1
|
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023; 12:1780. [PMID: 37443814 PMCID: PMC10341218 DOI: 10.3390/cells12131780] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.
Collapse
Affiliation(s)
- Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Julia Nau
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jeffry J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Leibniz Institute for Analytical Sciences, 97078 Würzburg, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| |
Collapse
|
2
|
Winicki NM, Nanavati AP, Morrell CH, Moen JM, Axsom JE, Krawczyk M, Petrashevskaya NN, Beyman MG, Ramirez C, Alfaras I, Mitchell SJ, Juhaszova M, Riordon DR, Wang M, Zhang J, Cerami A, Brines M, Sollott SJ, de Cabo R, Lakatta EG. A small erythropoietin derived non-hematopoietic peptide reduces cardiac inflammation, attenuates age associated declines in heart function and prolongs healthspan. Front Cardiovasc Med 2023; 9:1096887. [PMID: 36741836 PMCID: PMC9889362 DOI: 10.3389/fcvm.2022.1096887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background Aging is associated with increased levels of reactive oxygen species and inflammation that disrupt proteostasis and mitochondrial function and leads to organism-wide frailty later in life. ARA290 (cibinetide), an 11-aa non-hematopoietic peptide sequence within the cardioprotective domain of erythropoietin, mediates tissue protection by reducing inflammation and fibrosis. Age-associated cardiac inflammation is linked to structural and functional changes in the heart, including mitochondrial dysfunction, impaired proteostasis, hypertrophic cardiac remodeling, and contractile dysfunction. Can ARA290 ameliorate these age-associated cardiac changes and the severity of frailty in advanced age? Methods We conducted an integrated longitudinal (n = 48) and cross-sectional (n = 144) 15 months randomized controlled trial in which 18-month-old Fischer 344 x Brown Norway rats were randomly assigned to either receive chronic ARA290 treatment or saline. Serial echocardiography, tail blood pressure and body weight were evaluated repeatedly at 4-month intervals. A frailty index was calculated at the final timepoint (33 months of age). Tissues were harvested at 4-month intervals to define inflammatory markers and left ventricular tissue remodeling. Mitochondrial and myocardial cell health was assessed in isolated left ventricular myocytes. Kaplan-Meier survival curves were established. Mixed ANOVA tests and linear mixed regression analysis were employed to determine the effects of age, treatment, and age-treatment interactions. Results Chronic ARA290 treatment mitigated age-related increases in the cardiac non-myocyte to myocyte ratio, infiltrating leukocytes and monocytes, pro-inflammatory cytokines, total NF-κB, and p-NF-κB. Additionally, ARA290 treatment enhanced cardiomyocyte autophagy flux and reduced cellular accumulation of lipofuscin. The cardiomyocyte mitochondrial permeability transition pore response to oxidant stress was desensitized following chronic ARA290 treatment. Concurrently, ARA290 significantly blunted the age-associated elevation in blood pressure and preserved the LV ejection fraction. Finally, ARA290 preserved body weight and significantly reduced other markers of organism-wide frailty at the end of life. Conclusion Administration of ARA290 reduces cell and tissue inflammation, mitigates structural and functional changes within the cardiovascular system leading to amelioration of frailty and preserved healthspan.
Collapse
Affiliation(s)
- Nolan M. Winicki
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Alay P. Nanavati
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Christopher H. Morrell
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Jack M. Moen
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Jessie E. Axsom
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Melissa Krawczyk
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Natalia N. Petrashevskaya
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Max G. Beyman
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Christopher Ramirez
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Irene Alfaras
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Sarah J. Mitchell
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Magdalena Juhaszova
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Daniel R. Riordon
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Jing Zhang
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Anthony Cerami
- Araim Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - Michael Brines
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States
| | - Steven J. Sollott
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Rafael de Cabo
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States
| | - Edward G. Lakatta
- Laboratory of Experimental Gerontology, Intramural Research Program, National Institute on Aging, Baltimore, MD, United States,*Correspondence: Edward G. Lakatta,
| |
Collapse
|
3
|
Ngo V, Fleischmann BK, Jung M, Hein L, Lother A. Histone Deacetylase 6 Inhibitor JS28 Prevents Pathological Gene Expression in Cardiac Myocytes. J Am Heart Assoc 2022; 11:e025857. [PMID: 35699165 PMCID: PMC9238633 DOI: 10.1161/jaha.122.025857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Background Epigenetic modulators have been proposed as promising new drug targets to treat adverse remodeling in heart failure. Here, we evaluated the potential of 4 epigenetic drugs, including the recently developed histone deacetylase 6 (HDAC6) inhibitor JS28, to prevent endothelin-1 induced pathological gene expression in cardiac myocytes and analyzed the chromatin binding profile of the respective inhibitor targets. Methods and Results Cardiac myocytes were differentiated and puromycin-selected from mouse embryonic stem cells and treated with endothelin-1 to induce pathological gene expression (938 differentially expressed genes, q<0.05). Dysregulation of gene expression was at least in part prevented by epigenetic inhibitors, including the pan-BRD (bromodomain-containing protein) inhibitor bromosporine (290/938 genes), the BET (bromodomain and extraterminal) inhibitor JQ1 (288/938), the broad-spectrum HDAC inhibitor suberoylanilide hydroxamic acid (227/938), and the HDAC6 inhibitor JS28 (210/938). Although the 4 compounds were similarly effective toward pathological gene expression, JS28 demonstrated the least adverse effects on physiological gene expression. Genome-wide chromatin binding profiles revealed that HDAC6 binding sites were preferentially associated with promoters of genes involved in RNA processing. In contrast, BRD4 binding was associated with genes involved in core cardiac myocyte functions, for example, myocyte contractility, and showed enrichment at enhancers and intronic regions. These distinct chromatin binding profiles of HDAC6 and BRD4 might explain the different effects of their inhibitors on pathological versus physiological gene expression. Conclusions In summary, we demonstrated, that the HDAC6 inhibitor JS28 effectively prevented the adverse effects of endothelin-1 on gene expression with minor impact on physiological gene expression in cardiac myocytes. Selective HDAC6 inhibition by JS28 appears to be a promising strategy for future evaluation in vivo and potential translation into clinical application.
Collapse
Affiliation(s)
- Vivien Ngo
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of FreiburgGermany
| | - Bernd K. Fleischmann
- Institute of Physiology I, Life & Brain Center, Medical FacultyUniversity of BonnGermany
| | - Manfred Jung
- Institute of Pharmaceutical SciencesUniversity of FreiburgGermany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of FreiburgGermany
- BIOSS Centre for Biological Signaling StudiesUniversity of FreiburgGermany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of MedicineUniversity of FreiburgGermany
- Interdisciplinary Medical Intensive Care (IMIT), Medical Center – University of Freiburg, Faculty of MedicineUniversity of FreiburgGermany
| |
Collapse
|
4
|
Nomura S, Komuro I. Precision medicine for heart failure based on molecular mechanisms: The 2019 ISHR Research Achievement Award Lecture. J Mol Cell Cardiol 2021; 152:29-39. [PMID: 33275937 DOI: 10.1016/j.yjmcc.2020.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/02/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Heart failure is a leading cause of death, and the number of patients with heart failure continues to increase worldwide. To realize precision medicine for heart failure, its underlying molecular mechanisms must be elucidated. In this review summarizing the "The Research Achievement Award Lecture" of the 2019 XXIII ISHR World Congress held in Beijing, China, we would like to introduce our approaches for investigating the molecular mechanisms of cardiac hypertrophy, development, and failure, as well as discuss future perspectives.
Collapse
Affiliation(s)
- Seitaro Nomura
- Department of Cardiovascular Medicine, The University of Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, The University of Tokyo, Japan.
| |
Collapse
|
5
|
Dong W, Li R, Yang H, Lu Y, Zhou L, Sun L, Wang D, Duan J. Mesenchymal-endothelial transition-derived cells as a potential new regulatory target for cardiac hypertrophy. Sci Rep 2020; 10:6652. [PMID: 32313043 PMCID: PMC7170918 DOI: 10.1038/s41598-020-63671-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/03/2020] [Indexed: 01/27/2023] Open
Abstract
The role of Mesenchymal-endothelial transition (MEndoT) in cardiac hypertrophy is unclear. To determine the difference between MEndoT-derived and coronary endothelial cells is essential for understanding the revascularizing strategy in cardiac repair. Using lineage tracing we demonstrated that MEndoT-derived cells exhibit highly heterogeneous which were characterized with highly expression of endothelial markers such as vascular endothelial cadherin(VECAD) and occludin but low expression of Tek receptor tyrosine kinase(Tek), isolectin B4, endothelial nitric oxide synthase(eNOS), von Willebrand factor(vWF), and CD31 after cardiac hypertrophy. RNA-sequencing showed altered expression of fibroblast lineage commitment genes in fibroblasts undergoing MEndoT. Compared with fibroblasts, the expression of p53 and most endothelial lineage commitment genes were upregulated in MEndoT-derived cells; however, the further analysis indicated that MEndoT-derived cells may represent an endothelial-like cell sub-population. Loss and gain function study demonstrated that MEndoT-derived cells are substantial sources of neovascularization, which can be manipulated to attenuate cardiac hypertrophy and preserve cardiac function by improving the expression of endothelial markers in MEndoT-derived cells. Moreover, fibroblasts undergoing MEndoT showed significantly upregulated anti-hypertrophic factors and downregulated pro-hypertrophic factors. Therefore MEndoT-derived cells are an endothelial-like cell population that can be regulated to treat cardiac hypertrophy by improving neovascularization and altering the paracrine effect of fibroblasts.
