1
|
Takematsu E, Massidda M, Howe G, Goldman J, Felli P, Mei L, Callahan G, Sligar AD, Smalling R, Baker AB. Transmembrane stem factor nanodiscs enhanced revascularization in a hind limb ischemia model in diabetic, hyperlipidemic rabbits. Sci Rep 2024; 14:2352. [PMID: 38287067 PMCID: PMC10825164 DOI: 10.1038/s41598-024-52888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.
Collapse
Affiliation(s)
- Eri Takematsu
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
- School of Medicine, Surgery, Stanford University, Stanford, CA, USA
| | - Miles Massidda
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Gretchen Howe
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
| | - Julia Goldman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston, Houston, TX, USA
| | - Patricia Felli
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston, Houston, TX, USA
| | - Lei Mei
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Gregory Callahan
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Andrew D Sligar
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA
| | - Richard Smalling
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, USA
- Memorial Hermann Heart and Vascular Institute, Houston, TX, USA
| | - Aaron B Baker
- Department of Biomedical Engineering, University of Texas at Austin, 1 University Station, BME 5.202D, C0800, Austin, TX, 78712, USA.
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX, USA.
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Takematsu E, Massidda M, Howe G, Goldman J, Felli P, Mei L, Callahan G, Sligar A, Smalling R, Baker A. Transmembrane Stem Factor Nanodiscs Enhanced Revascularization in a Hind Limb Ischemia Model in Diabetic, Hyperlipidemic Rabbits. RESEARCH SQUARE 2023:rs.3.rs-2997323. [PMID: 37398327 PMCID: PMC10312936 DOI: 10.21203/rs.3.rs-2997323/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.
Collapse
Affiliation(s)
| | | | - Gretchen Howe
- The University of Texas Health Science Center at Houston
| | - Julia Goldman
- The University of Texas Health Science Center at Houston
| | - Patricia Felli
- The University of Texas Health Science Center at Houston
| | - Lei Mei
- The University of Texas at Austin
| | | | | | | | | |
Collapse
|
3
|
Sligar AD, Howe G, Goldman J, Felli P, Gómez-Hernández A, Takematsu E, Veith A, Desai S, Riley WJ, Singeetham R, Mei L, Callahan G, Ashirov D, Smalling R, Baker AB. Syndecan-4 Proteoliposomes Enhance Revascularization in a Rabbit Hind Limb Ischemia Model of Peripheral Ischemia. Acta Biomater 2023:S1742-7061(23)00331-8. [PMID: 37321528 DOI: 10.1016/j.actbio.2023.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023]
Abstract
Regenerative therapeutics for treating peripheral arterial disease are an appealing strategy for creating more durable solutions for limb ischemia. In this work, we performed preclinical testing of an injectable formulation of syndecan-4 proteoliposomes combined with growth factors as treatment for peripheral ischemia delivered in an alginate hydrogel. We tested this therapy in an advanced model of hindlimb ischemia in rabbits with diabetes and hyperlipidemia. Our studies demonstrate enhancement in vascularity and new blood vessel growth with treatment with syndecan-4 proteoliposomes in combination with FGF-2 or FGF-2/PDGF-BB. The effects of the treatments were particularly effective in enhancing vascularity in the lower limb with a 2-4 increase in blood vessels in the treatment group in comparison to the control group. In addition, we demonstrate that the syndecan-4 proteoliposomes have stability for at least 28 days when stored at 4°C to allow transport and use in the hospital environment. In addition, we performed toxicity studies in the mice and found no toxic effects even when injected at high concentration. Overall, our studies support that syndecan-4 proteoliposomes markedly enhance the therapeutic potential of growth factors in the context of disease and may be promising therapeutics for inducing vascular regeneration in peripheral ischemia. STATEMENT OF SIGNIFICANCE: Peripheral ischemia is a common condition in which there is a lack of blood flow to the lower limbs. This condition can lead to pain while walking and, in severe cases, critical limb ischemia and limb loss. In this study, we demonstrate the safety and efficacy of a novel injectable therapy for enhancing revascularization in peripheral ischemia using an advanced large animal model of peripheral vascular disease using rabbits with hyperlipidemia and diabetes.
Collapse
Affiliation(s)
- Andrew D Sligar
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Gretchen Howe
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX
| | - Julia Goldman
- Center for Laboratory Animal Medicine and Care, UT Health Science Center at Houston
| | - Patricia Felli
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX
| | - Almudena Gómez-Hernández
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Austin Veith
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Shubh Desai
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - William J Riley
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Rohan Singeetham
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Lei Mei
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Gregory Callahan
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - David Ashirov
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Richard Smalling
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Texas Medical School at Houston, TX; Memorial Hermann Heart and Vascular Institute, Houston, TX
| | - Aaron B Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX; Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX; The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX; Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX.
| |
Collapse
|
4
|
Macedo AG, Miotto DS, Tardelli LP, Santos CF, Amaral SL. Exercise-induced angiogenesis is attenuated by captopril but maintained under perindopril treatment in hypertensive rats. Front Physiol 2023; 14:1147525. [PMID: 37284543 PMCID: PMC10239938 DOI: 10.3389/fphys.2023.1147525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Angiogenesis is an important exercise-induced response to improve blood flow and decrease vascular resistance in spontaneously hypertensive rats (SHR), but some antihypertensive drugs attenuate this effect. This study compared the effects of captopril and perindopril on exercise-induced cardiac and skeletal muscle angiogenesis. Forty-eight Wistar rats and 48 SHR underwent 60 days of aerobic training or were kept sedentary. During the last 45 days, rats were treated with captopril, perindopril or water (Control). Blood pressure (BP) measurements were taken and histological samples from the tibialis anterior (TA) and left ventricle (LV) muscles were analyzed for capillary density (CD) and vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2) and endothelial nitric oxide synthase (eNOS) protein level. Exercise increased vessel density in Wistar rats due to higher VEGFR-2 (+17%) and eNOS (+31%) protein level. Captopril and perindopril attenuated exercise-induced angiogenesis in Wistar rats, but the attenuation was small in the perindopril group, and this response was mediated by higher eNOS levels in the Per group compared to the Cap group. Exercise increased myocardial CD in Wistar rats in all groups and treatment did not attenuate it. Both exercise and pharmacological treatment reduced BP of SHR similarly. Rarefaction was found in TA of SHR compared to Wistar, due to lower levels of VEGF (-26%) and eNOS (-27%) and treatment did not avoid this response. Exercise prevented these reductions in control SHR. While rats treated with perindopril showed angiogenesis in the TA muscle after training, those rats treated with captopril showed attenuated angiogenesis (-18%). This response was also mediated by lower eNOS levels in Cap group compared with Per and control group. Myocardial CD was reduced in all sedentary hypertensive compared with Wistar and training restored the number of vessels compared with sedentary SHR. In conclusion, taken into account only the aspect of vessel growth, since both pharmacological treatments reduced BP in SHR, the result of the present study suggests that perindopril could be a drug of choice over captopril for hypertensive practitioners of aerobic physical exercises, especially considering that it does not attenuate angiogenesis induced by aerobic physical training in skeletal and cardiac muscles.
