1
|
Rafiei D, Pahlevan NM. The global effect of aortic coarctation on carotid and renal pulsatile hemodynamics. PLoS One 2024; 19:e0310793. [PMID: 39689111 DOI: 10.1371/journal.pone.0310793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/08/2024] [Indexed: 12/19/2024] Open
Abstract
Coarctation of the aorta (CoA) is a congenital disease characterized by the narrowing of the aorta, typically the descending portion after the left subclavian artery. If left untreated, by the time individuals reach 50 years of age, the mortality rate can reach 90%. Previous studies have highlighted the adverse effects of CoA on local hemodynamics. However, no study has investigated the global hemodynamic effects of CoA in end-organ (brain and kidney) damage. Clinical studies have shown that coarctation acts as a reflection site, potentially damaging the hemodynamics of the brain and kidneys. Our goal in this study is to investigate the underlying mechanisms of these altered wave dynamics and their impacts on the pulsatile hemodynamics of end-organs. In this study, we use a physiologically accurate in-vitro experimental setup that simulates the hemodynamics of systemic circulation. Experiments are conducted across various cardiac outputs, heart rates, and coarctation degrees using aortas across a wide range of aortic stiffnesses. Our principal finding is that CoA increases cerebral blood flow and harmful pulsatile energy transmission to the brain. Conversely, both renal blood flow and pulsatile energy transmission to the kidneys are reduced in CoA at every level of aortic stiffness.
Collapse
Affiliation(s)
- Deniz Rafiei
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, United States of America
| | - Niema M Pahlevan
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, California, United States of America
- Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
2
|
Abstract
The elastic properties of conductance arteries are one of the most important hemodynamic functions in the body, and data continue to emerge regarding the importance of their dysfunction in vascular aging and a range of cardiovascular diseases. Here, we provide new insight into the integrative physiology of arterial stiffening and its clinical consequence. We also comprehensively review progress made on pathways/molecules that appear today as important basic determinants of arterial stiffness, particularly those mediating the vascular smooth muscle cell (VSMC) contractility, plasticity and stiffness. We focus on membrane and nuclear mechanotransduction, clearance function of the vascular wall, phenotypic switching of VSMCs, immunoinflammatory stimuli and epigenetic mechanisms. Finally, we discuss the most important advances of the latest clinical studies that revisit the classical therapeutic concepts of arterial stiffness and lead to a patient-by-patient strategy according to cardiovascular risk exposure and underlying disease.
Collapse
|
3
|
Agbaje AO, Zachariah JP, Tuomainen TP. Arterial stiffness but not carotid intima-media thickness progression precedes premature structural and functional cardiac damage in youth: A 7-year temporal and mediation longitudinal study. Atherosclerosis 2023; 380:117197. [PMID: 37582328 DOI: 10.1016/j.atherosclerosis.2023.117197] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND AND AIMS The longitudinal relations of cardiac indices with the aorta and carotid vessel and the time sequence for early cardiac disease development are uncharacterized in youth. We examined the temporal longitudinal associations of carotid-femoral pulse wave velocity (cfPWV) and carotid intima-media thickness (cIMT) with left ventricular hypertrophy (LVH) and diastolic dysfunction (LVDD). METHODS From the Avon Longitudinal Study of Parents and Children, UK birth cohort, 1856 adolescents (1011 females) at a mean (SD) age 17.7 (0.3) years were followed up for 7 years. Vicorder-measured cfPWV and ultrasound-measured cIMT were grouped in tertiles as low (reference), moderate, and high. Echocardiography measured cardiac abnormalities are left ventricular mass indexed for height2.7 (LVMI2.7) ≥51 g/m2.7 as LVH; relative wall thickness ≥44 as hiRWT; LVD function E/A <1.5 as LVD dysfunction (LVDD); and LV filling pressure E/e' ≥8 as hiLVFP. Data were analysed with generalized logit mixed-effect models, cross-lagged path, and mediation structural equation models adjusting for cardiometabolic and lifestyle factors. RESULTS Over follow-up, LVH prevalence increased from 3.6% to 7.2% and LVDD from 11.1 to 16.3%. High cfPWV progression was associated with worsening LVH [Odds ratio 1.23 (1.13-1.35); p < 0.001] in the total cohort, males, overweight/obese, and normotensive. High cfPWV progression was associated with worsening hiLVFP in the total cohort, females, and normal weight. Likewise, high cIMT progression was associated with worsening LVH [1.27 (1.26-1.27); p < 0.0001] in the total cohort, overweight/obese and elevated BP/hypertensive. Neither cfPWV nor cIMT progression was associated with worsening hiRWT in the total cohort. In cross-lagged models, higher baseline cfPWV was associated with future LVMI2.7 (β = 0.06, SE, 5.14, p = 0.035), RWT, LVDF, and LVFP. However, baseline LVMI2.7, RWT, LVDF, and LVFP were not associated with follow-up cfPWV. Baseline cIMT was not associated with follow-up cardiac indices and vice versa. Cumulative increased systolic blood pressure (34.3% mediation) and insulin resistance (15.1% mediation) mediated the direct associations of cumulative cfPWV with cumulative LVMI2.7. CONCLUSIONS Arterial stiffness progression temporally preceded worsening structural and functional cardiac damage in youth with increased systolic blood pressure and insulin resistance partly mediating the relationships. Future interventions aimed at attenuating premature cardiac damage in adolescents and young adults may consider a simultaneous treatment of both arterial stiffness, elevated blood pressure and insulin resistance.
Collapse
Affiliation(s)
- Andrew O Agbaje
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland; Children's Health and Exercise Research Centre, Department of Public Health and Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| | - Justin P Zachariah
- Section of Pediatric Cardiology, Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, United States
| | - Tomi-Pekka Tuomainen
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Tomiyama H. Vascular function: a key player in hypertension. Hypertens Res 2023; 46:2145-2158. [PMID: 37369849 DOI: 10.1038/s41440-023-01354-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023]
Abstract
The major functions of the arterial system are to "efficiently deliver blood to the peripheral organs and maintain vascular homeostasis". Both the endothelial and medial layer contribute to the three major functions, namely, conversion of pulsatile to steady blood flow, appropriate distribution of blood flow to the target organs, and vascular protection and homeostasis. Vascular dysfunction contributes to the development of cardiovascular diseases through a combination of several mechanisms, including impaired coronary perfusion, cardiac systolic/diastolic dysfunction, microvascular damage, and abnormal hemodynamics in the arterial tree. The representative marker of endothelial function is flow-mediated vasodilatation and that of the medial layer function is pulse wave velocity, and that of the blood supply function of the arterial tree is the ankle-brachial pressure index. In hypertension, vascular dysfunction could also lead to the development of isolated systolic hypertension, isolated diastolic hypertension, and systolic/diastolic hypertension. Vascular dysfunction is involved in a vicious cycle with abnormal blood pressure variability. Furthermore, a vicious cycle may also exist between vascular dysfunction and hypertension. While the significances of vascular function tests to predict future cardiovascular events has been established in cases of hypertension, their usefulness in assessing the effectiveness of management of the vascular functions in hypertension on the cardiovascular outcomes has not yet been fully clarified. Thus, vascular dysfunction plays crucial roles in the pathophysiology of hypertension, and further research is warranted to establish strategies to improve vascular dysfunction in cases of hypertension. Vascular functions in the pathophysiology of hypertension. Vascular dysfunction and elevation of blood pressure are components of a vicious cycle even from their early stages, which including abnormal blood pressure variabilities. This vicious cycle is associated with hypertensive organ damage and also adverse cardiovascular outcomes. Strategies to break this vicious cycle have not yet been fully established.
Collapse
Affiliation(s)
- Hirofumi Tomiyama
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan.
- Division of Preemptive Medicine for Vascular Damage, Tokyo Medical University, Tokyo, Japan.
| |
Collapse
|
5
|
Nawata J, Yamamoto T, Tanaka S, Yano Y, Uchida T, Fujii S, Nakamura Y, Suetomi T, Uchinoumi H, Oda T, Kobayashi S, Yano M. Dantrolene improves left ventricular diastolic property in mineralcorticoid-salt-induced hypertensive rats. Biochem Biophys Rep 2023; 34:101449. [PMID: 36926278 PMCID: PMC10011190 DOI: 10.1016/j.bbrep.2023.101449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/13/2023] [Accepted: 02/26/2023] [Indexed: 03/04/2023] Open
Abstract
Left ventricular (LV) diastolic dysfunction is increasingly common in heart failure with preserved ejection fraction (HFpEF), and new drug therapy is desired. We recently reported that dantrolene (DAN) attenuates pressure-overload induced hypertrophic signaling through stabilization of tetrameric structure of cardiac ryanodine receptor (RyR2). Because cardiac hypertrophy substantially affects LV diastolic properties, we investigated the effect of DAN on LV diastolic properties in mineralocorticoid-salt-induced hypertensive rat model exhibiting the HFpEF phenotype. Male Sprague-Dawley (SD) rats (8 weeks old) received an uninephrectomy (UNX), subcutaneous implantation of a 200 mg pellet of deoxycorticosterone acetate (DOCA), and 0.9% NaCl water (UNX + DOCA-salt). UNX, a control pellet, and water without NaCl served as controls (UNX control). The effect of oral administration of 100 mg/kg/d DAN was examined in UNX control and UNX + DOCA-salt groups (UNX + DAN and UNX + DOCA-salt + DAN). UNX + DOCA-salt treatment resulted in mild hypertension. Chronic administration of DAN to UNX + DOCA-salt rats (UNX + DOCA-salt + DAN) did not affect blood pressure. DAN treatment increased the mitral annular early relaxation velocity in the UNX + DOCA-salt group. The size of cardiomyocytes increased in the UNX + DOCA-salt group, whereas the increase was suppressed by DAN treatment. LV fibrotic area was significantly smaller in the UNX + DOCA-salt + DAN group than in the UNX + DOCA-salt group (2.0 ± 0.2% vs 4.0 ± 0.4%). The LV chamber stiffness significantly increased in the UNX + DOCA-salt group, whereas the increase was suppressed by DAN treatment. DAN treatment normalized the CaM-RyR2 interaction and inhibited aberrant Ca2+ release. DAN improved left ventricular diastolic properties with respect to both myocardial relaxation and chamber stiffness. DAN may be a new treatment option for HFpEF.
Collapse
Affiliation(s)
- Junya Nawata
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takeshi Yamamoto
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shinji Tanaka
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yasutake Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tomoyuki Uchida
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shohei Fujii
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshihide Nakamura
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Takeshi Suetomi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Tetsuro Oda
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
6
|
Agbaje AO. Does arterial stiffness mediate or suppress the associations of blood pressure with cardiac structure and function in adolescents? Am J Physiol Heart Circ Physiol 2023; 324:H776-H781. [PMID: 36930657 DOI: 10.1152/ajpheart.00094.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
There is limited understanding of the role of arterial stiffness in cardiovascular disease risk in the pediatric population, lagging behind strong evidence in the adult population. Arterial stiffness progression among adolescents with hypertension has been considered hypertension-mediated vascular damage. However, emerging pediatric reports suggest that arterial stiffness may precede increased blood pressure and hypertension, whereas increased blood pressure from childhood has been associated with signs of cardiac damage in mid-adulthood. Thus, this study used a third variable analytical approach to examine whether arterial stiffness mediates or suppresses the effects of increasing blood pressure on cardiac structure and function in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort of 1,778 adolescents. After an adjustment for cardiometabolic and lifestyle factors, arterial stiffness measured as carotid-femoral pulse wave velocity partly suppressed the association of higher systolic blood pressure with higher left ventricular mass (standardized regression coefficient, β = -0.012; P = 0.017; suppression effect = 4%), partly mediated the associations of higher systolic and diastolic blood pressure with higher relative ventricular wall thickness, and partly suppressed the association of higher diastolic blood pressure with lower left ventricular diastolic function (β = -0.021; P = 0.003; suppression effect = 14.5%). In conclusion, increasing arterial stiffness could attenuate some of the adverse effects of increased blood pressure on cardiac structure and function in adolescents possibly by modifying the Windkessel effects.NEW & NOTEWORTHY The present study demonstrates that the associations of blood pressure with cardiac function and structure in adolescents may be mediated or suppressed by arterial stiffness depending on the blood pressure phenotype: systolic or diastolic. Arterial stiffness may be considered as an intermediate pathway to attenuate the effect of increased blood pressure on altered cardiac structure and function in youth.