Collapse
Affiliation(s)
- Wenyan Dong
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Ruiqi Li
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Haili Yang
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Yan Lu
- Department of Pathology, University of Washington, Seattle, 98109, WA, USA
| | - Longhai Zhou
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Lei Sun
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China
| | - Dianliang Wang
- Stem Cell and Tissue Engineering Research Laboratory, Department of Pharmacy, PLA Rocket Force Characteristic Medical Center, Beijing, 100088, China.
| | - Jinzhu Duan
- Heart Center and Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Taura D, Nakao K, Nakagawa Y, Kinoshita H, Sone M, Nakao K. C-type natriuretic peptide (CNP)/guanylate cyclase B (GC-B) system and endothelin-1(ET-1)/ET receptor A and B system in human vasculature. Can J Physiol Pharmacol 2020; 98:611-617. [PMID: 32268070 DOI: 10.1139/cjpp-2019-0686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To assess the physiological and clinical implications of the C-type natriuretic peptide (CNP)/guanylyl cyclase B (GC-B) system in the human vasculature, we have examined gene expressions of CNP and its receptor, GC-B, in human vascular endothelial cells (ECs) and smooth muscle cells (SMCs) and have also compared the endothelin-1(ET-1)/endothelin receptor-A (ETR-A) and endothelin receptor-B (ETR-B) system in human aortic ECs (HAECs) and vascular SMCs (HSMCs) in vitro. We also examined these gene expressions in human embryonic stem (ES)/induced pluripotent stem cell (iPS)-derived ECs and mural cells (MCs). A little but significant amount of mRNA encoding CNP was detected in both human ES-derived ECs and HAECs. A substantial amount of GC-B was expressed in both ECs (iPS-derived ECs and HAECs) and SMCs (iPS-derived MCs and HSMCs). ET-1 was expressed solely in ECs. ETR-A was expressed in SMCs, while ETR-B was expressed in ECs. These results indicate the existence of a vascular CNP/GC-B system in the human vascular wall, indicating the evidence for clinical implication of the CNP/GC-B system in concert with the ET-1/ETR-A and ETR-B system in the human vasculature.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhiro Nakao
- National Cardiovascular, Cerebrovascular Research Center Hospital, Suita, Japan
| | - Yasuaki Nakagawa
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Kinoshita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakatsu Sone
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
7
|
Mosqueira D, Mannhardt I, Bhagwan JR, Lis-Slimak K, Katili P, Scott E, Hassan M, Prondzynski M, Harmer SC, Tinker A, Smith JGW, Carrier L, Williams PM, Gaffney D, Eschenhagen T, Hansen A, Denning C. CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy. Eur Heart J 2019; 39:3879-3892. [PMID: 29741611 PMCID: PMC6234851 DOI: 10.1093/eurheartj/ehy249] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/11/2018] [Indexed: 12/26/2022] Open
Abstract
Aims Sarcomeric gene mutations frequently underlie hypertrophic cardiomyopathy (HCM), a prevalent and complex condition leading to left ventricle thickening and heart dysfunction. We evaluated isogenic genome-edited human pluripotent stem cell-cardiomyocytes (hPSC-CM) for their validity to model, and add clarity to, HCM. Methods and results CRISPR/Cas9 editing produced 11 variants of the HCM-causing mutation c.C9123T-MYH7 [(p.R453C-β-myosin heavy chain (MHC)] in 3 independent hPSC lines. Isogenic sets were differentiated to hPSC-CMs for high-throughput, non-subjective molecular and functional assessment using 12 approaches in 2D monolayers and/or 3D engineered heart tissues. Although immature, edited hPSC-CMs exhibited the main hallmarks of HCM (hypertrophy, multi-nucleation, hypertrophic marker expression, sarcomeric disarray). Functional evaluation supported the energy depletion model due to higher metabolic respiration activity, accompanied by abnormalities in calcium handling, arrhythmias, and contraction force. Partial phenotypic rescue was achieved with ranolazine but not omecamtiv mecarbil, while RNAseq highlighted potentially novel molecular targets. Conclusion Our holistic and comprehensive approach showed that energy depletion affected core cardiomyocyte functionality. The engineered R453C-βMHC-mutation triggered compensatory responses in hPSC-CMs, causing increased ATP production and αMHC to energy-efficient βMHC switching. We showed that pharmacological rescue of arrhythmias was possible, while MHY7: MYH6 and mutant: wild-type MYH7 ratios may be diagnostic, and previously undescribed lncRNAs and gene modifiers are suggestive of new mechanisms. ![]()
Collapse
Affiliation(s)
- Diogo Mosqueira
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Jamie R Bhagwan
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Katarzyna Lis-Slimak
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Puspita Katili
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Elizabeth Scott
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Mustafa Hassan
- The Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - Maksymilian Prondzynski
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Stephen C Harmer
- The Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - Andrew Tinker
- The Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - James G W Smith
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| | - Lucie Carrier
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Philip M Williams
- Molecular Therapeutics and Formulation. School of Pharmacy, University of Nottingham, UK
| | - Daniel Gaffney
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Chris Denning
- Department of Stem Cell Biology, Centre of Biomolecular Sciences, University of Nottingham, UK
| |
Collapse
|
8
|
Leifheit-Nestler M, Kirchhoff F, Nespor J, Richter B, Soetje B, Klintschar M, Heineke J, Haffner D. Fibroblast growth factor 23 is induced by an activated renin-angiotensin-aldosterone system in cardiac myocytes and promotes the pro-fibrotic crosstalk between cardiac myocytes and fibroblasts. Nephrol Dial Transplant 2019; 33:1722-1734. [PMID: 29425341 DOI: 10.1093/ndt/gfy006] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
Background Fibroblast growth factor 23 (FGF23) is discussed as a new biomarker of cardiac hypertrophy and mortality in patients with and without chronic kidney disease (CKD). We previously demonstrated that FGF23 is expressed by cardiac myocytes, enhanced in CKD and induces cardiac hypertrophy via activation of FGF receptor 4 independent of its co-receptor klotho. The impact of FGF23 on cardiac fibrosis is largely unknown. Methods By conducting a retrospective case-control study including myocardial autopsy samples from 24 patients with end-stage CKD and in vitro studies in cardiac fibroblasts and myocytes, we investigated the pro-fibrotic properties of FGF23. Results The accumulation of fibrillar collagens I and III was increased in myocardial tissue of CKD patients and correlated with dialysis vintage, klotho deficiency and enhanced cardiac angiotensinogen (AGT) expression. Using human fibrosis RT2 Profiler PCR array analysis, transforming growth factor (TGF)-β and its related TGF-β receptor/Smad complexes, extracellular matrix remodeling enzymes and pro-fibrotic growth factors were upregulated in myocardial tissue of CKD patients. FGF23 stimulated cell proliferation, migration, pro-fibrotic TGF-β receptor/Smad complexes and collagen synthesis in cultured cardiac fibroblasts. In isolated cardiac myocytes, FGF23 enhanced collagen remodeling, expression of pro-inflammatory genes and pro-survival pathways and induced pro-hypertrophic genes. FGF23 stimulated AGT expression in cardiac myocytes and angiotensin II and aldosterone, as components of the renin-angiotensin-aldosterone system (RAAS), induced FGF23 in cardiac myocytes. Conclusions Our data demonstrate that activated RAAS induces FGF23 expression in cardiac myocytes and thereby stimulates a pro-fibrotic crosstalk between cardiac myocytes and fibroblasts, which may contribute to myocardial fibrosis in CKD.
Collapse
Affiliation(s)
- Maren Leifheit-Nestler
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Felix Kirchhoff
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Julia Nespor
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Beatrice Richter
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany.,Department of Medicine and Division of Nephrology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Birga Soetje
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| | - Michael Klintschar
- Institute for Forensic Medicine, Hannover Medical School, Hannover, Germany
| | - Joerg Heineke
- Department of Cardiology and Angiology, Rebirth-Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Dieter Haffner
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Pediatric Research Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Abstract
GPCRs (G-protein [guanine nucleotide-binding protein]-coupled receptors) play a central physiological role in the regulation of cardiac function in both health and disease and thus represent one of the largest class of surface receptors targeted by drugs. Several antagonists of GPCRs, such as βARs (β-adrenergic receptors) and Ang II (angiotensin II) receptors, are now considered standard of therapy for a wide range of cardiovascular disease, such as hypertension, coronary artery disease, and heart failure. Although the mechanism of action for GPCRs was thought to be largely worked out in the 80s and 90s, recent discoveries have brought to the fore new and previously unappreciated mechanisms for GPCR activation and subsequent downstream signaling. In this review, we focus on GPCRs most relevant to the cardiovascular system and discuss traditional components of GPCR signaling and highlight evolving concepts in the field, such as ligand bias, β-arrestin-mediated signaling, and conformational heterogeneity.
Collapse
Affiliation(s)
- Jialu Wang
- From the Department of Medicine (J.W., C.G., H.A.R.)
| | | | - Howard A Rockman
- From the Department of Medicine (J.W., C.G., H.A.R.).,Department of Cell Biology (H.A.R.).,Department of Molecular Genetics and Microbiology (H.A.R.), Duke University Medical Center, Durham, NC
| |
Collapse
|
10
|
Mayourian J, Ceholski DK, Gonzalez DM, Cashman TJ, Sahoo S, Hajjar RJ, Costa KD. Physiologic, Pathologic, and Therapeutic Paracrine Modulation of Cardiac Excitation-Contraction Coupling. Circ Res 2019; 122:167-183. [PMID: 29301848 DOI: 10.1161/circresaha.117.311589] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cardiac excitation-contraction coupling (ECC) is the orchestrated process of initial myocyte electrical excitation, which leads to calcium entry, intracellular trafficking, and subsequent sarcomere shortening and myofibrillar contraction. Neurohumoral β-adrenergic signaling is a well-established mediator of ECC; other signaling mechanisms, such as paracrine signaling, have also demonstrated significant impact on ECC but are less well understood. For example, resident heart endothelial cells are well-known physiological paracrine modulators of cardiac myocyte ECC mainly via NO and endothelin-1. Moreover, recent studies have demonstrated other resident noncardiomyocyte heart cells (eg, physiological fibroblasts and pathological myofibroblasts), and even experimental cardiotherapeutic cells (eg, mesenchymal stem cells) are also capable of altering cardiomyocyte ECC through paracrine mechanisms. In this review, we first focus on the paracrine-mediated effects of resident and therapeutic noncardiomyocytes on cardiomyocyte hypertrophy, electrophysiology, and calcium handling, each of which can modulate ECC, and then discuss the current knowledge about key paracrine factors and their underlying mechanisms of action. Next, we provide a case example demonstrating the promise of tissue-engineering approaches to study paracrine effects on tissue-level contractility. More specifically, we present new functional and molecular data on the effects of human adult cardiac fibroblast conditioned media on human engineered cardiac tissue contractility and ion channel gene expression that generally agrees with previous murine studies but also suggests possible species-specific differences. By contrast, paracrine secretions by human dermal fibroblasts had no discernible effect on human engineered cardiac tissue contractile function and gene expression. Finally, we discuss systems biology approaches to help identify key stem cell paracrine mediators of ECC and their associated mechanistic pathways. Such integration of tissue-engineering and systems biology methods shows promise to reveal novel insights into paracrine mediators of ECC and their underlying mechanisms of action, ultimately leading to improved cell-based therapies for patients with heart disease.