Collapse
Affiliation(s)
- Anderson G. Macedo
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), Federal University of São Carlos and São Paulo State University, São Carlos, Brazil
| | - Danyelle S. Miotto
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), Federal University of São Carlos and São Paulo State University, São Carlos, Brazil
| | - Lidieli P. Tardelli
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), Federal University of São Carlos and São Paulo State University, São Carlos, Brazil
| | - Carlos F. Santos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru, Brazil
| | - Sandra L. Amaral
- Department of Physical Education, School of Sciences, São Paulo State University, Bauru, Brazil
- Joint Graduate Program in Physiological Sciences (PIPGCF), Federal University of São Carlos and São Paulo State University, São Carlos, Brazil
| |
Collapse
|
5
|
Takematsu E, Massidda M, Howe G, Goldman J, Felli P, Mei L, Callahan G, Sligar AD, Smalling R, Baker AB. Transmembrane Stem Factor Nanodiscs Enhanced Revascularization in a Hind Limb Ischemia Model in Diabetic, Hyperlipidemic Rabbits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533550. [PMID: 36993249 PMCID: PMC10055194 DOI: 10.1101/2023.03.20.533550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia.
Collapse
|
6
|
Angiotensin-converting enzyme inhibitor promotes angiogenesis through Sp1/Sp3-mediated inhibition of notch signaling in male mice. Nat Commun 2023; 14:731. [PMID: 36759621 PMCID: PMC9911748 DOI: 10.1038/s41467-023-36409-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Angiogenesis is a critical pathophysiological process involved in organ growth and various diseases. Transcription factors Sp1/Sp3 are necessary for fetal development and tumor growth. Sp1/Sp3 proteins were downregulated in the capillaries of the gastrocnemius in patients with critical limb ischemia samples. Endothelial-specific Sp1/Sp3 knockout reduces angiogenesis in retinal, pathological, and tumor models and induced activation of the Notch1 pathway. Further, the inactivation of VEGFR2 signaling by Notch1 contributes to the delayed angiogenesis phenotype. Mechanistically, endothelial Sp1 binds to the promoter of Notch1 and inhibits its transcription, which is enhanced by Sp3. The proangiogenic effect of ACEI is abolished in Sp1/Sp3-deletion male mice. We identify USP7 as an ACEI-activated deubiquitinating enzyme that translocated into the nucleus binding to Sp1/Sp3, which are deacetylated by HDAC1. Our findings demonstrate a central role for endothelial USP7-Sp1/Sp3-Notch1 signaling in pathophysiological angiogenesis in response to ACEI treatment.
Collapse
|
7
|
Wagner N, Wagner KD. Pharmacological Utility of PPAR Modulation for Angiogenesis in Cardiovascular Disease. Int J Mol Sci 2023; 24:ijms24032345. [PMID: 36768666 PMCID: PMC9916802 DOI: 10.3390/ijms24032345] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Peroxisome proliferator activated receptors, including PPARα, PPARβ/δ, and PPARγ, are ligand-activated transcription factors belonging to the nuclear receptor superfamily. They play important roles in glucose and lipid metabolism and are also supposed to reduce inflammation and atherosclerosis. All PPARs are involved in angiogenesis, a process critically involved in cardiovascular pathology. Synthetic specific agonists exist for all PPARs. PPARα agonists (fibrates) are used to treat dyslipidemia by decreasing triglyceride and increasing high-density lipoprotein (HDL) levels. PPARγ agonists (thiazolidinediones) are used to treat Type 2 diabetes mellitus by improving insulin sensitivity. PPARα/γ (dual) agonists are supposed to treat both pathological conditions at once. In contrast, PPARβ/δ agonists are not in clinical use. Although activators of PPARs were initially considered to have favorable effects on the risk factors for cardiovascular disease, their cardiovascular safety is controversial. Here, we discuss the implications of PPARs in vascular biology regarding cardiac pathology and focus on the outcomes of clinical studies evaluating their benefits in cardiovascular diseases.
Collapse
|
8
|
Martins FDAD, Mateo DPA, Silva FJDM, Moura SSD, Oliveira EC, Coelho DB, Bearzoti E, Pinto KMDC, Becker LK. Use of Diuretics is Associated with Higher Risk of Sarcopenia in Older Adults with Hypertension. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2022. [DOI: 10.36660/ijcs.20200279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Nyvad J, Lerman A, Lerman LO. With a Little Help From My Friends: the Role of the Renal Collateral Circulation in Atherosclerotic Renovascular Disease. Hypertension 2022; 79:717-725. [PMID: 35135307 PMCID: PMC8917080 DOI: 10.1161/hypertensionaha.121.17960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The collateral circulation can adapt to bypass major arteries with limited flow and serves a crucial protective role in coronary, cerebral, and peripheral arterial disease. Emerging evidence indicates that the renal collateral circulation can similarly adapt and thereby limit kidney ischemia in atherosclerotic renovascular disease. These adaptations predominantly include recruitment of preexisting microvessels for arteriogenesis, with de novo vessel formation playing a limited role. Yet, adaptations of the renal collateral circulation in renovascular disease are often insufficient to fully compensate for the limited flow within an obstructed renal artery and may be hampered by the severity of obstruction or patient comorbidities. Experimental strategies have attempted to circumvent limitations of collateral formation and improve the prognosis of patients with various ischemic vascular territories. These have included pharmacological approaches such as endothelial growth factors, renin-angiotensin-aldosterone system blockade, and If-channel-blockers, as well as interventions like preconditioning, exercise, enhanced external counter-pulsation, and low-energy shock-wave therapy. However, few of these strategies have been implemented in atherosclerotic renovascular disease. This review summarizes current understanding regarding the development of renal collateral circulation in atherosclerotic renovascular disease. Studies are needed to apply lessons learned in other vascular beds in the setting of atherosclerotic renovascular disease to develop new treatment regimens for this patient group.