Collapse
Affiliation(s)
- Andrew O Agbaje
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
7
|
Longtine AG, Venkatasubramanian R, Zigler MC, Lindquist AJ, Mahoney SA, Greenberg NT, VanDongen NS, Ludwig KR, Moreau KL, Seals DR, Clayton ZS. Female C57BL/6N mice are a viable model of aortic aging in women. Am J Physiol Heart Circ Physiol 2023; 324:H893-H904. [PMID: 37115626 PMCID: PMC10202480 DOI: 10.1152/ajpheart.00120.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
The aorta stiffens with aging in both men and women, which predicts cardiovascular mortality. Aortic wall structural and extracellular matrix (ECM) remodeling, induced in part by chronic low-grade inflammation, contribute to aortic stiffening. Male mice are an established model of aortic aging. However, there is little information regarding whether female mice are an appropriate model of aortic aging in women, which we aimed to elucidate in the present study. We assessed two strains of mice and found that in C57BL/6N mice, in vivo aortic stiffness (pulse wave velocity, PWV) was higher with aging in both sexes, whereas in B6D2F1 mice, PWV was higher in old versus young male mice, but not in old versus young female mice. Because the age-related stiffening that occurs in men and women was reflected in male and female C57BL/6N mice, we examined the mechanisms of stiffening in this strain. In both sexes, aortic modulus of elasticity (pin myography) was lower in old mice, occurred in conjunction with and was related to higher plasma levels of the elastin-degrading enzyme matrix metalloproteinase-9 (MMP-9), and was accompanied by higher numbers of aortic elastin breaks and higher abundance of adventitial collagen-1. Plasma levels of the inflammatory cytokines interferon-γ, interleukin 6, and monocyte chemoattractant protein-1 were higher in both sexes of old mice. In conclusion, female C57BL/6N mice exhibit aortic stiffening, reduced modulus of elasticity and structural/ECM remodeling, and associated increases in MMP-9 and systemic inflammation with aging, and thus are an appropriate model of aortic aging in women.NEW & NOTEWORTHY Our study demonstrates that with aging, female C57BL/6N mice exhibit higher in vivo aortic stiffness, reduced modulus of elasticity, aortic wall structural and extracellular matrix remodeling, and elevations in systemic inflammation. These changes are largely reflective of those that occur with aging in women. Thus, female C57BL/6N mice are a viable model of human aortic aging and the utility of these animals should be considered in future biomedical investigations.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | | | - Melanie C Zigler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Alexandra J Lindquist
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Sophia A Mahoney
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nicholas S VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Katelyn R Ludwig
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Kerrie L Moreau
- University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Zachary S Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| |
Collapse
|
8
|
Franczyk B, Rysz J, Ławiński J, Ciałkowska-Rysz A, Gluba-Brzózka A. Cardiotoxicity of Selected Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Renal Cell Carcinoma. Biomedicines 2023; 11:181. [PMID: 36672689 PMCID: PMC9855533 DOI: 10.3390/biomedicines11010181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the most frequent malignant neoplasms of the kidney. The therapeutic options available for the treatment of advanced or metastatic RCC include vascular endothelial growth factor receptor (VEGFR)-targeted molecules, for example, tyrosine kinase inhibitors (TKI). Various VEGFR-TKIs proved to be effective in the treatment of patients with solid tumours. The combination of two drugs may prove most beneficial in the treatment of metastatic RCC; however, it also enhances the risk of toxicity compared to monotherapy. Specific VEGFR-TKIs (e.g., sunitinib, sorafenib or pazopanib) may increase the rate of cardiotoxicity in metastatic settings. VEGF inhibitors modulate multiple signalling pathways; thus, the identification of the mechanism underlying cardiotoxicity appears challenging. VEGF signalling is vital for the maintenance of cardiomyocyte homeostasis and cardiac function; therefore, its inhibition can be responsible for the reported adverse effects. Disturbed growth factor signalling pathways may be associated with endothelial dysfunction, impaired revascularization, the development of dilated cardiomyopathy, cardiac hypertrophies and altered peripheral vascular load. Patients at high cardiovascular risk at baseline could benefit from clinical follow-up in the first 2-4 weeks after the introduction of targeted molecular therapy; however, there is no consensus concerning the surveillance strategy.
Collapse
Affiliation(s)
- Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| | - Janusz Ławiński
- Department of Urology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszow, Poland
| | | | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskiego Street, 90-549 Lodz, Poland
| |
Collapse
|
9
|
Desbiens LC, Fortier C, Nadeau-Fredette AC, Madore F, Hametner B, Wassertheurer S, Agharazii M, Goupil R. Prediction of Cardiovascular Events by Pulse Waveform Parameters: Analysis of CARTaGENE. J Am Heart Assoc 2022; 11:e026603. [PMID: 36056725 PMCID: PMC9496446 DOI: 10.1161/jaha.122.026603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Waveform parameters provide approximate data about aortic wave reflection. However, their association with cardiovascular events remains controversial and their role in cardiovascular prediction is unknown. Methods and Results We analyzed participants aged between 40 and 69 from the population-based CARTaGENE cohort. Baseline pulse wave analysis (central pulse pressure, augmentation index) and wave separation analysis (forward pressure, backward pressure, reflection magnitude) parameters were derived from radial artery tonometry. Associations between each parameter and major adverse atherosclerotic events (MACE; cardiovascular death, stroke, myocardial infarction) were obtained using adjusted Cox models. The incremental predictive value of each parameter compared with the 10-year atherosclerotic cardiovascular disease score alone was assessed using hazard ratios, c-index differences, continuous net reclassification indexes, and integrated discrimination indexes. From 17 561 eligible patients, 2315 patients had a MACE during a median follow-up of 10.1 years. Central pulse pressure, forward pressure, and backward pressure, but not augmentation index and reflection magnitude, were significantly associated with MACE after full adjustment. All parameters except forward pressure statistically improved MACE prediction compared with the atherosclerotic cardiovascular disease score alone. The greatest prediction improvement was seen with augmentation index and reflection magnitude but remained small in magnitude. These 2 parameters enhanced predictive performance more strongly in patients with low baseline atherosclerotic cardiovascular disease scores. Up to 5.7% of individuals were reclassified into a different risk stratum by adding waveform parameters to atherosclerotic cardiovascular disease scores. Conclusions Some waveform parameters are independently associated with MACEs in a population-based cohort. Augmentation index and reflection magnitude slightly improve risk prediction, especially in patients at low cardiovascular risk.
Collapse
Affiliation(s)
| | - Catherine Fortier
- Department of Medicine Université de Montréal Montreal Canada.,Hôpital du Sacré-Coeur de Montréal Research Center Montreal Canada
| | - Annie-Claire Nadeau-Fredette
- Department of Medicine Université de Montréal Montreal Canada.,Hôpital Maisonneuve-Rosemont Université de Montréal Montréal Canada
| | - François Madore
- Department of Medicine Université de Montréal Montreal Canada.,Hôpital du Sacré-Coeur de Montréal Research Center Montreal Canada
| | | | | | - Mohsen Agharazii
- Department of Medicine Université Laval Quebec City Canada.,CHU de Quebec Université Laval Quebec City Canada
| | - Rémi Goupil
- Department of Medicine Université de Montréal Montreal Canada.,Hôpital du Sacré-Coeur de Montréal Research Center Montreal Canada
| |
Collapse
|
10
|
Popevska S, Rademakers F. Prolonged Asynchronous Left Ventricular Isovolumic Relaxation Constant in Ascending Compared to Descending Thoracic Aortic Stenosis for Chronic Early Left Ventricular Afterload and Late Left Ventricular Afterload Increase. Pril (Makedon Akad Nauk Umet Odd Med Nauki) 2022; 43:89-99. [PMID: 35843925 DOI: 10.2478/prilozi-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Background: In arterial hypertension, left ventricular relaxation is affected early on in relation to a chronic difference in peak left ventricular afterload with early development of HF. Objective: in ascending compares to descending thoracic aortic stenosis, resulting in chronic late and early LV afterload increase, to assess the left ventricular isovolumic relaxation pressure decay constant through regression analysis, a parameter of left ventricular relaxation on the 4th and 8th week period from invasive left ventricular pressure measurements. Methods: fourteen pigs underwent posterolateral thoracotomy for ascending aortic stenosis, resulting in chronic early left ventricular afterload increase (EL = 6], or descending thoracic aortic stenosis creating chronic late systolic left ventricular load (LL = 8]. Exponential regression with nonzero asymptote for τ assessment, with linear and nonlinear regression were performed on isovolumic relaxation pressure decay from the left ventricular invasive pressure measurements on 4th and 8th week. Two-way repeated measurement ANOVA, post-hoc Tukey test and linear regression were performed for statistical analysis. Results presented are mean ± SEM or median (quartiles], with significance is at p < 0.05. Results: The ascending aortic stenosis associated with prolonged biexponential asynchronous τ, compared to the descending thoracic aorta stenosis, resulted in data that were different at the 8th week in presence of respirations (interaction p < 0.05]. Monoexponential and linear τ were not different in either respiration being preserved or suspended transitionally and in preload reduction. Preload sensitive response of τ was found in ascending compared to descending thoracic aortic banding that reduced in EL and in LL it increased with load reduction (p < 0.05]. These results indicated that τ is not different in and between LV afterloading conditions in a chronic setting, although it indicates that myocardial ischemia is present and that it is greater in ascending aortic banding, compared to descending thoracic aorta banding at the 8th week. Conclusion: In different sequence of the left ventricular afterload, ventricular relaxation is affected early on, having in EL compared to LL prolonged biexponential asynchronous left ventricular relaxation constant, thus indicating the development left ventricular myocardial ischemia and different elastic recoil in an invasive left ventricular hemodynamic assessment.
Collapse
Affiliation(s)
- Sofija Popevska
- Imaging and Dynamics, Department of Cardiovascular Sciences, Katholieke Universitet Leuven, Medical Faculty Leuven, Belgium
| | - Frank Rademakers
- Imaging and Dynamics, Department of Cardiovascular Sciences, Katholieke Universitet Leuven, Medical Faculty Leuven, Belgium
| |
Collapse
|
11
|
Shah AS, Gidding SS, El Ghormli L, Tryggestad JB, Nadeau KJ, Bacha F, Levitt Katz LE, Willi SM, Lima J, Urbina EM. Relationship between Arterial Stiffness and Subsequent Cardiac Structure and Function in Young Adults with Youth-Onset Type 2 Diabetes: Results from the TODAY Study. J Am Soc Echocardiogr 2022; 35:620-628.e4. [PMID: 35149207 PMCID: PMC9177714 DOI: 10.1016/j.echo.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Higher arterial stiffness may contribute to future alterations in left ventricular systolic and diastolic function. We tested this hypothesis in individuals with youth-onset type 2 diabetes from the Treatment Options for Type 2 Diabetes in Adolescents and Youth (TODAY) study. METHODS Arterial stiffness (pulse wave velocity [carotid-femoral, femoral-foot, and carotid-radial], augmentation index, brachial distensibility) was measured in 388 participants with type 2 diabetes (mean age, 21 years; diabetes duration, 7.7 ± 1.5 years). To reflect overall (composite) vascular stiffness, the five arterial stiffness measures were aggregated. An echocardiogram was performed in the same cohort 2 years later. Linear regression models assessed whether composite arterial stiffness was associated with left ventricular mass index or systolic and diastolic function, independent of age, sex, race/ethnicity, current cigarette smoking, and long-term exposure (time-weighted mean values over 9.1 years) of hemoglobin A1c, blood pressure, and body mass index. Interactions among arterial stiffness and time-weighted mean hemoglobin A1c, blood pressure, and body mass were also examined. RESULTS After adjustment, arterial stiffness remained significantly associated with left ventricular mass index and diastolic function measured by mitral valve E/Em, despite attenuation by time-weighted mean body mass index. A significant interaction revealed a greater adverse effect of composite arterial stiffness on mitral valve E/Em among participants with higher levels of blood pressure over time. Arterial stiffness was unrelated to left ventricular systolic function. CONCLUSIONS The association of higher arterial stiffness with future left ventricular diastolic dysfunction suggests the path to future heart failure may begin early in life in this setting of youth-onset type 2 diabetes. TRIAL REGISTRATION ClinicalTrials.gov NCT00081328.
Collapse
Affiliation(s)
- Amy S Shah
- Department of Pediatrics, Cincinnati Children's Hospital and University of Cincinnati, Cincinnati, Ohio
| | | | - Laure El Ghormli
- Biostatistics Center, Milken Institute School of Public Health, George Washington University, Rockville, Maryland.
| | - Jeanie B Tryggestad
- Section of Diabetes and Endocrinology, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Kristen J Nadeau
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Fida Bacha
- Children's Nutrition Research Center, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Lorraine E Levitt Katz
- Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Steven M Willi
- Children's Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Joao Lima
- Department of Internal Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Elaine M Urbina
- Heart Institute, Cincinnati Children's Hospital and University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
12
|
Pierce GL, Coutinho TA, DuBose LE, Donato AJ. Is It Good to Have a Stiff Aorta with Aging? Causes and Consequences. Physiology (Bethesda) 2022; 37:154-173. [PMID: 34779281 PMCID: PMC8977146 DOI: 10.1152/physiol.00035.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
Aortic stiffness increases with advancing age, more than doubling during the human life span, and is a robust predictor of cardiovascular disease (CVD) clinical events independent of traditional risk factors. The aorta increases in diameter and length to accommodate growing body size and cardiac output in youth, but in middle and older age the aorta continues to remodel to a larger diameter, thinning the pool of permanent elastin fibers, increasing intramural wall stress and resulting in the transfer of load bearing onto stiffer collagen fibers. Whereas aortic stiffening in early middle age may be a compensatory mechanism to normalize intramural wall stress and therefore theoretically "good" early in the life span, the negative clinical consequences of accelerated aortic stiffening beyond middle age far outweigh any earlier physiological benefit. Indeed, aortic stiffness and the loss of the "windkessel effect" with advancing age result in elevated pulsatile pressure and flow in downstream microvasculature that is associated with subclinical damage to high-flow, low-resistance organs such as brain, kidney, retina, and heart. The mechanisms of aortic stiffness include alterations in extracellular matrix proteins (collagen deposition, elastin fragmentation), increased arterial tone (oxidative stress and inflammation-related reduced vasodilators and augmented vasoconstrictors; enhanced sympathetic activity), arterial calcification, vascular smooth muscle cell stiffness, and extracellular matrix glycosaminoglycans. Given the rapidly aging population of the United States, aortic stiffening will likely contribute to substantial CVD burden over the next 2-3 decades unless new therapeutic targets and interventions are identified to prevent the potential avalanche of clinical sequelae related to age-related aortic stiffness.
Collapse
Affiliation(s)
- Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Thais A Coutinho
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Divisions of Cardiology and Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Lyndsey E DuBose
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
- Geriatric Research Education and Clinical Center, VA Salt Lake City, Salt Lake City, Utah
| |
Collapse
|
13
|
Obayashi M, Kobayashi S, Nanno T, Hamada Y, Yano M. Relation between Oscillometric Measurement of Central Hemodynamics and Left Ventricular Hypertrophy in Hypertensive Patients. Pulse (Basel) 2022; 9:116-124. [PMID: 35083178 DOI: 10.1159/000520006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Introduction The augmentation index (AIx) or central systolic blood pressure (SBP), measured by radial applanation tonometry, has been reported to be independently associated with left ventricular hypertrophy (LVH) in Japanese hypertensive patients. Cuff-based oscillometric measurement of the AIx using Mobil-O-Graph® showed a low or moderate agreement with the AIx measurement with other devices. Methods The AIx measured using the Mobil-O-Graph was validated against the tonometric measurements of the radial AIx measured using HEM-9000AI in 110 normotensive healthy individuals (age, 21-76 years; 50 men). We investigated the relationship between the central hemodynamics assessed using the Mobil-O-Graph and LVH in 100 hypertensive patients (age, 54-75 years; 48 men), presenting a wall thickness of ≥11 mm and ≥10 mm in men and women, respectively. Results Although the Mobil-O-Graph-measured central AIx showed no negative values, it correlated moderately with the HEM-9000AI-measured radial AIx (r = 0.602, p < 0.001) in the normotensive individuals. The hypertensive patients did not show a significant difference in the central SBP between the sexes, but the central AIx was lower in men than in women. The independent determinants influencing left ventricle (LV) mass index (LVMI) (R2 = 0.362; adjusted R2 = 0.329, p < 0.001) were heart rate (β = -0.568 ± 0.149, p < 0.001), central SBP (β = 0.290 ± 0.100, p = 0.005), and aortic root diameter (β = 1.355 ± 0.344, p = 0.001). Age (β = -0.025 ± 0.124, p = 0.841) and the central AIx (β = 0.120 ± 0.131, p = 0.361) were not independently associated with the LVMI. The area under the receiver operator characteristic curve to evaluate the diagnostic performance of the central AIx for the presence of LVH (LVMI >118 g/m2 in men or >108 g/m2 in women) was statistically significant in men (0.875, p < 0.001) but not in women (0.622, p = 0.132). In men, a central AIx of 28.06% had a sensitivity of 83.3% and specificity of 80.0% for detecting LVH. Conclusions AIx measurement in men provided useful prognostic information for the presence of LVH. Pulse-wave analysis assessed using the Mobil-O-Graph may be a valuable tool for detecting LVH in hypertensive patients.
