1
|
Mascarenhas D, Mohammadi A, Higazy R, Ivanovska J, Gauda E, Jasani B. L-Citrulline in Neonates: From Bench to Bed Side. CHILDREN (BASEL, SWITZERLAND) 2024; 12:42. [PMID: 39857873 PMCID: PMC11763423 DOI: 10.3390/children12010042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
L-citrulline (L-CIT), a precursor to L-arginine (L-ARG), is a key contributor to the nitric oxide (NO) signaling pathway. Endothelial dysfunction, characterized by deficient nitric oxide synthesis, is implicated in the pathogenesis of various neonatal conditions such as necrotizing enterocolitis (NEC) and bronchopulmonary dysplasia (BPD) associated pulmonary hypertension (PH). This review summarizes the current evidence around the possible role of L-CIT supplementation in the treatment of these conditions. Detoxification of endogenously produced superoxide radicals is inadequate in preterm infants due to immature antioxidants that leads to the production of peroxynitrite, a reactive oxygen-free radical that is cytotoxic and causes damage to organelles and cellular membranes, further disrupting the coupling of endothelial NO synthase enzyme and the generation of high levels of reactive nitrogen and oxygen species. Animal studies in lipopolysaccharide-induced models of chorioamnionitis and hyperoxia- and inflammation-induced BPD-PH in rodent lung models revealed that L-CIT supplementation significantly mitigated structural changes in the pulmonary vasculature, preserved alveolar growth, and increased vascular endothelial growth factor gene expression, highlighting the anti-inflammatory and antioxidant effects of L-CIT supplementation. Similar benefits were noted in newborn piglet models of chronic hypoxia-induced PH and NEC. Pharmacokinetic studies in neonates have shown doses of 100-300 mg/kg/day to be safe and well tolerated. A few studies have shown the beneficial effects of L-CIT supplementation in pulmonary hypertension secondary to congenital heart disease, but evidence of efficacy in the neonatal population is lacking. While L-CIT shows promise in the treatment of various neonatal conditions, adequately powered studies to evaluate the safety and efficacy of L-CIT supplementation post-surgical NEC and BPD ± PH in the extremely preterm population are needed to translate this novel therapy to clinical practice.
Collapse
Affiliation(s)
- Dwayne Mascarenhas
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (D.M.); (E.G.)
| | - Atefeh Mohammadi
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (A.M.); (J.I.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada;
| | - Randa Higazy
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada;
| | - Julijana Ivanovska
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (A.M.); (J.I.)
| | - Estelle Gauda
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (D.M.); (E.G.)
- Translational Medicine and Cell Biology Programs, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 1E8, Canada; (A.M.); (J.I.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 3K3, Canada;
| | - Bonny Jasani
- Division of Neonatology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; (D.M.); (E.G.)
| |
Collapse
|
2
|
Nonaka H, Tahara M, Yoshiura T, Urayama K, Okano M, Morikawa Y, Morita R, Sato T. Long-Term Coronary Artery Evaluation Using Noncontrast-Enhanced Magnetic Resonance Angiography in Patients with Kawasaki Disease. Pediatr Cardiol 2024:10.1007/s00246-024-03742-z. [PMID: 39719460 DOI: 10.1007/s00246-024-03742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
To evaluate the use of noncontrast-enhanced coronary magnetic resonance angiography (NC-CMRA) for long-term follow-up in patients with Kawasaki disease (KD). In total, 40 (77 aneurysms) patients with KD who underwent NC-CMRA were retrospectively analyzed. Coronary artery aneurysms and dilations observed during the acute phase were classified into three groups according to their diameter based on the American Heart Association criteria. The prevalence of coronary artery stenotic lesions was evaluated using the Kaplan-Meier method (log-rank test). The agreement in the coronary artery stenosis rates between NC-CMRA and coronary angiography (CAG) was examined via Brand-Altman analysis and intraclass correlation coefficients (ICC). In patients with large or giant aneurysms, the prevalence of coronary artery stenotic lesions was 26.3% at 10 years, 53.2% at 15 years, and 71.9% at 20 years. In patients with medium aneurysms, the prevalence of coronary artery stenotic lesions was 8.4% at 10 and 15 years and 23.7% at 20 years. Patients with small aneurysms did not exhibit stenotic lesions. Patients with large or giant aneurysms had significantly higher rate of coronary stenotic lesions than those with medium and small aneurysms (p < 0.05). All 16 stenotic lesions detected on NC-CMRA were consistent with those observed on CAG, and the coronary artery stenotic rate had moderate consistency (ICC 0.65). In KD, the detection of coronary artery stenosis using NC-CMRA was consistent with that using CAG. Therefore, NC-CMRA can be a better alternative following echocardiography for long-term coronary artery evaluation in patients with KD.
Collapse
Affiliation(s)
- Haruki Nonaka
- Department of Radiological Technology, Tsuchiya General Hospital, 3-30 Nakajima-Cho, Naka-Ku, Hiroshima, 730-8655, Japan.
| | - Masahiro Tahara
- Hiroshima Central Street Children's Clinic, 7-1-3F Mikawa-Cho, Naka-Ku, Hiroshima, 730-0029, Japan
| | - Takayuki Yoshiura
- Department of Radiological Technology, Tsuchiya General Hospital, 3-30 Nakajima-Cho, Naka-Ku, Hiroshima, 730-8655, Japan
| | - Kotaro Urayama
- Department of Pediatric Cardiology, Tsuchiya General Hospital, 3-30 Nakajima-Cho, Naka-Ku, Hiroshima, 730-8655, Japan
| | - Mio Okano
- Department of Radiological Technology, Tsuchiya General Hospital, 3-30 Nakajima-Cho, Naka-Ku, Hiroshima, 730-8655, Japan
| | - Yuko Morikawa
- Department of Radiological Technology, Tsuchiya General Hospital, 3-30 Nakajima-Cho, Naka-Ku, Hiroshima, 730-8655, Japan
| | - Risa Morita
- Department of Pediatric Cardiology, Tsuchiya General Hospital, 3-30 Nakajima-Cho, Naka-Ku, Hiroshima, 730-8655, Japan
| | - Tomoyasu Sato
- Department of Diagnostic Radiology, Tsuchiya General Hospital, 3-30 Nakajima-Cho, Naka-Ku, Hiroshima, 730-8655, Japan
| |
Collapse
|
3
|
Shirzadi H, Shariatmadari F, Karimi‐Torshizi MA, Masoudi AA, Rahimi S, Saba F, Zaboli G, Hedayat‐Evrigh N. Diets containing phytobiotics, l-arginine, vitamin E and captopril modulate ascites syndrome-related genes expression in broiler chickens exposed to low ambient temperature. Vet Med Sci 2024; 10:e1542. [PMID: 39049705 PMCID: PMC11269884 DOI: 10.1002/vms3.1542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Our hypothesis centred on the potential to mitigate ascites outbreaks in birds exposed to cold stress by inhibiting pulmonary artery contraction through dietary intervention. OBJECTIVE This study aimed to evaluate the effect of natural and synthetic medications on growth performance, ascites-related parameters and the expression of ascites-related genes in the lung tissue of broiler chickens under low ambient temperature. METHODS We randomly assigned 450 one-day-old male Ross 308 chicks to six dietary treatments across five replicate pens, each containing 15 chicks. The treatments included a basal diet (control), and the basal diet was supplemented with hydroalcoholic extracts of sumac (HES, 200 mg/kg), Syrian mesquite (HEM, 200 mg/kg), l-arginine (40% above requirement), captopril (15 mg/kg) and vitamin E (100 mg/kg). RESULTS Diets containing HEM, l-arginine and vitamin E resulted in increased average daily gain on days 8-14 and 0-28, whereas HES showed a similar effect only during days 8-14 compared to the control diet (p < 0.05). Additionally, feed additives decreased packed cell volume, left and right ventricle volumes and systolic blood pressure (p < 0.05). Moreover, chickens fed the control and l-arginine diets exhibited higher levels of angiotensin converting enzyme (ACE) mRNA in lung tissue compared to those fed HES, HEM and captopril (p < 0.05). Meanwhile, supplementation with HEM and l-arginine increased the expression of inducible nitric oxide synthase (iNOS) mRNA in lung tissue compared to other treatments (p < 0.05). Regarding Cu/Zn-superoxide dismutase (Cu/Zn-SOD) expression, feed additives increased mRNA level in lung tissue, except for captopril (p < 0.05). CONCLUSIONS This study demonstrates that the plant extracts may reduce the incidence of ascites syndrome not only through their antioxidant properties but also by modulating the expression of ACE, iNOS and Cu/Zn-SOD genes.
Collapse
Affiliation(s)
- Hassan Shirzadi
- Department of Animal Science, Faculty of AgricultureIlam UniversityIlamIran
| | - Farid Shariatmadari
- Department of Poultry Science, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | | | - Ali Akbar Masoudi
- Department of Animal Science, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of AgricultureTarbiat Modares UniversityTehranIran
| | - Fakhredin Saba
- Department of Laboratory ScienceKermanshah University of Medical SciencesKermanshahIran
| | - Gholamreza Zaboli
- Department of Ostrich, Special Domestic Animals InstituteResearch Institute of ZabolZabolIran
| | - Nemat Hedayat‐Evrigh
- Department of Animal SciencesCollege of Agricultural Sciences and Natural ResourcesUniversity of Mohaghegh ArdabiliArdabilIran
| |
Collapse
|
4
|
Douglass MS, Kaplowitz MR, Zhang Y, Fike CD. Impact of l-citrulline on nitric oxide signaling and arginase activity in hypoxic human pulmonary artery endothelial cells. Pulm Circ 2023; 13:e12221. [PMID: 37063746 PMCID: PMC10091859 DOI: 10.1002/pul2.12221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/18/2023] Open
Abstract
Impaired nitric oxide (NO) signaling contributes to the development of pulmonary hypertension (PH). The l-arginine precursor, l-citrulline, improves NO signaling and has therapeutic potential in PH. However, there is evidence that l-citrulline might increase arginase activity, which in turn, has been shown to contribute to PH. Our major purpose was to determine if l-citrulline increases arginase activity in hypoxic human pulmonary artery endothelial cells (PAECs). In addition, to avoid potential adverse effects from high dose l-citrulline monotherapy, we evaluated whether the effect on NO signaling is greater using co-treatment with l-citrulline and another agent that improves NO signaling, folic acid, than either alone. Arginase activity was measured in human PAECs cultured under hypoxic conditions in the presence of l-citrulline (0-1 mM). NO production and endothelial nitric oxide synthase (eNOS) coupling, as assessed by eNOS dimer-to-monomer ratios, were measured in PAECs treated with l-citrulline and/or folic acid (0.2 μM). Arginase activity increased in hypoxic PAECs treated with 1 mM but not with either 0.05 or 0.1 mM l-citrulline. Co-treatment with folic acid and 0.1 mM l-citrulline increased NO production and eNOS dimer-to-monomer ratios more than treatment with either alone. The potential to increase arginase activity suggests that there might be plasma l-citrulline concentrations that should not be exceeded when using l-citrulline to treat PH. Rather than progressively increasing the dose of l-citrulline as a monotherapy, co-therapy with l-citrulline and folic acid merits consideration, due to the possibility of achieving efficacy at lower doses and minimizing side effects.
Collapse
Affiliation(s)
| | | | - Yongmei Zhang
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| | - Candice D. Fike
- Department of PediatricsUniversity of UtahSalt Lake CityUtahUSA
| |
Collapse
|
5
|
Zhu R, Lei Y, Shi F, Tian Q, Zhou X. Arginine Reduces Glycation in γ 2 Subunit of AMPK and Pathologies in Alzheimer's Disease Model Mice. Cells 2022; 11:3520. [PMID: 36359916 PMCID: PMC9655994 DOI: 10.3390/cells11213520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 09/14/2023] Open
Abstract
UNLABELLED The metabolism disorders are a common convergence of Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). The characteristics of AD are senile plaques and neurofibrillary tangles (NFTs) composed by deposits of amyloid-β (Aβ) and phosphorylated tau, respectively. Advanced glycation end-products (AGEs) are a stable modification of proteins by non-enzymatic reactions, which could result in the protein dysfunction. AGEs are associated with some disease developments, such as diabetes mellitus and AD, but the effects of the glycated γ2 subunit of AMPK on its activity and the roles in AD onset are unknown. METHODS We studied the effect of glycated γ2 subunit of AMPK on its activity in N2a cells. In 3 × Tg mice, we administrated L-arginine once every two days for 45 days and evaluated the glycation level of γ2 subunit and function of AMPK and alternation of pathologies. RESULTS The glycation level of γ2 subunit was significantly elevated in 3 × Tg mice as compared with control mice, meanwhile, the level of pT172-AMPK was obviously lower in 3 × Tg mice than that in control mice. Moreover, we found that arginine protects the γ2 subunit of AMPK from glycation, preserves AMPK function, and improves pathologies and cognitive deficits in 3 × Tg mice. CONCLUSIONS Arginine treatment decreases glycated γ2 subunit of AMPK and increases p-AMPK levels in 3 × Tg mice, suggesting that reduced glycation of the γ2 subunit could ameliorate AMPK function and become a new target for AD therapy in the future.