Collapse
Affiliation(s)
- Jakob Nyvad
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN. (J.N., L.O.L.).,Department of Nephrology and Hypertension, Aarhus University Hospital, Aarhus, Denmark (J.N.)
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN. (A.L.)
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN. (J.N., L.O.L.)
| |
Collapse
|
10
|
Batais M, Almigbal T, Alotaibi K, Alodhayani A, Alkhushail A, Altheaby A, Alhantoushi M, Alsaad S, Dalbhi SA, Alghamdi Y. Angiotensin converting enzyme inhibitors and risk of lung cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25714. [PMID: 33907158 PMCID: PMC8084080 DOI: 10.1097/md.0000000000025714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND We performed a meta-analysis to determine whether a consistent relationship exists between the use of angiotensin converting enzyme inhibitors (ACEIs) and the risk of lung cancer. Accordingly, we summarized and reviewed previously published quantitative studies. METHODS Eligible studies with reference lists published before June 1st, 2019 were obtained from searching several databases. Random effects' models were used to summarize the overall estimate of the multivariate adjusted odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS Thirteen observational studies involving 458,686 ACEI users were included in the analysis, Overall, pooled risk ratios indicate that ACEIs use was not a risk factor for lung cancer (RR 0.982, 95% C.I. 0.873 - 1.104; P = .76). There was significant heterogeneity between the studies (Q = 52.54; P < .001; I2 = 86.07). There was no significant association between ACEIs use and lung cancer in studies with over five years of ACEIs exposure (RR 0.95, 95% C.I. 0.75 - 1.20; P = .70); and ≤ 5years of exposure to ACEIs (RR 0.98, 95% C.I. 0.83 - 1.15; P = .77). There were no statistically significant differences in the pooled risk ratio obtained according to the study design (Q = 0.65; P = .723) and the comparator regimen (Q = 3.37; P = .19). CONCLUSIONS The use of ACEIs was not associated with an increased risk of lung cancer. Nevertheless, well-designed observational studies with different ethnic populations are still needed to evaluate the long-term (over 10 years) association between ACEIs use and lung cancer.
Collapse
Affiliation(s)
- Mohammed Batais
- King Saud University Medical City, College of Medicine, King Saud University
| | - Turky Almigbal
- King Saud University Medical City, College of Medicine, King Saud University
| | | | | | | | | | | | - Saad Alsaad
- King Saud University Medical City, College of Medicine, King Saud University
| | | | - Yasser Alghamdi
- Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Wang C, Chen Y, Zhang G, Liu J, Peng X, Luo J. Recovery of Ggt7 and Ace Expressions in the Colon Alleviates Collagen-Induced Arthritis in Rats by Specific Bioactive Polysaccharide Intervention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:14531-14539. [PMID: 33226212 DOI: 10.1021/acs.jafc.0c06252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rheumatoid arthritis (RA) causes swollen joints and irreversible joint damage and may even elevate cancer risks. Several bioactive nonstarch polysaccharides (NSPs) were reported to alleviate RA, but the key colonic genes accountable for this alleviation were elusive. Using collagen-induced arthritis as an RA model, colonic candidate genes related to RA were selected by transcriptome and methylome. The key genes were determined by comparing the transcriptome, methylome, and quantitative reverse transcription polymerase chain reaction profiles in RA rats with and without Lycium barbarum polysaccharides' treatment and further validated using Angelica sinensis polysaccharides and Astragalus propinquus polysaccharides for comparison. Both colonic genes γ-glutamyltransferase 7 (Ggt7) and angiotensin-I-converting enzyme (Ace) were downregulated by RA, and they were upregulated after L. barbarum polysaccharides' and A. sinensis polysaccharides' intervention that reduced the RA-caused hypermethylation status in nucleotide sites in the exon/promoter region of the two genes. However, the A. propinquus polysaccharides' intervention barely reduced the hypermethylation in the corresponding sites, failing to recover the expressions of these two genes and improve RA. Therefore, the colonic Ggt7 and Ace can be considered as key genes accountable for RA alleviation by bioactive NSP intervention. This study provides a more comprehensive insight into diet intervention to improve RA.
Collapse
Affiliation(s)
- Chunyan Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yunjing Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Guangwen Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Junsheng Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
12
|
Sakuma K, Yamaguchi A. Drugs of Muscle Wasting and Their Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:463-481. [PMID: 30390265 DOI: 10.1007/978-981-13-1435-3_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness such as cachexia, atrophy, and sarcopenia are characterized by marked decreases in the protein content, myonuclear number, muscle fiber size, and muscle strength. This chapter focuses on the recent advances of pharmacological approach for attenuating muscle wasting.A myostatin-inhibiting approach is very intriguing to prevent sarcopenia but not muscular dystrophy in humans. Supplementation with ghrelin is also an important candidate to combat sarcopenia as well as cachexia. Treatment with soy isoflavone, trichostatin A (TSA), and cyclooxygenase 2 (Cox2) inhibitors seems to be effective modulators attenuating muscle wasting, although further systematic research is needed on this treatment in particular concerning side effects.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
13
|
Hao J, Li WW, Du H, Zhao ZF, Liu F, Lu JC, Yang XC, Cui W. Role of Vitamin C in Cardioprotection of Ischemia/Reperfusion Injury by Activation of Mitochondrial KATP Channel. Chem Pharm Bull (Tokyo) 2017; 64:548-57. [PMID: 27250789 DOI: 10.1248/cpb.c15-00693] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
How to provide effective prevention and treatment of myocardial ischemia/reperfusion (I/R) injury and study of the mechanism underlying I/R injury are hotspots of current research. This study aimed to elucidate the effect and cardioprotective mechanism of vitamin C (VC) on myocardial I/R injury. Our study introduced two different I/R models: I/R in vitro and oxygen-glucose deprivation/recovery (OGD/R) in primary neonatal rat cardiac myocytes. We used the mitochondrial permeability transition pore (mPTP) opener lonidamine (LND) and the mitochondrial KATP (mitoKATP) channel inhibitor 5-hydroxydecanoate (5-HD) to analyze the underlying mechanisms. We found that post-treatment with VC decreased I/R injury in our models. Post-treatment with VC significantly decreased I/R-induced injury, attenuated apoptosis, and maintained the functional integrity of mitochondria via alleviation of Ca(2+) overload, reactive oxygen species burst, inhibition of the opening of mPTP, and prevention of mitochondrial membrane potential (ΔΨm) depolarization. VC post-treatment increased the phosphorylation of Akt and glycogen synthase kinase (GSK)-3β. The present results demonstrate that VC might protect the myocardium from I/R-induced injury by inhibiting the mPTP opening via activation of mitoKATP channels. VC mediates cardioprotection via activation of the phosphatidyl inositol 3-kinase (PI3K)-Akt signaling pathway. These findings may contribute toward the development of novel strategies for clinical cardioprotection against I/R injury.