Collapse
Affiliation(s)
- Joshua Mayourian
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Delaine K Ceholski
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - David M Gonzalez
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Timothy J Cashman
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Susmita Sahoo
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Roger J Hajjar
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kevin D Costa
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
11
|
Tsuruda T, Kato J, Kuwasako K, Kitamura K. Adrenomedullin: Continuing to explore cardioprotection. Peptides 2019; 111:47-54. [PMID: 29577955 DOI: 10.1016/j.peptides.2018.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 10/17/2022]
Abstract
Adrenomedullin (AM), a peptide isolated from an extract of human pheochromocytoma, comprises 52 amino acids with an intramolecular disulfide bond and amidation at the carboxy-terminus. AM is present in various tissues and organs in rodents and humans, including the heart. The peptide concentration increases with cardiac hypertrophy, acute myocardial infarction, and overt heart failure in the plasma and the myocardium. The principal function of AM in the cardiovascular system is the regulation of the vascular tone by vasodilation and natriuresis via cyclic adenosine monophosphate-dependent or -independent mechanism. In addition, AM may possess unique properties that inhibit aldosterone secretion, oxidative stress, apoptosis, and stimulation of angiogenesis, resulting in the protection of the structure and function of the heart. The AM receptor comprises a complex between calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein (RAMP) 2 or 3, and the AM-CLR/RAMP2 system is essential for heart development during embryogenesis. Small-scale clinical trials have proven the efficacy and safety of recombinant AM peptide therapy for heart failure. Gene delivery and a modified AM peptide that prolongs the half-life of the native peptide could be an innovative method to improve the efficacy and benefit of AM in clinical settings. In this review, we focus on the pathophysiological roles of AM and its receptor system in the heart and describe the advances in AM and proAM-derived peptides as diagnostic biomarkers as well as the therapeutic application of AM and modified AM for cardioprotection.
Collapse
Affiliation(s)
- Toshihiro Tsuruda
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan.
| | - Johji Kato
- Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, Japan
| | - Kenji Kuwasako
- Frontier Science Research Center, Faculty of Medicine, University of Miyazaki, Japan
| | - Kazuo Kitamura
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| |
Collapse
|
12
|
Ahmad S, Sun X, Lin M, Varagic J, Zapata-Sudo G, Ferrario CM, Groban L, Wang H. Blunting of estrogen modulation of cardiac cellular chymase/RAS activity and function in SHR. J Cell Physiol 2017; 233:3330-3342. [PMID: 28888034 DOI: 10.1002/jcp.26179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Abstract
The relatively low efficacy of ACE-inhibitors in the treatment of heart failure in women after estrogen loss may be due to their inability to reach the intracellular sites at which angiotensin (Ang) II is generated and/or the existence of cell-specific mechanisms in which ACE is not the essential processing pathway for Ang II formation. We compared the metabolic pathway for Ang II formation in freshly isolated myocytes (CMs) and non-myocytes (NCMs) in cardiac membranes extracted from hearts of gonadal-intact and ovariectomized (OVX) adult WKY and SHR rats. Plasma Ang II levels were higher in WKY vs. SHR (strain effect: WKY: 62 ± 6 pg/ml vs. SHR: 42 ± 9 pg/ml; p < 0.01), independent of OVX. The enzymatic activities of chymase, ACE, and ACE2 were higher in NCMs versus CMs, irrespective of whether assays were performed in cardiac membranes from WKY or SHR or in the presence or absence of OVX. E2 depletion increased chymase activity, but not ACE activity, in both CMs and NCMs. Moreover, cardiac myocyte chymase activity associated with diastolic function in WKYs and cardiac structure in SHRs while no relevant functional and structural relationships between the classic enzymatic pathway of Ang II formation by ACE or the counter-regulatory Ang-(1-7) forming path from Ang II via ACE2 were apparent. The significance of these novel findings is that targeted cell-specific chymase rather than ACE inhibition may have a greater benefit in the management of HF in women after menopause.
Collapse
Affiliation(s)
- Sarfaraz Ahmad
- Departments of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xuming Sun
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Marina Lin
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jasmina Varagic
- Departments of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Gisele Zapata-Sudo
- Division of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos M Ferrario
- Departments of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Leanne Groban
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Hao Wang
- Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
13
|
Abstract
Myocardial injury, mechanical stress, neurohormonal activation, inflammation, and/or aging all lead to cardiac remodeling, which is responsible for cardiac dysfunction and arrhythmogenesis. Of the key histological components of cardiac remodeling, fibrosis either in the form of interstitial, patchy, or dense scars, constitutes a key histological substrate of arrhythmias. Here we discuss current research findings focusing on the role of fibrosis, in arrhythmogenesis. Numerous studies have convincingly shown that patchy or interstitial fibrosis interferes with myocardial electrophysiology by slowing down action potential propagation, initiating reentry, promoting after-depolarizations, and increasing ectopic automaticity. Meanwhile, there has been increasing appreciation of direct involvement of myofibroblasts, the activated form of fibroblasts, in arrhythmogenesis. Myofibroblasts undergo phenotypic changes with expression of gap-junctions and ion channels thereby forming direct electrical coupling with cardiomyocytes, which potentially results in profound disturbances of electrophysiology. There is strong evidence that systemic and regional inflammatory processes contribute to fibrogenesis (i.e., structural remodeling) and dysfunction of ion channels and Ca2+ homeostasis (i.e., electrical remodeling). Recognizing the pivotal role of fibrosis in the arrhythmogenesis has promoted clinical research on characterizing fibrosis by means of cardiac imaging or fibrosis biomarkers for clinical stratification of patients at higher risk of lethal arrhythmia, as well as preclinical research on the development of antifibrotic therapies. At the end of this review, we discuss remaining key questions in this area and propose new research approaches. © 2017 American Physiological Society. Compr Physiol 7:1009-1049, 2017.
Collapse
Affiliation(s)
- My-Nhan Nguyen
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Xiao-Ming Gao
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne, Australia.,Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
14
|
De Mello WC, Gerena Y. Measurement of Cardiac Angiotensin II by Immunoassays, HPLC-Chip/Mass Spectrometry, and Functional Assays. Methods Mol Biol 2017; 1527:127-137. [DOI: 10.1007/978-1-4939-6625-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
15
|
Non-linear Equation using Plasma Brain Natriuretic Peptide Levels to Predict Cardiovascular Outcomes in Patients with Heart Failure. Sci Rep 2016; 6:37073. [PMID: 27845390 PMCID: PMC5109227 DOI: 10.1038/srep37073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/24/2016] [Indexed: 11/09/2022] Open
Abstract
Brain natriuretic peptide (BNP) is the most effective predictor of outcomes in chronic heart failure (CHF). This study sought to determine the qualitative relationship between the BNP levels at discharge and on the day of cardiovascular events in CHF patients. We devised a mathematical probabilistic model between the BNP levels at discharge (y) and on the day (t) of cardiovascular events after discharge for 113 CHF patients (Protocol I). We then prospectively evaluated this model on another set of 60 CHF patients who were readmitted (Protocol II). P(t|y) was the probability of cardiovascular events occurring after >t, the probability on t was given as p(t|y) = −dP(t|y)/dt, and p(t|y) = pP(t|y) = αyβP(t|y), along with p = αyβ (α and β were constant); the solution was p(t|y) = αyβ exp(−αyβt). We fitted this equation to the data set of Protocol I using the maximum likelihood principle, and we obtained the model p(t|y) = 0.000485y0.24788 exp(−0.000485y0.24788t). The cardiovascular event-free rate was computed as P(t) = 1/60Σi=1,…,60 exp(−0.000485yi0.24788t), based on this model and the BNP levels yi in a data set of Protocol II. We confirmed no difference between this model-based result and the actual event-free rate. In conclusion, the BNP levels showed a non-linear relationship with the day of occurrence of cardiovascular events in CHF patients.
Collapse
|
16
|
Use of serum fibroblast growth factor 23 vs. plasma B-type natriuretic peptide levels in assessing the pathophysiology of patients with heart failure. Hypertens Res 2016; 40:181-188. [PMID: 27682653 DOI: 10.1038/hr.2016.130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022]
Abstract
Recently, fibroblast growth factor 23 (FGF23), a phosphate-regulating hormone, has been linked to the pathophysiology of heart failure (HF), thus encouraging us to examine which hemodynamic abnormalities of HF are linked to either serum FGF23 or plasma B-type natriuretic peptide (BNP) levels. We measured both the serum FGF23 and plasma BNP levels in 154 consecutive prospectively enrolled hospitalized HF patients, with an estimated glomerular filtration rate >40 ml min-1 1.73 m-2, who underwent heart catheterizations and an echocardiogram. The serum FGF23 levels correlated with the diameter of the inferior vena cava and its respiratory changes, whereas the plasma BNP levels did not. Both the plasma BNP and serum FGF23 levels were moderately correlated with the mean pulmonary artery (PA) pressure and pulmonary capillary wedge (PCW) pressure. Interestingly, in patients with an above-median right-atrial (RA) pressure (4 mm Hg), FGF23 levels were correlated with both PA and PCW pressures, but the levels were not correlated in patients with a below-median RA pressure. In contrast, the plasma BNP levels were correlated with both PA and PCW pressures. Finally, serum FGF23 levels, compared with the plasma BNP levels, were more strongly associated with the clinical outcomes in patients with above-median RA pressure. These findings suggested that serum FGF23 levels are predominantly correlated with clinical outcomes, may serve as a biomarker for HF in patients with higher RA pressure, may provide beneficial information for patients with right-sided HF and may represent different clinical information than that provided only by plasma BNP levels.
