the HH and HV intervals in His bundle recordings. The EC(50) of this effect was 0.58 mg/kg. The QRS interval was not changed. The QTc was significantly increased from 0.43 to 0.56 s(1/2) (P < 0.05). The action potential duration was significantly increased by high dose zatebradine (> 0.5 mg/kg), the EC(50) for this effect was 0.76 mg/kg. The atrium effective refractory period was significantly increased (31%) with an EC(50) 0.69 mg/kg. These results indicate that zatebradine selectively inhibits sinus node automaticity at low doses. The inhibition of the AV nodal conduction and the lengthening of the refractory period and repolarization in the atria and the ventricles occur at higher dose.
Collapse
Affiliation(s)
- Luyi Sen
- Division of Cardiology, Department of Medicine, VAMC West Los Angeles and UCLA School of Medicine, Los Angeles, CA 90024, USA
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- B N Singh
- Department of Cardiology VA Medical Center, West Los Angeles, Los Angeles, CA 90073, USA
| |
Collapse
|
45
|
Satoh TO, Yamada M. A bradycardiac agent ZD7288 blocks the hyperpolarization-activated current (I(h)) in retinal rod photoreceptors. Neuropharmacology 2000; 39:1284-91. [PMID: 10760370 DOI: 10.1016/s0028-3908(99)00207-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Recently it has been reported that "I(f) channel blockers", which block the hyperpolarization-activated inward current (I(f)) in heart sino atrial node cells, also block the hyperpolarization-activated inward current (I(h)) in other tissues. Here we compared the effects of one of these agents, ZD7288 [4-(N-ethyl-N-phenylamino)-1, 2-dimethyl-6-(methylamino) pyrimidinium chloride], with those of Cs(+) on I(h) in amphibian rod photoreceptors using patch clamp and intracellular recordings. ZD7288 strongly inhibited I(h) in newt rod photoreceptors in a concentration-dependent manner (1-100 microM). ZD7288 exerted a blocking action on the conductance of I(h) with no alteration of its gating properties, and the blocking action of I(h) was not use-dependent. At concentrations as low as 1 microM, ZD7288 markedly enhanced the hyperpolarizing membrane responses of frog rod photoreceptors to bright light and delayed the response recovery, indicating that ZD7288 is highly selective for I(h). The apparent effect of the drug was slow in onset and irreversible, suggesting that ZD7288 act at a cytosolic site on the I(h) channel. These observations also confirm the involvement of I(h) in accelerating the response recovery process from deep membrane hyperpolarization induced by bright light in rod cells.
Collapse
Affiliation(s)
- T O Satoh
- Supermolecular Division, Electrotechnical Laboratory, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
46
|
Naito H, Furukawa Y, Chino D, Yamada C, Hashimoto K. Effects of zatebradine and propranolol on canine ischemia and reperfusion-induced arrhythmias. Eur J Pharmacol 2000; 388:171-6. [PMID: 10666509 DOI: 10.1016/s0014-2999(99)00845-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1,3,4,5-Tetrahydro-7,8-dimethoxy-3[3-[[2-(3, 4-dimethoxyphenyl)-ethyl]methylamino]propyl]-2H-3-benzazepin-2-one -hy drochloride (Zatebradine) is a specific bradycardiac agent, blocking the hyperpolarization-activated pacemaker current (I(f)), and thus has no negative inotropic effect. The purpose of this study was to examine whether zatebradine is effective against ischemia and reperfusion-induced arrhythmias in dogs compared to propranolol. Arrhythmia was induced by ligation of the left anterior descending coronary artery followed by reperfusion. Ischemia-induced biphasic arrhythmias were suppressed in both zatebradine and propranolol groups. During ischemia, fatal ventricular fibrillation occurred in four dogs in the control group, 0 in the zatebradine group, and two dogs in the propranolol group. Of the 31 dogs subjected to reperfusion, mortality rates in the zatebradine, propranolol, and control groups were 56%, 75%, and 86%, respectively, and there were no significant differences. In the heart beating 10 beats/min faster than the predrug heart rate by atrial pacing, both zatebradine and propranolol attenuated ischemia-induced arrhythmias but did not affect reperfusion arrhythmias. Our results suggest that I(f) and/or beta-adrenoceptors rather than the bradycardiac action might be related to the antiarrhythmic effects during ischemia, but that they do not play a role in the generation of the reperfusion-induced ventricular arrhythmias.
Collapse
Affiliation(s)
- H Naito
- Department of Pharmacology, Yamanashi Medical University, Tamaho-cho, Nakakoma-gun, Yamanashi, 409-3898, Japan
| | | | | | | | | |
Collapse
|
47
|
Strohmenger HU, Wenzel V, Eberhard R, Guth BD, Lurie KG, Lindner KH. Effects of the specific bradycardic agent zatebradine on hemodynamic variables and myocardial blood flow during the early postresuscitation phase in pigs. Resuscitation 1999; 42:211-20. [PMID: 10625162 DOI: 10.1016/s0300-9572(99)00093-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cardiopulmonary resuscitation (CPR) leads to an excessive stimulation of the sympathetic nervous system that may result in tachycardia and malignant arrhythmias in the postresuscitation phase. The attenuation of this reaction by a specific bradycardic agent has not been compared to beta-blockade and placebo. After 4 min of ventricular fibrillation, and 3 min of CPR, 21 pigs were randomized to receive 45 microg/kg epinephrine in combination with either a specific bradycardic agent (0.5 mg/kg zatebradine; n = 7), or a beta-blocker (1 mg/kg esmolol; n = 7), or placebo (normal saline; n = 7). Two minutes after drug administration, defibrillation was performed to restore spontaneous circulation (ROSC). Hemodynamic variables, left ventricular contractility, right ventricular function, and myocardial blood flow were studied at prearrest, and for 3 h after ROSC. In comparison with esmolol and placebo, zatebradine resulted in a significant reduction in heart rate during the postresuscitation period, and reduced the number of premature ventricular contractions in the first 5 min after ROSC. This reduction in heart rate was associated with a significantly higher right ventricular ejection fraction, stroke volume, and endocardial/epicardial perfusion ratio at 5 min after ROSC. In comparison with placebo, esmolol administration decreased heart rate only moderately, but significantly reduced right ventricular stroke volume and cardiac output at 5 min after ROSC. Although only one dose and only one administration pattern of zatebradine has been investigated, we conclude that zatebradine administration during CPR effectively reduced heart rate without compromising myocardial contractility during the postresuscitation phase in pigs.
