1
|
Zhou R, Barnes K, Gibson S, Fillmore N. Dual-edged role of SIRT1 in energy metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2024; 327:H1162-H1173. [PMID: 39269450 DOI: 10.1152/ajpheart.00001.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 08/13/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024]
Abstract
Regulation of energy metabolism is pivotal in the development of cardiovascular diseases. Dysregulation in mitochondrial fatty acid oxidation has been linked to cardiac lipid accumulation and diabetic cardiomyopathy. Sirtuin 1 (SIRT1) is a deacetylase that regulates the acetylation of various proteins involved in mitochondrial energy metabolism. SIRT1 mediates energy metabolism by directly and indirectly affecting multiple aspects of mitochondrial processes, such as mitochondrial biogenesis. SIRT1 interacts with essential mitochondrial energy regulators such as peroxisome proliferator-activated receptor-α (PPARα), PPARγ coactivator-1α, estrogen-related receptor-α, and their downstream targets. Apart from that, SIRT1 regulates additional proteins, including forkhead box protein O1 and AMP-activated protein kinase in cardiac disease. Interestingly, studies have also shown that the expression of SIRT1 plays a dual-edged role in energy metabolism. Depending on the physiological state, SIRT1 expression can be detrimental or protective. This review focuses on the molecular pathways through which SIRT1 regulates energy metabolism in cardiovascular diseases. We will review SIRT1 and discuss its role in cardiac energy metabolism and its benefits and detrimental effects in heart disease.
Collapse
Affiliation(s)
- Redemptor Zhou
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Kaleb Barnes
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Savannah Gibson
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| | - Natasha Fillmore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, North Dakota, United States
| |
Collapse
|
2
|
Gupta A. Cardiac 31P MR spectroscopy: development of the past five decades and future vision-will it be of diagnostic use in clinics? Heart Fail Rev 2023; 28:485-532. [PMID: 36427161 DOI: 10.1007/s10741-022-10287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
In the past five decades, the use of the magnetic resonance (MR) technique for cardiovascular diseases has engendered much attention and raised the opportunity that the technique could be useful for clinical applications. MR has two arrows in its quiver: One is magnetic resonance imaging (MRI), and the other is magnetic resonance spectroscopy (MRS). Non-invasively, highly advanced MRI provides unique and profound information about the anatomical changes of the heart. Excellently developed MRS provides irreplaceable and insightful evidence of the real-time biochemistry of cardiac metabolism of underpinning diseases. Compared to MRI, which has already been successfully applied in routine clinical practice, MRS still has a long way to travel to be incorporated into routine diagnostics. Considering the exceptional potential of 31P MRS to measure the real-time metabolic changes of energetic molecules qualitatively and quantitatively, how far its powerful technique should be waited before a successful transition from "bench-to-bedside" is enticing. The present review highlights the seminal studies on the chronological development of cardiac 31P MRS in the past five decades and the future vision and challenges to incorporating it for routine diagnostics of cardiovascular disease.
Collapse
Affiliation(s)
- Ashish Gupta
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, 226014, India.
| |
Collapse
|
3
|
Fillmore N, Hou V, Sun J, Springer D, Murphy E. Cardiac specific knock-down of peroxisome proliferator activated receptor α prevents fasting-induced cardiac lipid accumulation and reduces perilipin 2. PLoS One 2022; 17:e0265007. [PMID: 35259201 PMCID: PMC8903264 DOI: 10.1371/journal.pone.0265007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
While fatty acid metabolism is altered under physiological conditions, alterations can also be maladaptive in diseases such as diabetes and heart failure. Peroxisome Proliferator Activated Receptor α (PPARα) is a transcription factor that regulates fat metabolism but its role in regulating lipid storage in the heart is unclear. The aim of this study is to improve our understanding of how cardiac PPARα regulates cardiac health and lipid accumulation. To study the role of cardiac PPARα, tamoxifen inducible cardiac-specific PPARα knockout mouse (cPPAR-/-) were treated for 5 days with tamoxifen and then studied after 1–2 months. Under baseline conditions, cPPAR-/- mice appear healthy with normal body weight and mortality is not altered. Importantly, cardiac hypertrophy or reduced cardiac function was also not observed at baseline. Mice were fasted to elevate circulating fatty acids and induce cardiac lipid accumulation. After fasting, cPPAR-/- mice had dramatically lower cardiac triglyceride levels than control mice. Interestingly, cPPAR-/- hearts also had reduced Plin2, a key protein involved in lipid accumulation and lipid droplet regulation, which may contribute to the reduction in cardiac lipid accumulation. Overall, this suggests that a decline in cardiac PPARα may blunt cardiac lipid accumulation by decreasing Plin2 and that independent of differences in systemic metabolism a decline in cardiac PPARα does not seem to drive pathological changes in the heart.
Collapse
Affiliation(s)
- Natasha Fillmore
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States of America
- * E-mail:
| | - Vincent Hou
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Junhui Sun
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danielle Springer
- Murine Phenotyping Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
4
|
Liu N, Kataoka M, Wang Y, Pu L, Dong X, Fu X, Zhang F, Gao F, Liang T, Pei J, Xiao C, Qiu Q, Hong T, Chen Q, Zhao J, Zhu L, He J, Hu X, Nie Y, Zhu W, Yu H, Cowan DB, Hu X, Wang J, Wang DZ, Chen J. LncRNA LncHrt preserves cardiac metabolic homeostasis and heart function by modulating the LKB1-AMPK signaling pathway. Basic Res Cardiol 2021; 116:48. [PMID: 34379189 PMCID: PMC8357683 DOI: 10.1007/s00395-021-00887-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022]
Abstract
Metabolic modulation is a promising therapeutic approach to prevent adverse remodeling of the ischemic heart. Because little is known about the involvement of long non-coding RNAs (lncRNAs) in regulating cardiac metabolism, we used unbiased transcriptome profiling in a mouse model of myocardial infarction (MI). We identified a novel cardiomyocyte-enriched lncRNA, called LncHrt, which regulates metabolism and the pathophysiological processes that lead to heart failure. AAV-based LncHrt overexpression protects the heart from MI as demonstrated by improved contractile function, preserved metabolic homeostasis, and attenuated maladaptive remodeling responses. RNA-pull down followed by mass spectrometry and RNA immunoprecipitation (RIP) identified SIRT2 as a LncHrt-interacting protein involved in cardiac metabolic regulation. Mechanistically, we established that LncHrt interacts with SIRT2 to preserve SIRT2 deacetylase activity by interfering with the CDK5 and SIRT2 interaction. This increases downstream LKB1-AMPK kinase signaling, which ameliorates functional and metabolic deficits. Importantly, we found the expression of the human homolog of mouse LncHrt was decreased in patients with dilated cardiomyopathy. Together, these studies identify LncHrt as a cardiac metabolic regulator that plays an essential role in preserving heart function by regulating downstream metabolic signaling pathways. Consequently, LncHrt is a potentially novel RNA-based therapeutic target for ischemic heart disease.
Collapse
Affiliation(s)
- Ning Liu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Masaharu Kataoka
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
- Second Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, China
| | - Linbin Pu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiaoxuan Dong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xuyang Fu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Zhang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Gao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tian Liang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Jianqiu Pei
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Changchen Xiao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qiongzi Qiu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tingting Hong
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qiming Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jing Zhao
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Lianlian Zhu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Junhua He
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Yu Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Wei Zhu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hong Yu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Xinyang Hu
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jian'an Wang
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA.
| | - Jinghai Chen
- Department of Cardiology, Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| |
Collapse
|
5
|
Mishra S, Kass DA. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 2021; 18:400-423. [PMID: 33432192 PMCID: PMC8574228 DOI: 10.1038/s41569-020-00480-6] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 01/30/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) affects half of all patients with heart failure worldwide, is increasing in prevalence, confers substantial morbidity and mortality, and has very few effective treatments. HFpEF is arguably the greatest unmet medical need in cardiovascular disease. Although HFpEF was initially considered to be a haemodynamic disorder characterized by hypertension, cardiac hypertrophy and diastolic dysfunction, the pandemics of obesity and diabetes mellitus have modified the HFpEF syndrome, which is now recognized to be a multisystem disorder involving the heart, lungs, kidneys, skeletal muscle, adipose tissue, vascular system, and immune and inflammatory signalling. This multiorgan involvement makes HFpEF difficult to model in experimental animals because the condition is not simply cardiac hypertrophy and hypertension with abnormal myocardial relaxation. However, new animal models involving both haemodynamic and metabolic disease, and increasing efforts to examine human pathophysiology, are revealing new signalling pathways and potential therapeutic targets. In this Review, we discuss the cellular and molecular pathobiology of HFpEF, with the major focus being on mechanisms relevant to the heart, because most research has focused on this organ. We also highlight the involvement of other important organ systems, including the lungs, kidneys and skeletal muscle, efforts to characterize patients with the use of systemic biomarkers, and ongoing therapeutic efforts. Our objective is to provide a roadmap of the signalling pathways and mechanisms of HFpEF that are being characterized and which might lead to more patient-specific therapies and improved clinical outcomes.
Collapse
Affiliation(s)
- Sumita Mishra
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A. Kass
- Department of Medicine, Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,
| |
Collapse
|
6
|
Miranda-Silva D, Lima T, Rodrigues P, Leite-Moreira A, Falcão-Pires I. Mechanisms underlying the pathophysiology of heart failure with preserved ejection fraction: the tip of the iceberg. Heart Fail Rev 2021; 26:453-478. [PMID: 33411091 DOI: 10.1007/s10741-020-10042-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifaceted syndrome with a complex aetiology often associated with several comorbidities, such as left ventricle pressure overload, diabetes mellitus, obesity, and kidney disease. Its pathophysiology remains obscure mainly due to the complex phenotype induced by all these associated comorbidities and to the scarcity of animal models that adequately mimic HFpEF. Increased oxidative stress, inflammation, and endothelial dysfunction are currently accepted as key players in HFpEF pathophysiology. However, we have just started to unveil HFpEF complexity and the role of calcium handling, energetic metabolism, and mitochondrial function remain to clarify. Indeed, the enlightenment of such cellular and molecular mechanisms represents an opportunity to develop novel therapeutic approaches and thus to improve HFpEF treatment options. In the last decades, the number of research groups dedicated to studying HFpEF has increased, denoting the importance and the magnitude achieved by this syndrome. In the current technological and web world, the amount of information is overwhelming, driving us not only to compile the most relevant information about the theme but also to explore beyond the tip of the iceberg. Thus, this review aims to encompass the most recent knowledge related to HFpEF or HFpEF-associated comorbidities, focusing mainly on myocardial metabolism, oxidative stress, and energetic pathways.