Collapse
Affiliation(s)
- Masakazu Obayashi
- Department of Cardiovascular Medicine, Sanyo-Onoda City Hospital, Sanyo-Onoda, Japan
| | - Shigeki Kobayashi
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takuma Nanno
- Department of Cardiovascular Medicine, Sanyo-Onoda City Hospital, Sanyo-Onoda, Japan
| | - Yoriomi Hamada
- Department of Cardiovascular Medicine, Sanyo-Onoda City Hospital, Sanyo-Onoda, Japan
| | - Masafumi Yano
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
14
|
Kumai K, Tomiyama H, Takahashi T, Nakano H, Fujii M, Matsumoto C, Shiina K, Yamashina A, Chikamori T. Longitudinal Association of Arterial Stiffness and Pressure Wave Reflection with Decline of the Cardiac Systolic Performance in Healthy Men. J Atheroscler Thromb 2021; 29:1342-1351. [PMID: 34629372 PMCID: PMC9444689 DOI: 10.5551/jat.63099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIMS This prospective observational study aimed to examine the individual longitudinal associations of the increases in the arterial stiffness and pressure wave reflection with the decline in the cardiac systolic performance during the study period in healthy middle-aged Japanese men. METHODS In 4016 middle-aged Japanese healthy men (43±9 years), the brachial-ankle pulse wave velocity (baPWV), radial augmentation index (rAI), and pre-ejection period/ejection time (pre-ejection period (PEP)/ET) were measured annually during a 9-year study period. RESULTS The baPWV, rAI, and PEP/ET showed steady annual increases during the study period. According to the results of multivariate linear regression analyses, both the baPWV and rAI measured at the baseline showed significant independent associations with the PEP/ET measured at the baseline (baPWV: beta=0.17, p<0.01 and rAI: beta=0.11, p<0.01), whereas neither showed any association with the PEP/ET measured at the end of the study period. The results of the mixed-model linear regression analysis of the repeated-measures data collected over the 9-year study period revealed that the baPWV, but not the rAI, showed a significant longitudinal association with the PEP/ET (estimate=0.69 x 10-4, p<0.01). CONCLUSION In apparently healthy middle-aged Japanese men, the annual increase of the arterial stiffness, rather than the annual increase of the pressure wave reflection, appears to be more closely associated with the annual decline of the cardiac systolic performance as assessed by the systolic time interval.
Collapse
Affiliation(s)
- Kento Kumai
- Department of Cardiology, Tokyo Medical University
| | - Hirofumi Tomiyama
- Department of Cardiology, Tokyo Medical University.,Division of Preemptive Medicine for Vascular Damage, Tokyo Medical University
| | | | | | | | | | - Kazuki Shiina
- Department of Cardiology, Tokyo Medical University.,Division of Preemptive Medicine for Vascular Damage, Tokyo Medical University
| | | | | |
Collapse
|
15
|
Tomiyama H, Nakano H, Takahashi T, Fujii M, Shiina K, Matsumoto C, Chikamori T, Yamashina A. Heart rate modulates the relationship of augmented systolic blood pressure with the blood natriuretic peptide levels. ESC Heart Fail 2021; 8:3957-3963. [PMID: 34323018 PMCID: PMC8497200 DOI: 10.1002/ehf2.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/01/2021] [Accepted: 07/13/2021] [Indexed: 11/12/2022] Open
Abstract
AIMS Augmented central systolic blood pressure (cSBP), which is known to affect the cardiac afterload, is an independent risk factor for cardiovascular disease. While an inverse relationship is known to exist between the heart rate (HR) and the cSBP, it has not yet been clarified if the HR also modulates the association between the cSBP and the cardiac afterload. The present study was conducted to clarify whether the association of the cSBP with the serum levels of the N-terminal fragment B-type natriuretic peptide (NT-proBNP) differs between subjects with high and low HRs, using data obtained from the same subjects on two occasions (2009 and 2012) so as to confirm their consistency. METHODS AND RESULTS The radial augmentation index, systolic pressure at the second peak of the radial pressure waveform (SBP2), and serum NT-proBNP levels were measured and analysed in a worksite cohort of 2000 middle-aged men in 2009 and in 2012. The subjects were divided into three groups by the HR (i.e. ≤69, 70-79, and ≥80 b.p.m.). While the serum NT-proBNP levels were similar among the three groups, the radial augmentation index increased (from 61 ± 12% to 72 ± 13%, P < 0.01 in 2009 and from 61 ± 13% to 73 ± 12%, P < 0.01 in 2012) and the SBP1-2 decreased (from 18 ± 7 to 13 ± 7 mmHg, P < 0.01 in 2009 and from 19 ± 7 to 13 ± 6 mmHg, P < 0.01 in 2012) significantly with decreasing HR. After the adjustment, the SBP2 showed a significant association with the serum NT-proBNP levels in the overall study population [non-standardized coefficient (B) = 0.005, standard error (SE) = 0.001, P < 0.01 in 2009 (n = 2257) and B = 0.004, SE = 0.001, P < 0.01 in 2012 (n = 1986)]. In subgroup analyses, the SBP2 showed a significant association with the serum NT-proBNP levels [B = 0.004, SE = 0.002, P = 0.02 in 2009 (n = 1291) and B = 0.005, SE = 0.001, P < 0.01 in 2012 (n = 1204)] only in the subject group with an HR of ≤69 b.p.m. CONCLUSIONS In middle-aged Japanese men, the relationship between the cSBP and the cardiac afterload appears to differ depending on the HR; the results of our analysis showed that the relationship between the cSBP and the cardiac overload may be more pronounced and strongly significant in patients with low HRs as compared with patients with high HRs.
Collapse
Affiliation(s)
- Hirofumi Tomiyama
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Hiroki Nakano
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Takamichi Takahashi
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Masatsune Fujii
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Kazuki Shiina
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Chisa Matsumoto
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Taishiro Chikamori
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| | - Akira Yamashina
- Department of Cardiology and Division of Preemptive Medicine for Vascular DamageTokyo Medical University6‐7‐1 Nishishinjuku, Shinjuku‐kuTokyo160‐0023Japan
| |
Collapse
|
16
|
Wu Q, Tian JH, He YX, Huang YY, Huang YQ, Zhang GP, Luo JD, Xue Q, Yu XY, Liu YH. Zonisamide alleviates cardiac hypertrophy in rats by increasing Hrd1 expression and inhibiting endoplasmic reticulum stress. Acta Pharmacol Sin 2021; 42:1587-1597. [PMID: 33495518 PMCID: PMC8463597 DOI: 10.1038/s41401-020-00585-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/17/2020] [Indexed: 02/02/2023]
Abstract
Antiepileptic drug zonisamide has been shown to be curative for Parkinson's disease (PD) through increasing HMG-CoA reductase degradation protein 1 (Hrd1) level and mitigating endoplasmic reticulum (ER) stress. Hrd1 is an ER-transmembrane E3 ubiquitin ligase, which is involved in cardiac dysfunction and cardiac hypertrophy in a mouse model of pressure overload. In this study, we investigated whether zonisamide alleviated cardiac hypertrophy in rats by increasing Hrd1 expression and inhibiting ER stress. The beneficial effects of zonisamide were assessed in two experimental models of cardiac hypertrophy: in rats subjected to abdominal aorta constriction (AAC) and treated with zonisamide (14, 28, 56 mg · kg-1 · d-1, i.g.) for 6 weeks as well as in neonatal rat cardiomyocytes (NRCMs) co-treated with Ang II (10 μM) and zonisamide (0.3 μM). Echocardiography analysis revealed that zonsiamide treatment significantly improved cardiac function in AAC rats. We found that zonsiamide treatment significantly attenuated cardiac hypertrophy and fibrosis, and suppressed apoptosis and ER stress in the hearts of AAC rats and in Ang II-treated NRCMs. Importantly, zonisamide markedly increased the expression of Hrd1 in the hearts of AAC rats and in Ang II-treated NRCMs. Furthermore, we demonstrated that zonisamide accelerated ER-associated protein degradation (ERAD) in Ang II-treated NRCMs; knockdown of Hrd1 abrogated the inhibitory effects of zonisamide on ER stress and cardiac hypertrophy. Taken together, our results demonstrate that zonisamide is effective in preserving heart structure and function in the experimental models of pathological cardiac hypertrophy. Zonisamide increases Hrd1 expression, thus preventing cardiac hypertrophy and improving the cardiac function of AAC rats.
Collapse
Affiliation(s)
- Qian Wu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Hui Tian
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yong-Xiang He
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yong-Yin Huang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Qing Huang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Gui-Ping Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jian-Dong Luo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qin Xue
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xi-Yong Yu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ying-Hua Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
17
|
Large-Artery Stiffness in Health and Disease: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 74:1237-1263. [PMID: 31466622 DOI: 10.1016/j.jacc.2019.07.012] [Citation(s) in RCA: 591] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/28/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
A healthy aorta exerts a powerful cushioning function, which limits arterial pulsatility and protects the microvasculature from potentially harmful fluctuations in pressure and blood flow. Large-artery (aortic) stiffening, which occurs with aging and various pathologic states, impairs this cushioning function, and has important consequences on cardiovascular health, including isolated systolic hypertension, excessive penetration of pulsatile energy into the microvasculature of target organs that operate at low vascular resistance, and abnormal ventricular-arterial interactions that promote left ventricular remodeling, dysfunction, and failure. Large-artery stiffness independently predicts cardiovascular risk and represents a high-priority therapeutic target to ameliorate the global burden of cardiovascular disease. This paper provides an overview of key physiologic and biophysical principles related to arterial stiffness, the impact of aortic stiffening on target organs, noninvasive methods for the measurement of arterial stiffness, mechanisms leading to aortic stiffening, therapeutic approaches to reduce it, and clinical applications of arterial stiffness measurements.
Collapse
|
18
|
The Role of Arterial Stiffness and Central Hemodynamics in Heart Failure. ACTA ACUST UNITED AC 2020; 2:209-230. [PMID: 36262174 PMCID: PMC9536727 DOI: 10.36628/ijhf.2020.0029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
Whereas traditional understanding of left ventricular afterload was focused on a steady-state circulation model with continuous pressures and flow, a more realistic concept is emerging, taking the pulsatile nature of the heart and the arterial system into account. The most simple measure of pulsatility is brachial pulse pressure, representing the pulsatility fluctuating around the mean blood pressure level. Brachial pulse pressure is widely available, fundamentally associated with the development and treatment of heart failure (HF), but its analysis is often confounded in patients with established HF. The next step of analysis consists of arterial stiffness, central (rather than brachial) pressures, and of wave reflections. The latter are closely related to left ventricular late systolic afterload, ventricular remodeling, diastolic dysfunction, exercise capacity, and, in the long term, the risk of new-onset HF. Wave reflection may also evolve as a suitable therapeutic target for HF with preserved and reduced ejection fraction. A full understanding of ventricular-arterial coupling, however, requires dedicated analysis of time-resolved pressure and flow signals. This review provides a summary of current understanding of pulsatile hemodynamics in HF.
Collapse
|
19
|
Heffernan KS, Lefferts WK, Atallah-Yunes NH, Glasgow AC, Gump BB. Racial Differences in Left Ventricular Mass and Wave Reflection Intensity in Children. Front Pediatr 2020; 8:132. [PMID: 32296669 PMCID: PMC7138203 DOI: 10.3389/fped.2020.00132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
The burden of heart failure is disproportionately higher in African Americans, with a higher prevalence seen at an early age. Examination of racial differences in left ventricular mass (LVM) in childhood may offer insight into risk for cardiac target organ damage (cTOD) in adulthood. Central hemodynamic load, a harbinger of cTOD in adults, is higher in African Americans. The purpose of this study was to examine racial differences in central hemodynamic load and LVM in African American and non-Hispanic white (NHW) children. Two hundred sixty-nine children participated in this study (age, 10 ± 1 years; n = 149 female, n = 154 African American). Carotid pulse wave velocity (PWV), forward wave intensity (W1) and reflected wave intensity (negative area, NA) was assessed from simultaneously acquired distension and flow velocity waveforms using wave intensity analysis (WIA). Wave reflection magnitude was calculated as NA/W1. LVM was assessed using standard 2D echocardiography and indexed to height as LVM/[height (2.16) + 0.09]. A cutoff of 45 g/m (2.16) was used to define left ventricular hypertrophy (LVH). LVM was higher in African American vs. NHW children (39.2 ± 8.0 vs. 37.2 ± 6.7 g/m (2.16), adjusted for age, sex, carotid systolic pressure and socioeconomic status; p < 0.05). The proportion of LVH was higher in African American vs. NHW children (25 vs. 12 %, p < 0.05). African American and NHW children did not differ in carotid PWV (3.5 ± 4.9 vs. 3.3 ± 1.3 m/s; p > 0.05). NA/W1 was higher in African American vs. NHW children (8.5 ± 5.3 vs. 6.7 ± 2.9; p < 0.05). Adjusting for NA/W1 attenuated racial differences in LVM (38.8 ± 8.0 vs. 37.6 ± 7.0 g/m (2.16); p = 0.19). In conclusion, racial differences in central hemodynamic load and cTOD are present in childhood. African American children have greater wave intensity from reflected waves and higher LVMI compared to NHW children. WIA offers novel insight into early life origins of racial differences in central hemodynamic load and cTOD.