Collapse
|
17
|
Zhu LA, Fang NY, Gao PJ, Jin X, Wang HY, Liu Z. Differential ERK1/2 Signaling and Hypertrophic Response to Endothelin-1 in Cardiomyocytes from SHR and Wistar-Kyoto Rats: A Potential Target for Combination Therapy of Hypertension. Curr Vasc Pharmacol 2016; 13:467-74. [PMID: 25360842 PMCID: PMC4997939 DOI: 10.2174/1570161112666141014150007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/29/2014] [Accepted: 05/21/2014] [Indexed: 11/26/2022]
Abstract
Extracellular signal regulated kinase½ (ERK1/2) signaling is critical to endothelin-1 (ET-1)-induced cardiomyocyte hypertrophy. This study was to investigate ERK1/2 signaling and hypertrophic response to ET-1 stimulation in cardiomyocytes (CMs) from spontaneous hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Primary neonatal SHR and WKY CMs were exposed to ET-1 for up to 24 hrs. Minimal basal ERK1/2 phosphorylation was present in WKY CMs, while a significant baseline ERK1/2 phosphorylation was observed in SHR CMs. ET-1 induced a time- and dose-dependent increase in ERK1/2 phosphorylation in both SHR and WKY CMs. However, ET-1-induced ERK1/2 activation occurred much earlier with significantly higher peak phosphorylation level, and stayed elevated for longer duration in SHR CMs than that in WKY CMs. ET-1-induced hypertrophic response was more prominent in SHR CMs than that in WKY CMs as reflected by increased cell surface area, intracellular actin density, and protein synthesis. Pre-treatment with ERK1/2 phosphorylation inhibitor PD98059 completely prevented ET-1-induced ERK1/2 phosphorylation and increases in cell surface area and protein synthesis in SHR and WKY CMs. The specific PI3 kinase inhibitor LY294002 blocked ET-1-induced Akt and ERK1/2 phosphorylation, and protein synthesis in CMs. These data indicated that ERK1/2 signaling was differentially enhanced in CMs, and was associated with increased cardiac hypertrophic response to ET-1 in SHR. ET-1-induced ERK1/2 activation and cardiac hypertrophy appeared to be mediated via PI3 kinase/Akt signaling in SHR and WKY. The differential ERK1/2 activation in SHR CMs by ET-1 might represent a potential target for combination therapy of hypertension.
Collapse
Affiliation(s)
| | - Ning-Yuan Fang
- Department of Geriatrics, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 145 Shan-Dong Middle Road, Shanghai 200001, China.
| | | | | | | | - Zhenguo Liu
- Davis Heart & Lung Research Institute, the Ohio State University Medical Center, DHLRI Suite 200; 473 West 12th Ave, Columbus, OH 43210, USA.
| |
Collapse
|
18
|
Zambaiti E, Bussani R, Calcaterra V, Zandonà L, Silvestri F, Peiró JL, Marotta M, Andreatta E, Pelizzo G. Myocardial effects of fetal endoscopic tracheal occlusion in lambs with CDH. Prenat Diagn 2016; 36:362-7. [PMID: 26850832 DOI: 10.1002/pd.4789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Fetal endoscopic tracheal occlusion in congenital diaphragmatic hernia (CDH) may reduce pulmonary hypertension and ameliorate postnatal cardiac output. The effects of sustained early (ETO) and late (LTO) tracheal occlusion on left ventricular (LV) cells in the lamb model have not been described. MATERIALS AND METHODS CDH was created in lambs at 70 days' gestation (term = 145 days). ETO (85 days) or LTO (105 days) was sustained till term. After cesarean section (140 days) fetuses were euthanized and hearts harvested. LV myocardial cells were studied by histological and immunofluorescence (TGF-beta 1, endothelin-1) assays in CDH, ETO, LTO, and the control group (two subjects per group). Small intramyocardial arteries were evaluated by traditional histology. RESULTS LV myocardial histology in CDH and LTO was similar. ETO-induced LV myocardial cell enlargement and increased endothelin-1 and TGF-beta 1 staining; a weaker immunofluorescence signal was observed in LTO compared with ETO. Myocardial vascular wall thickness was greater in CDH than in controls. ETO was associated with a vascular wall thickness within the range of controls. CONCLUSION With only two fetuses in each group, only an explorative evaluation was possible. The time point at which TO is performed seems to have an effect on cardiac morphology. Functional studies as well as confirmation in clinical samples are mandatory.
Collapse
Affiliation(s)
- Elisa Zambaiti
- Pediatric Surgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Rossana Bussani
- Institute of Pathologic Anatomy, University of Trieste, Trieste, Italy
| | - Valeria Calcaterra
- Pediatric Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy.,Department of Maternal and Children's Health, Pediatric Unit, Fondazione IRCCS Policlinico San Matteo Pavia, Pavia, Italy
| | - Lorenzo Zandonà
- Institute of Pathologic Anatomy, University of Trieste, Trieste, Italy
| | - Furio Silvestri
- Institute of Pathologic Anatomy, University of Trieste, Trieste, Italy
| | - José Luis Peiró
- Cinicinnati Fetal Center, The Center for Fetal, Cellular, and Molecular Therapy, Pediatric Surgery Division, CCHMC, Cincinnati, OH, USA.,Fetal Surgery Program, Congenital Malformations Research Group, Research Institute of Hospital Universitari Vall d'Hebron, Edifici Infantil, Barcelona, Spain
| | - Mario Marotta
- Cinicinnati Fetal Center, The Center for Fetal, Cellular, and Molecular Therapy, Pediatric Surgery Division, CCHMC, Cincinnati, OH, USA.,Fetal Surgery Program, Congenital Malformations Research Group, Research Institute of Hospital Universitari Vall d'Hebron, Edifici Infantil, Barcelona, Spain
| | - Erika Andreatta
- Pediatric Surgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Gloria Pelizzo
- Pediatric Surgery Unit, Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
19
|
Nishikimi T, Nakagawa Y, Minamino N, Ikeda M, Tabei K, Fujishima A, Takayama K, Akimoto K, Yamada C, Nakao K, Minami T, Kuwabara Y, Kinoshita H, Tsutamoto T, Ishimitsu T, Kangawa K, Kuwahara K, Nakao K. Pro-B-type natriuretic peptide is cleaved intracellularly: impact of distance between O-glycosylation and cleavage sites. Am J Physiol Regul Integr Comp Physiol 2015; 309:R639-49. [PMID: 26136529 DOI: 10.1152/ajpregu.00074.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/23/2015] [Indexed: 11/22/2022]
Abstract
We investigated the molecular mechanism underlying the processing of pro-B-type natriuretic peptide (proBNP). Rat neonatal atrial and ventricular myocytes were cultured separately. We examined the molecular forms of secreted and intracellular BNP in atrial and ventricular myocytes; levels of corin and furin mRNA in atrial and ventricular myocytes; the effect their knockdown on proBNP processing; plasma molecular forms of BNP from rats and humans with and without heart failure; and the impact of the distance between the glycosylation and cleavage sites in wild-type and mutant human proBNP, expressed in rat myocytes transfected with lentiviral vectors. BNP was the major molecular form secreted by atrial and ventricular myocytes. Transfection of furin siRNA reduced proBNP processing in both atrial and ventricular myocytes; however, transfection of corin siRNA did not reduce it. BNP was the major molecular form in rat plasma, whereas proBNP was the major form in human plasma. The relative fraction of human BNP in rat myocytes expressing human proBNP was about 60%, but increasing the distance between the glycosylation and cleavage sites through mutation, increased the processed fraction correspondingly. These results suggest that proBNP is processed into BNP intracellularly by furin. The level of proBNP processing is lower in humans than rats, most likely due to the smaller distance between the O-glycosylation and cleavage sites in humans.
Collapse
Affiliation(s)
- Toshio Nishikimi
- Department of Cardiology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Cardiology and Nephrology, Dokkyo Medical University, Mibu, Japan;
| | - Yasuaki Nakagawa
- Department of Cardiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoto Minamino
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - Masashi Ikeda
- Department of Laboratory Medicine, Dokkyo Medical University, Mibu, Japan
| | - Kyoko Tabei
- Department of Laboratory Medicine, Dokkyo Medical University, Mibu, Japan
| | - Aoi Fujishima
- Department of Cardiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kentaro Takayama
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - Kazumi Akimoto
- Department of Laboratory Medicine, Dokkyo Medical University, Mibu, Japan
| | - Chinatsu Yamada
- Department of Cardiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuhiro Nakao
- Department of Cardiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeya Minami
- Department of Cardiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihiro Kuwabara
- Department of Cardiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Kinoshita
- Department of Cardiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Toshihiko Ishimitsu
- Department of Cardiology and Nephrology, Dokkyo Medical University, Mibu, Japan
| | - Kenji Kangawa
- National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan; and
| | - Koichiro Kuwahara
- Department of Cardiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Department of Cardiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Sawaki D, Hou L, Tomida S, Sun J, Zhan H, Aizawa K, Son BK, Kariya T, Takimoto E, Otsu K, Conway SJ, Manabe I, Komuro I, Friedman SL, Nagai R, Suzuki T. Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes. Cardiovasc Res 2015; 107:420-30. [PMID: 25987545 DOI: 10.1093/cvr/cvv155] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 04/01/2015] [Indexed: 12/19/2022] Open
Abstract
AIMS Krüppel-like factors (KLFs) are a family of transcription factors which play important roles in the heart under pathological and developmental conditions. We previously identified and cloned Klf6 whose homozygous mutation in mice results in embryonic lethality suggesting a role in cardiovascular development. Effects of KLF6 on pathological regulation of the heart were investigated in the present study. METHODS AND RESULTS Mice heterozygous for Klf6 resulted in significantly diminished levels of cardiac fibrosis in response to angiotensin II infusion. Intriguingly, a similar phenotype was seen in cardiomyocyte-specific Klf6 knockout mice, but not in cardiac fibroblast-specific knockout mice. Microarray analysis revealed increased levels of the extracellular matrix factor, thrombospondin 4 (TSP4), in the Klf6-ablated heart. Mechanistically, KLF6 directly suppressed Tsp4 expression levels, and cardiac TSP4 regulated the activation of cardiac fibroblasts to regulate cardiac fibrosis. CONCLUSION Our present studies on the cardiac function of KLF6 show a new mechanism whereby cardiomyocytes regulate cardiac fibrosis through transcriptional control of the extracellular matrix factor, TSP4, which, in turn, modulates activation of cardiac fibroblasts.