Collapse
Affiliation(s)
- Daniela Miranda-Silva
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Tânia Lima
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Rodrigues
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
7
|
Abstract
Inflammation has long been known to play a role in heart failure (HF). Earlier studies demonstrated that inflammation contributes to the pathogenesis of HF with reduced ejection fraction (HFrEF), and the knowledge about molecules and cell types specifically involved in inflammatory events has been constantly increased ever since. However, conflicting results of several trials with anti-inflammatory treatments led to the conclusions that inflammation does participate in the progression of HFrEF, but more likely it is not the primary event. Conversely, it has been suggested that inflammation drives the development of HF with preserved ejection fraction (HFpEF). Recently the pharmacological blockade of interleukin-1 has been shown to prevent HF hospitalization and mortality in patients with prior myocardial infarction, lending renewed support to the hypothesis that inflammation is a promising therapeutic target in HF. Inflammation has also been proposed to underlie both HF and commonly associated conditions, such as chronic kidney disease or cancer. Within this last paradigm, an emergent role has been ascribed to clonal hematopoiesis of indeterminate potential. Here, we summarize the recent evidence about the role of inflammation in HF, highlighting the similarities and differences in HFrEF vs. HFpEF, and discuss the diagnostic and therapeutic opportunities raised by antinflammatory-based approaches.
Collapse
Affiliation(s)
- Gabriele G Schiattarella
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, NB11.208, Dallas, TX, 75390-8573, USA.
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy.
| | - Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Pietro Ameri
- Department of Internal Medicine, University of Genova, Genoa, Italy.
- IRCCS Ospedale Policlinico San Martino - IRCCS Italian Cardiovascular Network, Genoa, Italy.
| |
Collapse
|
8
|
Stølen T, Shi M, Wohlwend M, Høydal MA, Bathen TF, Ellingsen Ø, Esmaeili M. Effect of exercise training on cardiac metabolism in rats with heart failure. SCAND CARDIOVASC J 2019; 54:84-91. [PMID: 31500456 DOI: 10.1080/14017431.2019.1658893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objectives. Heart failure (HF) impairs resting myocardial energetics, myocardial mitochondrial performance, and maximal oxygen uptake (VO2max). Exercise training is included in most rehabilitation programs and benefits HF patients. However, the effect of exercise intensity on cardiac mitochondrial respiration and concentrations of the key bioenergetic metabolites phosphocreatine (PCr), adenosine triphosphate (ATP), and inorganic phosphate (Pi) is unclear. This study aimed to investigate the effects of exercise training at different intensities in rats with HF. Methods. Rats underwent myocardial infarction or sham operations and were divided into three subgroups: sedentary, moderate intensity, or high intensity. The impact of HF and 6 weeks of exercise training on energy metabolism was evaluated by 31P magnetic resonance spectroscopy and mitochondrial respirometry. The concentrations of PCr, ATP, and Pi were quantified by magnetic resonance spectroscopy. VO2max was measured by treadmill respirometry. Results. Exercise training increased VO2max in sham and HF. PCr/ATP ratio was reduced in HF (p < .01) and remained unchanged by exercise training. PCr concentration was significantly lower in HF compared to sham (p < .01). Moderate and high-intensity exercise training increased ATP in HF and sham. HF impaired complex I (CI) and complex II (p = .034) respiration. High-intensity exercise training recovered CI respiration in HF rats compared to HF sedentary (p = .014). Conclusions. Exercise training improved cardiac performance, as indicated by increased VO2max and higher exercise capacity, without changing the myocardial PCr/ATP ratio. These observations suggest that the PCr/ATP biomarker is not suited to evaluate the beneficial effects of exercise training in the heart. The exact mechanisms require further investigations, as exercise training did increase ATP levels and CI respiration.
Collapse
Affiliation(s)
- Tomas Stølen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olavs Hospital, Trondheim, Norway.,Clinic of Cardiothoracic Surgery, St Olavs Hospital, Trondheim, Norway
| | - Mingshu Shi
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martin Wohlwend
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Morten A Høydal
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiothoracic Surgery, St Olavs Hospital, Trondheim, Norway
| | - Tone F Bathen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Øyvind Ellingsen
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St Olavs Hospital, Trondheim, Norway
| | - Morteza Esmaeili
- Department of Circulation and Medical Imaging, NTNU, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Diagnostic Imaging, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
9
|
Fillmore N, Levasseur JL, Fukushima A, Wagg CS, Wang W, Dyck JRB, Lopaschuk GD. Uncoupling of glycolysis from glucose oxidation accompanies the development of heart failure with preserved ejection fraction. Mol Med 2018; 24:3. [PMID: 30134787 PMCID: PMC6016884 DOI: 10.1186/s10020-018-0005-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 02/13/2018] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Alterations in cardiac energy metabolism contribute to the development and severity of heart failure (HF). In severe HF, overall mitochondrial oxidative metabolism is significantly decreased resulting in a reduced energy reserve. However, despite the high prevalence of HF with preserved ejection fraction (HFpEF) in our society, it is not clear what changes in cardiac energy metabolism occur in HFpEF, and whether alterations in energy metabolism contribute to the development of contractile dysfunction. METHODS We directly assessed overall energy metabolism during the development of HFpEF in Dahl salt-sensitive rats fed a high salt diet (HSD) for 3, 6 and 9 weeks. RESULTS Over the course of 9 weeks, the HSD caused a progressive decrease in diastolic function (assessed by echocardiography assessment of E'/A'). This was accompanied by a progressive increase in cardiac glycolysis rates (assessed in isolated working hearts obtained at 3, 6, and 9 weeks of HSD). In contrast, the subsequent oxidation of pyruvate from glycolysis (glucose oxidation) was not altered, resulting in an uncoupling of glucose metabolism and a significant increase in proton production. Increased glucose transporter (GLUT)1 expression accompanied this elevation in glycolysis. Decreases in cardiac fatty acid oxidation and overall adenosine triphosphate (ATP) production rates were not observed in early HF, but both significantly decreased as HF progressed to HF with reduced EF (i.e. 9 weeks of HSD). CONCLUSIONS Overall, we show that increased glycolysis is the earliest energy metabolic change that occurs during HFpEF development. The resultant increased proton production from uncoupling of glycolysis and glucose oxidation may contribute to the development of HFpEF.
Collapse
Affiliation(s)
- Natasha Fillmore
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Jody L Levasseur
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Arata Fukushima
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Wei Wang
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Canada.
| |
Collapse
|
10
|
Abstract
The heart failure accounts for the highest mortality rate all over the world. The development of preventive therapeutic approaches is still in their infancy. Owing to the extremely high energy demand of the heart, the bioenergetics pathways need to respond efficiently based on substrate availability. The metabolic regulation of such heart bioenergetics is mediated by various rate limiting enzymes involved in energy metabolism. Although all the pertinent mechanisms are not clearly understood, the progressive decline in the activity of metabolic enzymes leading to diminished ATP production is known to cause progression of the heart failure. Therefore, metabolic therapy that can maintain the appropriate activities of metabolic enzymes can be a promising approach for the prevention and treatment of the heart failure. The flavonoids that constitute various human dietary ingredients also effectively offer a variety of health benefits. The flavonoids target a variety of metabolic enzymes and facilitate effective management of the equilibrium between production and utilization of energy in the heart. This review discusses the broad impact of metabolic enzymes in the heart functions and explains how the dysregulated enzyme activity causes the heart failure. In addition, the prospects of targeting dysregulated metabolic enzymes by developing flavonoid-based metabolic approaches are discussed.
Collapse
|
11
|
Peterzan MA, Lygate CA, Neubauer S, Rider OJ. Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 2017. [PMID: 28646030 DOI: 10.1152/ajpheart.00731.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The energy starvation hypothesis proposes that maladaptive metabolic remodeling antedates, initiates, and maintains adverse contractile dysfunction in heart failure (HF). Better understanding of the cardiac metabolic phenotype and metabolic signaling could help identify the role metabolic remodeling plays within HF and the conditions known to transition toward HF, including "pathological" hypertrophy. In this review, we discuss metabolic phenotype and metabolic signaling in the contexts of pathological hypertrophy and HF. We discuss the significance of alterations in energy supply (substrate utilization, oxidative capacity, and phosphotransfer) and energy sensing using observations from human and animal disease models and models of manipulated energy supply/sensing. We aim to provide ways of thinking about metabolic remodeling that center around metabolic flexibility, capacity (reserve), and efficiency rather than around particular substrate preferences or transcriptomic profiles. We show that maladaptive metabolic remodeling takes multiple forms across multiple energy-handling domains. We suggest that lack of metabolic flexibility and reserve (substrate, oxidative, and phosphotransfer) represents a final common denominator ultimately compromising efficiency and contractile reserve in stressful contexts.
Collapse
Affiliation(s)
- Mark A Peterzan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
12
|
Toczek M, Zielonka D, Zukowska P, Marcinkowski JT, Slominska E, Isalan M, Smolenski RT, Mielcarek M. An impaired metabolism of nucleotides underpins a novel mechanism of cardiac remodeling leading to Huntington's disease related cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2147-2157. [PMID: 27568644 DOI: 10.1016/j.bbadis.2016.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 01/28/2023]
Abstract
Huntington's disease (HD) is mainly thought of as a neurological disease, but multiple epidemiological studies have demonstrated a number of cardiovascular events leading to heart failure in HD patients. Our recent studies showed an increased risk of heart contractile dysfunction and dilated cardiomyopathy in HD pre-clinical models. This could potentially involve metabolic remodeling, that is a typical feature of the failing heart, with reduced activities of high energy phosphate generating pathways. In this study, we sought to identify metabolic abnormalities leading to HD-related cardiomyopathy in pre-clinical and clinical settings. We found that HD mouse models developed a profound deterioration in cardiac energy equilibrium, despite AMP-activated protein kinase hyperphosphorylation. This was accompanied by a reduced glucose usage and a significant deregulation of genes involved in de novo purine biosynthesis, in conversion of adenine nucleotides, and in adenosine metabolism. Consequently, we observed increased levels of nucleotide catabolites such as inosine, hypoxanthine, xanthine and uric acid, in murine and human HD serum. These effects may be caused locally by mutant HTT, via gain or loss of function effects, or distally by a lack of trophic signals from central nerve stimulation. Either may lead to energy equilibrium imbalances in cardiac cells, with activation of nucleotide catabolism plus an inhibition of re-synthesis. Our study suggests that future therapies should target cardiac mitochondrial dysfunction to ameliorate energetic dysfunction. Importantly, we describe the first set of biomarkers related to heart and skeletal muscle dysfunction in both pre-clinical and clinical HD settings.