Collapse
Affiliation(s)
- Kevin S Heffernan
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Wesley K Lefferts
- Division of Academic Internal Medicine, Department of Medicine, University of Illinois-Chicago, Chicago, IL, United States
| | - Nader H Atallah-Yunes
- Division of Pediatric Cardiology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Alaina C Glasgow
- Department of Exercise Science, Syracuse University, Syracuse, NY, United States
| | - Brooks B Gump
- Department of Public Health, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
20
|
Weber T, Chirinos JA. Pulsatile arterial haemodynamics in heart failure. Eur Heart J 2019; 39:3847-3854. [PMID: 29947746 DOI: 10.1093/eurheartj/ehy346] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Due to the cyclic function of the human heart, pressure and flow in the circulation are pulsatile rather than continuous. Addressing pulsatile haemodynamics starts with the most convenient measurement, brachial pulse pressure, which is widely available, related to development and treatment of heart failure (HF), but often confounded in patients with established HF. The next level of analysis consists of central (rather than brachial) pressures and, more importantly, of wave reflections. The latter are closely related to left ventricular late systolic afterload, ventricular remodelling, diastolic dysfunction, exercise capacity, and, in the long-term, the risk of new-onset HF. Wave reflection may also represent a suitable therapeutic target. Treatments for HF with preserved and reduced ejection fraction, based on a reduction of wave reflection, are emerging. A full understanding of ventricular-arterial coupling, however, requires dedicated analysis of time-resolved pressure and flow signals, which can be readily accomplished with contemporary non-invasive imaging and modelling techniques. This review provides a summary of our current understanding of pulsatile haemodynamics in HF.
Collapse
Affiliation(s)
- Thomas Weber
- Department of Cardiology, Klinikum Wels-Grieskirchen, Austria
| | - Julio A Chirinos
- University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
21
|
Chen K, Rekep M, Wei W, Wu Q, Xue Q, Li S, Tian J, Yi Q, Zhang G, Zhang G, Xiao Q, Luo J, Liu Y. Quercetin Prevents In Vivo and In Vitro Myocardial Hypertrophy Through the Proteasome-GSK-3 Pathway. Cardiovasc Drugs Ther 2019; 32:5-21. [PMID: 29435775 DOI: 10.1007/s10557-018-6771-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE Quercetin, a flavonoid, has been reported to ameliorate cardiovascular diseases, such as cardiac hypertrophy. However, the mechanism is not completely understood. In this study, a mechanism related to proteasome-glycogen synthesis kinase 3 (GSK-3) was elucidated in rats and primary neonatal cardiomyocytes. METHODS Rats were subjected to sham or constriction of abdominal aorta surgery groups and treated with or without quercetin for 8 weeks. Angiotensin II (Ang II)-induced primary cardiomyocytes were cultured with quercetin treatment or not for 48 h. Echocardiography, real-time RT-PCR, histology, immunofluorescence, and Western blotting were conducted. Proteasome activities were also detected using a fluorescent peptide substrate. RESULTS Echocardiography showed that quercetin prevented constriction of abdominal aorta-induced cardiac hypertrophy and improved the cardiac diastolic function. In addition, quercetin also significantly reduced the Ang II-induced hypertrophic surface area and atrial natriuretic factor (ANF) mRNA level in primary cardiomyocytes. Proteasome activities were obviously inhibited in the quercetin-treated group both in vivo and in vitro. Quercetin also decreased the levels of proteasome subunit beta type (PSMB) 1, PSMB2, and PSMB5 of the 20S proteasome as well as the levels of proteasome regulatory particle (Rpt) 1 and Rpt4 of the 19S proteasome. In particular, the PSMB5 level in the nucleus was reduced after quercetin treatment. Furthermore, phosphorylated GSK-3α/β (inactivation of GSK-3) was decreased, which means that GSK-3 activity was increased. The phosphorylation levels of upstream AKT (PKB (protein kinase B)) and liver kinase B1/AMP activated protein kinase (LKB1/AMPKα) and those of downstream extracellular signal-regulated kinase (ERK), histone H3, β-catenin, and GATA binding protein 4 (GATA4) were reduced after quercetin treatment, while hypertrophy was reversed after treatment with the GSK-3 inhibitor. CONCLUSION In summary, quercetin prevents cardiac hypertrophy, which is related to proteasome inhibition and activation of GSK-3α/β. Upstream (AKT, LKB1/AMPKα) and downstream hypertrophic factors, such as ERK, histone H3, β-catenin, and GATA4, may also be involved.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Disease Models, Animal
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta/metabolism
- Hypertrophy, Left Ventricular/enzymology
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Male
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Phosphorylation
- Proteasome Endopeptidase Complex/drug effects
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors/pharmacology
- Quercetin/pharmacology
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- Kuixiang Chen
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- Medical College of Jiaying University, Meizhou, 514031, China
| | - Mubarak Rekep
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine of China, Department of Pathophysiology, School of Medicine, Institute of Brain Research, Jinan University, Guangzhou, 510632, China
| | - Qian Wu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qin Xue
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sujuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiahui Tian
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Quan Yi
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Genshui Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guiping Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qing Xiao
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiandong Luo
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yinghua Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Key Laboratory of Molecular Clinical Pharmacology and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
22
|
Chirinos JA, Akers SR, Schelbert E, Snyder BS, Witschey WR, Jacob RM, Jamis‐Dow C, Ansari B, Lee J, Segers P, Schnall M, Cavalcante JL. Arterial Properties as Determinants of Left Ventricular Mass and Fibrosis in Severe Aortic Stenosis: Findings From ACRIN PA 4008. J Am Heart Assoc 2019; 8:e03742. [PMID: 30590991 PMCID: PMC6405727 DOI: 10.1161/jaha.118.010271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 11/16/2018] [Indexed: 11/16/2022]
Abstract
Background The role of arterial load in severe aortic stenosis is increasingly recognized. However, patterns of pulsatile load and their implications in this population are unknown. We aimed to assess the relationship between the arterial properties and both (1) left ventricular remodeling and fibrosis and (2) the clinical course of patients with severe aortic stenosis undergoing aortic valve replacement ( AVR ). Methods and Results We enrolled 38 participants with symptomatic severe aortic stenosis scheduled to undergo surgical AVR . Aortic root characteristic impedance, wave reflections parameters (reflection magnitude, reflected wave transit time), and myocardial extracellular mass were measured with cardiac magnetic resonance imaging and arterial tonometry Cardiac magnetic resonance imaging was repeated at 6 months in 30 participants. A reduction in cellular mass (133.6 versus 113.9 g; P=0.002) but not extracellular mass (42.3 versus 40.6 g; P=0.67) was seen after AVR . Participants with higher extracellular mass exhibited greater reflection magnitude (0.68 versus 0.54; P=0.006) and lower aortic root characteristic impedance (56.3 versus 96.9 dynes/s per cm5; P=0.006). Reflection magnitude was a significant predictor of smaller improvement in the quality of life (Kansas City Cardiomyopathy Questionnaire score) after AVR ( R=-0.51; P=0.0026). The 6-minute walk distance at 6 months after AVR was positively correlated with the reflected wave transit time ( R=0.52; P=0.01). Conclusions Consistent with animal studies, arterial wave reflections are associated with interstitial volume expansion in severe aortic stenosis and predict a smaller improvement in quality of life following AVR . Future trials should assess whether wave reflections represent a potential therapeutic target to mitigate myocardial interstitial remodeling and to improve the clinical status of this patient population.
Collapse
Affiliation(s)
- Julio A. Chirinos
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - Scott R. Akers
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
- Department of RadiologyCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPA
| | - Erik Schelbert
- Department of Cardiovascular MedicineUniversity of Pittsburgh Medical CenterPittsburghPA
| | - Bradley S. Snyder
- Center for Statistical SciencesBrown University School of Public HealthProvidenceRI
| | - Walter R. Witschey
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - Ron M. Jacob
- Department of Cardiovascular MedicineLancaster General Health, Penn MedicineLancasterPA
| | - Carlos Jamis‐Dow
- Department of Cardiovascular MedicinePenn State Milton S. Hershey Medical CenterHersheyPA
| | - Bilal Ansari
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - Jonathan Lee
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - Patrick Segers
- Biofluid, Tissue, and Solid Mechanics for Medical Applications, IBiTechGhent UniversityGhentBelgium
| | - Mitchell Schnall
- Division of Cardiovascular MedicineUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPA
| | - João L. Cavalcante
- Department of Cardiovascular MedicineUniversity of Pittsburgh Medical CenterPittsburghPA
| |
Collapse
|
23
|
Imbalzano E, Vatrano M, Ghiadoni L, Mandraffino G, Dalbeni A, Khandheria BK, Costantino R, Trapani G, Manganaro R, Cusmà Piccione M, Carerj S, Ceravolo R, Saitta A, Zito C. Arterial stiffness and mitral regurgitation in arterial hypertension: an intriguing pathophysiological link. Vascul Pharmacol 2018; 111:71-76. [PMID: 30359778 DOI: 10.1016/j.vph.2018.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/13/2018] [Accepted: 10/20/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND We examined the relative impact of arterial stiffness on the presence and/or severity of chronic mitral regurgitation (MR) in hypertensive patients. METHODS We prospectively enrolled 141 untreated hypertensive patients (mean age 56.6 ± 11.5 years): 94 with MR, 47 without MR. As a measure of arterial stiffness, pulse wave velocity (PWV) was assessed by applanation tonometry. Assessment of MR severity was obtained through calculation of effective regurgitant orifice area (EROA) and vena contracta by standard two-dimensional transthoracic echocardiography. RESULTS PWV appears to progressively increase according to the presence and severity of MR (no MR = 7.3 ± 1.1 m/s, mild MR = 7.9 ± 1.3 m/s, moderate MR = 9.0 ± 1.7 m/s, severe MR = 13.3 ± 4.1 m/s; P < 0.001 for all comparisons). EROA was positively correlated with age (P = 0.011), left atrial volume index (P = 0.023), PWV (P < 0.001) and augmentation index (P < 0.001), and negatively correlated with left ventricular ejection fraction (P = 0.002) and heart rate (HR) (P = 0.018). On stepwise multivariate logistic regression analysis, only PWV (OR = 2.87, 95% CI 1.750-4.738, P < 0.001) and HR (OR = 0.94, 95% CI 0.895-0.994, P = 0.02) appeared to be independent predictors of severe MR. Receiver operating characteristic curves showed that a cutoff of 9 m/s for PWV provided the best sensitivity/specificity for predicting both the presence of any degree of MR (sensitivity 73%, specificity 87%, AUC = 0.863; P < 0.001) and MR severity (sensitivity 100%, specificity 81%, AUC = 0.954; P < 0.001). CONCLUSION Reduced arterial elasticity because of increased stiffness may be an important marker for the presence and severity of MR in hypertensive patients.
Collapse
Affiliation(s)
- Egidio Imbalzano
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria "Policlinico G. Martino" and Universita' degli Studi di Messina, Messina, Italy
| | - Marco Vatrano
- Cardiology Unit, Hospital "Pugliese-Ciaccio" of Catanzaro, Italy
| | - Lorenzo Ghiadoni
- Department of Clinical and Experimental Medicine, University of Pisa, Italy
| | - Giuseppe Mandraffino
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria "Policlinico G. Martino" and Universita' degli Studi di Messina, Messina, Italy
| | - Andrea Dalbeni
- Department of Internal Medicine, Policlinic University of Verona, Italy
| | - Bijoy K Khandheria
- Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, University of Wisconsin School of Medicine and Public Health, Milwaukee, WI, USA.
| | - Rossella Costantino
- Department of Clinical and Experimental Medicine, University of Messina, Cardiology Unit, Azienda Ospedaliera Universitaria "Policlinico G. Martino" and Universita' degli Studi di Messina, Messina, Italy
| | - Giovanni Trapani
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria "Policlinico G. Martino" and Universita' degli Studi di Messina, Messina, Italy
| | - Roberta Manganaro
- Department of Clinical and Experimental Medicine, University of Messina, Cardiology Unit, Azienda Ospedaliera Universitaria "Policlinico G. Martino" and Universita' degli Studi di Messina, Messina, Italy
| | - Maurizio Cusmà Piccione
- Department of Clinical and Experimental Medicine, University of Messina, Cardiology Unit, Azienda Ospedaliera Universitaria "Policlinico G. Martino" and Universita' degli Studi di Messina, Messina, Italy
| | - Scipione Carerj
- Department of Clinical and Experimental Medicine, University of Messina, Cardiology Unit, Azienda Ospedaliera Universitaria "Policlinico G. Martino" and Universita' degli Studi di Messina, Messina, Italy
| | - Roberto Ceravolo
- Cardiology Unit, Hospital "Pugliese-Ciaccio" of Catanzaro, Italy
| | - Antonino Saitta
- Internal Medicine Unit, Department of Clinical and Experimental Medicine, University of Messina, Azienda Ospedaliera Universitaria "Policlinico G. Martino" and Universita' degli Studi di Messina, Messina, Italy
| | - Concetta Zito
- Department of Clinical and Experimental Medicine, University of Messina, Cardiology Unit, Azienda Ospedaliera Universitaria "Policlinico G. Martino" and Universita' degli Studi di Messina, Messina, Italy
| |
Collapse
|
24
|
Catino AB, Hubbard RA, Chirinos JA, Townsend R, Keefe S, Haas NB, Puzanov I, Fang JC, Agarwal N, Hyman D, Smith AM, Gordon M, Plappert T, Englefield V, Narayan V, Ewer S, ElAmm C, Lenihan D, Ky B. Longitudinal Assessment of Vascular Function With Sunitinib in Patients With Metastatic Renal Cell Carcinoma. Circ Heart Fail 2018; 11:e004408. [PMID: 29664405 PMCID: PMC6360089 DOI: 10.1161/circheartfailure.117.004408] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 02/08/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Sunitinib, used widely in metastatic renal cell carcinoma, can result in hypertension, left ventricular dysfunction, and heart failure. However, the relationships between vascular function and cardiac dysfunction with sunitinib are poorly understood. METHODS AND RESULTS In a multicenter prospective study of 84 metastatic renal cell carcinoma patients, echocardiography, arterial tonometry, and BNP (B-type natriuretic peptide) measures were performed at baseline and at 3.5, 15, and 33 weeks after sunitinib initiation, correlating with sunitinib cycles 1, 3, and 6. Mean change in vascular function parameters and 95% confidence intervals were calculated. Linear regression models were used to estimate associations between vascular function and left ventricular ejection fraction, longitudinal strain, diastolic function (E/e'), and BNP. After 3.5 weeks of sunitinib, mean systolic blood pressure increased by 9.5 mm Hg (95% confidence interval, 2.0-17.1; P=0.02) and diastolic blood pressure by 7.2 mm Hg (95% confidence interval, 4.3-10.0; P<0.001) across all participants. Sunitinib resulted in increases in large artery stiffness (carotid-femoral pulse wave velocity) and resistive load (total peripheral resistance and arterial elastance; all P<0.05) and changes in pulsatile load (total arterial compliance and wave reflection). There were no statistically significant associations between vascular function and systolic dysfunction (left ventricular ejection fraction and longitudinal strain). However, baseline total peripheral resistance, arterial elastance, and aortic impedance were associated with worsening diastolic function and filling pressures over time. CONCLUSIONS In patients with metastatic renal cell carcinoma, sunitinib resulted in early, significant increases in blood pressure, arterial stiffness, and resistive and pulsatile load within 3.5 weeks of treatment. Baseline vascular function parameters were associated with worsening diastolic but not systolic function.