Collapse
Affiliation(s)
- Daigo Sawaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lianguo Hou
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Shota Tomida
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junqing Sun
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan The Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Hong Zhan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Aizawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Jichi Medical University, Tochigi, Japan
| | - Bo-Kyung Son
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Kariya
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London, London, UK
| | - Simon J Conway
- Program in Developmental Biology and Neonatal Medicine, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Scott L Friedman
- Division of Liver Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Toru Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Jichi Medical University, Tochigi, Japan Department of Cardiovascular Sciences, University of Leicester, Leicester, UK National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| |
Collapse
|
21
|
Cartledge JE, Kane C, Dias P, Tesfom M, Clarke L, Mckee B, Al Ayoubi S, Chester A, Yacoub MH, Camelliti P, Terracciano CM. Functional crosstalk between cardiac fibroblasts and adult cardiomyocytes by soluble mediators. Cardiovasc Res 2015; 105:260-70. [DOI: 10.1093/cvr/cvu264] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
22
|
Hashikata T, Yamaoka-Tojo M, Namba S, Kitasato L, Kameda R, Murakami M, Niwano H, Shimohama T, Tojo T, Ako J. Rivaroxaban Inhibits Angiotensin II-Induced Activation in Cultured Mouse Cardiac Fibroblasts Through the Modulation of NF- κB Pathway. Int Heart J 2015; 56:544-50. [DOI: 10.1536/ihj.15-112] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
| | - Minako Yamaoka-Tojo
- Kitasato University Graduate School of Medical Sciences
- Department of Rehabilitation, Kitasato University School of Allied Health Sciences
| | - Sayaka Namba
- Kitasato University Graduate School of Medical Sciences
| | - Lisa Kitasato
- Kitasato University Graduate School of Medical Sciences
| | - Ryo Kameda
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Masami Murakami
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Hiroe Niwano
- Department of Education, Tamagawa University College of Education
| | - Takao Shimohama
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Taiki Tojo
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| | - Junya Ako
- Kitasato University Graduate School of Medical Sciences
- Department of Cardiovascular Medicine, Kitasato University School of Medicine
| |
Collapse
|
23
|
Smith TP, Haymond T, Smith SN, Sweitzer SM. Evidence for the endothelin system as an emerging therapeutic target for the treatment of chronic pain. J Pain Res 2014; 7:531-45. [PMID: 25210474 PMCID: PMC4155994 DOI: 10.2147/jpr.s65923] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Many people worldwide suffer from pain and a portion of these sufferers are diagnosed with a chronic pain condition. The management of chronic pain continues to be a challenge, and despite taking prescribed medication for pain, patients continue to have pain of moderate severity. Current pain therapies are often inadequate, with side effects that limit medication adherence. There is a need to identify novel therapeutic targets for the management of chronic pain. One potential candidate for the treatment of chronic pain is therapies aimed at modulating the vasoactive peptide endothelin-1. In addition to vasoactive properties, endothelin-1 has been implicated in pain transmission in both humans and animal models of nociception. Endothelin-1 directly activates nociceptors and potentiates the effect of other algogens, including capsaicin, formalin, and arachidonic acid. In addition, endothelin-1 has been shown to be involved in inflammatory pain, cancer pain, neuropathic pain, diabetic neuropathy, and pain associated with sickle cell disease. Therefore, endothelin-1 may prove a novel therapeutic target for the relief of many types of chronic pain.
Collapse
Affiliation(s)
- Terika P Smith
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Tami Haymond
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Sherika N Smith
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - Sarah M Sweitzer
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina, Columbia, SC, USA ; Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC, USA
| |
Collapse
|
24
|
Fan D, Takawale A, Basu R, Patel V, Lee J, Kandalam V, Wang X, Oudit GY, Kassiri Z. Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction. Cardiovasc Res 2014; 103:268-80. [DOI: 10.1093/cvr/cvu072] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
25
|
Abstract
Cardiac hypertrophy and fibrosis are two closely related adaptive response mechanisms of the myocardium to mechanical, metabolic, and genetic stress that finally contribute to the development of heart failure (HF). This relation is based on a dynamic interplay between many cell types including cardiomyocytes and fibroblasts during disease progression. Both cell types secrete a variety of growth factors, cytokines, and hormones that influence hypertrophic cardiomyocyte growth and fibrotic fibroblast activation in a paracrine and autocrine manner. It has become evident that, aside proteinous signals, microRNAs (miRNAs) and possible other RNA species such as long non-coding RNAs are potential players in such a cell-to-cell communication. By directly acting as paracrine signals or by modulating downstream intercellular signalling mediators, miRNAs can act as moderators of the intercellular crosstalk. These small regulators can potentially be secreted in a 'mircrine' fashion, so that miRNAs can be assumed as the message itself. This review will summarize the recent findings about the paracrine crosstalk between cardiac fibroblasts and cardiomyocytes and addresses how miRNAs may be involved in this interplay. It also highlights therapeutic strategies targeting factors of pathological communication for the treatment of HF.
Collapse
Affiliation(s)
- Janika Viereck
- Institute of Molecular and Translational Therapeutic Strategies , IFB-Tx, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover D-30625, Germany
| | | | | | | |
Collapse
|
26
|
TNF-α regulates natriuretic peptides and aquaporins in human bronchial epithelial cells BEAS-2B. Mediators Inflamm 2013; 2013:159349. [PMID: 24369440 PMCID: PMC3863520 DOI: 10.1155/2013/159349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/26/2013] [Accepted: 10/07/2013] [Indexed: 02/03/2023] Open
Abstract
Postoperative-fluid retention is a severe complication frequently reported in patients undergoing major surgical procedures. The complex network of molecules involved in such a severe surgery-induced condition remains poorly understood. Inflammation has been proposed among the various causes of fluid retention. Since TNF-α is one of the main proinflammatory cytokine initially released after major surgery, it is reasonable to assume its involvement in fluid overload. Here, we showed that TNF-α selectively regulates key molecules involved in fluids balance, such as natriuretic peptides (NPs) and aquaporins, in human bronchial epithelial cells BEAS-2B. In particular, we found that TNF-α induced a decrease of arial natriuretic peptide, natriuretic peptide receptor-1, aquaporin-1 and aquaporin-5 and an increase of brain natriuretic peptide with a different involvement of nuclear factor-κB and mitogen-activated protein kinases signaling pathway activation. Moreover, the observed changes in NPs expression, demonstrate inflammation as an additional cause of brain natriuretic peptide elevation, adding an important piece of information in the novel area of study regarding NPs and inflammation. Finally, we suggest that inflammation is one of the mechanisms of Aquaporin-1 and aquaporin-5 expression regulation. Therefore, in this exploratory study, we speculate that TNF-α might be involved in postoperative-fluid retention related to major surgery.
Collapse
|
27
|
Arumugam S, Mito S, Thandavarayan RA, Giridharan VV, Pitchaimani V, Karuppagounder V, Harima M, Nomoto M, Suzuki K, Watanabe K. Mulberry Leaf Diet Protects Against Progression of Experimental Autoimmune Myocarditis to Dilated Cardiomyopathy Via Modulation of Oxidative Stress and MAPK-Mediated Apoptosis. Cardiovasc Ther 2013; 31:352-62. [DOI: 10.1111/1755-5922.12029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Somasundaram Arumugam
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Sayaka Mito
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Rajarajan A. Thandavarayan
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
- Bristol Heart Institute; University of Bristol, Bristol Royal Infirmary; Bristol UK
| | - Vijayasree V. Giridharan
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Vigneshwaran Pitchaimani
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Vengadeshprabhu Karuppagounder
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Meilei Harima
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Mayumi Nomoto
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| | - Kenji Suzuki
- Department of Gastroenterology; Niigata University Graduate School of Medical and Dental Sciences; Niigata City Japan
| | - Kenichi Watanabe
- Department of Clinical Pharmacology; Faculty of Pharmaceutical Sciences; Niigata University of Pharmacy and Applied Life Sciences; Niigata City Japan
| |
Collapse
|
28
|
Abstract
Vascularization of engineered tissues is critical for success. Adequate and physiologically regulated blood supply is important for viability of the implanted tissue but even more important for the proper function of parenchymal cells, which is the desired clinical outcome for most applications in regenerative medicine. Several methods are being developed to stimulate revascularization of engineered tissue. Prevascularized scaffolds with a hierarchical vascular pattern, allowing surgical hook-up of the inflow and outflow tracts, that are already preseeded and cultured with primary vascular cells or precursors will be required for larger tissues or tissues with an immediate high metabolism, such as myocardium. The preimplantation presence of a mature vasculature will improve differentiation and maturation of the parenchyma, thus meeting the functional demands of the host. This may also be true for smaller or metabolically less-active tissues, yet for viability and immediate function they may rely on facilitated postimplantation ingrowth of the host vasculature.