Collapse
Affiliation(s)
- Marta Toczek
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland
| | - Daniel Zielonka
- Department of Social Medicine, Poznan University of Medical Sciences, 6 Rokietnicka Str, 60-806 Poznan, Poland
| | - Paulina Zukowska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland
| | - Jerzy T Marcinkowski
- Department of Social Medicine, Poznan University of Medical Sciences, 6 Rokietnicka Str, 60-806 Poznan, Poland
| | - Ewa Slominska
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland
| | - Mark Isalan
- Department of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, UK
| | - Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, 1 Debinki Str, 80-210 Gdansk, Poland.
| | - Michal Mielcarek
- Department of Life Sciences, Imperial College London, Exhibition Road, SW7 2AZ London, UK.
| |
Collapse
|
13
|
Sequeira V, Najafi A, McConnell M, Fowler ED, Bollen IAE, Wüst RCI, dos Remedios C, Helmes M, White E, Stienen GJM, Tardiff J, Kuster DWD, van der Velden J. Synergistic role of ADP and Ca(2+) in diastolic myocardial stiffness. J Physiol 2015; 593:3899-916. [PMID: 26096258 DOI: 10.1113/jp270354] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/01/2015] [Indexed: 01/11/2023] Open
Abstract
Diastolic dysfunction in heart failure patients is evident from stiffening of the passive properties of the ventricular wall. Increased actomyosin interactions may significantly limit diastolic capacity, however, direct evidence is absent. From experiments at the cellular and whole organ level, in humans and rats, we show that actomyosin-related force development contributes significantly to high diastolic stiffness in environments where high ADP and increased diastolic [Ca(2+) ] are present, such as the failing myocardium. Our basal study provides a mechanical mechanism which may partly underlie diastolic dysfunction. Heart failure (HF) with diastolic dysfunction has been attributed to increased myocardial stiffness that limits proper filling of the ventricle. Altered cross-bridge interaction may significantly contribute to high diastolic stiffness, but this has not been shown thus far. Cross-bridge interactions are dependent on cytosolic [Ca(2+) ] and the regeneration of ATP from ADP. Depletion of myocardial energy reserve is a hallmark of HF leading to ADP accumulation and disturbed Ca(2+) handling. Here, we investigated if ADP elevation in concert with increased diastolic [Ca(2+) ] promotes diastolic cross-bridge formation and force generation and thereby increases diastolic stiffness. ADP dose-dependently increased force production in the absence of Ca(2+) in membrane-permeabilized cardiomyocytes from human hearts. Moreover, physiological levels of ADP increased actomyosin force generation in the presence of Ca(2+) both in human and rat membrane-permeabilized cardiomyocytes. Diastolic stress measured at physiological lattice spacing and 37°C in the presence of pathological levels of ADP and diastolic [Ca(2+) ] revealed a 76 ± 1% contribution of cross-bridge interaction to total diastolic stress in rat membrane-permeabilized cardiomyocytes. Inhibition of creatine kinase (CK), which increases cytosolic ADP, in enzyme-isolated intact rat cardiomyocytes impaired diastolic re-lengthening associated with diastolic Ca(2+) overload. In isolated Langendorff-perfused rat hearts, CK inhibition increased ventricular stiffness only in the presence of diastolic [Ca(2+) ]. We propose that elevations of intracellular ADP in specific types of cardiac disease, including those where myocardial energy reserve is limited, contribute to diastolic dysfunction by recruiting cross-bridges, even at low Ca(2+) , and thereby increase myocardial stiffness.
Collapse
Affiliation(s)
- Vasco Sequeira
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Aref Najafi
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Mark McConnell
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Ewan D Fowler
- School of Biomedical Sciences, Garstang Building, University of Leeds, Leeds, UK
| | - Ilse A E Bollen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Rob C I Wüst
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Cris dos Remedios
- Muscle Research Unit, Bosch Institute, University of Sydney, Sydney, Australia
| | - Michiel Helmes
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Ed White
- School of Biomedical Sciences, Garstang Building, University of Leeds, Leeds, UK
| | - Ger J M Stienen
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands.,Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - Jil Tardiff
- Sarver Heart Center, University of Arizona, Tucson, AZ, USA
| | - Diederik W D Kuster
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research, VU University Medical Centre, Amsterdam, The Netherlands.,ICIN-Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
14
|
Fillmore N, Mori J, Lopaschuk GD. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 2014; 171:2080-90. [PMID: 24147975 DOI: 10.1111/bph.12475] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/20/2013] [Accepted: 09/26/2013] [Indexed: 01/09/2023] Open
Abstract
Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease.
Collapse
Affiliation(s)
- N Fillmore
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
15
|
Bashir A, Gropler R. Reproducibility of creatine kinase reaction kinetics in human heart: a (31) P time-dependent saturation transfer spectroscopy study. NMR IN BIOMEDICINE 2014; 27:663-71. [PMID: 24706347 PMCID: PMC4106821 DOI: 10.1002/nbm.3103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 03/03/2014] [Accepted: 03/05/2014] [Indexed: 05/25/2023]
Abstract
Creatine kinase (CK) is essential for the buffering and rapid regeneration of adenosine triphosphate (ATP) in heart tissue. Herein, we demonstrate a (31) P MRS protocol to quantify CK reaction kinetics in human myocardium at 3 T. Furthermore, we sought to quantify the test-retest reliability of the measured metabolic parameters. The method localizes the (31) P signal from the heart using modified one-dimensional image-selected in vivo spectroscopy (ISIS), and a time-dependent saturation transfer (TDST) approach was used to measure CK reaction parameters. Fifteen healthy volunteers (22 measurements in total) were tested. The CK reaction rate constant (kf ) was 0.32 ± 0.05 s(-1) and the coefficient of variation (CV) was 15.62%. The intrinsic T1 for phosphocreatine (PCr) was 7.36 ± 1.79 s with CV = 24.32%. These values are consistent with those reported previously. The PCr/ATP ratio was equal to 1.94 ± 0.15 with CV = 7.73%, which is within the range of healthy subjects. The reproducibility of the technique was tested in seven subjects and inferred parameters, such as kf and T1 , exhibited good reliability [intraclass correlation coefficient (ICC) of 0.90 and 0.79 for kf and T1 , respectively). The reproducibility data provided in this study will enable the calculation of the power and sample sizes required for clinical and research studies. The technique will allow for the examination of cardiac energy metabolism in clinical and research studies, providing insight into the relationship between energy deficit and functional deficiency in the heart.
Collapse
Affiliation(s)
- Adil Bashir
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
16
|
Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, Opie L. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 2014; 383:1933-43. [PMID: 24831770 PMCID: PMC4330973 DOI: 10.1016/s0140-6736(14)60107-0] [Citation(s) in RCA: 558] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Remodelling is a response of the myocardium and vasculature to a range of potentially noxious haemodynamic, metabolic, and inflammatory stimuli. Remodelling is initially functional, compensatory, and adaptive but, when sustained, progresses to structural changes that become self-perpetuating and pathogenic. Remodelling involves responses not only of the cardiomyocytes, endothelium, and vascular smooth muscle cells, but also of interstitial cells and matrix. In this Review we characterise the remodelling processes in atherosclerosis, vascular and myocardial ischaemia-reperfusion injury, and heart failure, and we draw attention to potential avenues for innovative therapeutic approaches, including conditioning and metabolic strategies.
Collapse
Affiliation(s)
- Gerd Heusch
- Institut für Pathophysiologie, Universitätsklinikum Essen, Essen, Germany
| | - Peter Libby
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bernard Gersh
- Division of Cardiovascular Diseases, Mayo Clinic, and Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Derek Yellon
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Michael Böhm
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Gary Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Lionel Opie
- Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
17
|
Fillmore N, Lopaschuk GD. Malonyl CoA: A promising target for the treatment of cardiac disease. IUBMB Life 2014; 66:139-146. [DOI: 10.1002/iub.1253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/14/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Natasha Fillmore
- Cardiovascular Research Centre; Mazankowski Alberta Heart Institute; University of Alberta; Edmonton AB Canada
| | - Gary D. Lopaschuk
- Cardiovascular Research Centre; Mazankowski Alberta Heart Institute; University of Alberta; Edmonton AB Canada
| |
Collapse
|
18
|
Pereira RO, Wende AR, Olsen C, Soto J, Rawlings T, Zhu Y, Riehle C, Abel ED. GLUT1 deficiency in cardiomyocytes does not accelerate the transition from compensated hypertrophy to heart failure. J Mol Cell Cardiol 2014; 72:95-103. [PMID: 24583251 DOI: 10.1016/j.yjmcc.2014.02.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/11/2014] [Accepted: 02/14/2014] [Indexed: 01/23/2023]
Abstract
The aim of this study was to determine whether endogenous GLUT1 induction and the increased glucose utilization that accompanies pressure overload hypertrophy (POH) are required to maintain cardiac function during hemodynamic stress, and to test the hypothesis that lack of GLUT1 will accelerate the transition to heart failure. To determine the contribution of endogenous GLUT1 to the cardiac adaptation to POH, male mice with cardiomyocyte-restricted deletion of the GLUT1 gene (G1KO) and their littermate controls (Cont) were subjected to transverse aortic constriction (TAC). GLUT1 deficiency reduced glycolysis and glucose oxidation by 50%, which was associated with a reciprocal increase in fatty acid oxidation (FAO) relative to controls. Four weeks after TAC, glycolysis increased and FAO decreased by 50% in controls, but were unchanged in G1KO hearts relative to shams. G1KO and controls exhibited equivalent degrees of cardiac hypertrophy, fibrosis, and capillary density loss after TAC. Following TAC, in vivo left ventricular developed pressure was decreased in G1KO hearts relative to controls, but+dP/dt was equivalently reduced in Cont and G1KO mice. Mitochondrial function was equivalently impaired following TAC in both Cont and G1KO hearts. GLUT1 deficiency in cardiomyocytes alters myocardial substrate utilization, but does not substantially exacerbate pressure-overload induced contractile dysfunction or accelerate the progression to heart failure.