Collapse
Affiliation(s)
- Anna B Catino
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Rebecca A Hubbard
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Julio A Chirinos
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Ray Townsend
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Stephen Keefe
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Naomi B Haas
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Igor Puzanov
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - James C Fang
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Neeraj Agarwal
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - David Hyman
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Amanda M Smith
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Mary Gordon
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Theodore Plappert
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Virginia Englefield
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Vivek Narayan
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Steven Ewer
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Chantal ElAmm
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Daniel Lenihan
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.)
| | - Bonnie Ky
- From the Division of Cardiovascular Medicine (A.B.C., J.C.F.) and Division of Oncology (N.A.), Department of Medicine, University of Utah, Salt Lake City; Department of Biostatistics, Epidemiology and Informatics (R.A.H., B.K.), Division of Cardiology (J.A.C., D.H., A.M.S., T.P., V.E., B.K.), Division of Hematology and Oncology (S.K., N.B.H., V.N.), and Division of Nephrology (R.T.), Department of Medicine, and Abramson Cancer Center (S.K., N.B.H., V.N., B.K.), University of Pennsylvania, Philadelphia; Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY (I.P.); Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison (S.E.); Division of Cardiovascular Medicine, Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH (C.E.); Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN (M.G.); and Division of Cardiology, Department of Medicine, Washington University in St Louis, MO (D.L.).
| |
Collapse
|
25
|
Witzenburg CM, Holmes JW. A Comparison of Phenomenologic Growth Laws for Myocardial Hypertrophy. JOURNAL OF ELASTICITY 2017; 129:257-281. [PMID: 29632418 PMCID: PMC5889094 DOI: 10.1007/s10659-017-9631-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The heart grows in response to changes in hemodynamic loading during normal development and in response to valve disease, hypertension, and other pathologies. In general, a left ventricle subjected to increased afterload (pressure overloading) exhibits concentric growth characterized by thickening of individual myocytes and the heart wall, while one experiencing increased preload (volume overloading) exhibits eccentric growth characterized by lengthening of myocytes and dilation of the cavity. Predictive models of cardiac growth could be important tools in evaluating treatments, guiding clinical decision making, and designing novel therapies for a range of diseases. Thus, in the past 20 years there has been considerable effort to simulate growth within the left ventricle. While a number of published equations or systems of equations (often termed "growth laws") can capture some aspects of experimentally observed growth patterns, no direct comparisons of the various published models have been performed. Here we examine eight of these laws and compare them in a simple test-bed in which we imposed stretches measured during in vivo pressure and volume overload. Laws were compared based on their ability to predict experimentally measured patterns of growth in the myocardial fiber and radial directions as well as the ratio of fiber-to-radial growth. Three of the eight laws were able to reproduce most key aspects of growth following both pressure and volume overload. Although these three growth laws utilized different approaches to predict hypertrophy, they all employed multiple inputs that were weakly correlated during in vivo overload and therefore provided independent information about mechanics.
Collapse
Affiliation(s)
- Colleen M. Witzenburg
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, VA, USA
| | - Jeffrey W. Holmes
- Department of Biomedical Engineering, University of Virginia,
Charlottesville, VA, USA
- Department of Medicine, University of Virginia, Charlottesville, VA,
USA
- Robert M. Berne Cardiovascular Research Center, University of
Virginia, Charlottesville, VA, USA
- Phone: 434-924-8797
| |
Collapse
|
26
|
Lewis GA, Schelbert EB, Williams SG, Cunnington C, Ahmed F, McDonagh TA, Miller CA. Biological Phenotypes of Heart Failure With Preserved Ejection Fraction. J Am Coll Cardiol 2017; 70:2186-2200. [PMID: 29050567 DOI: 10.1016/j.jacc.2017.09.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/05/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) involves multiple pathophysiological mechanisms, which result in the heterogeneous phenotypes that are evident clinically, and which have potentially confounded previous HFpEF trials. A greater understanding of the in vivo human processes involved, and in particular, which are the causes and which are the downstream effects, may allow the syndrome of HFpEF to be distilled into distinct diagnoses based on the underlying biology. From this, specific interventions can follow, targeting individuals identified on the basis of their biological phenotype. This review describes the biological phenotypes of HFpEF and therapeutic interventions aimed at targeting these phenotypes.
Collapse
Affiliation(s)
- Gavin A Lewis
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; University Hospital of South Manchester NHS Foundation Trust, Wythenshawe, Manchester, United Kingdom
| | - Erik B Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Simon G Williams
- University Hospital of South Manchester NHS Foundation Trust, Wythenshawe, Manchester, United Kingdom
| | - Colin Cunnington
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, United Kingdom
| | - Fozia Ahmed
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; Manchester Heart Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Oxford Road, Manchester, United Kingdom
| | | | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom; University Hospital of South Manchester NHS Foundation Trust, Wythenshawe, Manchester, United Kingdom; Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, United Kingdom.
| |
Collapse
|
27
|
Fraser AG, Gillebert TC, Leite-Moreira AF. Ventricular-arterial coupling in heart failure with preserved ejection fraction: the devil is in the details. Cardiovasc Res 2017; 113:844-846. [DOI: 10.1093/cvr/cvx107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
28
|
Chirinos JA, Phan TS, Syed AA, Hashmath Z, Oldland HG, Koppula MR, Tariq A, Javaid K, Miller R, Varakantam S, Dunde A, Neetha V, Akers SR. Late Systolic Myocardial Loading Is Associated With Left Atrial Dysfunction in Hypertension. Circ Cardiovasc Imaging 2017; 10:e006023. [PMID: 28592592 DOI: 10.1161/circimaging.116.006023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/10/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Late systolic load has been shown to cause diastolic dysfunction in animal models. Although the systolic loading sequence of the ventricular myocardium likely affects its coupling with the left atrium (LA), this issue has not been investigated in humans. We aimed to assess the relationship between the myocardial loading sequence and LA function in human hypertension. METHODS AND RESULTS We studied 260 subjects with hypertension and 19 normotensive age- and sex-matched controls. Time-resolved central pressure and left ventricular geometry were measured with carotid tonometry and cardiac magnetic resonance imaging, respectively, for computation of time-resolved ejection-phase myocardial wall stress (MWS). The ratio of late/early ejection-phase MWS time integrals was computed as an index of late systolic myocardial load. Atrial mechanics were measured with cine-steady-state free-precession magnetic resonance imaging using feature-tracking algorithms. Compared with normotensive controls, hypertensive participants demonstrated increased late/early ejection-phase MWS and reduced LA function. Greater levels of late/early ejection-phase MWS were associated with reduced LA conduit, reservoir, and booster pump LA function. In models that included early and late ejection-phase MWS as independent correlates of LA function, late systolic MWS was associated with lower, whereas early systolic MWS was associated with greater LA function, indicating an effect of the relative loading sequence (late versus early MWS) on LA function. These relationships persisted after adjustment for multiple potential confounders. CONCLUSIONS A myocardial loading sequence characterized by prominent late systolic MWS was independently associated with atrial dysfunction. In the context of available experimental data, our findings support the deleterious effects of late systolic loading on ventricular-atrial coupling.
Collapse
Affiliation(s)
- Julio A Chirinos
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA.
| | - Timothy S Phan
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Amer A Syed
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Zeba Hashmath
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Harry G Oldland
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Maheswara R Koppula
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Ali Tariq
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Khuzaima Javaid
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Rachana Miller
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Swapna Varakantam
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Anjaneyulu Dunde
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Vadde Neetha
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Scott R Akers
- From the Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia (J.A.C., Z.H., S.V., A.D., V.N., M.R.K.); Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia (J.A.C., T.S.P., A.A.S., H.G.O., S.V.); and Department of Medicine (J.A.C., T.S.P., A.T., K.J., R.M., S.V.) and Department of Radiology (S.R.A.), Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| |
Collapse
|
29
|
Chirinos JA, Londono-Hoyos F, Zamani P, Beraun M, Haines P, Vasim I, Varakantam S, Phan TS, Cappola TP, Margulies KB, Townsend RR, Segers P. Effects of organic and inorganic nitrate on aortic and carotid haemodynamics in heart failure with preserved ejection fraction. Eur J Heart Fail 2017; 19:1507-1515. [PMID: 28547861 DOI: 10.1002/ejhf.885] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 01/23/2023] Open
Abstract
AIMS To assess the haemodynamic effects of organic vs. inorganic nitrate administration among patients with heart failure with preserved ejection fraction (HFpEF). METHODS AND RESULTS We assessed carotid and aortic pressure-flow relations non-invasively before and after the administration of 0.4 mg of sublingual nitroglycerin (n = 26), and in a separate sub-study, in response to 12.9 mmoL of inorganic nitrate (n = 16). Nitroglycerin did not consistently reduce wave reflections arriving at the proximal aorta (change in real part of reflection coefficient, 1st harmonic: -0.09; P = 0.01; 2nd harmonic: -0.045, P = 0.16; 3rd harmonic: +0.087; P = 0.05), but produced profound vasodilatation in the carotid territory, with a significant reduction in systolic blood pressure (133.6 vs. 120.5 mmHg; P = 0.011) and a marked reduction in carotid bed vascular resistance (19 580 vs. 13 078 dynes · s/cm5 ; P = 0.001) and carotid characteristic impedance (3440 vs. 1923 dynes · s/cm5 ; P = 0.002). Inorganic nitrate, in contrast, consistently reduced wave reflections across the first three harmonics (change in real part of reflection coefficient, 1st harmonic: -0.12; P = 0.03; 2nd harmonic: -0.11, P = 0.01; 3rd harmonic: -0.087; P = 0.09) and did not reduce blood pressure, carotid bed vascular resistance, or carotid characteristic impedance (P = NS). CONCLUSIONS Nitroglycerin produces marked vasodilatation in the carotid circulation, with a pronounced reduction in blood pressure and inconsistent effects on central wave reflections. Inorganic nitrate, in contrast, produces consistent reductions in wave reflections, and unlike nitroglycerin, it does so without significant hypotension or cerebrovascular dilatation. These haemodynamic differences may underlie the different effects on exercise capacity and side effect profile of inorganic vs. organic nitrate in HFpEF.
Collapse
Affiliation(s)
- Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Francisco Londono-Hoyos
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Institute of Biomedical Technology, Ghent University, Ghent, Belgium
| | - Payman Zamani
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa Beraun
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Philip Haines
- Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Izzah Vasim
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Swapna Varakantam
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Philadelphia VA Medical Center, Philadelphia, PA, USA
| | - Timothy S Phan
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas P Cappola
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond R Townsend
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick Segers
- Institute of Biomedical Technology, Ghent University, Ghent, Belgium
| |
Collapse
|
30
|
Deep Phenotyping of Systemic Arterial Hemodynamics in HFpEF (Part 2): Clinical and Therapeutic Considerations. J Cardiovasc Transl Res 2017; 10:261-274. [PMID: 28401511 DOI: 10.1007/s12265-017-9736-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/30/2017] [Indexed: 01/09/2023]
Abstract
Multiple phase III trials over the last few decades have failed to demonstrate a clear benefit of various pharmacologic interventions in heart failure with a preserved left ventricular (LV) ejection fraction (HFpEF). Therefore, a better understanding of its pathophysiology is important. An accompanying review describes key technical and physiologic aspects regarding the deep phenotyping of arterial hemodynamics in HFpEF. This review deals with the potential of this approach to enhance our clinical, translational, and therapeutic approach to HFpEF. Specifically, the role of arterial hemodynamics is discussed in relation to (1) the pathophysiology of left ventricular diastolic dysfunction, remodeling, and fibrosis, (2) impaired oxygen delivery to peripheral skeletal muscle, which affects peripheral oxygen extraction, (3) the frequent presence of comorbidities, such as renal failure and dementia in this population, and (4) the potential to enhance precision medicine approaches. A therapeutic approach to target arterial hemodynamic abnormalities that are prevalent in this population (particularly, with inorganic nitrate/nitrite) is also discussed.