Collapse
Affiliation(s)
| | | | | | - Qing Tian
- Key Laboratory of Neurological Disease of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xinwen Zhou
- Key Laboratory of Neurological Disease of Education Ministry, Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Zhou H, Yang Y, Wang L, Ye S, Liu J, Gong P, Qian Y, Zeng H, Chen X. Integrated multi-omic data reveal the potential molecular mechanisms of the nutrition and flavor in Liancheng white duck meat. Front Genet 2022; 13:939585. [PMID: 36046229 PMCID: PMC9421069 DOI: 10.3389/fgene.2022.939585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022] Open
Abstract
The Liancheng white (LW) duck is one of the most valued Chinese indigenous poultry breeds. Its meat is rich in nutrients and has distinct flavors, but the molecular mechanisms behind them are unknown. To address this issue, we measured and compared multi-omic data (genome, transcriptome, and metabolome) of breast meat from LW ducks and the Mianyang Shelduck (MS) ducks. We found that the LW duck has distinct breed-specific genetic features, including numerous mutant genes with differential expressions associated with amino acid metabolism and transport activities. The metabolome driven by genetic materials was also seen to differ between the two breeds. For example, several amino acids that are beneficial for human health, such as L-Arginine, L-Ornithine, and L-lysine, were found in considerably higher concentrations in LW muscle than in MS duck muscle (p < 0.05). SLC7A6, a mutant gene, was substantially upregulated in the LW group (p < 0.05), which may lead to excessive L-arginine and L-ornithine accumulation in LW duck meat through transport regulation. Further, guanosine monophosphate (GMP), an umami-tasting molecule, was considerably higher in LW muscle (p < 0.05), while L-Aspartic acid was significantly abundant in MS duck meat (p < 0.05), showing that the LW duck has a different umami formation. Overall, this study contributed to our understanding of the molecular mechanisms driving the enriched nutrients and distinct umami of LW duck meat, which will provide a useful reference for duck breeding.
Collapse
Affiliation(s)
- Hao Zhou
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Yang
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Lixia Wang
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Shengqiang Ye
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Jiajia Liu
- Department of Animal Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Gong
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Yunguo Qian
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
| | - Huijun Zeng
- Wuhan Institute for Food and Cosmetic Control, Wuhan, China
- Key Laboratory of Edible Oil Quality and Safety for State Market Regulation, Wuhan, China
- *Correspondence: Huijun Zeng, ; Xing Chen,
| | - Xing Chen
- Insitute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Science, Wuhan, China
- *Correspondence: Huijun Zeng, ; Xing Chen,
| |
Collapse
|
7
|
Kabwe JC, Sawada H, Mitani Y, Oshita H, Tsuboya N, Zhang E, Maruyama J, Miyasaka Y, Ko H, Oya K, Ito H, Yodoya N, Otsuki S, Ohashi H, Okamoto R, Dohi K, Nishimura Y, Mashimo T, Hirayama M, Maruyama K. CRISPR-mediated Bmpr2 point mutation exacerbates late pulmonary vasculopathy and reduces survival in rats with experimental pulmonary hypertension. Respir Res 2022; 23:87. [PMID: 35395852 PMCID: PMC8994407 DOI: 10.1186/s12931-022-02005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Background Patients with pulmonary arterial hypertension (PAH) carrying bone morphogenetic protein receptor type 2 (Bmpr2) mutations present earlier with severe hemodynamic compromise and have poorer survival outcomes than those without mutation. The mechanism underlying the worsening clinical phenotype of PAH with Bmpr2 mutations has been largely unaddressed in rat models of pulmonary hypertension (PH) because of the difficulty in reproducing progressive PH in mice and genetic modification in rats. We tested whether a clinically-relevant Bmpr2 mutation affects the progressive features of monocrotaline (MCT) induced-PH in rats. Methods A monoallelic single nucleotide insertion in exon 1 of Bmpr2 (+/44insG) was generated in rats using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9, then PH, pulmonary vascular disease (PVD) and survival after MCT injection with or without a phosphodiesterase type 5 inhibitor, tadalafil, administration were assessed. Results The +/44insG rats had reduced BMPR2 signalling in the lungs compared with wild-type. PH and PVD assessed at 3-weeks after MCT injection were similar in wild-type and +/44insG rats. However, survival at 4-weeks after MCT injection was significantly reduced in +/44insG rats. Among the rats surviving at 4-weeks after MCT administration, +/44insG rats had increased weight ratio of right ventricle to left ventricle plus septum (RV/[LV + S]) and % medial wall thickness (MWT) in pulmonary arteries (PAs). Immunohistochemical analysis showed increased vessels with Ki67-positive cells in the lungs, decreased mature and increased immature smooth muscle cell phenotype markers in the PAs in +/44insG rats compared with wild-type at 3-weeks after MCT injection. Contraction of PA in response to prostaglandin-F2α and endothelin-1 were significantly reduced in the +/44insG rats. The +/44insG rats that had received tadalafil had a worse survival with a significant increase in RV/(LV + S), %MWT in distal PAs and RV myocardial fibrosis compared with wild-type. Conclusions The present study demonstrates that the Bmpr2 mutation promotes dedifferentiation of PA smooth muscle cells, late PVD and RV myocardial fibrosis and adversely impacts both the natural and post-treatment courses of MCT-PH in rats with significant effects only in the late stages and warrants preclinical studies using this new genetic model to optimize treatment outcomes of heritable PAH. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02005-w.
Collapse
Affiliation(s)
- Jane Chanda Kabwe
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan
| | - Hirofumi Sawada
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan. .,The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan.
| | - Yoshihide Mitani
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hironori Oshita
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan.,The Department of Pediatrics, Nagoya City University School of Medicine, Aichi, Japan
| | - Naoki Tsuboya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Erquan Zhang
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan.,The Department of Neonatology, Fuzhou Children's Hospital of Fujian Province, Fujian Medical University, Fujian, China
| | - Junko Maruyama
- The Department of Clinical Engineering, Suzuka University of Medical Science, Mie, Japan
| | - Yoshiki Miyasaka
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideyoshi Ko
- The Department of Clinical Engineering, Suzuka University of Medical Science, Mie, Japan
| | - Kazunobu Oya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiromasa Ito
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Noriko Yodoya
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Shoichiro Otsuki
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Hiroyuki Ohashi
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Ryuji Okamoto
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Kaoru Dohi
- The Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Mie, Japan
| | - Yuhei Nishimura
- The Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Osaka University Graduate School of Medicine, Osaka, Japan.,Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masahiro Hirayama
- The Department of Pediatrics, Mie University Graduate School of Medicine, Mie, Japan
| | - Kazuo Maruyama
- The Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu city, Mie, 514-8507, Japan
| |
Collapse
|
8
|
Sun HJ, Wang ZC, Nie XW, Bian JS. Therapeutic potential of carbon monoxide in hypertension-induced vascular smooth muscle cell damage revisited: from physiology and pharmacology. Biochem Pharmacol 2022; 199:115008. [PMID: 35318039 DOI: 10.1016/j.bcp.2022.115008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 01/14/2023]
Abstract
As a chronic and progressive disorder, hypertension remains to be a serious public health problem around the world. Among the different types of hypertension, pulmonary arterial hypertension (PAH) is a devastating disease associated with pulmonary arteriole remodeling, right ventricular failure and death. The contemporary management of systemic hypertension and PAH has substantially grown since more therapeutic targets and/or agents have been developed. Evolving treatment strategies targeting the vascular remodeling lead to improving outcomes in patients with hypertension, nevertheless, significant advancement opportunities for developing better antihypertensive drugs remain. Carbon monoxide (CO), an active endogenous gasotransmitter along with hydrogen sulfide (H2S) and nitric oxide (NO), is primarily generated by heme oxygenase (HO). Cumulative evidence suggests that CO is considered as an important signaling molecule under both physiological and pathological conditions. Studies have shown that CO confers a number of biological and pharmacological properties, especially its involvement in the pathological process and treatment of hypertension-related vascular remodeling. This review will critically outline the roles of CO in hypertension-associated vascular remodeling and discuss the underlying mechanisms for the protective effects of CO against hypertension and vascular remodeling. In addition, we will propose the challenges and perspectives of CO in hypertensive vascular remodeling. It is expected that a comprehensive understanding of CO in the vasculature might be essential to translate CO to be a novel pharmacological agent for hypertension-induced vascular remodeling.
Collapse
Affiliation(s)
- Hai-Jian Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zi-Chao Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xiao-Wei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China.
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
9
|
Ito T, Zhang E, Omori A, Kabwe J, Kawai M, Maruyama J, Okada A, Yokochi A, Sawada H, Mitani Y, Maruyama K. Model difference in the effect of cilostazol on the development of experimental pulmonary hypertension in rats. BMC Pulm Med 2021; 21:377. [PMID: 34801000 PMCID: PMC8605570 DOI: 10.1186/s12890-021-01710-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preventing pulmonary vascular remodeling is a key strategy for pulmonary hypertension (PH). Causes of PH include pulmonary vasoconstriction and inflammation. This study aimed to determine whether cilostazol (CLZ), a phosphodiesterase-3 inhibitor, prevents monocrotaline (MCT)- and chronic hypoxia (CH)-induced PH development in rats. METHODS Fifty-one male Sprague-Dawley rats were fed rat chow with (0.3% CLZ) or without CLZ for 21 days after a single injection of MCT (60 mg/kg) or saline. Forty-eight rats were fed rat chow with and without CLZ for 14 days under ambient or hypobaric (air at 380 mmHg) CH exposure. The mean pulmonary artery pressure (mPAP), the right ventricle weight-to-left ventricle + septum weight ratio (RV/LV + S), percentages of muscularized peripheral pulmonary arteries (%Muscularization) and medial wall thickness of small muscular arteries (%MWT) were assessed. Levels of the endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (peNOS), AKT, pAKT and IκB proteins in lung tissue were measured using Western blotting. Monocyte chemotactic protein (MCP)-1 mRNA in lung tissue was also assessed. RESULTS mPAP [35.1 ± 1.7 mmHg (MCT) (n = 9) vs. 16.6 ± 0.7 (control) (n = 9) (P < 0.05); 29.1 ± 1.5 mmHg (CH) (n = 10) vs. 17.5 ± 0.5 (control) (n = 10) (P < 0.05)], RV/LV + S [0.40 ± 0.01 (MCT) (n = 18) vs. 0.24 ± 0.01 (control) (n = 10) (P < 0.05); 0.41 ± 0.03 (CH) (n = 13) vs. 0.27 ± 0.06 (control) (n = 10) (P < 0.05)], and %Muscularization and %MWT were increased by MCT injection and CH exposure. CLZ significantly attenuated these changes in the MCT model [mPAP 25.1 ± 1.1 mmHg (n = 11) (P < 0.05), RV/LV + S 0.30 ± 0.01 (n = 14) (P < 0.05)]. In contrast, these CLZ effects were not observed in the CH model. Lung eNOS protein expression was unchanged in the MCT model and increased in the CH model. Lung protein expression of AKT, phosphorylated AKT, and IκB was downregulated by MCT, which was attenuated by CLZ; the CH model did not change these proteins. Lung MCP-1 mRNA levels were increased in MCT rats but not CH rats. CONCLUSIONS We found model differences in the effect of CLZ on PH development. CLZ might exert a preventive effect on PH development in an inflammatory PH model but not in a vascular structural change model of PH preceded by vasoconstriction. Thus, the preventive effect of CLZ on PH development might depend on the PH etiology.