Collapse
Affiliation(s)
- Renata O Pereira
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Adam R Wende
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Curtis Olsen
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Jamie Soto
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Tenley Rawlings
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Yi Zhu
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Christian Riehle
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - E Dale Abel
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA; Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and Metabolism, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
19
|
Pereira RO, Wende AR, Olsen C, Soto J, Rawlings T, Zhu Y, Anderson SM, Abel ED. Inducible overexpression of GLUT1 prevents mitochondrial dysfunction and attenuates structural remodeling in pressure overload but does not prevent left ventricular dysfunction. J Am Heart Assoc 2013; 2:e000301. [PMID: 24052497 PMCID: PMC3835233 DOI: 10.1161/jaha.113.000301] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased glucose transporter 1 (GLUT1) expression and glucose utilization that accompany pressure overload-induced hypertrophy (POH) are believed to be cardioprotective. Moreover, it has been shown that lifelong transgenic overexpression of GLUT1 in the heart prevents cardiac dysfunction after aortic constriction. The relevance of this model to clinical practice is unclear because of the life-long duration of increased glucose metabolism. Therefore, we sought to determine if a short-term increase in GLUT1-mediated myocardial glucose uptake would still confer cardioprotection if overexpression occurred at the onset of POH. METHODS AND RESULTS Mice with cardiomyocyte-specific inducible overexpression of a hemagglutinin (HA)-tagged GLUT1 transgene (G1HA) and their controls (Cont) were subjected to transverse aortic constriction (TAC) 2 days after transgene induction with doxycycline (DOX). Analysis was performed 4 weeks after TAC. Mitochondrial function, adenosine triphosphate (ATP) synthesis, and mRNA expression of oxidative phosphorylation (OXPHOS) genes were reduced in Cont mice, but were maintained in concert with increased glucose utilization in G1HA following TAC. Despite attenuated adverse remodeling in G1HA relative to control TAC mice, cardiac hypertrophy was exacerbated in these mice, and positive dP/dt (in vivo) and cardiac power (ex vivo) were equivalently decreased in Cont and G1HA TAC mice compared to shams, consistent with left ventricular dysfunction. O-GlcNAcylation of Ca2+ cycling proteins was increased in G1HA TAC hearts. CONCLUSIONS Short-term cardiac specific induction of GLUT1 at the onset of POH preserves mitochondrial function and attenuates pathological remodeling, but exacerbates the hypertrophic phenotype and is insufficient to prevent POH-induced cardiac contractile dysfunction, possibly due to impaired calcium cycling.
Collapse
Affiliation(s)
- Renata O Pereira
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:857-65. [DOI: 10.1016/j.bbamcr.2012.08.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 01/24/2023]
|
21
|
Lygate CA, Medway DJ, Ostrowski PJ, Aksentijevic D, Sebag-Montefiore L, Hunyor I, Zervou S, Schneider JE, Neubauer S. Chronic creatine kinase deficiency eventually leads to congestive heart failure, but severity is dependent on genetic background, gender and age. Basic Res Cardiol 2012; 107:276. [PMID: 22760499 PMCID: PMC3442167 DOI: 10.1007/s00395-012-0276-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 06/02/2012] [Accepted: 06/13/2012] [Indexed: 11/22/2022]
Abstract
The creatine kinase (CK) energy transport and buffering system supports cardiac function at times of high demand and is impaired in the failing heart. Mice deficient in muscle- and mitochondrial-CK (M/Mt-CK−/−) have previously been described, but exhibit an unexpectedly mild phenotype of compensated left ventricular (LV) hypertrophy. We hypothesised that heart failure would develop with age and performed echocardiography and LV haemodynamics at 1 year. Since all previous studies have utilised mice with a mixed genetic background, we backcrossed for >10 generations on to C57BL/6, and repeated the in vivo investigations. Male M/Mt-CK−/− mice on the mixed genetic background developed congestive heart failure as evidenced by significantly elevated end-diastolic pressure, impaired contractility, LV dilatation, hypertrophy and pulmonary congestion. Female mice were less severely affected, only showing trends for these parameters. After backcrossing, M/Mt-CK−/− mice had LV dysfunction consisting of impaired isovolumetric pressure changes and reduced contractile reserve, but did not develop congestive heart failure. Body weight was lower in knockout mice as a consequence of reduced total body fat. LV weight was not significantly elevated in relation to other internal organs and gene expression of LVH markers was normal, suggesting an absence of hypertrophy. In conclusion, the consequences of CK deficiency are highly dependent on genetic modifiers, gender and age. However, the observation that a primary defect in CK can, under the right conditions, result in heart failure suggests that impaired CK activity in the failing heart could contribute to disease progression.
Collapse
Affiliation(s)
- Craig A Lygate
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Jaswal JS, Keung W, Wang W, Ussher JR, Lopaschuk GD. Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1333-50. [PMID: 21256164 DOI: 10.1016/j.bbamcr.2011.01.015] [Citation(s) in RCA: 275] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 12/19/2022]
Abstract
Cardiac ischemia and its consequences including heart failure, which itself has emerged as the leading cause of morbidity and mortality in developed countries are accompanied by complex alterations in myocardial energy substrate metabolism. In contrast to the normal heart, where fatty acid and glucose metabolism are tightly regulated, the dynamic relationship between fatty acid β-oxidation and glucose oxidation is perturbed in ischemic and ischemic-reperfused hearts, as well as in the failing heart. These metabolic alterations negatively impact both cardiac efficiency and function. Specifically there is an increased reliance on glycolysis during ischemia and fatty acid β-oxidation during reperfusion following ischemia as sources of adenosine triphosphate (ATP) production. Depending on the severity of heart failure, the contribution of overall myocardial oxidative metabolism (fatty acid β-oxidation and glucose oxidation) to adenosine triphosphate production can be depressed, while that of glycolysis can be increased. Nonetheless, the balance between fatty acid β-oxidation and glucose oxidation is amenable to pharmacological intervention at multiple levels of each metabolic pathway. This review will focus on the pathways of cardiac fatty acid and glucose metabolism, and the metabolic phenotypes of ischemic and ischemic/reperfused hearts, as well as the metabolic phenotype of the failing heart. Furthermore, as energy substrate metabolism has emerged as a novel therapeutic intervention in these cardiac pathologies, this review will describe the mechanistic bases and rationale for the use of pharmacological agents that modify energy substrate metabolism to improve cardiac function in the ischemic and failing heart. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- Jagdip S Jaswal
- Mazankowski Alberta Heart Institute, Departments of Pediatrics and Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
23
|
Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, Waterman P, Gorbatov R, Marinelli B, Iwamoto Y, Chudnovskiy A, Figueiredo JL, Sosnovik DE, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res 2010; 107:1364-73. [PMID: 20930148 DOI: 10.1161/circresaha.110.227454] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Monocytes recruited to ischemic myocardium originate from a reservoir in the spleen, and the release from their splenic niche relies on angiotensin (Ang) II signaling. OBJECTIVE Because monocytes are centrally involved in tissue repair after ischemia, we hypothesized that early angiotensin-converting enzyme (ACE) inhibitor therapy impacts healing after myocardial infarction partly via effects on monocyte traffic. METHODS AND RESULTS In a mouse model of permanent coronary ligation, enalapril arrested the release of monocytes from the splenic reservoir and consequently reduced their recruitment into the healing infarct by 45%, as quantified by flow cytometry of digested infarcts. Time-lapse intravital microscopy revealed that enalapril reduces monocyte motility in the spleen. In vitro migration assays and Western blotting showed that this was caused by reduced signaling through the Ang II type 1 receptor. We then studied the long-term consequences of blocked splenic monocyte release in atherosclerotic apolipoprotein (apo)E(-/-) mice, in which infarct healing is impaired because of excessive inflammation in the cardiac wound. Enalapril improved histologic healing biomarkers and reduced inflammation in infarcts measured by FMT-CT (fluorescence molecular tomography in conjunction with x-ray computed tomography) of proteolytic activity. ACE inhibition improved MRI-derived ejection fraction by 14% on day 21, despite initially comparable infarct size. In apoE(-/-) mice, ischemia/reperfusion injury resulted in larger infarct size and enhanced monocyte recruitment and was reversible by enalapril treatment. Splenectomy reproduced antiinflammatory effects of enalapril. CONCLUSION This study suggests that benefits of early ACE inhibition after myocardial infarction can partially be attributed to its potent antiinflammatory impact on the splenic monocyte reservoir.
Collapse
Affiliation(s)
- Florian Leuschner
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mice over-expressing the myocardial creatine transporter develop progressive heart failure and show decreased glycolytic capacity. J Mol Cell Cardiol 2009; 48:582-90. [PMID: 19913546 DOI: 10.1016/j.yjmcc.2009.10.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 10/26/2009] [Accepted: 10/26/2009] [Indexed: 11/22/2022]
Abstract
The metabolic phenotype of the failing heart includes a decrease in phosphocreatine and total creatine concentration [Cr], potentially contributing to contractile dysfunction. Surprisingly, in 32- week-old mice over-expressing the myocardial creatine transporter (CrT-OE), we previously demonstrated that elevated [Cr] correlates with left ventricular (LV) hypertrophy and failure. The aim of this study was to determine the temporal relationship between elevated [Cr] and the onset of cardiac dysfunction and to screen for potential molecular mechanisms. CrT-OE mice were compared with wild-type (WT) littermate controls longitudinally using cine-MRI to measure cardiac function and single-voxel (1)H-MRS to measure [Cr] in vivo at 6, 16, 32, and 52 weeks of age. CrT-OE mice had elevated [Cr] at 6 weeks (mean 1.9-fold), which remained constant throughout life. Despite this increased [Cr], LV dysfunction was not apparent until 16 weeks and became more pronounced with age. Additionally, LV tissue from 12 to 14 week old CrT-OE mice was compared to WT using 2D difference in-gel electrophoresis (DIGE). These analyses detected a majority of the heart's metabolic enzymes and identified seven proteins that were differentially expressed between groups. The most pronounced protein changes were related to energy metabolism: alpha- and beta-enolase were selectively decreased (p<0.05), while the remaining enzymes of glycolysis were unchanged. Consistent with a decrease in enolase content, its activity was significantly lower in CrT-OE hearts (in WT, 0.59+/-0.02 micromol ATP produced/microg protein/min; CrT-OE, 0.31+/-0.06; p<0.01). Additionally, anaerobic lactate production was decreased in CrT-OE mice (in WT, 102+/-3 micromol/g wet myocardium; CrT-OE, 78+/-13; p=0.02), consistent with decreased glycolytic capacity. Finally, we found that enolase may be regulated by increased expression of the beta-enolase repressor transcription factor, which was significantly increased in CrT-OE hearts. This study demonstrates that chronically increased myocardial [Cr] in the CrT-OE model leads to the development of progressive hypertrophy and heart failure, which may be mediated by a compromise in glycolytic capacity at the level of enolase.