Collapse
|
31
|
Affiliation(s)
- Julio A Chirinos
- From the University of Pennsylvania Perelman School of Medicine and Hospital of the University of Pennsylvania, Philadelphia.
| |
Collapse
|
32
|
Affiliation(s)
- Deepak K Gupta
- Division of Cardiovascular Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
33
|
Zamani P, Akers S, Soto-Calderon H, Beraun M, Koppula MR, Varakantam S, Rawat D, Shiva-Kumar P, Haines PG, Chittams J, Townsend RR, Witschey WR, Segers P, Chirinos JA. Isosorbide Dinitrate, With or Without Hydralazine, Does Not Reduce Wave Reflections, Left Ventricular Hypertrophy, or Myocardial Fibrosis in Patients With Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2017; 6:JAHA.116.004262. [PMID: 28219917 PMCID: PMC5523746 DOI: 10.1161/jaha.116.004262] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Background Wave reflections, which are increased in patients with heart failure with preserved ejection fraction, impair diastolic function and promote pathologic myocardial remodeling. Organic nitrates reduce wave reflections acutely, but whether this is sustained chronically or affected by hydralazine coadministration is unknown. Methods and Results We randomized 44 patients with heart failure with preserved ejection fraction in a double‐blinded fashion to isosorbide dinitrate (ISDN; n=13), ISDN+hydralazine (ISDN+hydral; n=15), or placebo (n=16) for 6 months. The primary end point was the change in reflection magnitude (RM; assessed with arterial tonometry and Doppler echocardiography). Secondary end points included change in left ventricular mass and fibrosis, measured with cardiac magnetic resonance imaging, and the 6‐minute walk distance. ISDN reduced aortic characteristic impedance (mean baseline=0.15 [95% CI, 0.14–0.17], 3 months=0.11 [95% CI, 0.10–0.13], 6 months=0.10 [95% CI, 0.08–0.12] mm Hg/mL per second; P=0.003) and forward wave amplitude (Pf, mean baseline=54.8 [95% CI, 47.6–62.0], 3 months=42.2 [95% CI, 33.2–51.3]; 6 months=37.0 [95% CI, 27.2–46.8] mm Hg, P=0.04), but had no effect on RM (P=0.64), left ventricular mass (P=0.33), or fibrosis (P=0.63). ISDN+hydral increased RM (mean baseline=0.39 [95% CI, 0.35–0.43]; 3 months=0.31 [95% CI, 0.25–0.36]; 6 months=0.44 [95% CI, 0.37–0.51], P=0.03), reduced 6‐minute walk distance (mean baseline=343.3 [95% CI, 319.2–367.4]; 6 months=277.0 [95% CI, 242.7–311.4] meters, P=0.022), and increased native myocardial T1 (mean baseline=1016.2 [95% CI, 1002.7–1029.7]; 6 months=1054.5 [95% CI, 1036.5–1072.3], P=0.021). A high proportion of patients experienced adverse events with active therapy (ISDN=61.5%, ISDN+hydral=60.0%; placebo=12.5%; P=0.007). Conclusions ISDN, with or without hydralazine, does not exert beneficial effects on RM, left ventricular remodeling, or submaximal exercise and is poorly tolerated. ISDN+hydral appears to have deleterious effects on RM, myocardial remodeling, and submaximal exercise. Our findings do not support the routine use of these vasodilators in patients with heart failure with preserved ejection fraction. Clinical Trial Registration URL: www.clinicaltrials.gov. Unique identifier: NCT01516346.
Collapse
Affiliation(s)
- Payman Zamani
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Scott Akers
- Department of Radiology, Philadelphia Veterans' Affairs Medical Center, Philadelphia, PA
| | - Haideliza Soto-Calderon
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Melissa Beraun
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Maheswara R Koppula
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Swapna Varakantam
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Deepa Rawat
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Prithvi Shiva-Kumar
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Philip G Haines
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA.,Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI
| | - Jesse Chittams
- Office of Nursing Research, School of Nursing, University of Pennsylvania, Philadelphia, PA
| | - Raymond R Townsend
- Division of Nephrology/Hypertension, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Walter R Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Patrick Segers
- Biofluid, Tissue, and Solid Mechanics for Medical Applications, IBiTech, iMinds Medical IT, Ghent University, Ghent, Belgium
| | - Julio A Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
34
|
Deep Phenotyping of Systemic Arterial Hemodynamics in HFpEF (Part 1): Physiologic and Technical Considerations. J Cardiovasc Transl Res 2017; 10:245-259. [PMID: 28210939 DOI: 10.1007/s12265-017-9735-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 01/30/2017] [Indexed: 01/20/2023]
Abstract
A better understanding of the pathophysiology of heart failure with a preserved left ventricular ejection fraction (HFpEF) is important. Detailed phenotyping of pulsatile hemodynamics has provided important insights into the pathophysiology of left ventricular remodeling and fibrosis, diastolic dysfunction, microvascular disease, and impaired oxygen delivery to peripheral skeletal muscle, all of which contribute to exercise intolerance, the cardinal feature of HFpEF. Furthermore, arterial pulsatile hemodynamic mechanisms likely contribute to the frequent presence of comorbidities, such as renal failure and dementia, in this population. Our therapeutic approach to HFpEF can be enhanced by clinical phenotyping tools with the potential to "segment" this population into relevant pathophysiologic categories or to identify individuals exhibiting prominent specific abnormalities that can be targeted by pharmacologic interventions. This review describes relevant technical and physiologic aspects regarding the deep phenotyping of arterial hemodynamics in HFpEF. In an accompanying review, the potential of this approach to enhance our clinical and therapeutic approach to HFpEF is discussed.
Collapse
|
35
|
Quail MA, Short R, Pandya B, Steeden JA, Khushnood A, Taylor AM, Segers P, Muthurangu V. Abnormal Wave Reflections and Left Ventricular Hypertrophy Late After Coarctation of the Aorta Repair. Hypertension 2017; 69:501-509. [PMID: 28115510 PMCID: PMC5295491 DOI: 10.1161/hypertensionaha.116.08763] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/04/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Patients with repaired coarctation of the aorta are thought to have increased afterload due to abnormalities in vessel structure and function. We have developed a novel cardiovascular magnetic resonance protocol that allows assessment of central hemodynamics, including central aortic systolic blood pressure, resistance, total arterial compliance, pulse wave velocity, and wave reflections. The main study aims were to (1) characterize group differences in central aortic systolic blood pressure and peripheral systolic blood pressure, (2) comprehensively evaluate afterload (including wave reflections) in the 2 groups, and (3) identify possible biomarkers among covariates associated with elevated left ventricular mass (LVM). Fifty adult patients with repaired coarctation and 25 age- and sex-matched controls were recruited. Ascending aorta area and flow waveforms were obtained using a high temporal-resolution spiral phase-contrast cardiovascular magnetic resonance flow sequence. These data were used to derive central hemodynamics and to perform wave intensity analysis noninvasively. Covariates associated with LVM were assessed using multivariable linear regression analysis. There were no significant group differences (P≥0.1) in brachial systolic, mean, or diastolic BP. However central aortic systolic blood pressure was significantly higher in patients compared with controls (113 versus 107 mm Hg, P=0.002). Patients had reduced total arterial compliance, increased pulse wave velocity, and larger backward compression waves compared with controls. LVM index was significantly higher in patients than controls (72 versus 59 g/m2, P<0.0005). The magnitude of the backward compression waves was independently associated with variation in LVM (P=0.01). Using a novel, noninvasive hemodynamic assessment, we have shown abnormal conduit vessel function after coarctation of the aorta repair, including abnormal wave reflections that are associated with elevated LVM.
Collapse
Affiliation(s)
- Michael A Quail
- From the Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London and Great Ormond Street Hospital for Children, London, United Kingdom (M.A.Q., R.S., B.P., J.A.S., A.K., A.M.T., V.M.); Adult Congenital Heart Disease Department, St. Bartholomew's Hospital, London, United Kingdom (B.P.); and IBiTech-bioMMeda, iMinds Medical IT, Ghent University, Gent, Belgium (P.S.)
| | - Rebekah Short
- From the Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London and Great Ormond Street Hospital for Children, London, United Kingdom (M.A.Q., R.S., B.P., J.A.S., A.K., A.M.T., V.M.); Adult Congenital Heart Disease Department, St. Bartholomew's Hospital, London, United Kingdom (B.P.); and IBiTech-bioMMeda, iMinds Medical IT, Ghent University, Gent, Belgium (P.S.)
| | - Bejal Pandya
- From the Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London and Great Ormond Street Hospital for Children, London, United Kingdom (M.A.Q., R.S., B.P., J.A.S., A.K., A.M.T., V.M.); Adult Congenital Heart Disease Department, St. Bartholomew's Hospital, London, United Kingdom (B.P.); and IBiTech-bioMMeda, iMinds Medical IT, Ghent University, Gent, Belgium (P.S.)
| | - Jennifer A Steeden
- From the Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London and Great Ormond Street Hospital for Children, London, United Kingdom (M.A.Q., R.S., B.P., J.A.S., A.K., A.M.T., V.M.); Adult Congenital Heart Disease Department, St. Bartholomew's Hospital, London, United Kingdom (B.P.); and IBiTech-bioMMeda, iMinds Medical IT, Ghent University, Gent, Belgium (P.S.)
| | - Abbas Khushnood
- From the Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London and Great Ormond Street Hospital for Children, London, United Kingdom (M.A.Q., R.S., B.P., J.A.S., A.K., A.M.T., V.M.); Adult Congenital Heart Disease Department, St. Bartholomew's Hospital, London, United Kingdom (B.P.); and IBiTech-bioMMeda, iMinds Medical IT, Ghent University, Gent, Belgium (P.S.)
| | - Andrew M Taylor
- From the Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London and Great Ormond Street Hospital for Children, London, United Kingdom (M.A.Q., R.S., B.P., J.A.S., A.K., A.M.T., V.M.); Adult Congenital Heart Disease Department, St. Bartholomew's Hospital, London, United Kingdom (B.P.); and IBiTech-bioMMeda, iMinds Medical IT, Ghent University, Gent, Belgium (P.S.)
| | - Patrick Segers
- From the Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London and Great Ormond Street Hospital for Children, London, United Kingdom (M.A.Q., R.S., B.P., J.A.S., A.K., A.M.T., V.M.); Adult Congenital Heart Disease Department, St. Bartholomew's Hospital, London, United Kingdom (B.P.); and IBiTech-bioMMeda, iMinds Medical IT, Ghent University, Gent, Belgium (P.S.)
| | - Vivek Muthurangu
- From the Centre for Cardiovascular Imaging, Institute of Cardiovascular Science, University College London and Great Ormond Street Hospital for Children, London, United Kingdom (M.A.Q., R.S., B.P., J.A.S., A.K., A.M.T., V.M.); Adult Congenital Heart Disease Department, St. Bartholomew's Hospital, London, United Kingdom (B.P.); and IBiTech-bioMMeda, iMinds Medical IT, Ghent University, Gent, Belgium (P.S.).
| |
Collapse
|
36
|
Dai D, Chang Y, Chen Y, Yu S, Guo X, Sun Y. Gender-specific association of decreased estimated glomerular filtration rate and left vertical geometry in the general population from rural Northeast China. BMC Cardiovasc Disord 2017; 17:24. [PMID: 28086799 PMCID: PMC5237167 DOI: 10.1186/s12872-016-0459-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 12/23/2016] [Indexed: 01/19/2023] Open
Abstract
Background Left ventricular hypertrophy (LVH) is common and associated with cardiovascular outcomes among patients with known chronic kidney disease (CKD). However, the link between decreased estimated glomerular filtration rate (eGFR) and left ventricular (LV) geometry remains poorly explored in general population. In this study, we examined the gender-specific association between eGFR and LVH in the general population from rural Northeast China. Methods This survey was conducted from July 2012 to August 2013. A total of 10907 participants (5,013 men and 5,894 women) from the rural Northeast China were randomly selected and examined. LV mass index (LVMI) was used to define LVH (LVMI > 46.7 g/m2.7 in women; > 49.2 g/m2.7 in men). LV geometry was defined as normal, or with concentric remodeling, eccentric or concentric hypertrophy, according to relative wall thickness (RWT) and LVMI. Mildly decreased eGFR was defined as eGFR ≥ 60 and < 90 ml/min/1.73 m2, and moderate-severely decreased eGFR was defined as eGFR < 60 ml/min/1.73 m2. Results As eGFR decreased, LVH showed a gradual increase in the entire study population. Multivariate analysis revealed a gender-specific relationship between eGFR and LV geometry. Only in men, mildly decreased eGFR was associated with concentric remodeling [odds ratio (OR): =1.58; 95% CI: 1.14–2.20; P < 0.01] and concentric LVH OR = 1.63; 95% CI: 1.15–2.31; P < 0.01). And only in men, moderate-severely decreased eGFR was a risk factor for concentric LVH (OR = 4.56; 95% CI: 2.14–9.73; P < 0.001) after adjusting for confounding factors. Conclusions These findings suggested that decreased eGFR was a risk factor for LV geometry in men, and a gender-specific difference should be taken into account in clinical practice.
Collapse
Affiliation(s)
- Dongxue Dai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Ye Chang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Yintao Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Shasha Yu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Xiaofan Guo
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
37
|
Abstract
Measures of interaction between the left ventricle (LV) and arterial system (ventricular-arterial coupling) are important but under-recognised cardiovascular phenotypes in heart failure. Ventriculo-arterial coupling is commonly assessed in the pressure-volume plane, using the ratio of effective arterial elastance (EA) to LV end-systolic elastance (EES) to provide information on ventricular-arterial system mechanical efficiency and performance when LV ejection fraction is abnormal. These analyses have significant limitations, such as neglecting systolic loading sequence, and are less informative in heart failure with preserved ejection fraction (HFpEF). EA is almost entirely dependent on vascular resistance and heart rate. Assessment of pulsatile arterial haemodynamics and time-resolved myocardial wall stress provide critical incremental physiological information and should be more widely utilised. Pulsatile arterial load represents a promising therapeutic target in HFpEF. Here, we review various approaches to assess ventricular-arterial interactions, and their pathophysiological and clinical implications in heart failure.
Collapse
Affiliation(s)
- Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine and Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy Sweitzer
- Tucson and Arizona Sarver Heart Center, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
38
|
Pandey A, Khan H, Newman AB, Lakatta EG, Forman DE, Butler J, Berry JD. Arterial Stiffness and Risk of Overall Heart Failure, Heart Failure With Preserved Ejection Fraction, and Heart Failure With Reduced Ejection Fraction: The Health ABC Study (Health, Aging, and Body Composition). Hypertension 2016; 69:267-274. [PMID: 27993954 DOI: 10.1161/hypertensionaha.116.08327] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/09/2016] [Accepted: 11/17/2016] [Indexed: 01/08/2023]
Abstract
Higher arterial stiffness is associated with increased risk of atherosclerotic events. However, its contribution toward risk of heart failure (HF) and its subtypes, HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF), independent of other risk factors is not well established. In this study, we included Health ABC study (Health, Aging, and Body Composition) participants without prevalent HF who had arterial stiffness measured as carotid-femoral pulse wave velocity (cf-PWV) at baseline (n=2290). Adjusted Cox-proportional hazards models were constructed to determine the association between continuous and data-derived categorical measures (tertiles) of cf-PWV and incidence of HF and its subtypes (HFpEF [ejection fraction >45%] and HFrEF [ejection fraction ≤45%]). We observed 390 HF events (162 HFpEF and 145 HFrEF events) over 11.4 years of follow-up. In adjusted analysis, higher cf-PWV was associated with greater risk of HF after adjustment for age, sex, ethnicity, mean arterial pressure, and heart rate (hazard ratio [95% confidence interval] for cf-PWV tertile 3 versus tertile 1 [ref] =1.35 [1.05-1.73]). However, this association was not significant after additional adjustment for other cardiovascular risk factors (hazard ratio [95% confidence interval], 1.14 [0.88-1.47]). cf-PWV velocity was also not associated with risk of HFpEF and HFrEF after adjustment for potential confounders (most adjusted hazard ratio [95% confidence interval] for cf-PWV tertile 3 versus tertile 1 [ref]: HFpEF, 1.06 [0.72-1.56]; HFrEF, 1.28 [0.83-1.97]). In conclusion, arterial stiffness, as measured by cf-PWV, is not independently associated with risk of HF or its subtypes after adjustment for traditional cardiovascular risk factors.