Collapse
Affiliation(s)
- Toshikazu Ito
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Fuzhou Children's Hospital of Fujian Province Affiliated with Fujian Medical University, 145-817-Middle Road, Gulou, Fuzhou, 350005, Fujian, China
| | - Ayaka Omori
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Jane Kabwe
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masako Kawai
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, 510-0293, Japan
| | - Junko Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, 510-0293, Japan
| | - Amphone Okada
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ayumu Yokochi
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirofumi Sawada
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
10
|
Douglass M, Dikalova A, Kaplowitz MR, Zhang Y, Cunningham G, Summar M, Fike CD. Folic acid, either solely or combined with L-citrulline, improves NO signaling and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. Physiol Rep 2021; 9:e15096. [PMID: 34762361 PMCID: PMC8582293 DOI: 10.14814/phy2.15096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022] Open
Abstract
Concomitant with developing pulmonary hypertension (PH), newborn piglets exposed to chronic hypoxia develop pulmonary vascular NO signaling impairments. PH is reduced and NO signaling is improved in chronically hypoxic piglets treated with the NO-arginine precursor, L-citrulline. Folic acid positively impacts NO signaling. We evaluated whether the effect on NO signaling and PH is greater using co-treatment with folic acid and L-citrulline than either alone. From day 3 to day 10 of hypoxia, piglets were treated solely with folic acid, solely with L-citrulline, or co-treated with both. Catheters were placed to measure in vivo hemodynamics. NO production was measured in vitro in dissected pulmonary arteries. Compared to normoxic piglets, pulmonary vascular resistance (PVR) was elevated and NO production was reduced in untreated hypoxic piglets. Regardless of treatment strategy, PVR was less in all three treated groups of hypoxic piglets when compared to the untreated hypoxic group. In addition, for all three groups of treated hypoxic piglets, NO production was higher than the untreated group. Improvements in PVR and NO production did not differ between piglets co-treated with folic acid and L-citrulline and those treated solely with either. Thus, the impact on NO production and PVR was not augmented by combining folic acid and L-citrulline treatments. Nonetheless, treatment with folic acid, either singly or when combined with L-citrulline, increases NO production and inhibits PH in chronically hypoxic newborn piglets. Folic acid merits consideration as a therapy for PH in human infants with chronic heart and lung conditions that are associated with chronic hypoxia.
Collapse
Affiliation(s)
- Matthew Douglass
- Department of PediatricsUniversity of Utah HealthSalt Lake CityUtahUSA
| | - Anna Dikalova
- Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Mark R. Kaplowitz
- Department of PediatricsUniversity of Utah HealthSalt Lake CityUtahUSA
| | - Yongmei Zhang
- Department of PediatricsUniversity of Utah HealthSalt Lake CityUtahUSA
| | - Gary Cunningham
- Division of Genetics and MetabolismChildren’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Marshall Summar
- Division of Genetics and MetabolismChildren’s National Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Candice D. Fike
- Department of PediatricsUniversity of Utah HealthSalt Lake CityUtahUSA
| |
Collapse
|
11
|
Xue X, Zhang S, Jiang W, Wang J, Xin Q, Sun C, Li K, Qi T, Luan Y. Protective effect of baicalin against pulmonary arterial hypertension vascular remodeling through regulation of TNF-α signaling pathway. Pharmacol Res Perspect 2021; 9:e00703. [PMID: 33421306 PMCID: PMC7796790 DOI: 10.1002/prp2.703] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive cardiovascular disease with high mortality. However, there were no efficient medical drugs for PAH to enormously improve the survival and quality of life measures. The present study aimed to explore the protective effect of baicalin against experimental PAH in vivo and vitro. All the experimental rats received intraperitoneal injection of monocrotaline (MCT) to induce PAH model. Baicalin was given by intragastric administration from 2 days after MCT injection. Forty animals were randomly divided into four groups: Control, MCT, saline-, and baicalin-treated groups (n = 10 in each). Post-operation, hemodynamic data, and index of right ventricular hypertrophy (RVHI) were recorded to evaluate the inhibition of baicalin on MCT-induced PAH. Furthermore, pulmonary artery smooth muscle cells (PASMCs) model induced by tumor necrosis factor-α (TNF-α) was used to observe the inhibition of vascular cells proliferation in vitro. The results demonstrated that baicalin significantly attenuated MCT-induced right ventricular systolic pressure (RVSP), the index of right ventricular hypertrophy, and vessel wall thickness; inhibit inflammatory and cell proliferation induced by MCT or TNF-α, respectively. In addition, we found that baicalin might protect against experimental PAH via regulating the TNF-α/BMPR2 signaling pathway.
Collapse
Affiliation(s)
- Xia Xue
- Department of PharmacyThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Shanshan Zhang
- Department of EmergencyThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Wen Jiang
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Jue Wang
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Qian Xin
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Chao Sun
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Kailin Li
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Tonggang Qi
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Yun Luan
- Central Research LaboratoryThe Second HospitalCheeloo College of MedicineShandong UniversityJinanShandongChina
| |
Collapse
|
12
|
He YY, Yan Y, Jiang X, Zhao JH, Wang Z, Wu T, Wang Y, Guo SS, Ye J, Lian TY, Xu XQ, Zhang JL, Sun K, Peng FH, Zhou YP, Mao YM, Zhang X, Chen JW, Zhang SY, Jing ZC. Spermine promotes pulmonary vascular remodelling and its synthase is a therapeutic target for pulmonary arterial hypertension. Eur Respir J 2020; 56:13993003.00522-2020. [PMID: 32513782 DOI: 10.1183/13993003.00522-2020] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022]
Abstract
Pathological mechanisms of pulmonary arterial hypertension (PAH) remain largely unexplored. Effective treatment of PAH remains a challenge. The aim of this study was to discover the underlying mechanism of PAH through functional metabolomics and to help develop new strategies for prevention and treatment of PAH.Metabolomic profiling of plasma in patients with idiopathic PAH was evaluated through high-performance liquid chromatography mass spectrometry, with spermine identified to be the most significant and validated in another independent cohort. The roles of spermine and spermine synthase were examined in pulmonary arterial smooth muscle cells (PASMCs) and rodent models of pulmonary hypertension.Using targeted metabolomics, plasma spermine levels were found to be higher in patients with idiopathic PAH compared to healthy controls. Spermine administration promoted proliferation and migration of PASMCs and exacerbated vascular remodelling in rodent models of pulmonary hypertension. The spermine-mediated deteriorative effect can be attributed to a corresponding upregulation of its synthase in the pathological process. Inhibition of spermine synthase in vitro suppressed platelet-derived growth factor-BB-mediated proliferation of PASMCs, and in vivo attenuated monocrotaline-mediated pulmonary hypertension in rats.Plasma spermine promotes pulmonary vascular remodelling. Inhibiting spermine synthesis could be a therapeutic strategy for PAH.
Collapse
Affiliation(s)
- Yang-Yang He
- State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Y-Y. He, Y. Yan and X. Jiang contributed equally to this work
| | - Yi Yan
- Dept of Cardiopulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.,Y-Y. He, Y. Yan and X. Jiang contributed equally to this work
| | - Xin Jiang
- Dept of Cardiology and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Y-Y. He, Y. Yan and X. Jiang contributed equally to this work
| | - Jun-Han Zhao
- State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Wu
- Dept of Cardiology and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Wang
- Dept of Respiratory and Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shan-Shan Guo
- Dept of Biochemistry, Pharmaceutical College, Henan University, Kaifeng, China
| | - Jue Ye
- State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tian-Yu Lian
- Dept of Cardiology and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xi-Qi Xu
- Dept of Cardiology and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin-Lan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kai Sun
- Dept of Cardiology and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fu-Hua Peng
- State Key Laboratory of Cardiovascular Disease and FuWai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Ping Zhou
- Dept of Cardiology and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Min Mao
- Dept of Respiratory Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ji-Wang Chen
- Section of Pulmonary, Critical Care Medicine, Sleep and Allergy, Dept of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Shu-Yang Zhang
- Dept of Cardiology and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,S-Y. Zhang and Z-C. Jing contributed equally to this article as lead authors and supervised the work
| | - Zhi-Cheng Jing
- Dept of Cardiology and Key Laboratory of Pulmonary Vascular Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,S-Y. Zhang and Z-C. Jing contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
13
|
Abstract
Supplemental arginine has shown promise as a safe therapeutic option to improve endogenous nitric oxide (NO) regulation in cardiovascular diseases associated with endothelial dysfunction. In clinical studies in adults, L-arginine, an endogenous amino acid, was reported to improve cardiovascular function in hypertension, pulmonary hypertension, preeclampsia, angina, and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) syndrome. L-citrulline, a natural precursor of L-arginine, is more bioavailable than L-arginine because it avoids hepatic first-pass metabolism and has a longer circulation time. Although not yet well-studied, arginine/citrulline has immense therapeutic potential in some life-threatening diseases in children. However, the optimal clinical development of arginine or citrulline in children requires more information about pharmacokinetics and exposure-response relationships at appropriate ages and under relevant disease states. This article summarizes the preclinical and clinical studies of arginine/citrulline in both adults and children, including currently available pharmacokinetic information. The pharmacology of arginine/citrulline is confounded by several patient-specific factors such as variations in baseline arginine/citrulline due to developmental ages and disease states. Currently available pharmacokinetic studies are insufficient to inform the optimal design of clinical studies, especially in children. Successful bench-to-bedside clinical translation of arginine supplementation awaits information from well-designed pharmacokinetic/pharmacodynamic studies, along with pharmacometric approaches.
Collapse
|
14
|
Dikalova A, Aschner JL, Kaplowitz MR, Cunningham G, Summar M, Fike CD. Combined l-citrulline and tetrahydrobiopterin therapy improves NO signaling and ameliorates chronic hypoxia-induced pulmonary hypertension in newborn pigs. Am J Physiol Lung Cell Mol Physiol 2020; 318:L762-L772. [PMID: 32073878 PMCID: PMC7191483 DOI: 10.1152/ajplung.00280.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 01/21/2023] Open
Abstract
Newborn pigs with chronic hypoxia-induced pulmonary hypertension (PH) have evidence of endothelial nitric oxide synthase (eNOS) uncoupling. In this model, we showed that therapies that promote eNOS coupling, either tetrahydrobiopterin (BH4), a NOS cofactor, or l-citrulline, a NO-l-arginine precursor, inhibit PH. We wanted to determine whether cotreatment with l-citrulline and a BH4 compound, sapropterin dihydrochloride, improves NO signaling and chronic hypoxia-induced PH more markedly than either alone. Normoxic (control) and hypoxic piglets were studied. Some hypoxic piglets received sole treatment with l-citrulline or BH4, or were cotreated with l-citrulline and BH4, from day 3 through day 10 of hypoxia. Catheters were placed for hemodynamic measurements, and pulmonary arteries were dissected to assess eNOS dimer-to-monomer ratios and NO production. In untreated hypoxic piglets, pulmonary vascular resistance (PVR) was higher and NO production and eNOS dimer-to-monomer ratios were lower than in normoxic piglets. Compared with the untreated hypoxic group, PVR was lower in hypoxic piglets cotreated with l-citrulline and BH4 and in those treated with l-citrulline alone but not for those treated solely with BH4. NO production and eNOS dimer-to-monomer ratios were greater for all three treated hypoxic groups compared with the untreated group. Notably, greater improvements in PVR, eNOS dimer-to-monomer ratios, and NO production were found in hypoxic piglets cotreated with l-citrulline and BH4 than in piglets treated with either alone. Cotreatment with l-citrulline and BH4 more effectively improves NO signaling and inhibits chronic hypoxia-induced PH than either treatment alone. Combination therapies may offer enhanced therapeutic capacity for challenging clinical conditions, such as chronic neonatal PH.
Collapse
Affiliation(s)
- Anna Dikalova
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Judy L Aschner
- Department of Pediatrics, Albert Einstein College of Medicine, New York, New York
- Department of Pediatrics, Hackensack Meridian Health School of Medicine at Seton Hall University, Nutley, New Jersey
| | - Mark R Kaplowitz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| | - Gary Cunningham
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Marshall Summar
- Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia
| | - Candice D Fike
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, University of Utah Health, Salt Lake City, Utah
| |
Collapse
|
15
|
Lin Z, Zheng J, Chen W, Ding T, Yu W, Xia B. Assessing left ventricular systolic function in children with a history of Kawasaki disease. BMC Cardiovasc Disord 2020; 20:131. [PMID: 32164537 PMCID: PMC7068877 DOI: 10.1186/s12872-020-01409-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The incidence of Kawasaki disease (KD) is increasing. Indeed, KD has become the most common cause of acquired heart disease in children. Previous studies have well summarized the acute phase left ventricular (LV) systolic dysfunction using speckle tracking echocardiography (STE); however, changes in LV systolic function after long-term follow-up remain unclear. METHODS One hundred children with a history of KD, but without coronary artery aneurysms, were enrolled. These children were divided into two subgroups based on the presence or absence of coronary artery dilatation (CAD). The duration of follow-up was > 7 years. The control group consisted of 51 healthy children. The LV myocardial strain were measured by two- and three-dimensional STE. RESULTS Two-dimensional STE not only revealed that LV longitudinal strain decreased in part of segments in both KD groups, but also showed that global strain decreased in the KD group with CAD compared to the controls (P < 0.05). Global longitudinal strain (GLS), global circumferential strain (GCS), global radial strain (GRS), and global area strain (GAS) were obtained by 3D STE. Compared to the controls, GLS and GAS decreased in both KD groups (P < 0.05). GCS and GRS decreased in the KD group with CAD, but was unchanged in the KD group without CAD (P < 0.05). CONCLUSIONS LV systolic dysfunction in children with KD and CAD was more severe than KD children without CAD compared to healthy children. This dysfunction can be assessed by LV regional and global myocardial strain using two- and three-dimensional STE.