Collapse
|
25
|
Xu S, Shen J. Studying Enzymes by In Vivo C Magnetic Resonance Spectroscopy. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:266-283. [PMID: 20161496 PMCID: PMC2796782 DOI: 10.1016/j.pnmrs.2009.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Su Xu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
26
|
Lygate CA, Fischer A, Sebag-Montefiore L, Wallis J, ten Hove M, Neubauer S. The creatine kinase energy transport system in the failing mouse heart. J Mol Cell Cardiol 2007; 42:1129-36. [PMID: 17481652 DOI: 10.1016/j.yjmcc.2007.03.899] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Revised: 01/18/2007] [Accepted: 03/16/2007] [Indexed: 11/29/2022]
Abstract
Characteristic alterations of the creatine kinase (CK) system occur in heart failure and may contribute to contractile dysfunction. We examined two mouse models of chronic cardiac stress, transverse aortic constriction (TAC) and coronary artery ligation (CAL), and examined the relationship of CK system changes with hypertrophy and heart failure development. C57Bl/6 mice were subjected to TAC or sham surgery and sacrificed after 2-10 weeks according to echocardiographic criteria of myocardial hypertrophy and function to create four groups representing progressive dysfunction from normal, through compensated hypertrophy, to heart failure. Only mice with congestive heart failure had LV total creatine concentration and total CK activity significantly lower than sham values (11% and 30% lower, respectively). However for all aortic banded mice, a linear relationship was observed between ejection fraction and estimated maximal CK reaction velocity. Mice with heart failure also had corresponding decreases in the activities of the Mito-, MM-, and MB-CK isoenzymes, while the BB isoform remained unchanged. To determine whether these changes were model specific, mice were subjected to CAL or sham operation and followed for 7 weeks. Quantitative changes in total creatine, total CK activity, Mito-CK and MM-CK activities were similar for CAL and TAC mice. We conclude that alterations in the creatine kinase system occur during heart failure in mice qualitatively similar to those occurring in larger animals and humans, suggesting that mice are a suitable model for studying the role of such changes in the pathogenesis of heart failure.
Collapse
Affiliation(s)
- Craig A Lygate
- Department of Cardiovascular Medicine, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Stefan Neubauer
- Department of Cardiovascular Medicine, University of Oxford and John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
28
|
Ingwall JS. On the hypothesis that the failing heart is energy starved: lessons learned from the metabolism of ATP and creatine. Curr Hypertens Rep 2007; 8:457-64. [PMID: 17087856 DOI: 10.1007/s11906-006-0023-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adenosine triphosphate (ATP) and phosphocreatine fall in the failing heart. New insights into the control of ATP synthesis, supply, and utilization, and how this changes in the failing heart, have emerged. In this article, we address four questions: What are the mechanisms explaining loss of ATP and creatine from the failing heart? What are the consequences of these changes? Can metabolism be manipulated to restore a normal ATP supply? Does increasing energy supply have physiologic consequences (ie, does it lead to improved contractile performance)? In part 1 we focus on ATP, in part 2 on creatine, and in part 3 on the relationship between creatine and purine metabolism and purine nucleotide signaling.
Collapse
Affiliation(s)
- Joanne S Ingwall
- NMR Laboratory for Physiological Chemistry, Brigham and Women's Hospital, 221 Longwood Avenue, Room 247, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Cha YM, Dzeja PP, Redfield MM, Shen WK, Terzic A. Bioenergetic protection of failing atrial and ventricular myocardium by vasopeptidase inhibitor omapatrilat. Am J Physiol Heart Circ Physiol 2005; 290:H1686-92. [PMID: 16339841 DOI: 10.1152/ajpheart.00384.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deficient bioenergetic signaling contributes to myocardial dysfunction and electrical instability in both atrial and ventricular cardiac chambers. Yet, approaches capable to prevent metabolic distress are only partially established. Here, in a canine model of tachycardia-induced congestive heart failure, we compared atrial and ventricular bioenergetics and tested the efficacy of metabolic rescue with the vasopeptidase inhibitor omapatrilat. Despite intrinsic differences in energy metabolism, failing atria and ventricles demonstrated profound bioenergetic deficiency with reduced ATP and creatine phosphate levels and compromised adenylate kinase and creatine kinase catalysis. Depressed phosphotransfer enzyme activities correlated with reduced tissue ATP levels, whereas creatine phosphate inversely related with atrial and ventricular load. Chronic treatment with omapatrilat maintained myocardial ATP, the high-energy currency, and protected adenylate and creatine kinase phosphotransfer capacity. Omapatrilat-induced bioenergetic protection was associated with maintained atrial and ventricular structural integrity, albeit without full recovery of the creatine phosphate pool. Thus therapy with omapatrilat demonstrates the benefit in protecting phosphotransfer enzyme activities and in preventing impairment of atrial and ventricular bioenergetics in heart failure.
Collapse
Affiliation(s)
- Yong-Mei Cha
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
30
|
Armoni M, Harel C, Bar-Yoseph F, Milo S, Karnieli E. Free fatty acids repress the GLUT4 gene expression in cardiac muscle via novel response elements. J Biol Chem 2005; 280:34786-95. [PMID: 16096283 DOI: 10.1074/jbc.m502740200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperlipidemia (HL) impairs cardiac glucose homeostasis, but the molecular mechanisms involved are yet unclear. We examined HL-regulated GLUT4 and peroxisome proliferator-activated receptor (PPAR) gamma gene expression in human cardiac muscle. Compared with control patients, GLUT4 protein levels were 30% lower in human cardiac muscle biopsies from patients with HL and/or type 2 diabetes mellitus, whereas GLUT4 mRNA levels were unchanged. PPARgamma mRNA levels were 30-50% lower in patients with HL and/or diabetes mellitus type 2 than in controls. Reporter studies in H9C2 cardiomyotubes showed that HL in vitro, induced by high levels of arachidonic (AA) stearic, linoleic, and oleic acids (24 h, 200 mum) repressed transcription from the GLUT4 promoter; AA also repressed transcription from the PPARgamma1 and PPARgamma2 promoters. Co-expression of PPARgamma2 repressed GLUT4 promoter activity, and the addition of AA further enhanced this effect. 5'-Deletion analysis revealed three GLUT4 promoter regions that accounted for AA-mediated effects: two repression-mediating sequences at -443/-423 bp and -222/-197 bp, the deletion of either or both of which led to a partial derepression of promoter activity, and a third derepression-mediating sequence at -612/-587 bp that was required for sustaining this derepression effect. Electromobility shift assay further shows that AA enhanced binding to two of the three regions of cardiac nuclear protein(s), the nature of which is still unknown. We propose that HL, exhibited as a high free fatty acid level, modulates GLUT4 gene expression in cardiac muscle via a complex mechanism that includes: (a) binding of AA mediator proteins to three newly identified response elements on the GLUT4 promoter gene and (b) repression of GLUT4 and the PPARgamma genes by AA.
Collapse
Affiliation(s)
- Michal Armoni
- Institute of Endocrinology, Diabetes and Metabolism, Rambam Medical Center and B. Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | |
Collapse
|
31
|
Kasparová S, Brezová V, Valko M, Horecký J, Mlynárik V, Liptaj T, Vancová O, Ulicná O, Dobrota D. Study of the oxidative stress in a rat model of chronic brain hypoperfusion. Neurochem Int 2005; 46:601-11. [PMID: 15863238 DOI: 10.1016/j.neuint.2005.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Accepted: 02/21/2005] [Indexed: 11/15/2022]
Abstract
A multiple analysis of the cerebral oxidative stress was performed on a physiological model of dementia accomplished by three-vessel occlusion in aged rats. The forward rate constant of creatine kinase, k(for), was studied by saturation transfer (31)P magnetic resonance spectroscopy in adult and aged rat brain during chronic hypoperfusion. In addition, free radicals in aging rat brain homogenates before and/or after occlusion were investigated by spin-trapping electron paramagnetic resonance spectroscopy (EPR). Finally, biochemical measurements of oxidative phosphorylation parameters in the above physiological model were performed. The significant reduction of k(for) in rat brain compared to controls 2 and 10 weeks after occlusion indicates a disorder in brain energy metabolism. This result is consistent with the decrease of the coefficient of oxidative phosphorylation (ADP:O), and the oxidative phosphorylation rate measured in vitro on brain mitochondria. The EPR study showed a significant increase of the ascorbyl free radical concentration in this animal model. Application of alpha-phenyl-N-tert-butylnitrone (PBN) and 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin traps revealed formation of highly reactive hydroxyl radical (.OH) trapped in DMSO as the .CH(3) adduct. It was concluded that the ascorbate as a major antioxidant in brain seems to be useful in monitoring chronic cerebral hypoperfusion.
Collapse
Affiliation(s)
- Svatava Kasparová
- NMR Laboratory, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A 2005; 102:808-13. [PMID: 15647364 PMCID: PMC545546 DOI: 10.1073/pnas.0408962102] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heart consumes more energy per gram than any other organ, and the creatine kinase (CK) reaction serves as its prime energy reserve. Because chemical energy is required to fuel systolic and diastolic function, the question of whether the failing heart is "energy starved" has been debated for decades. Despite the central role of the CK reaction in cardiac energy metabolism, direct measures of CK flux in the beating human heart were not previously possible. Using an image-guided molecular assessment of endogenous ATP turnover, we directly measured ATP flux through CK in normal, stressed, and failing human hearts. We show that cardiac CK flux in healthy humans is faster than that estimated through oxidative phosphorylation and that CK flux does not increase during a doubling of the heart rate-blood pressure product by dobutamine. Furthermore, cardiac ATP flux through CK is reduced by 50% in mild-to-moderate human heart failure (1.6 +/- 0.6 vs. 3.2 +/- 0.9 micromol/g of wet weight per sec, P <0.0005). We conclude that magnetic resonance strategies can now directly assess human myocardial CK energy flux. The deficit in ATP supplied by CK in the failing heart is cardiac-specific and potentially of sufficient magnitude, even in the absence of a significant reduction in ATP stores, to contribute to the pathophysiology of human heart failure. These findings support the pursuit of new therapies that reduce energy demand and/or augment energy transfer in heart failure and indicate that cardiac magnetic resonance can be used to assess their effectiveness.