Collapse
Affiliation(s)
- Ambarish Pandey
- From the Division of Cardiology, Department of Internal Medicine (A.P., J.D.B.) and Department of Clinical Sciences (J.D.B.), University of Texas Southwestern Medical Center, Dallas; Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (H.K.); Department of Epidemiology, Graduate School of Public Health at University of Pittsburgh, PA (A.B.N.); Laboratory of Cardiovascular Science, Biomedical Research Center, National Institutes of Heath, National Institute of Aging, Baltimore, MD (E.G.L.); Section of Geriatric Cardiology, Divisions of Geriatrics and Cardiology, University of Pittsburgh School of Medicine, VA Pittsburgh Healthcare System, PA (D.E.F.); and Division of Cardiology, Department of Internal Medicine, Stony Brook University School of Medicine, New York, NY (J.B.)
| | - Hassan Khan
- From the Division of Cardiology, Department of Internal Medicine (A.P., J.D.B.) and Department of Clinical Sciences (J.D.B.), University of Texas Southwestern Medical Center, Dallas; Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (H.K.); Department of Epidemiology, Graduate School of Public Health at University of Pittsburgh, PA (A.B.N.); Laboratory of Cardiovascular Science, Biomedical Research Center, National Institutes of Heath, National Institute of Aging, Baltimore, MD (E.G.L.); Section of Geriatric Cardiology, Divisions of Geriatrics and Cardiology, University of Pittsburgh School of Medicine, VA Pittsburgh Healthcare System, PA (D.E.F.); and Division of Cardiology, Department of Internal Medicine, Stony Brook University School of Medicine, New York, NY (J.B.)
| | - Anne B Newman
- From the Division of Cardiology, Department of Internal Medicine (A.P., J.D.B.) and Department of Clinical Sciences (J.D.B.), University of Texas Southwestern Medical Center, Dallas; Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (H.K.); Department of Epidemiology, Graduate School of Public Health at University of Pittsburgh, PA (A.B.N.); Laboratory of Cardiovascular Science, Biomedical Research Center, National Institutes of Heath, National Institute of Aging, Baltimore, MD (E.G.L.); Section of Geriatric Cardiology, Divisions of Geriatrics and Cardiology, University of Pittsburgh School of Medicine, VA Pittsburgh Healthcare System, PA (D.E.F.); and Division of Cardiology, Department of Internal Medicine, Stony Brook University School of Medicine, New York, NY (J.B.)
| | - Edward G Lakatta
- From the Division of Cardiology, Department of Internal Medicine (A.P., J.D.B.) and Department of Clinical Sciences (J.D.B.), University of Texas Southwestern Medical Center, Dallas; Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (H.K.); Department of Epidemiology, Graduate School of Public Health at University of Pittsburgh, PA (A.B.N.); Laboratory of Cardiovascular Science, Biomedical Research Center, National Institutes of Heath, National Institute of Aging, Baltimore, MD (E.G.L.); Section of Geriatric Cardiology, Divisions of Geriatrics and Cardiology, University of Pittsburgh School of Medicine, VA Pittsburgh Healthcare System, PA (D.E.F.); and Division of Cardiology, Department of Internal Medicine, Stony Brook University School of Medicine, New York, NY (J.B.)
| | - Daniel E Forman
- From the Division of Cardiology, Department of Internal Medicine (A.P., J.D.B.) and Department of Clinical Sciences (J.D.B.), University of Texas Southwestern Medical Center, Dallas; Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (H.K.); Department of Epidemiology, Graduate School of Public Health at University of Pittsburgh, PA (A.B.N.); Laboratory of Cardiovascular Science, Biomedical Research Center, National Institutes of Heath, National Institute of Aging, Baltimore, MD (E.G.L.); Section of Geriatric Cardiology, Divisions of Geriatrics and Cardiology, University of Pittsburgh School of Medicine, VA Pittsburgh Healthcare System, PA (D.E.F.); and Division of Cardiology, Department of Internal Medicine, Stony Brook University School of Medicine, New York, NY (J.B.)
| | - Javed Butler
- From the Division of Cardiology, Department of Internal Medicine (A.P., J.D.B.) and Department of Clinical Sciences (J.D.B.), University of Texas Southwestern Medical Center, Dallas; Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (H.K.); Department of Epidemiology, Graduate School of Public Health at University of Pittsburgh, PA (A.B.N.); Laboratory of Cardiovascular Science, Biomedical Research Center, National Institutes of Heath, National Institute of Aging, Baltimore, MD (E.G.L.); Section of Geriatric Cardiology, Divisions of Geriatrics and Cardiology, University of Pittsburgh School of Medicine, VA Pittsburgh Healthcare System, PA (D.E.F.); and Division of Cardiology, Department of Internal Medicine, Stony Brook University School of Medicine, New York, NY (J.B.)
| | - Jarett D Berry
- From the Division of Cardiology, Department of Internal Medicine (A.P., J.D.B.) and Department of Clinical Sciences (J.D.B.), University of Texas Southwestern Medical Center, Dallas; Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (H.K.); Department of Epidemiology, Graduate School of Public Health at University of Pittsburgh, PA (A.B.N.); Laboratory of Cardiovascular Science, Biomedical Research Center, National Institutes of Heath, National Institute of Aging, Baltimore, MD (E.G.L.); Section of Geriatric Cardiology, Divisions of Geriatrics and Cardiology, University of Pittsburgh School of Medicine, VA Pittsburgh Healthcare System, PA (D.E.F.); and Division of Cardiology, Department of Internal Medicine, Stony Brook University School of Medicine, New York, NY (J.B.).
| |
Collapse
|
39
|
Olsen MH, Angell SY, Asma S, Boutouyrie P, Burger D, Chirinos JA, Damasceno A, Delles C, Gimenez-Roqueplo AP, Hering D, López-Jaramillo P, Martinez F, Perkovic V, Rietzschel ER, Schillaci G, Schutte AE, Scuteri A, Sharman JE, Wachtell K, Wang JG. A call to action and a lifecourse strategy to address the global burden of raised blood pressure on current and future generations: the Lancet Commission on hypertension. Lancet 2016; 388:2665-2712. [PMID: 27671667 DOI: 10.1016/s0140-6736(16)31134-5] [Citation(s) in RCA: 656] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Michael H Olsen
- Department of Internal Medicine, Holbæk Hospital and Centre for Individualized Medicine in Arterial Diseases (CIMA), Odense University Hospital, University of Southern Denmark, Odense, Denmark; Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa.
| | - Sonia Y Angell
- Division of Prevention and Primary Care, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Samira Asma
- Global NCD Branch, Division of Global Health Protection, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Pierre Boutouyrie
- Department of Pharmacology and INSERM U 970, Georges Pompidou Hospital, Paris Descartes University, Paris, France
| | - Dylan Burger
- Kidney Research Centre, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, ON, Canada
| | - Julio A Chirinos
- Department of Medicine at University Hospital of Pennsylvania and Veteran's Administration, PA, USA
| | | | - Christian Delles
- Christian Delles: Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Anne-Paule Gimenez-Roqueplo
- INSERM, UMR970, Paris-Cardiovascular Research Center, F-75015, Paris, France; Paris Descartes University, F-75006, Paris, France; Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Department of Genetics, F-75015, Paris, France
| | - Dagmara Hering
- The University of Western Australia-Royal Perth Hospital, Perth, WA, Australia
| | - Patricio López-Jaramillo
- Direccion de Investigaciones, FOSCAL and Instituto de Investigaciones MASIRA, Facultad de Medicina, Universidad de Santander, Bucaramanga, Colombia
| | - Fernando Martinez
- Hypertension Clinic, Internal Medicine, Hospital Clinico, University of Valencia, Valencia, Spain
| | - Vlado Perkovic
- The George Institute for Global Health, University of Sydney, Sydney, NSW, Australia
| | - Ernst R Rietzschel
- Department of Cardiology, Ghent University and Biobanking & Cardiovascular Epidemiology, Ghent University Hospital, Ghent, Belgium
| | - Giuseppe Schillaci
- Department of Internal Medicine, University of Perugia, Terni University Hospital, Terni, Italy
| | - Aletta E Schutte
- Medical Research Council Unit on Hypertension and Cardiovascular Disease, Hypertension in Africa Research Team (HART), North-West University, Potchefstroom, South Africa
| | - Angelo Scuteri
- Hypertension Center, Hypertension and Nephrology Unit, Department of Medicien, Policlinico Tor Vergata, Rome, Italy
| | - James E Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Kristian Wachtell
- Department of Cardiology, Division of Cardiovascular and Pulmonary Diseases Oslo University Hospital, Oslo, Norway
| | - Ji Guang Wang
- The Shanghai Institute of Hypertension, RuiJin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Mynard JP, Kowalski R, Cheung MMH, Smolich JJ. Beyond the aorta: partial transmission of reflected waves from aortic coarctation into supra-aortic branches modulates cerebral hemodynamics and left ventricular load. Biomech Model Mechanobiol 2016; 16:635-650. [DOI: 10.1007/s10237-016-0842-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/28/2016] [Indexed: 12/22/2022]
|
41
|
Chirinos JA, Zamani P. The Nitrate-Nitrite-NO Pathway and Its Implications for Heart Failure and Preserved Ejection Fraction. Curr Heart Fail Rep 2016; 13:47-59. [PMID: 26792295 DOI: 10.1007/s11897-016-0277-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The pathogenesis of exercise intolerance in patients with heart failure and preserved ejection fraction (HFpEF) is likely multifactorial. In addition to cardiac abnormalities (diastolic dysfunction, abnormal contractile reserve, chronotropic incompetence), several peripheral abnormalities are likely to be involved. These include abnormal pulsatile hemodynamics, abnormal arterial vasodilatory responses to exercise, and abnormal peripheral O2 delivery, extraction, and utilization. The nitrate-nitrite-NO pathway is emerging as a potential target to modify key physiologic abnormalities, including late systolic left ventricular (LV) load from arterial wave reflections (which has deleterious short- and long-term consequences for the LV), arterial vasodilatory reserve, muscle O2 delivery, and skeletal muscle mitochondrial function. In a recently completed randomized trial, the administration of a single dose of exogenous inorganic nitrate has been shown to exert various salutary arterial hemodynamic effects, ultimately leading to enhanced aerobic capacity in patients with HFpEF. These effects have the potential for both immediate improvements in exercise tolerance and for long-term "disease-modifying" effects. In this review, we provide an overview of key mechanistic contributors to exercise intolerance in HFpEF, and of the potential therapeutic role of drugs that target the nitrate-nitrite-NO pathway.
Collapse
Affiliation(s)
- Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Hospital of the University of Pennsylvania, Philadelphia, PA, USA. .,Ghent University, Ghent, Belgium.
| | - Payman Zamani
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
42
|
Phan TS, Li JKJ, Segers P, Reddy-Koppula M, Akers SR, Kuna ST, Gislason T, Pack AI, Chirinos JA. Aging is Associated With an Earlier Arrival of Reflected Waves Without a Distal Shift in Reflection Sites. J Am Heart Assoc 2016; 5:JAHA.116.003733. [PMID: 27572821 PMCID: PMC5079032 DOI: 10.1161/jaha.116.003733] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite pronounced increases in central pulse wave velocity (PWV) with aging, reflected wave transit time (RWTT), traditionally defined as the timing of the inflection point (TINF) in the central pressure waveform, does not appreciably decrease, leading to the controversial proposition of a "distal-shift" of reflection sites. TINF, however, is exceptionally prone to measurement error and is also affected by ejection pattern and not only by wave reflection. We assessed whether RWTT, assessed by advanced pressure-flow analysis, demonstrates the expected decline with aging. METHODS AND RESULTS We studied a sample of unselected adults without cardiovascular disease (n=48; median age 48 years) and a clinical population of older adults with suspected/established cardiovascular disease (n=164; 61 years). We measured central pressure and flow with carotid tonometry and phase-contrast MRI, respectively. We assessed RWTT using wave-separation analysis (RWTTWSA) and partially distributed tube-load (TL) modeling (RWTTTL). Consistent with previous reports, TINF did not appreciably decrease with age despite pronounced increases in PWV in both populations. However, aging was associated with pronounced decreases in RWTTWSA (general population -15.0 ms/decade, P<0.001; clinical population -9.07 ms/decade, P=0.003) and RWTTTL (general -15.8 ms/decade, P<0.001; clinical -11.8 ms/decade, P<0.001). There was no evidence of an increased effective reflecting distance by either method. TINF was shown to reliably represent RWTT only under highly unrealistic assumptions about input impedance. CONCLUSIONS RWTT declines with age in parallel with increased PWV, with earlier effects of wave reflections and without a distal shift in reflecting sites. These findings have important implications for our understanding of the role of wave reflections with aging.