Collapse
Affiliation(s)
- Mark J Post
- Department of Physiology, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Nastaran Rahimi
- Department of Physiology, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Vincenza Caolo
- Department of Physiology, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| |
Collapse
|
29
|
Zhang HY, Liu R, Xing YJ, Xu P, Li Y, Li CJ. Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro.. Exp Ther Med 2013; 6:1553-1559. [PMID: 24255690 PMCID: PMC3829746 DOI: 10.3892/etm.2013.1349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/02/2013] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts (HPLFs) at various times in vitro in order to further study plateau-hypoxia-induced periodontal disease. HPLFs (fifth passage) cultured by the tissue culture method were assigned to the slight (5% O2), middle (2% O2), and severe hypoxia (1% O2) groups and the control (21% O2) group, respectively. At 12, 24, 48 and 72 h, the proliferation and alkaline phosphatase (ALP) activities were detected. The ultrastructure of the severe hypoxia group was observed. HPLFs grew more rapidly with an increase in the degree of hypoxia at 12 and 24 h, and significant levels of proliferation (P<0.05) were observed in the severe hypoxia group at 24 h. Cell growth was restrained with an increase in the degree of hypoxia at 48 and 72 h, and the restrictions were clear (P<0.05) in the middle and severe hypoxia groups. ALP activity was restrained with increasing hypoxia at each time point. The restrictions were marked (P<0.05) in the severe hypoxia group at 24 h and in the middle and severe hypoxia groups at 48 and 72 h. However, the restriction was more marked (P<0.05) in the severe hypoxia group at 72 h. An increase was observed in the number of mitochondria and rough endoplasmic reticula (RER), with slightly expanded but complete membrane structures, in the severe hypoxia group at 24 h. At 48 h, the number of mitochondria and RER decreased as the mitochondria increased in size. Furthermore, mitochondrial cristae appeared to be vague, and a RER structural disorder was observed. At 72 h, the number of mitochondria and RER decreased further when the mitochondrial cristae were broken, vacuolar degeneration occurred, and the RER particles were reduced while the number of lysosomes increased. HPLF proliferation and mineralization was restrained. Additionally, HPLF structure was broken for a relatively long period of time in the middle and severe hypoxia groups. This finding demonstrated that hypoxia was capable of damaging the metabolism, reconstruction and recovery of HPLFs. The poor state of HPLFs under hypoxic conditions may therefore initiate or aggravate periodontal disease.
Collapse
Affiliation(s)
- Hai-Yuan Zhang
- Department of Stomatology, Chengdu Military General Hospital of PLA, Chengdu, Sichuan 610083, P.R. China
| | | | | | | | | | | |
Collapse
|
30
|
Martin TP, Norris G, McConnell G, Currie S. A novel approach for assessing cardiac fibrosis using label-free second harmonic generation. Int J Cardiovasc Imaging 2013; 29:1733-40. [PMID: 23921804 DOI: 10.1007/s10554-013-0270-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/28/2013] [Indexed: 01/06/2023]
Abstract
To determine whether second harmonic generation (SHG) can be used as a novel and improved label-free technique for detection of collagen deposition in the heart. To verify whether SHG will allow accurate quantification of altered collagen deposition in diseased hearts following hypertrophic remodelling. Minimally invasive transverse aortic banding (MTAB) of mouse hearts was used to generate a reproducible model of cardiac hypertrophy. Physiological and functional assessment of hypertrophic development was performed using echocardiography and post-mortem analysis of remodelled hearts. Cardiac fibroblasts were isolated from sham-operated and hypertrophied hearts and proliferation rates compared. Multi-photon laser scanning microscopy was used to capture both two-photon excited autofluorescence (TPEF) and SHG images simultaneously in two channels. TPEF images were subtracted from SHG images and the resulting signal intensities from ventricular tissue sections were calculated. Traditional picrosirius red staining was used to verify the suitability of the SHG application. MTAB surgery induced significant hypertrophic remodelling and increased cardiac fibroblast proliferation. A significant increase in the density of collagen fibres between hypertrophic and control tissues (p < 0.05) was evident using SHG. Similar increases and patterns of staining were observed using parallel traditional picrosirius red staining of collagen. Label-free SHG microscopy provides a new alternative method for quantifying collagen deposition in fibrotic hearts.
Collapse
Affiliation(s)
- Tamara P Martin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Wolfson Link building, Glasgow, G12 8QQ, UK
| | | | | | | |
Collapse
|
31
|
Kaur K, Zarzoso M, Ponce-Balbuena D, Guerrero-Serna G, Hou L, Musa H, Jalife J. TGF-β1, released by myofibroblasts, differentially regulates transcription and function of sodium and potassium channels in adult rat ventricular myocytes. PLoS One 2013; 8:e55391. [PMID: 23393573 PMCID: PMC3564808 DOI: 10.1371/journal.pone.0055391] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
Cardiac injury promotes fibroblasts activation and differentiation into myofibroblasts, which are hypersecretory of multiple cytokines. It is unknown whether any of such cytokines are involved in the electrophysiological remodeling of adult cardiomyocytes. We cultured adult cardiomyocytes for 3 days in cardiac fibroblast conditioned medium (FCM) from adult rats. In whole-cell voltage-clamp experiments, FCM-treated myocytes had 41% more peak inward sodium current (INa) density at −40 mV than myocytes in control medium (p<0.01). In contrast, peak transient outward current (Ito) was decreased by ∼55% at 60 mV (p<0.001). Protein analysis of FCM demonstrated that the concentration of TGF-β1 was >3 fold greater in FCM than control, which suggested that FCM effects could be mediated by TGF-β1. This was confirmed by pre-treatment with TGF-β1 neutralizing antibody, which abolished the FCM-induced changes in both INa and Ito. In current-clamp experiments TGF-β1 (10 ng/ml) prolonged the action potential duration at 30, 50, and 90 repolarization (p<0.05); at 50 ng/ml it gave rise to early afterdepolarizations. In voltage-clamp experiments, TGF-β1 increased INa density in a dose-dependent manner without affecting voltage dependence of activation or inactivation. INa density was −36.25±2.8 pA/pF in control, −59.17±6.2 pA/pF at 0.1 ng/ml (p<0.01), and −58.22±6.6 pA/pF at 1 ng/ml (p<0.01). In sharp contrast, Ito density decreased from 22.2±1.2 pA/pF to 12.7±0.98 pA/pF (p<0.001) at 10 ng/ml. At 1 ng/ml TGF-β1 significantly increased SCN5A (NaV1.5) (+73%; p<0.01), while reducing KCNIP2 (Kchip2; −77%; p<0.01) and KCND2 (KV4.2; −50% p<0.05) mRNA levels. Further, the TGF-β1-induced increase in INa was mediated through activation of the PI3K-AKT pathway via phosphorylation of FOXO1 (a negative regulator of SCN5A). TGF-β1 released by myofibroblasts differentially regulates transcription and function of the main cardiac sodium channel and of the channel responsible for the transient outward current. The results provide new mechanistic insight into the electrical remodeling associated with myocardial injury.
Collapse
Affiliation(s)
- Kuljeet Kaur
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Manuel Zarzoso
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniela Ponce-Balbuena
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Guadalupe Guerrero-Serna
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Luqia Hou
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hassan Musa
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
| | - José Jalife
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
32
|
ET-1 from endothelial cells is required for complete angiotensin II-induced cardiac fibrosis and hypertrophy. Life Sci 2012; 91:651-7. [DOI: 10.1016/j.lfs.2012.02.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/12/2012] [Accepted: 02/03/2012] [Indexed: 11/20/2022]
|
33
|
Bowers SLK, Baudino TA. Cardiac Myocyte–Fibroblast Interactions and the Coronary Vasculature. J Cardiovasc Transl Res 2012; 5:783-93. [DOI: 10.1007/s12265-012-9407-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/27/2012] [Indexed: 10/27/2022]
|
34
|
Horman S, Beauloye C, Vanoverschelde JL, Bertrand L. AMP-activated Protein Kinase in the Control of Cardiac Metabolism and Remodeling. Curr Heart Fail Rep 2012; 9:164-73. [DOI: 10.1007/s11897-012-0102-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Stastna M, Van Eyk JE. Investigating the secretome: lessons about the cells that comprise the heart. CIRCULATION. CARDIOVASCULAR GENETICS 2012; 5:o8-o18. [PMID: 22337932 PMCID: PMC3282018 DOI: 10.1161/circgenetics.111.960187] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cell/environment interface is composed of the proteins of plasma membrane which face the extracellular space and by the proteins secreted directly by the cell of origin or by neighboring cells. The secreted proteins can act as extracellular matrix proteins and/or autocrine/paracrine proteins. This report discusses the technical aspects involved in the identification and characterization of the secreted proteins of specific cell types that comprise the heart. These aspects include the culturing of the cells, cell co-culturing and quantitative labeling, conditioned media collection and dealing with high abundant serum proteins, post-translational modification enrichment, the use of protein separation methods and mass spectrometry, protein identification and validation and the incorporation of pathway analysis to better understand the novel discovery on the background of already known experimental biological systems. The proteomic methods have the solid emplacement in cardiovascular research and the identification of proteins secreted by cardiac cells has been used in various applications such as determination the specificity between secretomes of different cell types, e.g. cardiac stem cells and cardiac myocytes, for the global secretome screening of e.g. human arterial smooth muscle cells, for the mapping of the beneficial effect of conditioned medium of one cell type on the other cell type, e.g. conditioned medium of human mesenchymal stem cells on cardiac myocytes, and for the searching the candidate paracrine factors and potential biomarkers.
Collapse
Affiliation(s)
- Miroslava Stastna
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Division of Cardiology, School of Medicine, Johns Hopkins University, Baltimore, MD 21224, USA.
| | | |
Collapse
|
36
|
Cacciapuoti F. Molecular mechanisms of left ventricular hypertrophy (LVH) in systemic hypertension (SH)—possible therapeutic perspectives. ACTA ACUST UNITED AC 2011; 5:449-55. [DOI: 10.1016/j.jash.2011.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 08/12/2011] [Accepted: 08/17/2011] [Indexed: 11/29/2022]
|
37
|
Takeda N, Manabe I. Cellular Interplay between Cardiomyocytes and Nonmyocytes in Cardiac Remodeling. Int J Inflam 2011; 2011:535241. [PMID: 21941677 PMCID: PMC3175723 DOI: 10.4061/2011/535241] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/28/2011] [Accepted: 06/12/2011] [Indexed: 01/12/2023] Open
Abstract
Cardiac hypertrophy
entails complex structural remodeling involving
rearrangement of muscle fibers, interstitial
fibrosis, accumulation of extracellular matrix,
and angiogenesis. Many of the processes
underlying cardiac remodeling have features in
common with chronic inflammatory processes.
During these processes, nonmyocytes, such as
endothelial cells, fibroblasts, and immune cells,
residing in or infiltrating into the myocardial
interstitium play active roles. This paper
mainly addresses the functional roles of
nonmyocytes during cardiac remodeling. In
particular, we focus on the communication
between cardiomyocytes and nonmyocytes through
direct cell-cell interactions and
autocrine/paracrine-mediated
pathways.