Collapse
Affiliation(s)
- Jie Hao
- The Second Hospital of Hebei Medical University
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hirsch AT, Duprez D. The potential role of angiotensin-converting enzyme inhibition in peripheral arterial disease. Vasc Med 2016; 8:273-8. [PMID: 15125489 DOI: 10.1191/1358863x03vm502oa] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peripheral arterial disease (PAD) is associated with significant morbidity and mortality, and yet remains under-recognized and under-treated. Atherosclerosis is the most common cause of lower extremity PAD and pharmacological interventions that alter this central pathogenic role of atherosclerosis may alter the natural history of PAD. There is growing evidence that the renin-angiotensin system (RAS) is a significant mediator of this disease process and that treatment with angiotensin-converting enzyme (ACE) inhibitors is associated with vasculoprotective effects that are independent of the antihypertensive properties of these agents. Numerous lines of evidence suggest that ACE inhibitors directly inhibit the atherosclerotic process and improve vascular endothelial function. In patients with PAD, ACE inhibitors have been shown to improve peripheral circulation as measured by peripheral arterial blood pressure and by increases in peripheral blood flow. Preliminary evidence suggests that ACE inhibitors might improve clinical symptoms in patients with PAD. Recent evidence has confirmed that ACE inhibition is associated with a decrease in morbidity and mortality in patients with arterial disease without left ventricular dysfunction; this benefit was at least as great for the subset of patients with PAD. Overall, these data support a significant role for the RAS in the pathogenesis of all atherosclerotic diseases (including PAD) and suggest that the benefit is independent of the blood pressure lowering properties of these agents. These studies suggest that ACE inhibitor therapy should be considered in the routine management of individuals with PAD, regardless of whether they have hypertension or left ventricular dysfunction.
Collapse
Affiliation(s)
- Alan T Hirsch
- Vascular Medicine Program, Minneapolis Heart Institute, and Division of Epidemiology, University of Minnesota School of Public Health, Minneapolis, MN 55454, USA.
| | | |
Collapse
|
15
|
Unthank JL, Sheridan KM, Dalsing MC. Collateral Growth in the Peripheral Circulation: A Review. Vasc Endovascular Surg 2016; 38:291-313. [PMID: 15306947 DOI: 10.1177/153857440403800401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Arterial occlusive diseases are a major cause of morbidity and death in the United States. The enlargement of pre-existing vessels, which bypass the site of arterial occlusion, provide a natural way for the body to compensate for such obstructions. Individuals differ in their capacity to develop collateral vessels. In recent years much attention has been focused upon therapy to promote collateral development, primarily using individual growth factors. Such studies have had mixed results. Persistent controversies exist regarding the initiating stimuli, the processes involved in enlargement, the specific vessels that should be targeted, and the most appropriate terminology. Consequently, it is now recognized that more research is needed to extend our knowledge of the complex process of collateral growth. This basic science review addresses five questions essential in understanding current problems in collateral growth research and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Joseph L Unthank
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
16
|
|
17
|
Desjarlais M, Dussault S, Dhahri W, Mathieu R, Rivard A. Direct renin inhibition with aliskiren improves ischemia-induced neovascularization: blood pressure-independent effect. Atherosclerosis 2015; 242:450-60. [PMID: 26295797 DOI: 10.1016/j.atherosclerosis.2015.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/27/2015] [Accepted: 08/06/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Renin is the rate limiting step for the activation of the renin-angiotensin-aldosterone system, which is linked to the development of endothelial dysfunction, hypertension and atherosclerosis. However, the specific role of renin during physiological responses to tissue ischemia is currently unknown. Aliskiren is the only direct renin inhibitor that is clinically used as an orally active antihypertensive drug. Here we tested the hypothesis that aliskiren might improve neovascularization in response to ischemia. METHODS AND RESULTS At a dose that did not modulate blood pressure (10 mg/kg), aliskiren led to improved blood flow recovery after hindlimb ischemia in C57BL/6 mice (Doppler flow ratios 0.71 ± 0.07 vs. 0.55 ± 0.03; P < 0.05). In ischemic muscles, treatment with aliskiren was associated with a significant increase of vascular density, reduced oxidative stress levels and increased expression of VEGF and eNOS. Aliskiren treatment also significantly increased the number of bone marrow-derived endothelial progenitor cells (EPCs) after hindlimb ischemia. Moreover, the angiogenic properties of EPCs (migration, adhesion, integration into tubules) were significantly improved in mice treated with aliskiren. In vitro, aliskiren improves cellular migration and tubule formation in HUVECs. This is associated with an increased expression of nitric oxide (NO), and a significant reduction of oxidative stress levels. Importantly, the angiogenic properties of aliskiren in vitro and in vivo are completely abolished following treatment with the NOS inhibitor l-NAME. CONCLUSION Direct renin inhibition with aliskiren leads to improved ischemia-induced neovascularization that is not dependant on blood pressure lowering. The mechanism involves beneficial effects of aliskiren on oxidative stress and NO angiogenic pathway, together with an increase in the number and the functional activities of EPCs.