Collapse
Affiliation(s)
- Zhou Lin
- Department of Ultrasound, Shenzhen Children's Hospital, Shenzhen, China
| | - Jingjing Zheng
- Department of Ultrasound, Shenzhen Children's Hospital, Shenzhen, China
| | - Weiling Chen
- Department of Ultrasound, Shenzhen Children's Hospital, Shenzhen, China
| | - Tingting Ding
- Department of Ultrasound, Shenzhen Children's Hospital, Shenzhen, China
| | - Wei Yu
- Department of Ultrasound, Shenzhen Children's Hospital, Shenzhen, China
| | - Bei Xia
- Department of Ultrasound, Shenzhen Children's Hospital, Shenzhen, China.
| |
Collapse
|
16
|
Dillard J, Perez M, Chen B. Therapies that enhance pulmonary vascular NO-signaling in the neonate. Nitric Oxide 2019; 95:45-54. [PMID: 31870967 DOI: 10.1016/j.niox.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/25/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023]
Abstract
There are several pulmonary hypertensive diseases that affect the neonatal population, including persistent pulmonary hypertension of the newborn (PPHN) and bronchopulmonary dysplasia (BPD)-associated pulmonary hypertension (PH). While the indication for inhaled nitric oxide (iNO) use is for late-preterm and term neonates with PPHN, there is a suboptimal response to this pulmonary vasodilator in ~40% of patients. Additionally, there are no FDA-approved treatments for BPD-associated PH or for preterm infants with PH. Therefore, investigating mechanisms that alter the nitric oxide-signaling pathway has been at the forefront of pulmonary vascular biology research. In this review, we will discuss the various mechanistic pathways that have been targets in neonatal PH, including NO precursors, soluble guanylate cyclase modulators, phosphodiesterase inhibitors and antioxidants. We will review their role in enhancing NO-signaling at the bench, in animal models, as well as highlight their role in the treatment of neonates with PH.
Collapse
Affiliation(s)
- Julie Dillard
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA.
| | - Marta Perez
- Division of Neonatology, Stanley Manne Children's Research Institute, Ann and Robert H Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Bernadette Chen
- Pulmonary Hypertension Group, Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
17
|
Lo CCW, Moosavi SM, Bubb KJ. The Regulation of Pulmonary Vascular Tone by Neuropeptides and the Implications for Pulmonary Hypertension. Front Physiol 2018; 9:1167. [PMID: 30190678 PMCID: PMC6116211 DOI: 10.3389/fphys.2018.01167] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
Pulmonary hypertension (PH) is an incurable, chronic disease of small pulmonary vessels. Progressive remodeling of the pulmonary vasculature results in increased pulmonary vascular resistance (PVR). This causes secondary right heart failure. PVR is tightly regulated by a range of pulmonary vasodilators and constrictors. Endothelium-derived substances form the basis of most current PH treatments. This is particularly the case for pulmonary arterial hypertension. The major limitation of current treatments is their inability to reverse morphological changes. Thus, there is an unmet need for novel therapies to reduce the morbidity and mortality in PH. Microvessels in the lungs are highly innervated by sensory C fibers. Substance P and calcitonin gene-related peptide (CGRP) are released from C-fiber nerve endings. These neuropeptides can directly regulate vascular tone. Substance P tends to act as a vasoconstrictor in the pulmonary circulation and it increases in the lungs during experimental PH. The receptor for substance P, neurokinin 1 (NK1R), mediates increased pulmonary pressure. Deactivation of NK1R with antagonists, or depletion of substance P prevents PH development. CGRP is a potent pulmonary vasodilator. CGRP receptor antagonists cause elevated pulmonary pressure. Thus, the balance of these peptides is crucial within the pulmonary circulation (Graphical Abstract). Limited progress has been made in understanding their impact on pulmonary pathophysiology. This is an intriguing area of investigation to pursue. It may lead to promising new candidate therapies to combat this fatal disease. This review provides a summary of the current knowledge in this area. It also explores possible future directions for neuropeptides in PH.
Collapse
Affiliation(s)
- Charmaine C. W. Lo
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW, Australia
| | - Seyed M. Moosavi
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kristen J. Bubb
- Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW, Australia
| |
Collapse
|
18
|
Viswan A, Singh C, Rai RK, Azim A, Sinha N, Baronia AK. Metabolomics based predictive biomarker model of ARDS: A systemic measure of clinical hypoxemia. PLoS One 2017; 12:e0187545. [PMID: 29095932 PMCID: PMC5667881 DOI: 10.1371/journal.pone.0187545] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 10/20/2017] [Indexed: 12/25/2022] Open
Abstract
Despite advancements in ventilator technologies, lung supportive and rescue therapies, the outcome and prognostication in acute respiratory distress syndrome (ARDS) remains incremental and ambiguous. Metabolomics is a potential insightful measure to the diagnostic approaches practiced in critical disease settings. In our study patients diagnosed with mild and moderate/severe ARDS clinically governed by hypoxemic P/F ratio between 100-300 but with indistinct molecular phenotype were discriminated employing nuclear magnetic resonance (NMR) based metabolomics of mini bronchoalveolar lavage fluid (mBALF). Resulting biomarker prototype comprising six metabolites was substantiated highlighting ARDS susceptibility/recovery. Both the groups (mild and moderate/severe ARDS) showed distinct biochemical profile based on 83.3% classification by discriminant function analysis and cross validated accuracy of 91% using partial least squares discriminant analysis as major classifier. The predictive performance of narrowed down six metabolites were found analogous with chemometrics. The proposed biomarker model consisting of six metabolites proline, lysine/arginine, taurine, threonine and glutamate were found characteristic of ARDS sub-stages with aberrant metabolism observed mainly in arginine, proline metabolism, lysine synthesis and so forth correlating to diseased metabotype. Thus NMR based metabolomics has provided new insight into ARDS sub-stages and conclusively a precise biomarker model proposed, reflecting underlying metabolic dysfunction aiding prior clinical decision making.
Collapse
Affiliation(s)
- Akhila Viswan
- Centre of Biomedical Research, Lucknow, Uttar Pradesh, India
- Faculty of Engineering and Technology, Dr. A. P. J Abdul Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Chandan Singh
- Centre of Biomedical Research, Lucknow, Uttar Pradesh, India
| | - Ratan Kumar Rai
- Centre of Biomedical Research, Lucknow, Uttar Pradesh, India
| | - Afzal Azim
- Department of Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Neeraj Sinha
- Centre of Biomedical Research, Lucknow, Uttar Pradesh, India
| | - Arvind Kumar Baronia
- Department of Critical Care Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
19
|
Telcharova-Mihaylovska A, Nikolova I, Marinov R, Stefanov S, Gaidarova M, Ganeva M, Temelkova K. Kawasaki disease – experience of Pediatric University Hospital, Sofia, Bulgaria, 1993–2014. Part II: cardiovascular manifestations and treatment. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1347522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Albena Telcharova-Mihaylovska
- Clinic of Rheumatology, Pediatric University Hospital SBALDB “Prof. Ivan Mitev”, Medical University of Sofia, Sofia, Bulgaria
| | - Irina Nikolova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| | - Rumen Marinov
- Department of Pediatric Cardiology, National Cardiology Hospital, Sofia, Bulgaria
| | - Stefan Stefanov
- Clinic of Rheumatology, Pediatric University Hospital SBALDB “Prof. Ivan Mitev”, Medical University of Sofia, Sofia, Bulgaria
| | - Maria Gaidarova
- Clinic of Nephrology, Pediatric University Hospital SBALDB “Prof. Ivan Mitev”, Medical University of Sofia, Sofia, Bulgaria
| | - Margarita Ganeva
- Clinic of Rheumatology, Pediatric University Hospital SBALDB “Prof. Ivan Mitev”, Medical University of Sofia, Sofia, Bulgaria
| | - Katya Temelkova
- Clinic of Rheumatology, Pediatric University Hospital SBALDB “Prof. Ivan Mitev”, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
20
|
Joshi M, Tulloh R. Kawasaki disease and coronary artery aneurysms: from childhood to adulthood. Future Cardiol 2017; 13:491-501. [DOI: 10.2217/fca-2017-0039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kawasaki disease is an acute, systemic vasculitis of childhood and confers a 25% risk of developing coronary artery aneurysms. Its etiology is unknown, but the incidence is increasing rapidly with linked gene polymorphisms having been identified. A constellation of symptoms, epidemics and seasonality all implicate an unidentified infective or environmental cause. Intravenous immunoglobulin therapy, aspirin and steroids all form the mainstay of acute treatment and reduces the incidence of coronary artery aneurysms if given before 7 days. However, in some, these lesions persist and require ongoing management during follow-up during childhood and into adult life. Evidence for further investigations in order to minimize complications is presented in order to minimize the myofibroblast proliferation and stenosis in the long term.
Collapse
Affiliation(s)
- Manjiri Joshi
- Department of Cardiology, University of Bristol & Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol BS2 8BJ, UK
| | - Robert Tulloh
- Department of Cardiology, University of Bristol & Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol BS2 8BJ, UK
| |
Collapse
|
21
|
Parihar M, Singh S, Vignesh P, Gupta A, Rohit M. Mid-term Risk for Subclinical Atherosclerosis and Chronic Myocarditis in Children with Kawasaki Disease and Transient Coronary Abnormalities. Pediatr Cardiol 2017; 38:1123-1132. [PMID: 28512721 DOI: 10.1007/s00246-017-1626-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 05/09/2017] [Indexed: 01/20/2023]
Abstract
There is evidence for premature atherosclerosis and systemic arterial stiffening during follow-up of children with Kawasaki disease (KD) and coronary artery abnormalities (CAA). Moreover, patients with KD may also have subclinical myocardial involvement and inhomogeneous ventricular repolarization. The inhomogeneous ventricular repolarization manifests as increased QT dispersion on electrocardiography. There is a paucity of studies in endothelial dysfunction and QT dispersion in children with KD and transient CAA. Twenty children with KD and transient CAA were studied at least 1 year after resolution of CAA. Mean follow-up period between KD onset and enrolment in the study was 53.7 months. Twenty age and sex-matched controls were enrolled. High-resolution B-mode ultrasonography was used to analyze brachial artery dilatation in response to reactive hyperemia (cases and controls) and sublingual nitroglycerine (cases only). Carotid artery intima-media thickness (cIMT) and stiffness index were calculated. The difference between maximum and minimum QTc intervals on 12 lead electrocardiogram was calculated as QTc dispersion (QTcd). No statistically significant difference was noted in percent flow-mediated dilatation of brachial arteries in response to reactive hyperemia between cases (13.31 ± 10.41%) and controls (12.86 ± 7.09%). Sublingual nitroglycerine-mediated dilatation in children with KD was 14.88 ± 12.03%. Mean cIMT was similar in cases (0.036 ± 0.015 cm) and controls (0.035 ± 0.076 cm; p = 0.791). No statistically significant difference between groups was observed in mean QTcd values (0.057 ± 0.018 s vs. 0.059 ± 0.015 s in controls, p = 0.785). No evidence of significant endothelial dysfunction or increased QT dispersion in patients with KD and transient coronary artery abnormalities was found in our cohort when studied at a mean follow-up of 53.7 months. This is reassuring, and indicates that risk of subclinical atherosclerosis and myocarditis in a subset of children with KD and transient coronary artery abnormalities is not significant.