Collapse
Affiliation(s)
- Robert G Weiss
- Department of Medicine, Cardiology Division, and Department of Radiology, Nuclear Magnetic Resonance Research Division, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
33
|
Joubert F, Mateo P, Gillet B, Beloeil JC, Mazet JL, Hoerter JA. CK flux or direct ATP transfer: versatility of energy transfer pathways evidenced by NMR in the perfused heart. Mol Cell Biochem 2004; 256-257:43-58. [PMID: 14977169 DOI: 10.1023/b:mcbi.0000009858.41434.fc] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
How the myocardium is able to permanently coordinate its intracellular fluxes of ATP synthesis, transfer and utilization is difficult to investigate in the whole organ due to the cellular complexity. The adult myocardium represents a paradigm of an energetically compartmented cell since 50% of total CK activity is bound in the vicinity of other enzymes (myofibrillar sarcolemmal and sarcoplasmic reticulum ATPases as well as mitochondrial adenine nucleotide translocator, ANT). Such vicinity of enzymes is well known in vitro as well as in preparations of skinned fibers to influence the kinetic properties of these enzymes and thus the functioning of the subcellular organelles. Intracellular compartmentation has often been neglected in the NMR analysis of CK kinetics in the whole organ. It is indeed a methodological challenge to reveal subcellular kinetics in a working organ by a global approach such as NMR. To get insight in the energy transfer pathway in the perfused rat heart, we developed a combined analysis of several protocols of magnetization transfer associated with biochemical data and quantitatively evaluated which scheme of energetic exchange best describes the NMR data. This allows to show the kinetic compartmentation of subcellular CKs and to quantify their fluxes. Interestingly, we could show that the energy transfer pathway shifts from the phosphocreatine shuttle in the oxygenated perfused heart to a direct ATP diffusion from mitochondria to cytosol under moderate inhibition of ATP synthesis. Furthermore using NMR measured fluxes and the known kinetic properties of the enzymes, it is possible to model the system, estimate local ADP concentrations and propose hypothesis for the versatility of energy transfer pathway. In the normoxic heart, a 3-fold ADP gradient was found between mitochondrial intermembrane space, cytosol and ADP in the vicinity of ATPases. The shift from PCr to ATP transport observed when ATP synthesis decreases might result from a balance in the activity of two populations of ANT, either coupled or uncoupled to CK. We believe this NMR approach could be a valuable tool to reinvestigate the control of respiration by ADP in the whole heart reconciling the biochemical knowledge of mitochondrial obtained in vitro or in skinned fibers with data on the whole heart as well as to identify the implication of bioenergetics in the pathological heart.
Collapse
Affiliation(s)
- F Joubert
- U-446 INSERM, Cardiologie Cellulaire et Moléculaire, Université Paris-Sud, Chatenay Malabry, France
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The use of LVADs that leads to a dramatic mechanical and hemodynamic unloading of the failing left ventricle offers a unique opportunity to investigate the mechanisms of remodeling and reverse remodeling. Although it is being increasingly realized that the LVAD unloading results in regression of hypertrophy and improvement of myocyte function and LV geometry, the cellular and molecular mechanisms responsible for these beneficial effects remain undefined. The favorable alterations in geometry that occur in parallel fashion at the organ, cellular, and molecular levels are most likely caused by the reduced LV wall stress/stretch as a consequence of the mechanical support provided by LVAD. If it is confirmed that LVAD unloading can contribute significantly to reverse remodeling, the role of LVADs may graduate from bridge-to-transplantation or destination therapy to bridge-to-recovery.
Collapse
Affiliation(s)
- Jianyi Zhang
- University of Minnesota Health Science Center, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
35
|
Iwanaga Y, Gu Y, Dieterle T, Presotto C, Del Soldato P, Peterson KL, Ongini E, Condorelli G, Ross J. A nitric oxide‐releasing derivative of enalapril, NCX 899, prevents progressive cardiac dysfunction and remodeling in hamsters with heart failure. FASEB J 2004; 18:587-8. [PMID: 14734637 DOI: 10.1096/fj.03-0872fje] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nitric oxide (NO) production is known to be impaired in heart failure. A new compound (NCX 899), a NO-releasing derivative of enalapril was characterized, and its actions were evaluated in Bio 14.6 cardiomyopathic (CM) hamsters with heart failure. The hamsters were randomized to oral treatment for 4 weeks with vehicle (n=11), NCX 899 (NCX, 25 mg/kg, n=10), or enalapril (25 mg/kg, n=10). In the vehicle group, fractional shortening by echocardiography decreased (-23.6+/-2.0%) and LV end-diastolic dimension) increased (+10.9+/-1.0%), whereas fractional shortening increased (+17.5+/-4.4%) in NCX and was unchanged in the enalapril group (both P<0.01 vs. vehicle). End-diastolic dimension decreased only in NCX. LV contractility (LVdP/dt max and Emax) was significantly greater in NCX than in enalapril or vehicle, while relaxation (Tau) was shortened in both NCX and enalapril vs. vehicle. ACE activity was inhibited equally by NCX and enalapril in the CM hamster, and plasma nitrate levels were increased only in NCX (P<0.05 vs. enalapril and vehicle). In aortic strips endothelium-independent relaxation occurred only with NCX. The superior effects of NO-releasing enalapril (NCX) vs. enalapril alone to enhance vascular effects, increase LV contractility and prevent unfavorable remodeling and are consistent with vascular delivery of exogenous NO. NCX 899 may hold promise for the future treatment of heart failure.
Collapse
Affiliation(s)
- Yoshitaka Iwanaga
- Institute of Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bahi L, Koulmann N, Sanchez H, Momken I, Veksler V, Bigard AX, Ventura-Clapier R. Does ACE inhibition enhance endurance performance and muscle energy metabolism in rats? J Appl Physiol (1985) 2004; 96:59-64. [PMID: 12949022 DOI: 10.1152/japplphysiol.00323.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays an important role in the hydroelectrolytic balance, blood pressure regulation, and cell growth. In some studies, the insertion (I) allele of the angiotensin-converting enzyme (ACE) gene, associated with a lower ACE activity, has been found in excess frequency in elite endurance athletes, suggesting that decreased ACE activity could be involved in endurance performance (Myerson S, Hemingway H, Budget R, Martin J, Humphries S, and Montgomery H. J Appl Physiol 87: 1313-1316, 1999). To test this hypothesis, we evaluated whether ACE inhibition could be associated with improved endurance performance and muscle oxidative capacity in rats. Eight male Wistar rats were treated for 10-12 wk with an ACE inhibitor, perindopril (2 mg.kg-1.day-1), and compared with eight control rats. Endurance time was measured on a treadmill, and oxidative capacity and regulation of mitochondrial respiration by substrates were evaluated in saponin-permeabilized fibers of slow soleus and fast gastrocnemius muscles. Endurance time did not differ between groups (57 +/- 5 min for perindopril vs. 55 +/- 6 min for control). Absolute and relative (to body weight) left ventricular weight was 20% (P < 0.01) and 12% (P < 0.01) lower, respectively, in the treated group. No difference in oxidative capacity, mitochondrial enzyme activities, or mitochondrial regulation by ADP was observed in soleus or gastrocnemius. Mitochondrial respiration with glycerol 3-phosphate was 17% higher in gastrocnemius (P < 0.03) and with octanoylcarnitine 14% greater in soleus (P < 0.01) of treated rats. These results demonstrate that ACE inhibition was not associated with improved endurance time and maximal oxidative capacity of skeletal muscles. This suggests that ACE activity has no implication in endurance capacity and only minor effects on mitochondrial function in sedentary animals.
Collapse
Affiliation(s)
- L Bahi
- Cardiologie Cellulaire et Moléculaire, Institut National de la Santé et de la Recherche Médicale unité-446, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Punkt K, Zaitsev S, Wellner M, Schreiter T, Fitzl G, Buchwalow IB. Myopathy-dependent changes in activity of ATPase, SDH and GPDH and NOS expression in the different fibre types of hamster muscles. Acta Histochem 2002; 104:15-22. [PMID: 11993846 DOI: 10.1078/0065-1281-00628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Proximal (vastus lateralis) and distal (gastrocnemius) muscles of 100-day-old normal and myopathic BIO TO-2 hamsters were analysed to study the effects of myopathy on the different muscle fibre types: SO (slow oxidative), FOG (fast oxidative glycolytic) and FG (fast glycolytic). Cytophotometric measurements of enzyme activities (myofibrillic adenosine triphosphatase, succinate dehydrogenase and glycerol-3-phosphate dehydrogenase), Western blot analysis of nitric oxide synthase (NOS) I, II, III isoforms and NOS II immunohistochemistry were performed. The following alterations were found in myopathic muscle fibres: all fibre types of both proximal and distal myopathic muscles showed decreased myofibrillic adenosine triphosphatase activity indicating depressed contractility. This was associated with depressed oxidative activity of the muscle fibres. A shift to more glycolytic metabolism was observed, mainly in FG fibres of proximal muscle. We found an increased NOS II expression in both myopathic muscle types investigated. It means that increased NO production inhibits force generation in myopathic muscle. NOS II immunoreactivity was found mainly in the cytoplasm of FG fibres. NOS I and NOS III expression was not significantly effected by this form of myopathy. Our findings demonstrate that muscle fibres of proximal and distal skeletal muscles of 100-day-old cardiomyopathic BIO TO-2 hamsters are altered with respect to contractility, metabolism and NOS II expression. FG fibres of the proximal muscle were effected most strongly.