Collapse
Affiliation(s)
- Timothy S Phan
- Rutgers University, Piscataway, NJ University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | | | | | | | - Scott R Akers
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Samuel T Kuna
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| | - Thorarinn Gislason
- Department of Respiratory Medicine and Sleep, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Allan I Pack
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Julio A Chirinos
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA Ghent University, Ghent, Belgium Corporal Michael J. Crescenz VAMC, Philadelphia, PA
| |
Collapse
|
43
|
Okoshi MP, Cezar MDM, Iyomasa RM, Silva MB, Costa LCO, Martinez PF, Campos DHS, Damatto RL, Minicucci MF, Cicogna AC, Okoshi K. Effects of early aldosterone antagonism on cardiac remodeling in rats with aortic stenosis-induced pressure overload. Int J Cardiol 2016; 222:569-575. [PMID: 27513653 DOI: 10.1016/j.ijcard.2016.07.266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/29/2016] [Accepted: 07/30/2016] [Indexed: 11/17/2022]
Abstract
UNLABELLED Aldosterone plays a pivotal role in the pathophysiology of systolic heart failure. However, whether early aldosterone antagonism improves cardiac remodeling during persistent pressure overload is unsettled. We evaluated the effects of aldosterone antagonist spironolactone on cardiac remodeling in rats with ascending aortic stenosis (AS). METHODS Three days after inducing AS, weaning rats were randomized to receive spironolactone (AS-SPR, 20mg/kg/day) or no drug (AS) for 18weeks, and compared with sham-operated rats. Myocardial function was studied in isolated left ventricular (LV) papillary muscles. STATISTICAL ANALYSES ANOVA or Kruskal-Wallis tests. RESULTS Echocardiogram showed that LV diastolic (Sham 8.73±0.57; AS 8.30±1.10; AS-SPR 9.19±1.15mm) and systolic (Sham 4.57±0.67; AS 3.61±1.49; AS-SPR 4.62±1.48mm) diameters, left atrial diameter (Sham 5.80±0.44; AS 7.15±1.22; AS-SPR 8.02±1.17mm), and LV mass were higher in AS-SPR than AS. Posterior wall shortening velocity (Sham 38.5±3.8; AS 35.6±5.6; AS-SPR 31.1±3.8mm/s) was lower in AS-SPR than Sham and AS; E/A ratio was higher in AS-SPR than Sham. Developed tension was lower in AS and AS-SPR than Sham. Time to peak tension was higher in AS-SPR than Sham and AS after post-rest contraction. Right ventricle weight was higher in AS-SPR than AS, suggesting more severe heart failure in AS-SPR than AS. Interstitial collagen fractional area and myocardial hydroxyproline concentration were higher in AS than Sham. Metalloproteinase-2 and -9 activity, evaluated by zymography, did not differ between groups. CONCLUSION Early spironolactone administration causes further hypertrophy in cardiac chambers, and left ventricular dilation and dysfunction in rats with AS-induced chronic pressure overload.
Collapse
Affiliation(s)
- M P Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil.
| | - M D M Cezar
- Itapeva Social and Agrarian Sciences College, FAIT, Itapeva, SP, Brazil
| | - R M Iyomasa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - M B Silva
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - L C O Costa
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - P F Martinez
- Federal University of Mato Grosso do Sul, Campo Grande, Brazil
| | - D H S Campos
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - R L Damatto
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil; Itapeva Social and Agrarian Sciences College, FAIT, Itapeva, SP, Brazil
| | - M F Minicucci
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - A C Cicogna
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| | - K Okoshi
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University, UNESP, Brazil
| |
Collapse
|
44
|
Maksuti E, Westerhof N, Westerhof BE, Broomé M, Stergiopulos N. Contribution of the Arterial System and the Heart to Blood Pressure during Normal Aging - A Simulation Study. PLoS One 2016; 11:e0157493. [PMID: 27341106 PMCID: PMC4920393 DOI: 10.1371/journal.pone.0157493] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/30/2016] [Indexed: 11/18/2022] Open
Abstract
During aging, systolic blood pressure continuously increases over time, whereas diastolic pressure first increases and then slightly decreases after middle age. These pressure changes are usually explained by changes of the arterial system alone (increase in arterial stiffness and vascular resistance). However, we hypothesise that the heart contributes to the age-related blood pressure progression as well. In the present study we quantified the blood pressure changes in normal aging by using a Windkessel model for the arterial system and the time-varying elastance model for the heart, and compared the simulation results with data from the Framingham Heart Study. Parameters representing arterial changes (resistance and stiffness) during aging were based on literature values, whereas parameters representing cardiac changes were computed through physiological rules (compensated hypertrophy and preservation of end-diastolic volume). When taking into account arterial changes only, the systolic and diastolic pressure did not agree well with the population data. Between 20 and 80 years, systolic pressure increased from 100 to 122 mmHg, and diastolic pressure decreased from 76 to 55 mmHg. When taking cardiac adaptations into account as well, systolic and diastolic pressure increased from 100 to 151 mmHg and decreased from 76 to 69 mmHg, respectively. Our results show that not only the arterial system, but also the heart, contributes to the changes in blood pressure during aging. The changes in arterial properties initiate a systolic pressure increase, which in turn initiates a cardiac remodelling process that further augments systolic pressure and mitigates the decrease in diastolic pressure.
Collapse
Affiliation(s)
- Elira Maksuti
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Clinical Physiology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Nico Westerhof
- Departments of Physiology and Pulmonary Diseases, ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - Berend E. Westerhof
- Edwards Lifesciences BMEYE, Critical Care Noninvasive, Amsterdam, The Netherlands
- Heart Failure Research Center, Laboratory for Clinical Cardiovascular Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Michael Broomé
- Department of Medical Engineering, School of Technology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
- ECMO Department, Karolinska University Hospital, Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nikos Stergiopulos
- Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Swiss Federal Institute of Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Old Myths, New Concerns: the Long-Term Effects of Ascending Aorta Replacement with Dacron Grafts. Not All That Glitters Is Gold. J Cardiovasc Transl Res 2016; 9:334-42. [PMID: 27245785 PMCID: PMC4990605 DOI: 10.1007/s12265-016-9699-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Synthetic grafts are widely used in cardiac and vascular surgery since the mid-1970s. Despite their general good performance, inability of mimicking the elastomechanical characteristics of the native arterial tissue, and the consequent lack of adequate compliance, leads to a cascade of hemodynamic and biological alterations deeply affecting cardiovascular homeostasis. Those concerns have been reconsidered in more contemporaneous surgical and experimental reports which also triggered some research efforts in the tissue engineering field towards the realization of biomimetic arterial surrogates. The present review focuses on the significance of the “compliance mismatch” phenomenon occurring after aortic root or ascending aorta replacement with prosthetic grafts and discusses the clinical reflexes of this state of tissue incompatibility, as the loss of the native elastomechanical properties of the aorta can translate into detrimental effects on the normal efficiency of the aortic root complex with impact in the long-term results of patients undergoing aortic replacement.
Collapse
|
46
|
Zamani P, Lilly SM, Segers P, Jacobs DR, Bluemke DA, Duprez DA, Chirinos JA. Pulsatile Load Components, Resistive Load and Incident Heart Failure: The Multi-Ethnic Study of Atherosclerosis (MESA). J Card Fail 2016; 22:988-995. [PMID: 27109621 DOI: 10.1016/j.cardfail.2016.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/05/2016] [Accepted: 04/18/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND Left ventricular (LV) afterload is composed of systemic vascular resistance (SVR) and components of pulsatile load, including total arterial compliance (TAC), and reflection magnitude (RM). RM, which affects the LV systolic loading sequence, has been shown to strongly predict HF. Effective arterial elastance (Ea) is a commonly used parameter initially proposed to be a lumped index of resistive and pulsatile afterload. We sought to assess how various LV afterload parameters predict heart failure (HF) risk and whether RM predicts HF independently from subclinical atherosclerosis. METHODS We studied 4345 MESA participants who underwent radial arterial tonometry and cardiac output (CO) measurements with the use of cardiac MRI. RM was computed as the ratio of the backward (Pb) to forward (Pf) waves. TAC was approximated as the ratio of stroke volume (SV) to central pulse pressure. SVR was computed as mean pressure/CO. Ea was computed as central end-systolic pressure/SV. RESULTS During 10.3 years of follow-up, 91 definite HF events occurred. SVR (P = .74), TAC (P = .81), and Ea (P = .81) were not predictive of HF risk. RM was associated with increased HF risk, even after adjustment for other parameters of arterial load, various confounders, and markers of subclinical atherosclerosis (standardized hazard ratio [HR] 1.49, 95% confidence interval [CI] 1.18-1.88; P = .001). Pb was also associated with an increased risk of HF after adjustment for Pf (standardized HR 1.43, 95% CI 1.17-1.75; P = .001). CONCLUSIONS RM is an important independent predictor of HF risk, whereas TAC, SVR, and Ea are not. Our findings support the importance of the systolic LV loading sequence on HF risk, independently from subclinical atherosclerosis.
Collapse
Affiliation(s)
- Payman Zamani
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Perelman School of Medicine. Philadelphia, Pennsylvania.
| | - Scott M Lilly
- Division of Cardiovascular Medicine, Ohio State University Heart and Vascular Center, Columbus, Ohio
| | - Patrick Segers
- Biofluid, Tissue, and Solid Mechanics for Medical Applications, Ibitech, iMinds Medical IT, Ghent University, Ghent, Belgium
| | - David R Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minnesota
| | - David A Bluemke
- National Institutes of Health, Bethesda, Maryland; Departments of Radiology and Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel A Duprez
- Division of Cardiology, School of Medicine, University of Minnesota. Minneapolis, Minnesota
| | - Julio A Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Perelman School of Medicine. Philadelphia, Pennsylvania
| |
Collapse
|
47
|
Townsend RR. Novel Uses of Office-Based Measures of Arterial Compliance. Methodist Debakey Cardiovasc J 2016; 11:219-22. [PMID: 27057290 DOI: 10.14797/mdcj-11-4-219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Office-based blood pressure monitoring has been the primary way of managing the cardiovascular risk associated with a diagnosis of hypertension. As research unfolds the nature in which the pulse waveform is generated, additional insights beyond standard measures of systolic and diastolic blood pressure have emerged to help reclassify the cardiovascular risk of patients or point out patterns that have, in longitudinal cohort studies, shown promise as predictors of outcomes such as heart failure. In this review, we focus on the pressure profile in the proximal aorta that can be obtained easily and noninvasively from the radial or brachial artery during a clinical office encounter and the potential value of these measures in outcomes such as left ventricular hypertrophy and heart failure.
Collapse
Affiliation(s)
- Raymond R Townsend
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Marwick TH, Gillebert TC, Aurigemma G, Chirinos J, Derumeaux G, Galderisi M, Gottdiener J, Haluska B, Ofili E, Segers P, Senior R, Tapp RJ, Zamorano JL. Recommendations on the Use of Echocardiography in Adult Hypertension: A Report from the European Association of Cardiovascular Imaging (EACVI) and the American Society of Echocardiography (ASE). J Am Soc Echocardiogr 2016; 28:727-54. [PMID: 26140936 DOI: 10.1016/j.echo.2015.05.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypertension remains a major contributor to the global burden of disease. The measurement of blood pressure continues to have pitfalls related to both physiological aspects and acute variation. As the left ventricle (LV) remains one of the main target organs of hypertension, and echocardiographic measures of structure and function carry prognostic information in this setting, the development of a consensus position on the use of echocardiography in this setting is important. Recent developments in the assessment of LV hypertrophy and LV systolic and diastolic function have prompted the preparation of this document. The focus of this work is on the cardiovascular responses to hypertension rather than the diagnosis of secondary hypertension. Sections address the pathophysiology of the cardiac and vascular responses to hypertension, measurement of LV mass, geometry, and function, as well as effects of treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Roxy Senior
- Biomedical Research Unit, Imperial College, London, UK; Royal Brompton Hospital, London, UK
| | | | - Jose L Zamorano
- University Hospital Ramón y Cajal, Carretera de Colmenar Km 9.100, Madrid 28034, Spain
| |
Collapse
|
49
|
Paz Y Mar HL, Hazen SL, Tracy RP, Strohl KP, Auckley D, Bena J, Wang L, Walia HK, Patel SR, Mehra R. Effect of Continuous Positive Airway Pressure on Cardiovascular Biomarkers: The Sleep Apnea Stress Randomized Controlled Trial. Chest 2016; 150:80-90. [PMID: 26997243 DOI: 10.1016/j.chest.2016.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although existing research highlights the relationship of OSA and cardiovascular disease, the effect of OSA treatment on cardiovascular biomarkers remains unclear. We evaluated the effect of OSA treatment on oxidative stress/inflammation measures. METHODS We conducted a parallel, randomized controlled trial in moderate to severe OSA (apnea-hypopnea index ≥ 15) patients to examine effects of 2-month CPAP vs sham-CPAP on the primary outcome of oxidative stress/inflammation (F2-isoprostanes: ng/mg) and myeloperoxidase: pmol/L) and secondary oxidative stress measures. Exploratory secondary analyses included vascular and systemic inflammation markers. Linear models adjusted for baseline values examined effect of CPAP on biomarker change (least squares means, 95% CI) including secondary stratified analyses examining CPAP adherence and degree of hypoxia. RESULTS Of 153 participants, 76 were randomized to CPAP and 77 to sham-CPAP. In an intent-to-treat analyses, no significant change was observed in the sham and CPAP groups respectively: F2-isoprostanes (-0.02 [-0.12 to 0.10] vs -0.08 [-0.18 to 0.03]) or myeloperoxidase (-3.33 [-17.02 to 10.37] vs -5.15 [-18.65 to 8.35]), nor other oxidative markers; findings that persisted in analyses stratified by adherence and hypoxia. Exploratory analyses revealed percentage reduction of soluble IL-6 receptor (ng/mL) levels (-0.04 [-0.08 to -0.01] vs 0.02 [-0.02 to 0.06], P = .019) and augmentation index (%) (-6.49 [-9.32 to -3.65] vs 0.44 [-2.22 to 3.10], P < .001) with CPAP compared with sham, respectively. CONCLUSIONS In moderate to severe OSA, 2-month CPAP vs sham did not reduce oxidative stress despite consideration of a broad range of measures, positive airway pressure adherence, and hypoxia burden. These findings suggest that nonoxidative stress pathways primarily modulate OSA-related cardiovascular consequences. TRIAL REGISTRATION ClinicalTrials.govNCT00607893.
Collapse
Affiliation(s)
- Hugo L Paz Y Mar
- Sleep Disorders Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Stanley L Hazen
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Russell P Tracy
- Departments of Biochemistry and Pathology, University of Vermont, Burlington, VT
| | - Kingman P Strohl
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH
| | - Dennis Auckley
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, MetroHealth Medical Center, Cleveland, OH
| | - James Bena
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Lu Wang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Harneet K Walia
- Sleep Disorders Center, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Sanjay R Patel
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital and Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Reena Mehra
- Sleep Disorders Center, Neurological Institute, Cleveland Clinic, Cleveland, OH; Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
50
|
Jain S, Londono FJ, Segers P, Gillebert TC, De Buyzere M, Chirinos JA. MRI Assessment of Diastolic and Systolic Intraventricular Pressure Gradients in Heart Failure. Curr Heart Fail Rep 2016; 13:37-46. [DOI: 10.1007/s11897-016-0281-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|