Collapse
Affiliation(s)
- Michel Desjarlais
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Sylvie Dussault
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Wahiba Dhahri
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Raphael Mathieu
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Alain Rivard
- Department of Cardiovascular Research, Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
18
|
Armstrong EJ, Chen DC, Singh GD, Amsterdam EA, Laird JR. Angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use is associated with reduced major adverse cardiovascular events among patients with critical limb ischemia. Vasc Med 2015; 20:237-44. [DOI: 10.1177/1358863x15574321] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiotensin converting enzyme inhibitors (ACEIs) or angiotensin receptor blockers (ARBs) are recommended for secondary prevention in peripheral artery disease, but their effectiveness in patients with critical limb ischemia (CLI) is uncertain. We reviewed 464 patients with CLI who underwent diagnostic angiography or endovascular intervention from 2006–2013 at a multidisciplinary vascular center. ACEI or ARB use was assessed at the time of angiography. Major adverse cardiovascular events (MACE), mortality, and major adverse limb events (MALE) were assessed during three-year follow-up. Propensity weighting was used to adjust for baseline differences between patients taking and not taking ACEIs or ARBs. ACEIs or ARBs were prescribed to 269 (58%) patients. Patients prescribed ACEIs or ARBs had more baseline comorbidities including diabetes and hypertension ( p<0.05). Patients prescribed ACEIs or ARBs had lower three-year unadjusted rates of MACE (40% versus 47%) and mortality (33% versus 43%). After propensity weighting, ACEI or ARB use was associated with significantly lower rates of MACE (hazard ratio [HR] 0.76, 95% confidence interval [CI] 0.58–0.99, p=0.04) and overall mortality (HR 0.71, 95% CI 0.53–0.95, p=0.02). There was no significant association between ACEI or ARB use and MALE (HR 0.97, 95% CI 0.69–1.35, p=0.2) or major amputation (HR 0.74, 95% CI 0.47–1.18, p=0.1). ACEI/ARB use is associated with lower MACE and mortality in patients with CLI, but there was no effect on limb-related outcomes.
Collapse
Affiliation(s)
- Ehrin J Armstrong
- Section of Cardiology, VA Eastern Colorado Healthcare System and Department of Medicine, University of Colorado, USA
| | - Debbie C Chen
- Vascular Center and Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, USA
| | - Gagan D Singh
- Vascular Center and Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, USA
| | - Ezra A Amsterdam
- Vascular Center and Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, USA
| | - John R Laird
- Vascular Center and Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, USA
| |
Collapse
|
19
|
Zhang Y, Ma L. Effect of preoperative angiotensin-converting enzyme inhibitor on the outcome of coronary artery bypass graft surgery. Eur J Cardiothorac Surg 2014; 47:788-95. [DOI: 10.1093/ejcts/ezu298] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/24/2014] [Indexed: 12/22/2022] Open
|
20
|
Kränkel N, Madeddu P. Helping the circulatory system heal itself: manipulating kinin signaling to promote neovascularization. Expert Rev Cardiovasc Ther 2014; 7:215-9. [DOI: 10.1586/14779072.7.3.215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Silvestre JS, Smadja DM, Lévy BI. Postischemic revascularization: from cellular and molecular mechanisms to clinical applications. Physiol Rev 2013; 93:1743-802. [PMID: 24137021 DOI: 10.1152/physrev.00006.2013] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After the onset of ischemia, cardiac or skeletal muscle undergoes a continuum of molecular, cellular, and extracellular responses that determine the function and the remodeling of the ischemic tissue. Hypoxia-related pathways, immunoinflammatory balance, circulating or local vascular progenitor cells, as well as changes in hemodynamical forces within vascular wall trigger all the processes regulating vascular homeostasis, including vasculogenesis, angiogenesis, arteriogenesis, and collateral growth, which act in concert to establish a functional vascular network in ischemic zones. In patients with ischemic diseases, most of the cellular (mainly those involving bone marrow-derived cells and local stem/progenitor cells) and molecular mechanisms involved in the activation of vessel growth and vascular remodeling are markedly impaired by the deleterious microenvironment characterized by fibrosis, inflammation, hypoperfusion, and inhibition of endogenous angiogenic and regenerative programs. Furthermore, cardiovascular risk factors, including diabetes, hypercholesterolemia, hypertension, diabetes, and aging, constitute a deleterious macroenvironment that participates to the abrogation of postischemic revascularization and tissue regeneration observed in these patient populations. Thus stimulation of vessel growth and/or remodeling has emerged as a new therapeutic option in patients with ischemic diseases. Many strategies of therapeutic revascularization, based on the administration of growth factors or stem/progenitor cells from diverse sources, have been proposed and are currently tested in patients with peripheral arterial disease or cardiac diseases. This review provides an overview from our current knowledge regarding molecular and cellular mechanisms involved in postischemic revascularization, as well as advances in the clinical application of such strategies of therapeutic revascularization.
Collapse
|
22
|
Shahin Y, Barnes R, Barakat H, Chetter IC. Meta-analysis of angiotensin converting enzyme inhibitors effect on walking ability and ankle brachial pressure index in patients with intermittent claudication. Atherosclerosis 2013; 231:283-90. [DOI: 10.1016/j.atherosclerosis.2013.09.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 10/26/2022]
|
23
|
Ruocco E, Ruocco V, Tornesello ML, Gambardella A, Wolf R, Buonaguro FM. Kaposi's sarcoma: etiology and pathogenesis, inducing factors, causal associations, and treatments: facts and controversies. Clin Dermatol 2013; 31:413-422. [PMID: 23806158 PMCID: PMC7173141 DOI: 10.1016/j.clindermatol.2013.01.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Kaposi's sarcoma (KS), an angioproliferative disorder, has a viral etiology and a multifactorial pathogenesis hinged on an immune dysfunction. The disease is multifocal, with a course ranging from indolent, with only skin manifestations to fulminant, with extensive visceral involvement. In the current view, all forms of KS have a common etiology in human herpesvirus (HHV)-8 infection, and the differences among them are due to the involvement of various cofactors. In fact, HHV-8 infection can be considered a necessary but not sufficient condition for the development of KS, because further factors (genetic, immunologic, and environmental) are required. The role of cofactors can be attributed to their ability to interact with HHV-8, to affect the immune system, or to act as vasoactive agents. In this contribution, a survey of the current state of knowledge on many and various factors involved in KS pathogenesis is carried out, in particular by highlighting the facts and controversies about the role of some drugs (quinine analogues and angiotensin-converting enzyme inhibitors) in the onset of the disease. Based on these assessments, it is possible to hypothesize that the role of cofactors in KS pathogenesis can move toward an effect either favoring or inhibiting the onset of the disease, depending on the presence of other agents modulating the pathogenesis itself, such as genetic predisposition, environmental factors, drug intake, or lymph flow disorders. It is possible that the same agents may act as either stimulating or inhibiting cofactors according to the patient's genetic background and variable interactions. Treatment guidelines for each form of KS are outlined, because a unique standard therapy for all of them cannot be considered due to KS heterogeneity. In most cases, therapeutic options, both local and systemic, should be tailored to the patient's peculiar clinical conditions.
Collapse
Affiliation(s)
- Eleonora Ruocco
- Department of Dermatology, Second University of Naples, via S. Pansini, 5 - 80131 Naples, Italy
| | - Vincenzo Ruocco
- Department of Dermatology, Second University of Naples, via S. Pansini, 5 - 80131 Naples, Italy.