Collapse
MESH Headings
- Adenosine Triphosphatases/metabolism
- Animals
- Blotting, Western
- Cricetinae
- Glycerolphosphate Dehydrogenase/metabolism
- Male
- Mesocricetus
- Muscle Fibers, Fast-Twitch/enzymology
- Muscle Fibers, Fast-Twitch/pathology
- Muscle Fibers, Skeletal/classification
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/pathology
- Muscle Fibers, Slow-Twitch/enzymology
- Muscle Fibers, Slow-Twitch/pathology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscular Diseases/enzymology
- Muscular Diseases/genetics
- Myofibrils/enzymology
- Myofibrils/pathology
- Nitric Oxide Synthase/metabolism
- Succinate Dehydrogenase/metabolism
Collapse
Affiliation(s)
- Karla Punkt
- Institute of Anatomy, University of Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Park SJ, Zhang J, Ye Y, Ormaza S, Liang P, Bank AJ, Miller LW, Bache RJ. Myocardial creatine kinase expression after left ventricular assist device support. J Am Coll Cardiol 2002; 39:1773-9. [PMID: 12039490 DOI: 10.1016/s0735-1097(02)01860-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES We examined whether unloading of the left ventricle with a ventricular assist device (LVAD) can result in normalization of the creatine kinase (CK) abnormalities in the failing human heart. BACKGROUND Left ventricular failure is associated with a decrease of myocardial total CK activity and a fetal shift in CK isoform expression that results in an increase in the cytosolic brain type homodimeric-creatine kinase (CK-B) subunit and decreases of the cytosolic muscle-creatine kinase (CK-M) and CK-mitochondrial (CK-Mt) isoforms. The mechanisms of this abnormality are not known. METHODS Total CK activity and CK protein isoform expression (Western blotting) were examined in 11 patients with end-stage cardiomyopathy. In 7 patients, myocardial tissue was also obtained after 4.1 +/- 1.1 months of left ventricular assist device (LVAD) support. RESULTS Left ventricular unloading produced by LVAD implantation resulted in a 270% +/- 114% increase in total CK activity (p < 0.01) that was associated with a 69% +/- 18% increase in CK-M protein expression (p < 0.01) and a 121% +/- 69% increase in CK-Mt protein expression (p < 0.01), but no significant change in CK-B expression. CONCLUSIONS Systolic and diastolic unloading provided by the LVAD resulted in increases of total CK activity as well as CK-Mt and CK-M protein expression. The failure of CK-B expression to decrease suggests that abnormalities other than increased loading are responsible for the increase in CK-B expression in the failing heart.
Collapse
Affiliation(s)
- Soon J Park
- Department of Surgery, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Masutomo K, Makino N, Fushiki MS. Effects of losartan on the collagen degradative enzymes in hypertrophic and congestive types of cardiomyopathic hamsters. Mol Cell Biochem 2001; 224:19-27. [PMID: 11693196 DOI: 10.1023/a:1011942824139] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The present study was undertaken to determine the effects of AT1 receptor blockade which occurred in response to losartan, on the extracellular matrix (ECM) degradation process in the Bio 14.6 (n = 12) and Bio 53.58 (n = 12) strains which are referred as models of hypertrophic and dilated cardiomyopathy, respectively. The administration of losartan (30 mg/kg/day) in hamsters from 10-20 weeks of age reduced the accumulation of the left ventricular collagen matrix in both of the Bio 14.6 and the Bio 53.58 strains. According to the RT-PCR, the levels of mRNA for matrix metalloproteinase (MMP) and the tissue inhibitor of MMP (TIMP) were examined. MMP-1, -2, -3, and -9 were more enhanced in both myopathic strains than in the control F1beta, strains. With losartan, the levels of MMP-1, -2, -9, TIMP-1 and -2 decreased in the both strains but those for MMP-3 did not in Bio 14.6 strains. TIMP-3 and -4 mRNA levels did not change in any of the experimental hamsters, whether treated or untreated with losartan. The Western blots also showed similar observations in the both strains as seen in mRNA expressions although MMP-2 in the Bio 53.58 strains did not differ between treated and untreated with losartan. Although losartan has an inhibitory effect on collagen accumulation in the development of cardiomyopathy, MMPs (-1, -2, -9) and TIMPs (-1, -2) seem to be susceptible to responding to losartan in Bio cardiomyopathic hamsters.
Collapse
MESH Headings
- Angiotensin Receptor Antagonists
- Animals
- Blotting, Western
- Body Weight/drug effects
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Hypertrophic/enzymology
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Collagen/metabolism
- Cricetinae
- Gene Expression Regulation, Enzymologic/drug effects
- Kinetics
- Losartan/pharmacology
- Male
- Matrix Metalloproteinases/genetics
- Matrix Metalloproteinases/metabolism
- Myocardium/enzymology
- Myocardium/metabolism
- Myocardium/pathology
- Organ Size/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Angiotensin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tissue Inhibitor of Metalloproteinases/metabolism
Collapse
Affiliation(s)
- K Masutomo
- Department of Molecular and Cellular Biology Medical Institute of Bioregulation, Kyushu University, Beppu, Japan
| | | | | |
Collapse
|
40
|
Horn M, Weidensteiner C, Scheffer H, Meininger M, de Groot M, Remkes H, Dienesch C, Przyklenk K, von Kienlin M, Neubauer S. Detection of myocardial viability based on measurement of sodium content: A (23)Na-NMR study. Magn Reson Med 2001; 45:756-64. [PMID: 11323801 DOI: 10.1002/mrm.1103] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
MRI of total sodium (Na) content may allow assessment of myocardial viability, but information on Na content in normal myocardium, necrotic/scar tissue, and stunned or hibernating myocardium is lacking. Thus, the aims of the study were to: 1) quantify the temporal changes in myocardial Na content post-myocardial infarction (MI) in a rat model (Protocol 1); 2) compare Na in normally perfused, hibernating, and stunned canine myocardium (Protocol 2); and 3) determine whether, in buffer-perfused rat hearts, infarct scar can be differentiated from intact myocardium by (23)Na-MRI (Protocol 3). In Protocol 1, rats were subjected to LAD ligation. Infarct/scar tissue was excised at control and 1, 3, 7, 28, 56, and 128 days post-MI (N = 6-8 each), Na content was determined by (23)Na-NMR spectroscopy (MRS) and ion chromatography. Na content was persistently increased at all time points post-MI averaging 306*-160*% of control values (*P < 0.0083 vs. control). In Protocol 2, (23)Na-MRS of control (baseline), stunned and hibernating samples revealed no difference in Na. In Protocol 3, (23)Na-MRI revealed a mean increase in signal intensity, to 142 +/- 6% of control values, in scar tissue. A threshold of 2 standard deviations of the image intensity allowed determination of infarct size, correlating with histologically determined infarct size (r = 0.91, P < 0.0001).
Collapse
Affiliation(s)
- M Horn
- Medizinische Universitätsklinik, Würzburg University, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kasparová S, Dobrota D, Mlynárik V, Pham TN, Liptaj T, Horecký J, Braunová Z, Gvozdjáková A. A study of creatine kinase reaction in rat brain under chronic pathological conditions-chronic ischemia and ethanol intoxication. Brain Res Bull 2000; 53:431-5. [PMID: 11137000 DOI: 10.1016/s0361-9230(00)00405-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Creatine kinase reaction rates were measured by the magnetisation transfer technique in brains of healthy adult and aged rats and in rats with chronic cerebral ischemia and chronic ethanol intoxication. These measurements indicated that the rate constant of the creatine kinase reaction is significantly reduced in the case of severe chronic cerebral ischemia in aged rats. In the adult rats, during chronic ethanol intoxication after 3 weeks of administration of 3 ml of 30% ethanol once a day via a gastric tube, a significant decrease in the pseudo first-order rate constant k(for) of the creatine kinase reaction was also found. In contrast, mild chronic cerebral ischemia in adult rats produced an increase in the reaction rate 4 weeks after occlusion. At the same time, corresponding conventional phosphorus magnetic resonance spectra showed negligible changes in signal intensities.
Collapse
Affiliation(s)
- S Kasparová
- NMR Laboratory, Slovak Technical University, Bratislava, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The goal of this review is to present a comprehensive survey of the many intriguing facets of creatine (Cr) and creatinine metabolism, encompassing the pathways and regulation of Cr biosynthesis and degradation, species and tissue distribution of the enzymes and metabolites involved, and of the inherent implications for physiology and human pathology. Very recently, a series of new discoveries have been made that are bound to have distinguished implications for bioenergetics, physiology, human pathology, and clinical diagnosis and that suggest that deregulation of the creatine kinase (CK) system is associated with a variety of diseases. Disturbances of the CK system have been observed in muscle, brain, cardiac, and renal diseases as well as in cancer. On the other hand, Cr and Cr analogs such as cyclocreatine were found to have antitumor, antiviral, and antidiabetic effects and to protect tissues from hypoxic, ischemic, neurodegenerative, or muscle damage. Oral Cr ingestion is used in sports as an ergogenic aid, and some data suggest that Cr and creatinine may be precursors of food mutagens and uremic toxins. These findings are discussed in depth, the interrelationships are outlined, and all is put into a broader context to provide a more detailed understanding of the biological functions of Cr and of the CK system.
Collapse
Affiliation(s)
- M Wyss
- F. Hoffmann-La Roche, Vitamins and Fine Chemicals Division, Basel, Switzerland.
| | | |
Collapse
|
43
|
Punkt K, Erzen I. Changes of enzyme activities in the myocardium and skeletal muscle fibres of cardiomyopathic hamsters. A cytophotometrical study. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2000; 52:103-10. [PMID: 10965983 DOI: 10.1016/s0940-2993(00)80093-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cytophotometrical measurements of enzyme activities were performed in the myocardium and skeletal muscle fibres from normal and cardiomyopathic hamsters (BIO 8262) during ageing from 12-14 to 120-190 days. Myocardium as well as vastus lateralis muscles of cardiomyopathic hamsters showed changes in enzyme activities. The skeletal muscle fibres were typed into slow-oxidative, fast-oxidative glycolytic and fast-glycolytic to investigate fibre type-related changes in muscles of cardiomyopathic hamsters. The following myopathic changes were mainly found: Myofibrillic ATPase was depressed in the myocardium of both ventricles in all investigated age stages. The ATPase activity of the right ventricle was more decreased than that of the left one. Additionally, a metabolic shift was observed in myocardium and slow-oxidative muscle fibres at the onset of clinical symptoms, which appeared from day 150 to day 190. During the period from 42 up to 190 days of life an increase of oxidative (succinate dehydrogenase) activity was measured in the myocardium of both ventricles and in slow oxidative fibres of vastus lateralis muscle as a proximal muscle. At earlier ages, the fast fibres of myopathic vastus lateralis muscle showed higher glycolytic (glycerol-3-phosphate dehydrogenase) activity than those of normal muscles. However, at the age of 120-190 days the metabolic profile of fast fibres was normalized. In gastrocnemius muscle as a distal muscle no changes of enzyme activities were measured, suggesting the investigated hereditary myopathy effected proximal, but not distal muscles.