Collapse
Affiliation(s)
- Mansingh Parihar
- Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Surjit Singh
- Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anju Gupta
- Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manojkumar Rohit
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
22
|
Schreiber C, Eilenberg MS, Panzenboeck A, Winter MP, Bergmeister H, Herzog R, Mascherbauer J, Lang IM, Bonderman D. Combined oral administration of L-arginine and tetrahydrobiopterin in a rat model of pulmonary arterial hypertension. Pulm Circ 2017; 7:89-97. [PMID: 28680568 PMCID: PMC5448548 DOI: 10.1086/689289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 09/12/2016] [Indexed: 11/26/2022] Open
Abstract
Alterations in the nitric oxide (NO) pathway play a major role in pulmonary arterial hypertension (PAH). L-arginine (LA) and tetrahydrobiopterin (BH4) are main substrates in the production of NO, which mediates pulmonary vasodilation. Administration of either LA or BH4 decrease pulmonary artery pressure (PAP). A combined administration of both may have synergistic effects in the therapy of PAH. In a telemetrically monitored model of unilateral pneumonectomy and monocrotaline-induced PAH, male Sprague-Dawley rats received either LA (300 mg/kg; n = 15), BH4 (20 mg/kg; n = 15), the combination of LA and BH4 (300 mg/kg, 20 mg/kg; n = 15), or vehicle (control group; n = 10) from day 28 after monocrotaline induction. Therapy was orally administered once daily over consecutive 14 days. LA, BH4, or both equally lowered PAP, increased pulmonary vascular elasticity, restored spontaneous locomotoric activity, prevented body weight loss and palliated small vessel disease of severely pulmonary hypertensive rats. BH4 substitution lowered asymmetric dimethylarginine levels sustainably at 60 min after administration and downregulated endothelial NO synthase mRNA expression. No significant survival, macro- and histomorphologic or hemodynamic differences were found between therapy groups at the end of the study period. Administration of LA and BH4 both mediated a decrease of mean PAP, attenuated right ventricular hypertrophy and small vessel disease in monocrotaline-induced pulmonary hypertensive rats, though a combined administration of both substances did not reveal any synergistic therapy effects in our animal model.
Collapse
Affiliation(s)
- C Schreiber
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M S Eilenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - A Panzenboeck
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M P Winter
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - H Bergmeister
- Institute of Biomedical Research, Medical University of Vienna, Austria
| | - R Herzog
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - J Mascherbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - I M Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - D Bonderman
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| |
Collapse
|
23
|
Schreiber C, Eilenberg M, Panzenboeck A, Winter M, Bergmeister H, Herzog R, Mascherbauer J, Lang I, Bonderman D. Combined oral administration of L-arginine and tetrahydrobiopterin in a rat model of pulmonary arterial hypertension. Pulm Circ 2017. [DOI: 10.1177/2045893216677519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- C. Schreiber
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M.S. Eilenberg
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - A. Panzenboeck
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - M.P. Winter
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - H. Bergmeister
- Institute of Biomedical Research, Medical University of Vienna, Austria
| | - R. Herzog
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - J. Mascherbauer
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - I.M. Lang
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| | - D. Bonderman
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria
| |
Collapse
|
24
|
Morris CR, Hamilton-Reeves J, Martindale RG, Sarav M, Ochoa Gautier JB. Acquired Amino Acid Deficiencies: A Focus on Arginine and Glutamine. Nutr Clin Pract 2017; 32:30S-47S. [PMID: 28388380 DOI: 10.1177/0884533617691250] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonessential amino acids are synthesized de novo and therefore not diet dependent. In contrast, essential amino acids must be obtained through nutrition since they cannot be synthesized internally. Several nonessential amino acids may become essential under conditions of stress and catabolic states when the capacity of endogenous amino acid synthesis is exceeded. Arginine and glutamine are 2 such conditionally essential amino acids and are the focus of this review. Low arginine bioavailability plays a pivotal role in the pathogenesis of a growing number of varied diseases, including sickle cell disease, thalassemia, malaria, acute asthma, cystic fibrosis, pulmonary hypertension, cardiovascular disease, certain cancers, and trauma, among others. Catabolism of arginine by arginase enzymes is the most common cause of an acquired arginine deficiency syndrome, frequently contributing to endothelial dysfunction and/or T-cell dysfunction, depending on the clinical scenario and disease state. Glutamine, an arginine precursor, is one of the most abundant amino acids in the body and, like arginine, becomes deficient in several conditions of stress, including critical illness, trauma, infection, cancer, and gastrointestinal disorders. At-risk populations are discussed together with therapeutic options that target these specific acquired amino acid deficiencies.
Collapse
Affiliation(s)
- Claudia R Morris
- 1 Department of Pediatrics, Division of Pediatric Emergency Medicine, Emory-Children's Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Jill Hamilton-Reeves
- 2 Department of Dietetics and Nutrition, University of Kansas, Kansas City, Kansas, USA
| | - Robert G Martindale
- 3 Department of Surgery, Oregon Health and Science University, Portland, Oregon, USA
| | - Menaka Sarav
- 4 Department of Medicine, Division of Nephrology, Northshore University Health System, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
25
|
Morris CR. New strategies for the treatment of pulmonary hypertension in sickle cell disease : the rationale for arginine therapy. ACTA ACUST UNITED AC 2016; 5:31-45. [PMID: 16409014 DOI: 10.2165/00151829-200605010-00003] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is inactivated in sickle cell disease (SCD), while bioavailability of arginine, the substrate for NO synthesis, is diminished. Impaired NO bioavailability represents the central feature of endothelial dysfunction, and is a key factor in the pathophysiology of SCD. Inactivation of NO correlates with the hemolytic rate and is associated with erythrocyte release of cell-free hemoglobin and arginase during hemolysis. Accelerated consumption of NO is enhanced further by the inflammatory environment of oxidative stress that exists in SCD. Based upon its critical role in mediating vasodilation and cell growth, decreased NO bioavailability has also been implicated in the pathogenesis of pulmonary arterial hypertension (PHT). Secondary PHT is a common life-threatening complication of SCD that also occurs in most hereditary and chronic hemolytic disorders. Aberrant arginine metabolism contributes to endothelial dysfunction and PHT in SCD, and is strongly associated with prospective patient mortality. The central mechanism responsible for this metabolic disorder is enhanced arginine turnover, occurring secondary to enhanced plasma arginase activity. This is consistent with a growing appreciation of the role of excessive arginase activity in human diseases, including asthma and PHT. Decompartmentalization of hemoglobin into plasma consumes endothelial NO and thus drives a metabolic requirement for arginine, whose bioavailability is further limited by arginase activity. New treatments aimed at maximizing both arginine and NO bioavailability through arginase inhibition, suppression of hemolytic rate, or oral arginine supplementation may represent novel therapeutic strategies.
Collapse
Affiliation(s)
- Claudia R Morris
- Department of Emergency Medicine, Children’s Hospital and Research Center at Oakland, Oakland, California, USA
| |
Collapse
|
26
|
Fike CD, Dikalova A, Kaplowitz MR, Cunningham G, Summar M, Aschner JL. Rescue Treatment with L-Citrulline Inhibits Hypoxia-Induced Pulmonary Hypertension in Newborn Pigs. Am J Respir Cell Mol Biol 2015; 53:255-64. [PMID: 25536367 DOI: 10.1165/rcmb.2014-0351oc] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Infants with cardiopulmonary disorders associated with hypoxia develop pulmonary hypertension. We previously showed that initiation of oral L-citrulline before and continued throughout hypoxic exposure improves nitric oxide (NO) production and ameliorates pulmonary hypertension in newborn piglets. Rescue treatments, initiated after the onset of pulmonary hypertension, better approximate clinical strategies. Mechanisms by which L-citrulline improves NO production merit elucidation. The objective of this study was to determine whether starting L-citrulline after the onset of pulmonary hypertension inhibits disease progression and improves NO production by recoupling endothelial NO synthase (eNOS). Hypoxic and normoxic (control) piglets were studied. Some hypoxic piglets received oral L-citrulline starting on Day 3 of hypoxia and continuing throughout the remaining 7 days of hypoxic exposure. Catheters were placed for hemodynamic measurements, and pulmonary arteries were dissected to assess NO production and eNOS dimer-to-monomer ratios (a measure of eNOS coupling). Pulmonary vascular resistance was lower in L-citrulline-treated hypoxic piglets than in untreated hypoxic piglets but was higher than in normoxic controls. NO production and eNOS dimer-to-monomer ratios were greater in pulmonary arteries from L-citrulline-treated than from untreated hypoxic animals but were lower than in normoxic controls. When started after disease onset, oral L-citrulline treatment improves NO production by recoupling eNOS and inhibits the further development of chronic hypoxia-induced pulmonary hypertension in newborn piglets. Oral L-citrulline may be a novel strategy to halt or reverse pulmonary hypertension in infants suffering from cardiopulmonary conditions associated with hypoxia.
Collapse
Affiliation(s)
- Candice D Fike
- 1 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee.,2 Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee
| | - Anna Dikalova
- 1 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mark R Kaplowitz
- 1 Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Gary Cunningham
- 3 Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia; and
| | - Marshall Summar
- 3 Division of Genetics and Metabolism, Children's National Medical Center, Washington, District of Columbia; and
| | - Judy L Aschner
- 4 Department of Pediatrics, Albert Einstein College of Medicine and the Children's Hospital at Montefiore, New York, New York
| |
Collapse
|
27
|
Zhang E, Maruyama J, Yokochi A, Mitani Y, Sawada H, Nishikawa M, Ma N, Maruyama K. Sarpogrelate hydrochloride, a serotonin 5HT2A receptor antagonist, ameliorates the development of chronic hypoxic pulmonary hypertension in rats. J Anesth 2015; 29:715-23. [PMID: 25931318 DOI: 10.1007/s00540-015-2015-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 04/04/2015] [Indexed: 01/28/2023]
Abstract
PURPOSE The purpose of the present study was to determine if sarpogrelate hydrochloride (SPG), a serotonin 5HT2A receptor antagonist, prevented the development of chronic hypoxia-induced pulmonary hypertension (PH) and hypertensive pulmonary vascular remodeling. METHODS Forty-one male Sprague-Dawley rats were exposed to hypobaric hypoxia (380 mmHg, 10 % oxygen) or room air and administered 50 mg/kg SPG or vehicle by gavage once daily from day -2 to day 14. The mean pulmonary artery pressure (PAP) and right ventricular hypertrophy (RVH) were measured. Hypertensive pulmonary vascular remodelings were assessed morphometrically by light microscopy. Serotonin-induced contraction was determined in isolated pulmonary artery rings from 24 rats. In another set of rats, Western blotting, real-time polymerase chain reaction and immunofluorescent staining (n = 9) for lung tissue were performed. RESULTS Chronic hypoxia induced a rise in mean PAP and RVH, increased the percentage of muscularized arteries in peripheral pulmonary arteries and medial wall thickness in small muscular arteries, and potentiated serotonin-induced contraction, each of which was significantly (p < 0.05) ameliorated by SPG. Chronic hypoxia significantly increased the expression of endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS) protein levels, cyclic guanosine monophosphate, and matrix metalloproteinase-13 (MMP-13) mRNA levels in whole lung tissues. SPG increased peNOS expression in the immunofluorescent staining of peripheral pulmonary arteries from chronic hypoxic rats and decreased the MMP-13 mRNA in lung tissue in chronic hypoxic rats. CONCLUSIONS The administration of SPG ameliorated the development of chronic hypoxic PH and hypertensive pulmonary vascular changes.
Collapse
Affiliation(s)
- Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Junko Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Faculty of Medical Engineering, Suzuka University of Medical Science, 1001-1 Kishiokacho, Suzuka, Mie, 510-0293, Japan
| | - Ayumu Yokochi
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University school of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirofumi Sawada
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Pediatrics, Mie University school of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masakatsu Nishikawa
- Department of Institute of Human Research Promotion and Drug Development, Mie University school of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ning Ma
- Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishiokacho, Suzuka, Mie, 510-0293, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
28
|
Otsuki S, Sawada H, Yodoya N, Shinohara T, Kato T, Ohashi H, Zhang E, Imanaka-Yoshida K, Shimpo H, Maruyama K, Komada Y, Mitani Y. Potential contribution of phenotypically modulated smooth muscle cells and related inflammation in the development of experimental obstructive pulmonary vasculopathy in rats. PLoS One 2015; 10:e0118655. [PMID: 25714834 PMCID: PMC4340876 DOI: 10.1371/journal.pone.0118655] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
We tested the hypothesis that phenotypically modulated smooth muscle cells (SMCs) and related inflammation are associated with the progression of experimental occlusive pulmonary vascular disease (PVD). Occlusive PVD was induced by combined exposure to a vascular endothelial growth factor receptor tyrosine kinase inhibitor Sugen 5416 and hypobaric hypoxia for 3 weeks in rats, which were then returned to ambient air. Hemodynamic, morphometric, and immunohistochemical studies, as well as gene expression analyses, were performed at 3, 5, 8, and 13 weeks after the initial treatment (n = 78). Experimental animals developed pulmonary hypertension and right ventricular hypertrophy, and exhibited a progressive increase in indices of PVD, including cellular intimal thickening and intimal fibrosis. Cellular intimal lesions comprised α smooth muscle actin (α SMA)+, SM1+, SM2+/-, vimentin+ immature SMCs that were covered by endothelial monolayers, while fibrous intimal lesions typically included α SMA+, SM1+, SM2+, vimentin+/- mature SMCs. Plexiform lesions comprised α SMA+, vimentin+, SM1-, SM2- myofibroblasts covered by endothelial monolayers. Immature SMC-rich intimal and plexiform lesions were proliferative and were infiltrated by macrophages, while fibrous intimal lesions were characterized by lower proliferative abilities and were infiltrated by few macrophages. Compared with controls, the number of perivascular macrophages was already higher at 3 weeks and progressively increased during the experimental period; gene expression of pulmonary hypertension-related inflammatory molecules, including IL6, MCP1, MMP9, cathepsin-S, and RANTES, was persistently or progressively up-regulated in lungs of experimental animals. We concluded that phenotypically modulated SMCs and related inflammation are potentially associated with the progression of experimental obstructive PVD.