Collapse
Affiliation(s)
- Norifumi Takeda
- Department of Cell and Developmental Biology and Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
38
|
Cellular Injury of Cardiomyocytes during Hepatocyte Growth Factor Gene Transfection with Ultrasound-Triggered Bubble Liposome Destruction. JOURNAL OF DRUG DELIVERY 2011; 2011:453619. [PMID: 21512580 PMCID: PMC3065913 DOI: 10.1155/2011/453619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 10/31/2010] [Indexed: 01/01/2023]
Abstract
We transfected naked HGF plasmid DNA into cultured cardiomyocytes using a sonoporation method consisting of ultrasound-triggered bubble liposome destruction. We examined the effects on transfection efficiency of three concentrations of bubble liposome (1 × 106,
1 × 107,
1 × 108/mL), three concentrations of HGF DNA (60, 120, 180 μg/mL), two insonification times (30, 60 sec), and three incubation times (15, 60, 120 min). We found that low concentrations of bubble liposome and low concentrations of DNA provided the largest amount of the HGF protein expression by the sonoporated cardiomyocytes. Variation of insonification and incubation times did not affect the amount of product. Following insonification, cardiomyocytes showed cellular injury, as determined by a dye exclusion test. The extent of injury was most severe with the highest concentration of bubble liposome. In conclusion, there are some trade-offs between gene transfection efficiency and cellular injury using ultrasound-triggered bubble liposome destruction as a method for gene transfection.
Collapse
|
39
|
Mackovicova K, Gazova A, Kucerova D, Gajdacova B, Klimas J, Ochodnicky P, Goncalvesova E, Kyselovic J, Krenek P. Enalapril decreases cardiac mass and fetal gene expression without affecting the expression of endothelin-1, transforming growth factor β-1, or cardiotrophin-1 in the healthy normotensive rat. Can J Physiol Pharmacol 2011; 89:197-205. [DOI: 10.1139/y11-014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II can induce cardiac hypertrophy by stimulating the release of growth factors. ACE inhibitors reduce angiotensin II levels and cardiac hypertrophy, but their effects on the healthy heart are largely unexplored. We hypothesized that ACE inhibition decreases left ventricular mass in normotensive animals and that this is associated with altered expression of cardiac fetal genes, growth factors, and endothelial nitric oxide synthase (eNOS). Wistar rats (n = 7 per group) were orally administered with enalapril twice daily for a total daily dose of 5 mg·kg–1·d–1 (ENAP5) or 15 mg·kg–1·d–1 (ENAP15) or vehicle. Systolic blood pressure was measured by the tail-cuff method. Left ventricular expression of cardiac myosin heavy chain-α (MYH6) and -β (MYH7), atrial natriuretic peptide (ANP), endothelin-1 (ET-1), transforming growth factor β-1 (TGFβ-1), cardiotrophin-1 (CT-1), and renal renin were examined by real-time PCR, and eNOS using Western blot. Blood pressure was decreased only in ENAP15 animals (p < 0.05 vs. Control), whereas left ventricular mass decreased after both doses of enalapril (p < 0.05 vs. Control). MYH7 and ANP were reduced in ENAP15, while no changes in ET-1, TGFβ-1, CT-1, and MYH6 mRNA or eNOS protein were observed. Renal renin dose-dependently increased after enalapril treatment. Enalapril significantly decreased left ventricular mass even after 1 week treatment in the normotensive rat. This was associated with a decreased expression of the fetal genes MYH7 and ANP, but not expression of ET-1, CT-1, or TGFβ-1.
Collapse
Affiliation(s)
- Katarina Mackovicova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Andrea Gazova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Dana Kucerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Beata Gajdacova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Peter Ochodnicky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Eva Goncalvesova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Jan Kyselovic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| |
Collapse
|
40
|
Iwata M, Cowling RT, Yeo SJ, Greenberg B. Targeting the ACE2-Ang-(1-7) pathway in cardiac fibroblasts to treat cardiac remodeling and heart failure. J Mol Cell Cardiol 2010; 51:542-7. [PMID: 21147120 DOI: 10.1016/j.yjmcc.2010.12.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 11/30/2010] [Accepted: 12/06/2010] [Indexed: 01/11/2023]
Abstract
Fibroblasts play a pivotal role in cardiac remodeling and the development of heart failure through the deposition of extra-cellular matrix (ECM) proteins and also by affecting cardiomyocyte growth and function. The renin-angiotensin system (RAS) is a key regulator of the cardiovascular system in health and disease and many of its effects involve cardiac fibroblasts. Levels of angiotensin II (Ang II), the main effector molecule of the RAS, are elevated in the failing heart and there is a substantial body of evidence indicating that this peptide contributes to changes in cardiac structure and function which ultimately lead to progressive worsening in heart failure. A pathway involving angiotensin converting enzyme 2 (ACE2) has the capacity to break down Ang II while generating angiotensin-(1-7) (Ang-(1-7)), a heptapeptide, which in contrast to Ang II, has cardioprotective and anti-remodeling effects. Many Ang-(1-7) actions involve cardiac fibroblasts and there is information indicating that it reduces collagen production and also may protect against cardiac hypertrophy. This report describes the effects of ACE2 and Ang-(1-7) that appear to be relevant in cardiac remodeling and heart failure and explores potential therapeutic strategies designed to increase ACE2 activity and Ang-(1-7) levels to treat these conditions. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.''
Collapse
Affiliation(s)
- Michikado Iwata
- Department of Medicine/Cardiology Division, University of California, San Diego, San Diego, CA, USA
| | | | | | | |
Collapse
|
41
|
Abstract
ET (endothelin)-1 was first described as a potent vasoconstrictor. Since then, many other deleterious properties mediated via its two receptors, ETA and ETB, have been described, such as inflammation, fibrosis and hyperplasia. These effects, combined with a wide tissue distribution of the ET system, its up-regulation in pathological situations and a local autocrine/paracrine activity due to a high tissue receptor binding, make the tissue ET system a key local player in end-organ damage. Furthermore, ET-1 interacts in tissues with other systems such as the RAAS (renin-angiotensin-aldosterone system) to exert its effects. In numerous genetically modified animal models, non-specific or organ-targeted ET-1 overexpression causes intense organ damage, especially hypertrophy and fibrosis, in the absence of haemodynamic changes, confirming a local activity of the ET system. ET receptor antagonists have been shown to prevent and sometimes reverse these tissue alterations in an organ-specific manner, leading to long-term benefits and an improvement in survival in different animal models. Potential for such benefits going beyond a pure haemodynamic effect have also been suggested by clinical trial results in which ET receptor antagonism decreased the occurrence of new digital ulcers in patients with systemic sclerosis and delayed the time to clinical worsening in patients with PAH (pulmonary arterial hypertension). The tissue ET system allows therapeutic interventions to provide organ selectivity and beneficial effects in diseases associated with tissue inflammation, hypertrophy or fibrosis.
Collapse
|
42
|
Funke C, Farr M, Werner B, Dittmann S, Überla K, Piper C, Niehaus K, Horstkotte D. Antiviral effect of Bosentan and Valsartan during coxsackievirus B3 infection of human endothelial cells. J Gen Virol 2010; 91:1959-1970. [DOI: 10.1099/vir.0.020065-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In viral myocarditis, adeno- and enteroviruses have most commonly been implicated as causes of infection. Both viruses require the human coxsackie-adenovirus receptor (CAR) to infect the myocardium. Due to its crucial role for viral entry, CAR-downregulation may lead to novel approaches for treatment for viral myocarditis. In this study, we report on pharmaceutical drug influences on CAR levels in human umbilical vein endothelial cells (HUVEC) and cervical carcinoma cells (HeLa) detected by immunoblotting, quantitative real time-PCR and cellular susceptibility to the cardiotropic coxsackie-B3 virus strain Nancy (CVB3). Our results indicate, for the first time, a dose-dependent CAR mRNA and protein downregulation upon Valsartan and Bosentan treatment. Most interestingly, drug-induced CAR diminution significantly reduced the viral load in CVB3-infected HUVEC. In order to assess the regulatory effects of both drugs in detail, we knocked down their protein targets, the G-protein coupled receptors angiotensin-II type-1 receptor (AT1R) and endothelin-1 type-A and -B receptors (ETAR/ETBR) in HUVEC. Receptor-specific gene silencing indicates that CAR gene expression is regulated by agonistic and antagonistic binding to ETBR, but not ETAR. In addition, neither stimulation nor inhibition of AT1R seemed to be involved in CAR gene regulatory processes. Our study indicates that Valsartan and Bosentan protected human endothelial cells from CVB3-infection. Therefore, besides their well-known anti-hypertensive effects these drugs may also protect the myocardium and other tissues from coxsackie- and adenoviral infection.
Collapse
Affiliation(s)
- Carsten Funke
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Martin Farr
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Bianca Werner
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Sven Dittmann
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr University of Bochum, Universitätsstr. 150, 44801 Bochum, NRW, Germany
| | - Cornelia Piper
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| | - Karsten Niehaus
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstr. 27, 33615 Bielefeld, NRW, Germany
| | - Dieter Horstkotte
- Department of Cardiology, Heart and Diabetes Center NRW, Ruhr University of Bochum, Georgstr. 11, 32545 Bad Oeynhausen, NRW, Germany
| |
Collapse
|
43
|
Clenbuterol Induces Cardiac Myocyte Hypertrophy via Paracrine Signalling and Fibroblast-derived IGF-1. J Cardiovasc Transl Res 2010; 3:688-95. [DOI: 10.1007/s12265-010-9199-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Accepted: 05/27/2010] [Indexed: 01/08/2023]
|
44
|
Tsuruda T, Imamura T, Hatakeyama K, Asada Y, Kitamura K. Stromal cell biology--a way to understand the evolution of cardiovascular diseases. Circ J 2010; 74:1042-50. [PMID: 20378995 DOI: 10.1253/circj.cj-10-0024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stromal cells, composed of fibroblasts, microvascular endothelial cells, immune cells and inflammatory cells, are critical determinants of the mechanical properties and function of the heart and vasculature, and the mechanisms whereby these types of cells are activated are important to understand the progression of cardiovascular diseases. Emerging studies have suggested that the activation of autocrine and paracrine signaling pathways by stromal cell-derived growth factors, cytokines and bioactive molecules contributes to disease progression. Disruption of the stromal network will result in alterations in the geometry and function in these organs. Interventions targeting the stromal cells (eg, myofibroblasts, microvascular endothelial cells, inflammatory cells) by pharmacological agents or direct gene delivery/small interfering RNA would be potential novel therapeutic strategies to prevent/attenuate the progression of cardiovascular disorders.