Collapse
Affiliation(s)
- K Punkt
- Institute of Anatomy, University of Leipzig, Germany.
| | | |
Collapse
|
44
|
Barr RL, Lopaschuk GD. Methodology for measuring in vitro/ex vivo cardiac energy metabolism. J Pharmacol Toxicol Methods 2000; 43:141-52. [PMID: 11150742 DOI: 10.1016/s1056-8719(00)00096-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The high energy demands of the heart are met primarily by the metabolism of fatty acids and carbohydrates. These energy substrates are efficiently and rapidly metabolized in order to produce the high levels of adenosine triphosphate (ATP) necessary to sustain both contractile activity and other cellular functions. Alterations in energy metabolism contribute to abnormal heart function in many cardiac diseases. As a result, a number of techniques have been developed to directly measure energy metabolism in the heart in order to study energy metabolism. Two important variables that must be considered when making these measurements are energy substrate supply to the heart and the metabolic demand of the heart (i.e. contractile function). The use of the in vitro/ex vivo heart, perfused with relevant energy substrates, is a useful experimental approach that accounts for these variables. This paper overviews a number of the techniques that are used to measure energy substrate metabolism in the isolated perfused heart. Recently developed technology that allows for the direct measurement of energy metabolism in an isolated working mouse heart preparation are also described.
Collapse
Affiliation(s)
- R L Barr
- Cardiovascular Research Group, 423 Heritage Medical Research Center, University of Alberta, T6G 2S2, Edmonton, AB, Canada
| | | |
Collapse
|
45
|
Hügel S, Horn M, de Groot M, Remkes H, Dienesch C, Hu K, Ertl G, Neubauer S. Effects of ACE inhibition and beta-receptor blockade on energy metabolism in rats postmyocardial infarction. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H2167-75. [PMID: 10600834 DOI: 10.1152/ajpheart.1999.277.6.h2167] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic treatment with beta-receptor blockers or angiotensin-converting enzyme (ACE) inhibitors in heart failure can reduce mortality and improve left ventricular function, but the mechanisms involved in their beneficial action remain to be fully defined. Our hypothesis was that these agents prevent the derangement of cardiac energy metabolism. Rats were subjected to myocardial infarction (MI) or sham operation. Thereafter, animals were treated with bisoprolol, captopril, or remained untreated. Two months later, cardiac function was measured in the isolated heart by a left ventricular balloon (pressure-volume curves), and energy metabolism of residual intact myocardium was analyzed in terms of total and isoenzyme creatine kinase (CK) activity, steady-state levels (ATP, phosphocreatine), and turnover rates (CK reaction velocity) of high-energy phosphates (31P nuclear magnetic resonance) and total creatine content (HPLC). Bisoprolol and partially captopril prevented post-MI hypertrophy and partially prevented left ventricular contractile dysfunction. Residual intact failing myocardium in untreated, infarcted hearts showed a 25% decrease of the total, a 26% decrease of MM-, and a 37% decrease of the mitochondrial CK activity. Total creatine was reduced by 15%, phosphocreatine by 21%, and CK reaction velocity by 41%. Treatment with bisoprolol or captopril largely prevented all of these changes in infarcted hearts. Thus the favorable functional effects of beta-receptor blockers and ACE inhibitors post-MI are accompanied by substantial beneficial effects on cardiac energy metabolism.
Collapse
Affiliation(s)
- S Hügel
- Medizinische Universitätsklinik, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Spindler M, Saupe KW, Tian R, Ahmed S, Matlib MA, Ingwall JS. Altered creatine kinase enzyme kinetics in diabetic cardiomyopathy. A(31)P NMR magnetization transfer study of the intact beating rat heart. J Mol Cell Cardiol 1999; 31:2175-89. [PMID: 10640445 DOI: 10.1006/jmcc.1999.1044] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether the decreased contractile performance in diabetic hearts is associated with a reduced energy reserve due to decreased creatine kinase (CK) activity, we measured total CK activity (V(max)) in vitro and CK reaction velocity in vivo using(31)P NMR spectroscopy in isolated perfused rat hearts after 4 and 6 weeks of diabetes. After 4 weeks of diabetes, V(max)decreased by 22% with a larger decrease of CK MB than of CK MM and mitochondrial-CK isoenzymes. There was no further decrease in these parameters after 6 weeks of diabetes. Isovolumic contractile performance of 4 and 6 week diabetic hearts, estimated as rate-pressure product under identical perfusion and loading conditions (EDP set at 6-8 mmHg), was only 50% of that of control. ATP, PCr and total creatine concentrations were not different in control and 4 or 6 weeks diabetic rat hearts. After 4 weeks of diabetes, CK reaction velocity decreased by 22%. This was in proportion to the decline of V(max)and therefore predicted by the rate equation for the CK reaction. However, the further decline in the CK reaction velocity after 6 weeks of diabetes (45%) was greater than that predicted from the CK rate equation (17% decrease), and cannot be explained by substrate control of the enzyme. When hearts were inotropically stimulated by increasing perfusate calcium concentration, CK reaction velocity increased slightly (approximately 15%) in both control and diabetic hearts, thereby maintaining a constant ATP concentration. We conclude that in the diabetic myocardium, the CK reaction velocity decreases but does not limit the availability of high-energy phosphates for contraction over the range of workloads studied. We also conclude that a mechanism(s) in addition to substrate control regulates CK reaction velocity in the 6 week diabetic hearts.
Collapse
Affiliation(s)
- M Spindler
- NMR Laboratory for Physiological Chemistry, Cardiovascular Division, Boston 02115, MA, USA
| | | | | | | | | | | |
Collapse
|
47
|
Mateo P, Stepanov V, Gillet B, Beloeil JC, Hoerter JA. Cardiac performance and creatine kinase flux during inhibition of ATP synthesis in the perfused rat heart. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H308-17. [PMID: 10409210 DOI: 10.1152/ajpheart.1999.277.1.h308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study the relation among mitochondrial energy supply, cardiac performance, and energy transfer through creatine kinase (CK), two acute models of inhibition of ATP synthesis were compared in the isovolumic acetate-perfused rat heart. Similar impairments of mechanical performance (rate-pressure product, RPP) were achieved by various stepwise decreases in O(2) supply (PO(2) down to 20% of control) or by infusing CN (0.15-0.25 mM). The forward CK flux measured by saturation-transfer (31)P NMR spectroscopy was 6.1 +/- 0. 4 mM/s in control hearts. Only after severe hypoxia (PO(2) < 40% of control) did CK flux drop (to 1.9 +/- 0.2 mM/s at PO(2) = 25% of control) together with impaired systolic activity and a rise in end-diastolic pressure. In contrast, in mild hypoxia CK flux remained constant and similar to control (5.3 +/- 0.5 mM/s, not significant) despite a twofold reduction in systolic activity. Similarly in all CN groups, constant CK flux was maintained for a threefold reduction in RPP, showing the absence of a relation between cardiac performance and global NMR-measured CK flux during mild ATP synthesis inhibition.
Collapse
Affiliation(s)
- P Mateo
- Unité 446, Institut National de la Santé et de la Recherche Médicale, Cardiologie Cellulaire et Moléculaire, Université Paris-Sud, 92296 Chatenay Malabry, France
| | | | | | | | | |
Collapse
|
48
|
Erion MD, Kasibhatla SR, Bookser BC, van Poelje PD, Reddy MR, Gruber HE, Appleman JR. Discovery of AMP Mimetics that Exhibit High Inhibitory Potency and Specificity for AMP Deaminase. J Am Chem Soc 1999. [DOI: 10.1021/ja983153j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Mlynárik V, Kasparová S, Liptaj T, Dobrota D, Horecký J, Belan V. Creatine kinase reaction rates in rat brain during chronic ischemia. MAGMA (NEW YORK, N.Y.) 1998; 7:162-5. [PMID: 10050942 DOI: 10.1007/bf02591333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Creatine kinase reaction rates were measured by magnetisation transfer technique in the brain of healthy adult and aged rats and in the rats with mild or severe chronic cerebral ischemia. These measurements indicated that the rate constant of the creatine kinase reaction is significantly reduced in the case of chronic brain ischemia in aged rats. In contrast, occlusion of both carotid arteries in adult rats produced a slight increase in the reaction rate 4 weeks after occlusion. At the same time, corresponding conventional phosphorus magnetic resonance spectra showed negligible changes in signal intensities.
Collapse
Affiliation(s)
- V Mlynárik
- Dérer Faculty Hospital, Department of Radiology, Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
50
|
Watanabe M, Kawaguchi H, Onozuka H, Mikami T, Urasawa K, Okamoto H, Watanabe S, Abe K, Kitabatake A. Chronic effects of enalapril and amlodipine on cardiac remodeling in cardiomyopathic hamster hearts. J Cardiovasc Pharmacol 1998; 32:248-59. [PMID: 9700987 DOI: 10.1097/00005344-199808000-00012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study examined the effects of long-term treatments with the angiotensin-converting enzyme inhibitor, enalapril, and the calcium antagonist, amlodipine, on the morphologic changes, progressive left ventricular dysfunction, and gene expression of the ryanodine receptor (RyR) and phospholamban (PLN) in dilated cardiomyopathy. From the ages of 5 through 20 weeks, dilated cardiomyopathic hamsters, BIO53.58 (BIO), and control hamsters, F1b, orally received either enalapril or amlodipine. Cardiac function was assessed by echocardiography. At the age of 20 weeks, the collagen volume fractions were analyzed by the stereologic method. RyR and PLN messenger RNAs (mRNAs) were examined by Northern blot in the amlodipine group. In BIO, the reduction of left ventricular percentage of fractional shortening was attenuated in the enalapril group (p < 0.05) and amlodipine group (p < 0.001), and the increase in the collagen volume fraction and the loss of myocytes were suppressed in the amlodipine group compared with the untreated group. RyR mRNA level decreased in BIO (p < 0.01) compared with F1b, but PLN mRNA level was unchanged. RyR and PLN mRNA levels were unaffected by the treatment with amlodipine. Enalapril and amlodipine prevent progressive remodeling and reduce cardiac dysfunction in BIO. Amlodipine prevents fibrosis and cell death without modifying RyR and PLN mRNA levels in BIO.
Collapse
Affiliation(s)
- M Watanabe
- Department of Cardiovascular Medicine, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|