Collapse
MESH Headings
- Animals
- Arterial Occlusive Diseases/genetics
- Arterial Occlusive Diseases/metabolism
- Arterial Occlusive Diseases/pathology
- Arterial Occlusive Diseases/physiopathology
- Disease Models, Animal
- Fibrosis
- Gene Expression
- Hemodynamics
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/metabolism
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/pathology
- Macrophages/immunology
- Macrophages/pathology
- Male
- Mast Cells/immunology
- Mast Cells/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Phenotype
- Rats
- T-Lymphocytes/immunology
- T-Lymphocytes/pathology
- Tunica Intima/metabolism
- Tunica Intima/pathology
Collapse
Affiliation(s)
- Shoichiro Otsuki
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hirofumi Sawada
- Department of Pediatrics, and Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Noriko Yodoya
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Tsutomu Shinohara
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Taichi Kato
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hiroyuki Ohashi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kyoko Imanaka-Yoshida
- Department of Pathology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hideto Shimpo
- Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu, Mie, Japan
- * E-mail:
| |
Collapse
|
29
|
Kandhare AD, Patil MVK, Bodhankar SL. l-Arginine attenuates the ethylene glycol induced urolithiasis in ininephrectomized hypertensive rats: role of KIM-1, NGAL, and NOs. Ren Fail 2015; 37:709-21. [DOI: 10.3109/0886022x.2015.1011967] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
30
|
Shinohara T, Sawada H, Otsuki S, Yodoya N, Kato T, Ohashi H, Zhang E, Saitoh S, Shimpo H, Maruyama K, Komada Y, Mitani Y. Macitentan reverses early obstructive pulmonary vasculopathy in rats: early intervention in overcoming the survivin-mediated resistance to apoptosis. Am J Physiol Lung Cell Mol Physiol 2014; 308:L523-38. [PMID: 25539851 DOI: 10.1152/ajplung.00129.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
It remains unknown whether current disease-targeting therapy can histologically reverse obstructive pulmonary vasculopathy and how the timing of the therapy influences the antiremodeling effects of the compound. We test the hypothesis that a novel endothelin receptor antagonist macitentan reverses the early and/or late stages of occlusive pulmonary vascular disease (PVD) in rats. Rats with pulmonary arterial hypertension (PAH), which were produced by combined exposure to a vascular endothelial growth factor receptor inhibitor Sugen 5416 and hypobaric hypoxia for 3 wk, were assigned to receive macitentan or vehicle during 3-5 wk (early study) or during 5-8 wk (late study) after Sugen injection. Compared with vehicle-treated PAH rats and PAH rats evaluated before treatment initiation, the macitentan-treated rats showed decreases in the proportion of occlusive lesions in the early study, a finding consistent with the reversal of right ventricular systolic pressure and indexes of right ventricular hypertrophy and medial wall thickness. Macitentan ameliorated but did not reverse the proportion of occlusive lesions in the late study. Although macitentan decreased the proportion of Ki67+ lesions in both studies, macitentan increased the proportion of cleaved caspase 3+ lesions and suppressed an antiapoptotic molecule survivin expression in the early study but not in the late study. In conclusion, macitentan reversed early but not late obstructive PVD in rats. This reversal was associated with the suppression of survivin-related resistance to apoptosis and proliferation of cells in PVD.
Collapse
Affiliation(s)
- Tsutomu Shinohara
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu City, Japan; Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hirofumi Sawada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Shoichiro Otsuki
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Noriko Yodoya
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Taichi Kato
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Hiroyuki Ohashi
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideto Shimpo
- Department of Thoracic and Cardiovascular Surgery, Mie University Graduate School of Medicine, Tsu City, Japan; and
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Yoshihiro Komada
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu City, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, Tsu City, Japan;
| |
Collapse
|
31
|
Cheung YF. Vascular health late after Kawasaki disease: implications for accelerated atherosclerosis. KOREAN JOURNAL OF PEDIATRICS 2014; 57:472-8. [PMID: 25550701 PMCID: PMC4279007 DOI: 10.3345/kjp.2014.57.11.472] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/01/2014] [Indexed: 12/19/2022]
Abstract
Kawasaki disease (KD), an acute vasculitis that primarily affects young children, is the most common acquired paediatric cardiovascular disease in developed countries. While sequelae of arterial inflammation in the acute phase of KD are well documented, its late effects on vascular health are increasingly unveiled. Late vascular dysfunction is characterized by structural alterations and functional impairment in term of arterial stiffening and endothelial dysfunction and shown to involve both coronary and systemic arteries. Further evidence suggests that continuous low grade inflammation and ongoing active remodeling of coronary arterial lesions occur late after acute illness and may play a role in structural and functional alterations of the arteries. Potential importance of genetic modulation on vascular health late after KD is implicated by associations between mannose binding lectin and inflammatory gene polymorphisms with severity of peripheral arterial stiffening and carotid intima-media thickening. The changes in cholesterol and lipoproteins levels late after KD further appear similar to those proposed to be atherogenic. While data on adverse vascular health are less controversial in patients with persistent or regressed coronary arterial aneurysms, data appear conflicting in individuals with no coronary arterial involvements or only transient coronary ectasia. Notwithstanding, concerns have been raised with regard to predisposition of KD in childhood to accelerated atherosclerosis in adulthood. Until further evidence-based data are available, however, it remains important to assess and monitor cardiovascular risk factors and to promote cardiovascular health in children with a history of KD in the long term.
Collapse
Affiliation(s)
- Yiu-Fai Cheung
- Division of Paediatric Cardiology, Department of Paediatrics and Adolescent Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Role of oxidative stress, inflammation, nitric oxide and transforming growth factor-beta in the protective effect of diosgenin in monocrotaline-induced pulmonary hypertension in rats. Eur J Pharmacol 2014; 740:379-87. [DOI: 10.1016/j.ejphar.2014.07.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/26/2022]
|
33
|
Ahmed LA, Obaid AAZ, Zaki HF, Agha AM. Naringenin adds to the protective effect of L-arginine in monocrotaline-induced pulmonary hypertension in rats: favorable modulation of oxidative stress, inflammation and nitric oxide. Eur J Pharm Sci 2014; 62:161-70. [PMID: 24878387 DOI: 10.1016/j.ejps.2014.05.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 04/19/2014] [Accepted: 05/06/2014] [Indexed: 01/25/2023]
Abstract
The present study was directed to investigate the possible modulatory effect of naringenin when co-administered with L-arginine in monocrotaline-induced pulmonary hypertension in rats. Pulmonary hypertension was induced by a single subcutaneous injection of monocrotaline (60 mg/kg). L-arginine (500 mg/kg) and naringenin (50 mg/kg) were orally administered daily, alone and in combination, for 3 weeks. Mean arterial blood pressure, electrocardiography and echocardiography were then recorded and rats were sacrificed and serum was separated for determination of total nitrate/nitrite level. Right ventricles and lungs were isolated for estimation of oxidative stress markers, tumor necrosis factor-alpha, total nitrate/nitrite and transforming growth factor-beta. Myeloperoxidase and caspase-3 activities in addition to endothelial and inducible nitric oxide synthase protein expression were also determined. Moreover, histological analysis of pulmonary arteries and cardiomyocyte cross-sectional area was performed. Combined therapy provided a significant improvement in L-arginine protective effect toward preserving hemodynamic changes and alleviating oxidative stress, inflammatory and apoptotic markers induced by monocrotaline treatment. Furthermore, combined therapy prevented monocrotaline-induced changes in endothelial and inducible nitric oxide synthase protein expression as well as histological analysis compared with either treatment alone. In conclusion, naringenin significantly adds to the protective effect of L-arginine in pulmonary hypertension induced by monocrotaline in rats.
Collapse
Affiliation(s)
- Lamiaa A Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Al Arqam Z Obaid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| | - Azza M Agha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
34
|
Jackson RM, Gómez-Marín OW, Ramos CF, Sol CM, Cohen MI, Gaunaurd IA, Cahalin LP, Cardenas DD. Exercise limitation in IPF patients: a randomized trial of pulmonary rehabilitation. Lung 2014; 192:367-76. [PMID: 24705678 DOI: 10.1007/s00408-014-9566-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/05/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Patients with idiopathic pulmonary fibrosis (IPF) have severely limited exercise capacity due to dyspnea, hypoxemia, and abnormal lung mechanics. This pilot study was designed to determine whether pulmonary rehabilitation were efficacious in improving the 6-min walk test (6-MWT) distance, exercise oxygen uptake, respiratory muscle strength [maximum inspiratory pressure (MIP)], and dyspnea in patients with IPF. Underlying physiological mechanisms and effects of the intervention were investigated. METHODS Subjects were randomly assigned to a 3-month pulmonary rehabilitation program (n = 11) or to a control group (n = 10). All subjects initially underwent the 6-MWT and constant load exercise gas exchange studies. RESULTS Subjects in the rehabilitation group increased treadmill exercise [metabolic equivalent of task-minutes] over the first 14 sessions. Beneficial effects on physical function resulted in those who completed rehabilitation. Subjects who completed the program increased cycle ergometer time and maintained exercise oxygen consumption (exercise VO(2)) at the baseline level over 3 months, while the control group suffered a significant decrease in exercise VO(2). Rehabilitation subjects also increased their MIP. Plasma lactate doubled and brain natriuretic peptide levels increased significantly after exercise, as did the plasma amino acids glutamic acid, arginine, histidine, and methionine. These changes were associated with significant decreases in arterial oxygen saturation and increases in 15-F(2t)-isoprostanes after exercise. CONCLUSIONS Pulmonary rehabilitation effectively maintained exercise oxygen uptake over 3 months and lengthened constant load exercise time in patients with moderately severe IPF. Exercise endurance on cycle ergometry testing was limited by dyspnea and severe hypoxemia associated with systemic oxidant stress.
Collapse
Affiliation(s)
- Robert M Jackson
- Research Service (151), Miami VAHS, 1201 NW 16th Street, Miami, FL, 33125, USA,
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Sodium-coupled neutral amino acid transporter 1 (SNAT1) modulates L-citrulline transport and nitric oxide (NO) signaling in piglet pulmonary arterial endothelial cells. PLoS One 2014; 9:e85730. [PMID: 24454923 PMCID: PMC3893279 DOI: 10.1371/journal.pone.0085730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 11/30/2013] [Indexed: 01/22/2023] Open
Abstract
RATIONALE There is evidence that impairments in nitric oxide (NO) signaling contribute to chronic hypoxia-induced pulmonary hypertension. The L-arginine-NO precursor, L-citrulline, has been shown to ameliorate pulmonary hypertension. Sodium-coupled neutral amino acid transporters (SNATs) are involved in the transport of L-citrulline into pulmonary arterial endothelial cells (PAECs). The functional link between the SNATs, L-citrulline, and NO signaling has not yet been explored. OBJECTIVE We tested the hypothesis that changes in SNAT1 expression and transport function regulate NO production by modulating eNOS coupling in newborn piglet PAECs. METHODS AND RESULTS A silencing RNA (siRNA) technique was used to assess the contribution of SNAT1 to NO production and eNOS coupling (eNOS dimer-to-monomer ratios) in PAECs from newborn piglets cultured under normoxic and hypoxic conditions in the presence and absence of L-citrulline. SNAT1 siRNA reduced basal NO production in normoxic PAECs and prevented L-citrulline-induced elevations in NO production in both normoxic and hypoxic PAECs. SNAT1 siRNA reduced basal eNOS dimer-to-monomer ratios in normoxic PAECs and prevented L-citrulline-induced increases in eNOS dimer-to-monomer ratios in hypoxic PAECs. CONCLUSIONS SNAT1 mediated L-citrulline transport modulates eNOS coupling and thus regulates NO production in hypoxic PAECs from newborn piglets. Strategies that increase SNAT1-mediated transport and supply of L-citrulline may serve as novel therapeutic approaches to enhance NO production in patients with pulmonary vascular disease.