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology and AIDS Reference Centre, National Cancer Institute, "Fondazione Pascale," via M. Semmola - 80131 Naples, Italy
| | - Alessio Gambardella
- Department of Dermatology, Second University of Naples, via S. Pansini, 5 - 80131 Naples, Italy
| | - Ronni Wolf
- Dermatology Unit, Kaplan Medical Center, Rehovot 76100 Israel; The School of Medicine, Hebrew University and Hadassah Medical Center, Jerusalem, Israel
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology and AIDS Reference Centre, National Cancer Institute, "Fondazione Pascale," via M. Semmola - 80131 Naples, Italy
| |
Collapse
|
24
|
Sugi T. Kininogen-dependent antiphosphatidylethanolamine antibodies and autoantibodies to factor XII in patients with recurrent pregnancy losses. J Obstet Gynaecol Res 2013; 39:1223-9. [DOI: 10.1111/jog.12110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 02/27/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Toshitaka Sugi
- Laboratory for Recurrent Pregnancy Loss; Sugi Women's Clinic; Yokohama Japan
| |
Collapse
|
25
|
Abstract
Peripheral arterial disease (PAD) is a common vascular disease that reduces blood flow capacity to the legs of patients. PAD leads to exercise intolerance that can progress in severity to greatly limit mobility, and in advanced cases leads to frank ischemia with pain at rest. It is estimated that 12 to 15 million people in the United States are diagnosed with PAD, with a much larger population that is undiagnosed. The presence of PAD predicts a 50% to 1500% increase in morbidity and mortality, depending on severity. Treatment of patients with PAD is limited to modification of cardiovascular disease risk factors, pharmacological intervention, surgery, and exercise therapy. Extended exercise programs that involve walking approximately five times per week, at a significant intensity that requires frequent rest periods, are most significant. Preclinical studies and virtually all clinical trials demonstrate the benefits of exercise therapy, including improved walking tolerance, modified inflammatory/hemostatic markers, enhanced vasoresponsiveness, adaptations within the limb (angiogenesis, arteriogenesis, and mitochondrial synthesis) that enhance oxygen delivery and metabolic responses, potentially delayed progression of the disease, enhanced quality of life indices, and extended longevity. A synthesis is provided as to how these adaptations can develop in the context of our current state of knowledge and events known to be orchestrated by exercise. The benefits are so compelling that exercise prescription should be an essential option presented to patients with PAD in the absence of contraindications. Obviously, selecting for a lifestyle pattern that includes enhanced physical activity prior to the advance of PAD limitations is the most desirable and beneficial.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, Muscle Health Research Centre, Faculty of Health, York University, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
26
|
Sakuma K, Yamaguchi A. Novel intriguing strategies attenuating to sarcopenia. J Aging Res 2012; 2012:251217. [PMID: 22500226 PMCID: PMC3303581 DOI: 10.1155/2012/251217] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 11/25/2011] [Indexed: 12/20/2022] Open
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass, is characterized by a deterioration of muscle quantity and quality leading to a gradual slowing of movement, a decline in strength and power, increased risk of fall-related injury, and, often, frailty. Since sarcopenia is largely attributed to various molecular mediators affecting fiber size, mitochondrial homeostasis, and apoptosis, the mechanisms responsible for these deleterious changes present numerous therapeutic targets for drug discovery. Resistance training combined with amino acid-containing supplements is often utilized to prevent age-related muscle wasting and weakness. In this review, we summarize more recent therapeutic strategies (myostatin or proteasome inhibition, supplementation with eicosapentaenoic acid (EPA) or ursolic acid, etc.) for counteracting sarcopenia. Myostatin inhibitor is the most advanced research with a Phase I/II trial in muscular dystrophy but does not try the possibility for attenuating sarcopenia. EPA and ursolic acid seem to be effective as therapeutic agents, because they attenuate the degenerative symptoms of muscular dystrophy and cachexic muscle. The activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) in skeletal muscle by exercise and/or unknown supplementation would be an intriguing approach to attenuating sarcopenia. In contrast, muscle loss with age may not be influenced positively by treatment with a proteasome inhibitor or antioxidant.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi 441-8580, Japan
| | - Akihiko Yamaguchi
- School of Dentistry, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
27
|
Sauermann R, Schmidt WM, Krebs M, Brunner M, Müller M. Ramipril modulates circadian gene expression in skeletal muscle. Pharmacogenet Genomics 2012; 21:751-9. [PMID: 21881539 DOI: 10.1097/fpc.0b013e32834a8621] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Treatment with angiotensin converting enzyme (ACE)-inhibitors favorably affects glucose metabolism and the development of diabetes mellitus by largely elusive mechanisms. To identify these mechanisms, we studied the effect of ACE-inhibition on gene expression in skeletal muscle, a primary target tissue for insulin in glucose homeostasis. METHODS A subject-blinded and analyst-blinded, placebo-controlled study was conducted in nine healthy men. Two consecutive muscle biopsies were conducted before and 9 h after a single dose of either 10-mg ramipril (n=6) or placebo (n=3), (randomly allocated). Muscle ribonucleic acid was subjected to transcriptome profiling. RESULTS In both ramipril-treated or placebo-treated individuals, the majority of genes with differential expression between the two time points belonged to the family of diurnally regulated genes, such as the NR1D1 and NR1D2 genes (nuclear receptor subfamily 1, group D, members 1 and 2) or members of the period homolog family (PER1-3). Ramipril significantly modulated the expression of other diurnally regulated genes, such as aryl hydrocarbon receptor nuclear translocator-like (ARNTL), encoding aryl hydrocarbon receptor nuclear translocator-like, a core component of the circadian clock (P=0.02). Concomitant attenuation of NR1D1 downregulation (-2.4-fold compared with -4.1-fold in placebo; P=0.04), a transcriptional repressor of ARNTL, supported the view that ramipril might modulate glucose homeostasis pathways involving the NR1D1 ARNTL axis. CONCLUSION As circadian rhythms are deranged in patients who are diabetic, modulated expression of circadian clock genes by ramipril could explain the favorable metabolic effects of therapeutic ACE-inhibition.