Collapse
Affiliation(s)
- H U Strohmenger
- Department of Anaesthesia and Intensive Care Medicine, University of Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
48
|
Rocchetti M, Armato A, Cavalieri B, Micheletti M, Zaza A. Lidocaine inhibition of the hyperpolarization-activated current (I(f)) in sinoatrial myocytes. J Cardiovasc Pharmacol 1999; 34:434-9. [PMID: 10471004 DOI: 10.1097/00005344-199909000-00018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to provide information on the dose dependence and biophysical details of lidocaine blockade of the hyperpolarization-activated current (I(f)) in the sinoatrial node. Isolated rabbit sinoatrial myocytes were patch-clamped in the whole-cell configuration at 36+/-0.5 degrees C, in the presence of 1 mM Ba2+ and 2 mM Mn2+ to minimize contamination by K+ and Ca2+ currents, respectively. Lidocaine inhibited I(f) dose-dependently with a maximal inhibition of 69.5% at 75 microM and a half-maximal effect at 38.2 microM. Lidocaine reduced the conductance of fully activated I(f), without affecting the current reversal potential; the blocking effect was independent of membrane potential. Voltage dependence of I(f) activation gating was not affected by lidocaine, whose effect was independent of use and rate. Lidocaine did not modify the time course of I(f) activation. At therapeutic concentrations, lidocaine significantly inhibited I(f) by reducing fully activated channel conductance. Lack of voltage and rate dependence of effect differentiates lidocaine from most of other blockers of this current.
Collapse
Affiliation(s)
- M Rocchetti
- Dipartimento di Biotecnologie e Scienze Biologiche, Università di Milano-Bicocca, Milan, Italy
| | | | | | | | | |
Collapse
|
49
|
Gargini C, Demontis GC, Bisti S, Cervetto L. Effects of blocking the hyperpolarization-activated current (Ih) on the cat electroretinogram. Vision Res 1999; 39:1767-74. [PMID: 10343868 DOI: 10.1016/s0042-6989(98)00282-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The temporal properties of the electroretinogram (ERG) recorded from cat eyes were analyzed in the presence of either Cs+ or zatebradine which are known to inhibit the hyperpolarization activated current (Ih) in retinal rods. Both Cs+ and zatebradine reduce the ERG response to high-frequency sinusoidal stimuli of high mean luminance and contrast. Conversely, blockade of Ih has no effect on the frequency response characteristics of the isolated receptor component (PIII). These observations support the idea that Ih plays an important role in the transfer of signals from photoreceptors to second order neurons by suppressing the slow components originated in the phototransductive cascade. The result of this operation is an enhancement of the light response in a range of temporal frequencies relevant to vision.
Collapse
Affiliation(s)
- C Gargini
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Italy
| | | | | | | |
Collapse
|
50
|
Demontis GC, Longoni B, Barcaro U, Cervetto L. Properties and functional roles of hyperpolarization-gated currents in guinea-pig retinal rods. J Physiol 1999; 515 ( Pt 3):813-28. [PMID: 10066907 PMCID: PMC2269198 DOI: 10.1111/j.1469-7793.1999.813ab.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
1. The inward rectification induced by membrane hyperpolarization was studied in adult guinea-pig rods by the perforated-patch-clamp technique. 2. CsCl blocked the rectification observed in both voltage- and current-clamp recordings at voltages negative to -60 mV, while BaCl2 blocked the inward relaxation observed at voltages positive to -60 mV. The current activated at -90 mV had a low selectivity between sodium and potassium and reversed at -31.0 mV. 3. These observations suggest that two inward rectifiers are present in guinea-pig rods: a hyperpolarization-activated (Ih) and a hyperpolarization-deactivated (Ikx) current. The functional roles of Ih and Ikx were evaluated by stimulating rods with currents sinusoidally modulated in time. 4. Rods behave like bandpass amplifiers, with a peak amplification of 1.5 at about 2 Hz. For hyperpolarizations that mainly gate Ikx, amplification and phase shifts are fully accounted for by a rod membrane analogue model that includes an inductance. For hyperpolarizations that also gate Ih, a harmonic distortion became apparent. 5. Bandpass filtering and amplification of rod signals, associated with Ih and Ikx gating by membrane hyperpolarization, are strategically located to extend, beyond the limits imposed by the slow phototransductive cascade, the temporal resolution of signals spreading to the rod synapse.
Collapse
Affiliation(s)
- G C Demontis
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Universita' di Pisa, Pisa I-56126, Italy.
| | | | | | | |
Collapse
|