Collapse
|
36
|
AL-HITI H, CHOVANEC M, MELENOVSKÝ V, VAJNEROVÁ O, BAŇASOVÁ A, KAUTZNER J, HERGET J. L-Arginine in Combination With Sildenafil Potentiates the Attenuation of Hypoxic Pulmonary Hypertension in Rats. Physiol Res 2013; 62:589-95. [DOI: 10.33549/physiolres.932463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chronic hypoxia induces an increased production of nitric oxide (NO) in pulmonary prealveolar arterioles. Bioavailability of the NO in the pulmonary vessels correlates with concentration of L-arginine as well as activity of phosphodiesterase-5 enzyme (PDE-5). We tested a hypothesis whether a combination of L-arginine and PDE-5 inhibitor sildenafil has an additive effect in reduction of the hypoxic pulmonary hypertension (HPH) in rats. Animals were exposed to chronic normobaric hypoxia for 3 weeks. In the AH group, rats were administered L-arginine during chronic hypoxic exposure. In the SH group, rats were administered sildenafil during chronic hypoxic exposure. In the SAH group, rats were treated by the combination of L-arginine as well as sildenafil during exposure to chronic hypoxia. Mean PAP, structural remodeling of peripheral pulmonary arterioles (%DL) and RV/LV+S ratio was significantly decreased in the SAH group compared to hypoxic controls even decreased compared to the AH and the SH groups in first two measured parameters. Plasmatic concentration of cGMP and NOx were significantly lower in the SAH group compared to hypoxic controls. We demonstrate that NO synthase substrate L-arginine and phosphodiesterase-5 inhibitor sildenafil administered in combination are more potent in attenuation of the HPH compared to a treatment by substances given alone.
Collapse
Affiliation(s)
| | - M. CHOVANEC
- Department of Physiology, Second Medical School, Charles University, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
37
|
Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol 2013; 2:675-709. [PMID: 23606929 DOI: 10.1002/cphy.c100081] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pulmonary vasculature comprises three anatomic compartments connected in series: the arterial tree, an extensive capillary bed, and the venular tree. Although, in general, this vasculature is thin-walled, structure is nonetheless complex. Contributions to structure (and thus potentially to function) from cells other than endothelial and smooth muscle cells as well as those from the extracellular matrix should be considered. This review is multifaceted, bringing together information regarding (i) classification of pulmonary vessels, (ii) branching geometry in the pulmonary vascular tree, (iii) a quantitative view of structure based on morphometry of the vascular wall, (iv) the relationship of nerves, a variety of interstitial cells, matrix proteins, and striated myocytes to smooth muscle and endothelium in the vascular wall, (v) heterogeneity within cell populations and between vascular compartments, (vi) homo- and heterotypic cell-cell junctional complexes, and (vii) the relation of the pulmonary vasculature to that of airways. These issues for pulmonary vascular structure are compared, when data is available, across species from human to mouse and shrew. Data from studies utilizing vascular casting, light and electron microscopy, as well as models developed from those data, are discussed. Finally, the need for rigorous quantitative approaches to study of vascular structure in lung is highlighted.
Collapse
Affiliation(s)
- Mary I Townsley
- University of South Alabama, Department of Physiology, and Center for Lung Biology, Mobile, Alabama, USA.
| |
Collapse
|
38
|
Effect of thrombomodulin on the development of monocrotaline-induced pulmonary hypertension. J Anesth 2013; 28:26-33. [PMID: 23817901 DOI: 10.1007/s00540-013-1663-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/13/2013] [Indexed: 01/02/2023]
Abstract
PURPOSE The purpose of the present study was to investigate whether thrombomodulin (TM) prevents the development of pulmonary hypertension (PH) in monocrotaline (MCT)-injected rats. METHODS Human recombinant TM (3 mg/kg/2 days) or saline were given to MCT-injected male Sprague-Dawley rats for 19 (n = 14) or 29 (n = 11) days. Control rats (n = 6) were run for 19 days. The mean pulmonary artery pressure (mPAP), right ventricular hypertrophy (RVH), percentages of muscularized peripheral arteries (%muscularization), and medial wall thickness of small muscular arteries (%MWT) were measured. To determine inflammatory and coagulation responses, broncho-alveolar lavage fluid (BALF) was analyzed in another set of rats (n = 29). Western blotting for endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (peNOS) in the lung tissue was performed in separate rats (n = 13). Survival was determined in 60 rats. RESULTS MCT increased mPAP, RVH, %muscularization, and %MWT. TM treatment significantly reduced mPAP, %muscularization, and %MWT in peripheral arteries with an external diameter of 50-100 μm in 19 days after MCT injection, but the effect was lost after 29 days. MCT increased the levels of tumor necrosis factor alpha, monocyte chemoattractant protein-1, and thrombin-antithrombin complex in BALF. Expression of eNOS increased in MCT rats, while peNOS decreased. The relative amount of peNOS to total eNOS increased in MCT/TM rats compared to MCT/Vehicle rats. A Kaplan-Meier survival curve showed no difference with and without TM. CONCLUSION Although the administration of TM might slightly delay the progression of MCT-induced PH, the physiological significance for treatment is limited, since the survival rate was not improved.
Collapse
|
39
|
Tonelli AR, Haserodt S, Aytekin M, Dweik RA. Nitric oxide deficiency in pulmonary hypertension: Pathobiology and implications for therapy. Pulm Circ 2013; 3:20-30. [PMID: 23662172 PMCID: PMC3641730 DOI: 10.4103/2045-8932.109911] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide (NO) is a diffusible gas with diverse roles in human physiology and disease. Significant progress in the understanding of its biological effects has taken place in recent years. This has led to a better understanding of the pathobiology of pulmonary hypertension (PH) and the development of new therapies. This article provides an overview of the NO physiology and its role in the pathobiology of lung diseases, particularly PH. We also discuss current and emerging specific treatments that target NO signaling pathways in PH.
Collapse
Affiliation(s)
- Adriano R Tonelli
- Department of Pulmonary, Allergy and Critical Care Medicine, Respiratory Institute, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
40
|
Jin Y, Chen B, Calvert TJ, Chicoine LG, Liu Y, Nelin LD. Chronic hypoxia decreases arterial and venous compliance in isolated perfused rat lungs: an effect that is reversed by exogenous L-arginine. Am J Physiol Heart Circ Physiol 2012; 304:H195-205. [PMID: 23103497 DOI: 10.1152/ajpheart.00188.2012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chronic hypoxia (CH)-induced pulmonary hypertension is characterized by vasoconstriction and vascular remodeling, leading to right ventricular dysfunction. Given the role of arterial compliance (C(a)) in right ventricular work, a decrease in C(a) would add to right ventricular work. Nitric oxide (NO) is a potent vasodilator made by NO synthases from L-arginine (L-Arg). However, little is known of the effect of L-Arg on vascular compliance (C(v)) in the lung. We hypothesized that exposure to CH would decrease C(a) and that this effect would be reversed by exogenous L-Arg. Sprague-Dawley rats were exposed to either normoxia or CH for 14 days; the lungs were then isolated and perfused. Vascular occlusions were performed and modeled using a three-compliance, two-resistor model. Pressure-flow curves were generated, and a distensible vessel model was used to estimate distensibility and a vascular resistance parameter (R(0)). Hypoxia resulted in the expected increase in arterial resistance (R(a)) as well as a decrease in both C(a) and C(v). L-Arg had little effect on R(a), C(a), or C(v) in isolated lungs from normoxic animals. L-Arg decreased R(a) in lungs from CH rats and redistributed compliance to approximately that found in normoxic lungs. CH increased R(0), and L-Arg reversed this increase in R(0). L-Arg increased exhaled NO, and inhibition of L-Arg uptake attenuated the L-Arg-induced increase in exhaled NO. These data demonstrate that the CH-induced decrease in C(a) was reversed by L-Arg, suggesting that L-Arg may improve CH-induced right ventricular dysfunction.
Collapse
Affiliation(s)
- Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
41
|
Luan Y, Zhang ZH, Wei DE, Lu Y, Wang YB. Effects of autologous bone marrow mononuclear cells implantation in canine model of pulmonary hypertension. Circ J 2012; 76:977-85. [PMID: 22293449 DOI: 10.1253/circj.cj-11-1175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND We investigated the safety and feasibility of intratracheal administration of autologous bone marrow-derived mononuclear cells (ABM-MNCs) and observed the effects in a canine model of pulmonary hypertension (PH). METHODS AND RESULTS The PH model was induced by intravenous injection of 3mg/kg dehydromonocrotaline (DMCT) via the right atrium. Two weeks after DMCT administration, the animals received 4 different treatments (n=10 in each group): (I) negative control group; (II): ABM-MNCs group; (III) PH group; (IV) PH+ABM-MNCs group. Six weeks after injection of cells (10⁷), the hemodynamic data were significantly improved in group IV compared with group III (P<0.05). The ratio of right ventricular weight to left ventricular plus septal weight was significantly decreased in group IV compared with group III (P<0.05). The mRNA levels of vascular endothelial growth factor, preproendothelin-1, interleukin-6 and tumor necrosis factor-α were significantly improved in group IV compared with group III (P<0.05). The immunofluorescence result showed that 6 weeks after administration ABM-MNCs could differentiate into pulmonary vascular endothelial cells. CONCLUSIONS Six weeks after intratracheal administration, ABM-MNCs significantly improved the impairment caused by DMCT in a canine model of PH (ie, decreased pulmonary arteriolar narrowing, alveolar septum thickening and right ventricular hypertrophy, enhanced angiogenesis) and this provides a firm foundation for a clinical trial.
Collapse
Affiliation(s)
- Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
42
|
Hamidi SA, Lin RZ, Szema AM, Lyubsky S, Jiang YP, Said SI. VIP and endothelin receptor antagonist: an effective combination against experimental pulmonary arterial hypertension. Respir Res 2011; 12:141. [PMID: 22029879 PMCID: PMC3210095 DOI: 10.1186/1465-9921-12-141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pulmonary Arterial Hypertension (PAH) remains a therapeutic challenge, and the search continues for more effective drugs and drug combinations. We recently reported that deletion of the vasoactive intestinal peptide (VIP) gene caused the spontaneous expression of a PH phenotype that was fully corrected by VIP. The objectives of this investigation were to answer the questions: 1) Can VIP protect against PH in other experimental models? and 2) Does combining VIP with an endothelin (ET) receptor antagonist bosentan enhance its efficacy? METHODS Within 3 weeks of a single injection of monocrotaline (MCT, s.c.) in Sprague Dawley rats, PAH developed, manifested by pulmonary vascular remodeling, lung inflammation, RV hypertrophy, and death within the next 2 weeks. MCT-injected animals were either untreated, treated with bosentan (p.o.) alone, with VIP (i.p.) alone, or with both together. We selected this particular combination upon finding that VIP down-regulates endothelin receptor expression which is further suppressed by bosentan. Therapeutic outcomes were compared as to hemodynamics, pulmonary vascular pathology, and survival. RESULTS Treatment with VIP, every other day for 3 weeks, begun on the same day as MCT, almost totally prevented PAH pathology, and eliminated mortality for 45 days. Begun 3 weeks after MCT, however, VIP only partially reversed PAH pathology, though more effectively than bosentan. Combined therapy with both drugs fully reversed the pathology, while preventing mortality for at least 45 days. CONCLUSIONS 1) VIP completely prevented and significantly reversed MCT-induced PAH; 2) VIP was more effective than bosentan, probably because it targets a wider range of pro-remodeling pathways; and 3) combination therapy with VIP plus bosentan was more effective than either drug alone, probably because both drugs synergistically suppressed ET-ET receptor pathway.
Collapse
Affiliation(s)
- Sayyed A Hamidi
- Department of Medicine, State University of New York at Stony Brook, NY, USA
| | | | | | | | | | | |
Collapse
|
43
|
Gomez-Arroyo JG, Farkas L, Alhussaini AA, Farkas D, Kraskauskas D, Voelkel NF, Bogaard HJ. The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol 2011; 302:L363-9. [PMID: 21964406 DOI: 10.1152/ajplung.00212.2011] [Citation(s) in RCA: 310] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Severe forms of pulmonary arterial hypertension (PAH) are characterized by various degrees of remodeling of the pulmonary arterial vessels, which increases the pulmonary vascular resistance and right ventricular afterload, thus contributing to the development of right ventricle dysfunction and failure. Recent years have seen advances in the understanding of the pathobiology of PAH; however, many important questions remain unanswered. Elucidating the pathobiology of PAH continues to be critical to design new effective therapeutic strategies, and appropriate animal models of PAH are necessary to achieve the task. Although the monocrotaline rat model of PAH has contributed to a better understanding of vascular remodeling in pulmonary hypertension, we question the validity of this model as a preclinically relevant model of severe plexogenic PAH. Here we review pertinent publications that either have been forgotten or ignored, and we reexamine the monocrotaline model in the context of human forms of PAH.