Collapse
Affiliation(s)
- Robert Sauermann
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
28
|
Kalavrouziotis D, Buth KJ, Cox JL, Baskett RJ. Should all patients be treated with an angiotensin-converting enzyme inhibitor after coronary artery bypass graft surgery? The impact of angiotensin-converting enzyme inhibitors, statins, and β-blockers after coronary artery bypass graft surgery. Am Heart J 2011; 162:836-43. [PMID: 22093199 DOI: 10.1016/j.ahj.2011.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 07/13/2011] [Indexed: 01/13/2023]
Abstract
BACKGROUND We sought to evaluate the association between angiotensin-converting enzyme (ACE) inhibitors and outcomes after coronary artery bypass graft surgery (CABG). METHODS Postoperative outpatient utilization of ACE inhibitors, statins, and β-blockers was assessed in a cohort of 3,718 patients after CABG 65 years and older. The primary outcome was freedom from a composite of all-cause mortality or hospital readmission for cardiac events or procedures. RESULTS Use of all 3 medication classes increased significantly over the study period. Female patients and patients with a history of myocardial infarction, diabetes, and poor left ventricular function were independently associated with ACE inhibitor use on multivariate analysis (all P < .05). At a median follow-up of 3 years, postoperative therapy with an ACE inhibitor had no effect on death or rehospitalization for cardiovascular events (adjusted hazard ratio [HR] 1.12, 95% CI 0.96-1.30, P = .16). However, statins (HR 0.65, 95% CI 0.57-0.74, P < .0001) and β-blockers (HR 0.83, 95% CI 0.74-0.93, P = .001) were associated with a significantly improved event-free survival. CONCLUSIONS Among patients after CABG 65 years or older, ACE inhibitors had no independent effect on mortality or recurrent ischemic events in the midterm after CABG, although a benefit was observed for statins and β-blockers.
Collapse
Affiliation(s)
- Dimitri Kalavrouziotis
- Division of Cardiac Surgery, Queen Elizabeth II Health Sciences Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
29
|
Winter PM, Caruthers SD, Allen JS, Cai K, Williams TA, Lanza GM, Wickline SA. Molecular imaging of angiogenic therapy in peripheral vascular disease with alphanubeta3-integrin-targeted nanoparticles. Magn Reson Med 2011; 64:369-76. [PMID: 20665780 DOI: 10.1002/mrm.22447] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Noninvasive molecular imaging of angiogenesis could play a critical role in the clinical management of peripheral vascular disease patients. The alpha(nu)beta(3)-integrin, a well-established biomarker of neovascular proliferation, is an ideal target for molecular imaging of angiogenesis. This study investigates whether MR molecular imaging with alpha(nu)beta(3)-integrin-targeted perfluorocarbon nanoparticles can detect the neovascular response to angiogenic therapy. Hypercholesterolemic rabbits underwent femoral artery ligation followed by no treatment or angiogenic therapy with dietary L-arginine. MR molecular imaging performed 10 days after vessel ligation revealed increased signal enhancement in L-arginine-treated animals compared to controls. Furthermore, specifically targeted nanoparticles produced two times higher MRI signal enhancement compared to nontargeted particles, demonstrating improved identification of angiogenic vasculature with biomarker targeting. X-ray angiography performed 40 days postligation revealed that L-arginine treatment increased the development of collateral vessels. Histologic staining of muscle capillaries revealed a denser pattern of microvasculature in L-arginine-treated animals, confirming the MR and X-ray imaging results. The clinical application of noninvasive molecular imaging of angiogenesis could lead to earlier and more accurate detection of therapeutic response in peripheral vascular disease patients, enabling individualized optimization for a variety of treatment strategies.
Collapse
|
30
|
Wu LE, Hocking SL, James DE. Macrophage infiltration and cytokine release in adipose tissue: angiogenesis or inflammation? Diabetol Int 2010. [DOI: 10.1007/s13340-010-0003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Abstract
Sarcopenia is the progressive generalized loss of skeletal muscle mass, strength, and function which occurs as a consequence of aging. With a growing older population, there has been great interest in developing approaches to counteract the effects of sarcopenia, and thereby reduce the age-related decline and disability. This paper reviews (1) the mechanisms of sarcopenia, (2) the diagnosis of sarcopenia, and (3) the potential interventions for sarcopenia. Multiple factors appear to be involved in the development of sarcopenia including the loss of muscle mass and muscle fibers, increased inflammation, altered hormonal levels, poor nutritional status, and altered renin-angiotensin system. The lack of diagnostic criteria to identify patients with sarcopenia hinders potential management options. To date, pharmacological interventions have shown limited efficacy in counteracting the effects of sarcopenia. Recent evidence has shown benefits with angiotensin-converting enzyme inhibitors; however, further randomized controlled trials are required. Resistance training remains the most effective intervention for sarcopenia; however, older people maybe unable or unwilling to embark on strenuous exercise training programs.
Collapse
Affiliation(s)
- Louise A Burton
- Ageing and Health, Division of Medical Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Deepa Sumukadas
- Ageing and Health, Division of Medical Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| |
Collapse
|
32
|
Fernandes T, Hashimoto NY, Oliveira EM. Characterization of angiotensin-converting enzymes 1 and 2 in the soleus and plantaris muscles of rats. Braz J Med Biol Res 2010; 43:837-42. [PMID: 20802975 DOI: 10.1590/s0100-879x2010007500088] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Accepted: 07/22/2010] [Indexed: 12/22/2022] Open
Abstract
Angiotensin-converting enzymes 1 (ACE1) and 2 (ACE2) are key enzymes of the renin-angiotensin system, which act antagonistically to regulate the levels of angiotensin II (Ang II) and Ang-(1-7). Considerable data show that ACE1 acts on normal skeletal muscle functions and architecture. However, little is known about ACE1 levels in muscles with different fiber compositions. Furthermore, ACE2 levels in skeletal muscle are not known. Therefore, the purpose of this study was to characterize protein expression and ACE1 and ACE2 activities in the soleus and plantaris muscles. Eight-week-old female Wistar rats (N = 8) were killed by decapitation and the muscle tissues harvested for biochemical and molecular analyses. ACE1 and ACE2 activities were investigated by a fluorometric method using Abz-FRK(Dnp)P-OH and Mca-YVADAPK(Dnp)-OH fluorogenic substrates, respectively. ACE1 and ACE2 protein expression was analyzed by Western blot. ACE2 was expressed in the skeletal muscle of rats. There was no difference between the soleus (type I) and plantaris (type II) muscles in terms of ACE2 activity (17.35 ± 1.7 vs 15.09 ± 0.8 uF·min(-1)·mg(-1), respectively) and protein expression. ACE1 activity was higher in the plantaris muscle than in the soleus (71.5 ± 3.9 vs 57.9 ± 1.1 uF·min(-1)·mg(-1), respectively). Moreover, a comparative dose-response curve of protein expression was established in the soleus and plantaris muscles, which indicated higher ACE1 levels in the plantaris muscle. The present findings showed similar ACE2 levels in the soleus and plantaris muscles that might result in a similar Ang II response; however, lower ACE1 levels could attenuate Ang II production and reduce bradykinin degradation in the soleus muscle compared to the plantaris. These effects should enhance the aerobic capacity necessary for oxidative muscle activity.