Collapse
Affiliation(s)
- Toshihiro Tsuruda
- Department of Internal Medicine, Circulatory and Body Fluid Regulation, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | |
Collapse
|
45
|
Diniz GP, Carneiro-Ramos MS, Barreto-Chaves MLM. Thyroid Hormone Increases TGF-beta1 in Cardiomyocytes Cultures Independently of Angiotensin II Type 1 and Type 2 Receptors. Int J Endocrinol 2010; 2010:384890. [PMID: 20613948 PMCID: PMC2896841 DOI: 10.1155/2010/384890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 02/11/2010] [Accepted: 03/21/2010] [Indexed: 11/17/2022] Open
Abstract
TH-induced cardiac hypertrophy in vivo is accompanied by increased cardiac Transforming Growth Factor-beta1 (TGF-beta1) levels, which is mediated by Angiotensin II type 1 receptors (AT1R) and type 2 receptors (AT2R). However, the possible involvement of this factor in TH-induced cardiac hypertrophy is unknown. In this study we evaluated whether TH is able to modulate TGF-beta1 in isolated cardiac, as well as the possible contribution of AT1R and AT2R in this response. The cardiac fibroblasts treated with T(3) did not show alteration on TGF-beta1 expression. However, cardiomyocytes treated with T(3) presented an increase in TGF-beta1 expression, as well as an increase in protein synthesis. The AT1R blockade prevented the T(3)-induced cardiomyocyte hypertrophy, while the AT2R blockage attenuated this response. The T(3)-induced increase on TGF-beta1 expression in cardiomyocytes was not changed by the use of AT1R and AT2R blockers. These results indicate that Angiotensin II receptors are not implicated in T(3)-induced increase on TGF-beta expression and suggest that the trophic effects exerted by T(3) on cardiomyocytes are not dependent on the higher TGF-beta1 levels, since the AT1R and AT2R blockers were able to attenuate the T(3)-induced cardiomyocyte hypertrophy but were not able to attenuate the increase on TGF-beta1 levels promoted by T(3).
Collapse
Affiliation(s)
- Gabriela Placoná Diniz
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
| | - Marcela Sorelli Carneiro-Ramos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
| | - Maria Luiza Morais Barreto-Chaves
- Laboratory of Cellular Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, 05508-900, São Paulo, Brazil
- *Maria Luiza Morais Barreto-Chaves:
| |
Collapse
|
46
|
Inoue T, Kawai M, Nakane T, Nojiri A, Minai K, Komukai K, Ogawa T, Hongo K, Matsushima M, Yoshimura M. Influence of low-grade inflammation on plasma B-type natriuretic peptide levels. Intern Med 2010; 49:2659-68. [PMID: 21173540 DOI: 10.2169/internalmedicine.49.4211] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE B-type natriuretic peptide (BNP) is a cardiac hormone. The results of previous in vitro studies suggest that neurohumoral factors, and not only hemodynamic factors, may cause BNP secretion. In this study, we examined the impact of serum C-reactive protein (CRP) levels on the relationship between echocardiographic parameters and plasma BNP levels in patients with cardiovascular diseases. METHODS AND PATIENTS The study population comprised 417 patients who visited our cardiovascular unit with a problem. Both blood sampling and echocardiography were performed within one month. RESULTS Multiple regression analysis showed that plasma BNP levels were negatively correlated with male gender, body mass index, and estimated glomerular filtration rate, and positively correlated with serum CRP levels and left ventricular end-systolic dimension (LVDs). The study population was divided into two groups based on the 75th percentile of the serum CRP levels. Single regression analysis showed that a regression line between LVDs and plasma BNP levels was steeper in the group of patients with CRP levels above the 75th percentile. Multiple regression analysis revealed that the interaction term (LVDs×CRP) was significant, which means LVDs had more impact on plasma BNP levels at higher CRP levels. CONCLUSION Plasma BNP levels increased with respect to the severity of cardiac dysfunction and serum CRP levels, and should therefore be considered a collective or total marker for life-threatening conditions including systemic inflammation, and not simply as a marker of cardiac dysfunction in patients with cardiovascular diseases.
Collapse
Affiliation(s)
- Terumasa Inoue
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Takeda N, Manabe I, Uchino Y, Eguchi K, Matsumoto S, Nishimura S, Shindo T, Sano M, Otsu K, Snider P, Conway SJ, Nagai R. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. J Clin Invest 2009; 120:254-65. [PMID: 20038803 DOI: 10.1172/jci40295] [Citation(s) in RCA: 316] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 10/21/2009] [Indexed: 12/28/2022] Open
Abstract
Fibroblasts, which are the most numerous cell type in the heart, interact with cardiomyocytes in vitro and affect their function; however, they are considered to play a secondary role in cardiac hypertrophy and failure. Here we have shown that cardiac fibroblasts are essential for the protective and hypertrophic myocardial responses to pressure overload in vivo in mice. Haploinsufficiency of the transcription factor-encoding gene Krüppel-like factor 5 (Klf5) suppressed cardiac fibrosis and hypertrophy elicited by moderate-intensity pressure overload, whereas cardiomyocyte-specific Klf5 deletion did not alter the hypertrophic responses. By contrast, cardiac fibroblast-specific Klf5 deletion ameliorated cardiac hypertrophy and fibrosis, indicating that KLF5 in fibroblasts is important for the response to pressure overload and that cardiac fibroblasts are required for cardiomyocyte hypertrophy. High-intensity pressure overload caused severe heart failure and early death in mice with Klf5-null fibroblasts. KLF5 transactivated Igf1 in cardiac fibroblasts, and IGF-1 subsequently acted in a paracrine fashion to induce hypertrophic responses in cardiomyocytes. Igf1 induction was essential for cardioprotective responses, as administration of a peptide inhibitor of IGF-1 severely exacerbated heart failure induced by high-intensity pressure overload. Thus, cardiac fibroblasts play a pivotal role in the myocardial adaptive response to pressure overload, and this role is partly controlled by KLF5. Modulation of cardiac fibroblast function may provide a novel strategy for treating heart failure, with KLF5 serving as an attractive target.
Collapse
Affiliation(s)
- Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Nakao K, Yasoda A, Ebihara K, Hosoda K, Mukoyama M. Translational research of novel hormones: lessons from animal models and rare human diseases for common human diseases. J Mol Med (Berl) 2009; 87:1029-39. [DOI: 10.1007/s00109-009-0515-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/03/2009] [Accepted: 08/03/2009] [Indexed: 01/15/2023]
|
49
|
Wen Y, Zhang XJ, Ma YX, Xu XJ, Hong LF, Lu ZH. Erythropoietin attenuates hypertrophy of neonatal rat cardiac myocytes induced by angiotensin-II in vitro. Scandinavian Journal of Clinical and Laboratory Investigation 2009; 69:518-25. [PMID: 19347742 DOI: 10.1080/00365510902802286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Erythropoietin (EPO) is a haematopoietic hormone that has been confirmed as a novel cardioprotective agent. In this study, we test the hypothesis that EPO inhibits angiotensin-II (Ang-II)-induced hypertrophy in cultured neonatal rat cardiomyocytes. MATERIAL AND METHODS Cultured neonatal rat cardiomyocytes were used to evaluate the effects of EPO on Ang-II-induced hypertrophy in vitro. The surface area and mRNA expression of atrial natriuretic (ANF) myocytes were employed to detect cardiac hypertrophy. A phosphatidylinositol 3'-kinase (PI3K) inhibitor LY294002 and an endothelial nitric oxide synthase (eNOS) inhibitor L-NAME were also employed to detect the underlying mechanism of EPO. Intracellular signal molecules, such as Akt (PKB), phosphorylated Akt, eNOS and transforming growth factor-beta1 (TGF-beta1) protein expression were determined by Western blot. Nitric oxide (NO) levels in the supernatant of cultured cardiomyocytes were assayed using an NO assay kit. RESULTS The results indicate that EPO significantly attenuates Ang-II-induced hypertrophy shown as inhibition of increases in cell surface area and ANF mRNA levels. NO production was also increased proportionally in the EPO-treated group. EPO enhanced Akt activation and eNOS protein expression, whereas LY294002 or L-NAME partially abolished the anti-hypertrophic effect of EPO, accompanied by a decrease in Akt activation, eNOS protein expression and/or a reduction of NO production. EPO also down-regulated the protein expression of TGF-beta1. CONCLUSION We conclude that EPO attenuates cardiac hypertrophy via activation of the PI3K-Akt-eNOS-NO pathway and the down-regulation of TGF-beta1.
Collapse
Affiliation(s)
- Yuan Wen
- Department of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
50
|
Xu T, Baicu C, Aho M, Zile M, Boland T. Fabrication and characterization of bio-engineered cardiac pseudo tissues. Biofabrication 2009; 1:035001. [PMID: 20811105 DOI: 10.1088/1758-5082/1/3/035001] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We report on fabricating functional three-dimensional (3D) tissue constructs using an inkjet based bio-prototyping method. With the use of modified inkjet printers, contractile cardiac hybrids that exhibit the forms of the 3D rectangular sheet and even the 'half heart' (with two connected ventricles) have been fabricated by arranging alternate layers of biocompatible alginate hydrogels and mammalian cardiac cells according to pre-designed 3D patterns. In this study, primary feline adult and H1 cardiomyocytes were used as model cardiac cells. Alginate hydrogels with controlled micro-shell structures were built by spraying cross-linkers in micro-drops onto un-gelled alginic acid. The cells remained viable in constructs as thick as 1 cm due to the programmed porosity. Microscopic and macroscopic contractile functions of these cardiomyocyte constructs were observed in vitro. These results suggest that the inkjet bio-prototyping method could be used for hierarchical design of functional cardiac pseudo tissues, balanced with porosity for mass transport and structural support.
Collapse
Affiliation(s)
- Tao Xu
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | | | |
Collapse
|