Collapse
Affiliation(s)
- Jose G Gomez-Arroyo
- Victoria Johnson Center for Obstructive Lung Disease Research, Virginia Commonwealth University, Richmond, 23298, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Sands M, Howell K, Costello CM, McLoughlin P. Placenta growth factor and vascular endothelial growth factor B expression in the hypoxic lung. Respir Res 2011; 12:17. [PMID: 21266048 PMCID: PMC3040134 DOI: 10.1186/1465-9921-12-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 01/25/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic alveolar hypoxia, due to residence at high altitude or chronic obstructive lung diseases, leads to pulmonary hypertension, which may be further complicated by right heart failure, increasing morbidity and mortality. In the non-diseased lung, angiogenesis occurs in chronic hypoxia and may act in a protective, adaptive manner. To date, little is known about the behaviour of individual vascular endothelial growth factor (VEGF) family ligands in hypoxia-induced pulmonary angiogenesis. The aim of this study was to examine the expression of placenta growth factor (PlGF) and VEGFB during the development of hypoxic pulmonary angiogenesis and their functional effects on the pulmonary endothelium. METHODS Male Sprague Dawley rats were exposed to conditions of normoxia (21% O2) or hypoxia (10% O2) for 1-21 days. Stereological analysis of vascular structure, real-time PCR analysis of vascular endothelial growth factor A (VEGFA), VEGFB, placenta growth factor (PlGF), VEGF receptor 1 (VEGFR1) and VEGFR2, immunohistochemistry and western blots were completed. The effects of VEGF ligands on human pulmonary microvascular endothelial cells were determined using a wound-healing assay. RESULTS Typical vascular remodelling and angiogenesis were observed in the hypoxic lung. PlGF and VEGFB mRNA expression were significantly increased in the hypoxic lung. Immunohistochemical analysis showed reduced expression of VEGFB protein in hypoxia although PlGF protein was unchanged. The expression of VEGFA mRNA and protein was unchanged. In vitro PlGF at high concentration mimicked the wound-healing actions of VEGFA on pulmonary microvascular endothelial monolayers. Low concentrations of PlGF potentiated the wound-healing actions of VEGFA while higher concentrations of PlGF were without this effect. VEGFB inhibited the wound-healing actions of VEGFA while VEGFB and PlGF together were mutually antagonistic. CONCLUSIONS VEGFB and PlGF can either inhibit or potentiate the actions of VEGFA, depending on their relative concentrations, which change in the hypoxic lung. Thus their actions in vivo depend on their specific concentrations within the microenvironment of the alveolar wall during the course of adaptation to pulmonary hypoxia.
Collapse
Affiliation(s)
- Michelle Sands
- School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin, Ireland
| | | | | | | |
Collapse
|
45
|
Effects of Atorvastatin and l-Arginine Treatments on Electrical Field Stimulation-mediated Relaxations in Pulmonary Arterial Rings of Monocrotaline-Induced Pulmonary Hypertensive Rats. J Cardiovasc Pharmacol 2010; 56:498-505. [DOI: 10.1097/fjc.0b013e3181f4838b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Dillon MJ, Eleftheriou D, Brogan PA. Medium-size-vessel vasculitis. Pediatr Nephrol 2010; 25:1641-52. [PMID: 19946711 PMCID: PMC2908435 DOI: 10.1007/s00467-009-1336-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 01/20/2023]
Abstract
Medium-size-artery vasculitides do occur in childhood and manifest, in the main, as polyarteritis nodosa (PAN), cutaneous PAN and Kawasaki disease. Of these, PAN is the most serious, with high morbidity and not inconsequential mortality rates. New classification criteria for PAN have been validated that will have value in epidemiological studies and clinical trials. Renal involvement is common and recent therapeutic advances may result in improved treatment options. Cutaneous PAN is a milder disease characterised by periodic exacerbations and often associated with streptococcal infection. There is controversy as to whether this is a separate entity or part of the systemic PAN spectrum. Kawasaki disease is an acute self-limiting systemic vasculitis, the second commonest vasculitis in childhood and the commonest cause of childhood-acquired heart disease. Renal manifestations occur and include tubulointerstitial nephritis and renal failure. An infectious trigger and a genetic predisposition seem likely. Intravenous immunoglobulin (IV-Ig) and aspirin are effective therapeutically, but in resistant cases, either steroid or infliximab have a role. Greater understanding of the pathogenetic mechanisms involved in these three types of vasculitis and better long-term follow-up data will lead to improved therapy and prediction of prognosis.
Collapse
Affiliation(s)
- Michael J Dillon
- Nephrourology Unit, UCL Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK.
| | | | | |
Collapse
|
47
|
Cicala S, Pellegrino T, Storto G, Caprio MG, Paladini R, Mainolfi C, de Leva F, Cuocolo A. Noninvasive quantification of coronary endothelial function by SPECT imaging in children with a history of Kawasaki disease. Eur J Nucl Med Mol Imaging 2010; 37:2249-55. [PMID: 20680267 DOI: 10.1007/s00259-010-1575-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/15/2010] [Indexed: 01/07/2023]
Abstract
PURPOSE The feasibility of coronary function estimation by single photon emission computed tomography (SPECT) has been recently demonstrated. The aim of this study was to apply SPECT imaging in patients with previous Kawasaki disease (KD) to assess the coronary functional status at long-term follow-up of the acute phase of the disease. METHODS Sixteen children with a history of KD underwent 99mTc-sestamibi imaging at rest and during the cold pressor test (CPT). Myocardial blood flow (MBF) was estimated by measuring first transit counts in the pulmonary artery and myocardial counts from SPECT images. Coronary endothelial function was expressed as the ratio of the CPT to rest MBF. RESULTS Six KD patients without coronary artery lesions served as controls and ten with coronary artery aneurysms during the acute phase of the disease were separated into two groups: group 1 (n=4) with regressed and group 2 (n=6) with persistent aneurysm at follow-up. The estimated coronary endothelial function was higher in controls compared to patients with coronary artery aneurysms (2.5±0.3 vs 1.7±0.7, p<0.05). A significant difference in coronary endothelial function among groups was found (F=5.21, p<0.02). Coronary endothelial function was higher in patients of group 1 than in those of group 2 (1.9±0.6 vs 1.4±0.7, p<0.02). CONCLUSION SPECT may be applied as a noninvasive method for assessing coronary vascular function in children with a history of KD, demonstrating an impaired response to the CPT, an endothelial-dependent vasodilator stimulus. These findings reinforce the concept that coronary endothelial dysfunction may represent a long-term sequela of KD.
Collapse
Affiliation(s)
- Silvana Cicala
- Division of Cardiology, Department of Paediatrics, Santobono-Pausilipon Children Medical Hospital, and Department of Biomorphological and Functional Sciences, Federico II University, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Zhang E, Jiang B, Yokochi A, Maruyama J, Mitani Y, Ma N, Maruyama K. Effect of all-trans-retinoic acid on the development of chronic hypoxia-induced pulmonary hypertension. Circ J 2010; 74:1696-703. [PMID: 20606328 DOI: 10.1253/circj.cj-10-0097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND An earlier study showed that all-trans-retinoic acid (ATRA) prevents the development of monocrotalin-induced pulmonary hypertension (PH). The purpose of the present study was to determine the effect of ATRA on another model of chronic hypoxia-induced PH. METHODS AND RESULTS Male Sprague-Dawley rats were given 30 mg/kg ATRA or vehicle only by gavage once daily for 14 days during hypobaric hypoxic exposure. Chronic hypoxic exposure induced PH, right ventricular hypertrophy (RVH), and hypertensive pulmonary vascular changes. Quantitative morphometry of the pulmonary arteries showed that ATRA treatment significantly reduced the percentage of muscularized arteries in peripheral pulmonary arteries only with an external diameter between 15 and 50 microm. ATRA treatment also significantly reduced the medial wall thickness in small muscular arteries only with an external diameter between 50 and 100 microm. Unfortunately, these reductions did not accompany the lowering of pulmonary artery pressure nor decrease in RVH. Chronic hypoxia-induced PH rats with ATRA had a loss in body weight. Chronic hypoxia increased the expression of endothelial nitric oxide synthase in the lung on western blotting and immunohistochemistry, in which ATRA treatment had no effect. CONCLUSIONS The administration of ATRA might not have a therapeutic role in preventing the development of chronic hypoxia-induced PH, because of body weight loss and the subtle preventable effects of vascular changes.
Collapse
Affiliation(s)
- Erquan Zhang
- Anesthesiology and Critical Care Medicine, Physiology, Pediatrics, Mie University School of Medicine, Tsu and Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Ou ZJ, Wei W, Huang DD, Luo W, Luo D, Wang ZP, Zhang X, Ou JS. L-arginine restores endothelial nitric oxide synthase-coupled activity and attenuates monocrotaline-induced pulmonary artery hypertension in rats. Am J Physiol Endocrinol Metab 2010; 298:E1131-9. [PMID: 20215577 DOI: 10.1152/ajpendo.00107.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
L-arginine can attenuate pulmonary hypertension (PH) by a mechanism that are not fully understood. This study investigated the molecule mechanism of L-arginine attenuating PH. Sprague Dawley rats were treated with monocrotaline (MCT) with or without L-arginine for 3 or 5 wk. Right ventricular systolic pressure (RVSP), right heart hypertrophy, survival rate, pulmonary artery wall thickness, nitric oxide (NO) concentration, and superoxide anion (O(2)(*-)) generation in the lung were measured. Expressions of endothelial nitric oxide synthase (eNOS) and heat shock protein 90 (HSP90), phosphorylation of eNOS at Ser(1177), and the association of eNOS and HSP90 in the lung were determined by Western blot and immunoprecipitation experiments. MCT increased RVSP, right heart hypertrophy, mortality, pulmonary artery wall thickness, and O(2)(*-) generation and decreased eNOS and HSP90 expression and association, phosphorylation of eNOS at Ser(1177), and NO production. L-arginine decreased RVSP, right heart hypertrophy, mortality, O(2)(*-) generation, and pulmonary artery wall thickness and increased NO production. L-arginine increased eNOS expression, phosphorylation of eNOS at Ser(1177), and association of eNOS and HSP90 without significantly altering HSP90 expression. L-arginine may act through three pathways, providing a substrate for NO generation, preserving eNOS expression/phosphorylation, and maintaining the association of eNOS and HSP90, which allows restoration of eNOS activity and coupling activity, to maintain the balance between NO and O(2)(*-) and delay the development of PH.
Collapse
Affiliation(s)
- Zhi-Jun Ou
- Division of Hypertension and Vascular Diseases, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Novel approaches to treat experimental pulmonary arterial hypertension: a review. J Biomed Biotechnol 2010; 2010:702836. [PMID: 20339474 PMCID: PMC2843902 DOI: 10.1155/2010/702836] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 01/08/2010] [Accepted: 02/08/2010] [Indexed: 01/01/2023] Open
Abstract
Background. Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by an increase in pulmonary artery pressure leading to right ventricular (RV) hypertrophy, RV failure, and ultimately death. Current treatments can improve symptoms and reduce severity of the hemodynamic disorder but gradual deterioration in their condition often necessitates a lung transplant. Methods and Results. In experimental models of PAH, particularly the model of monocrotaline-induced pulmonary hypertension, efficacious treatment options tested so far include a spectrum of pharmacologic agents with actions such as anti-mitogenic, proendothelial function, proangiogenic, antiinflammatory and antioxidative. Emerging trends in PAH treatment are gene and cell therapy and their combination, like (progenitor) cells enriched with eNOS or VEGF gene. More animal data should be collected to investigate optimal cell type, in vitro cell transduction, route of administration, and number of cells to inject. Several recently discovered and experimentally tested interventions bear potential for therapeutic purposes in humans or have been shown already to be effective in PAH patients leading to improved life expectation and better quality of life. Conclusion. Since many patients remain symptomatic despite therapy, we should encourage research in animal models of PAH and implement promising treatments in homogeneous groups of PAH patients.
Collapse
|