Collapse
Affiliation(s)
- T Fernandes
- Departamento de Biodinâmica do Movimento do Corpo Humano, Universidade de São Paulo, SP, Brasil
| | | | | |
Collapse
|
33
|
Abstract
Arterial lumen narrowing and vascular occlusion is the actual cause of morbidity and mortality in atherosclerotic disease. Collateral artery formation (arteriogenesis) refers to an active remodelling of non-functional vascular anastomoses to functional collateral arteries, capable to bypass the site of obstruction and preserve the tissue that is jeopardized by ischaemia. Hemodynamic forces such as shear stress and wall stress play a pivotal role in collateral artery formation, accompanied by the expression of various cytokines and invasion of circulating leucocytes. Arteriogenesis hence represents an important compensatory mechanism for atherosclerotic vessel occlusion. As arteriogenesis mostly occurs when lumen narrowing by atherosclerotic plaques takes place, presence of cardiovascular risk factors (e.g. hypertension, hypercholesterolaemia and diabetes) is highly likely. Risk factors for atherosclerotic disease affect collateral artery growth directly and indirectly by altering hemodynamic forces or influencing cellular function and proliferation. Adequate collateralization varies significantly among atherosclerotic patients, some profit from the presence of extensive collateral networks, whereas others do not. Cardiovascular risk factors could increase the risk of adverse cardiovascular events in certain patients because of the reduced protection through an alternative vascular network. Likewise, drugs primarily thought to control cardiovascular risk factors might contribute or counteract collateral artery growth. This review summarizes current knowledge on the influence of cardiovascular risk factors and the effects of cardiovascular medication on the development of collateral vessels in experimental and clinical studies.
Collapse
Affiliation(s)
- D de Groot
- Laboratory of Experimental Cardiology, UMC Utrecht, the Netherlands
| | | | | |
Collapse
|
34
|
Clapp C, Thebault S, Jeziorski MC, Martínez De La Escalera G. Peptide hormone regulation of angiogenesis. Physiol Rev 2009; 89:1177-215. [PMID: 19789380 DOI: 10.1152/physrev.00024.2009] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It is now apparent that regulation of blood vessel growth contributes to the classical actions of hormones on development, growth, and reproduction. Endothelial cells are ideally positioned to respond to hormones, which act in concert with locally produced chemical mediators to regulate their growth, motility, function, and survival. Hormones affect angiogenesis either directly through actions on endothelial cells or indirectly by regulating proangiogenic factors like vascular endothelial growth factor. Importantly, the local microenvironment of endothelial cells can determine the outcome of hormone action on angiogenesis. Members of the growth hormone/prolactin/placental lactogen, the renin-angiotensin, and the kallikrein-kinin systems that exert stimulatory effects on angiogenesis can acquire antiangiogenic properties after undergoing proteolytic cleavage. In view of the opposing effects of hormonal fragments and precursor molecules, the regulation of the proteases responsible for specific protein cleavage represents an efficient mechanism for balancing angiogenesis. This review presents an overview of the actions on angiogenesis of the above-mentioned peptide hormonal families and addresses how specific proteolysis alters the final outcome of these actions in the context of health and disease.
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| | | | | | | |
Collapse
|
35
|
Onder G, Della Vedova C, Landi F. Validated treatments and therapeutics prospectives regarding pharmacological products for sarcopenia. J Nutr Health Aging 2009; 13:746-56. [PMID: 19657562 DOI: 10.1007/s12603-009-0209-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Loss of physical function in older adults may be, at least in part, explained by sarcopenia, a phenomenon characterized by a reduction in number and size of muscle fibres and by increase in interstitial fat and connective tissue. Lifestyle intervention (i.e. physical activity and nutrition) have shown to impact on sarcopenia. However, several drugs were suggested, with various levels of scientific evidence, to have an impact on muscle outcomes. In this study we reviewed the effect of six classes of drugs on sarcopenia and muscular outcomes in older adults. We decided to focus our review on two commonly drugs which have recently showed promising effects on muscular outcomes in older adults (ACE inhibitors and statins) and on four drugs whose effect on skeletal muscle was already largely studied (creatine, Growth Hormone, testosterone, estrogens and tibolone).
Collapse
Affiliation(s)
- G Onder
- Department of Geriatrics, Policlinico A. Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | | | | |
Collapse
|
36
|
Habouzit E, Richard H, Sanchez H, Koulmann N, Serrurier B, Monnet R, Ventura-Clapier R, Bigard X. Decreased muscle ACE activity enhances functional response to endurance training in rats, without change in muscle oxidative capacity or contractile phenotype. J Appl Physiol (1985) 2009; 107:346-53. [DOI: 10.1152/japplphysiol.91443.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, we tested the hypothesis that chronic ANG I-converting enzyme (ACE) inhibition could improve the training-induced improvement in endurance exercise performance and that this could be related to enhanced skeletal muscle metabolic efficiency. Female Wistar rats were assigned to four groups comprising animals either maintained sedentary or endurance trained (Sed and Tr, respectively), and treated or not for 10 wk with an ACE inhibitor, perindopril (2 mg·kg−1·day−1) (Per and Ct, respectively) ( n = 8 each). Trained rats underwent an 8-wk treadmill training protocol that consisted of 2 h/day running at 30 m/min on a 8% decline. Before the start of and 1 wk before the end of experimental conditioning, the running time to exhaustion of rats was measured on a treadmill. The training program led to an increase in endurance time, higher in Tr-Per than in Tr-Ct group (125% in Tr-Ct vs. 183% in Tr-Per groups, P < 0.05). Oxidative capacity, measured in saponin-permeabilized fibers of slow soleus and fast plantaris muscles, increased with training, but less in Tr-Per than in Tr-Ct rats. The training-induced increase in citrate synthase activity also was less in soleus from Tr-Per than Tr-Ct rats. The training-induced increase in the percentage of the type IIa isoform of myosin heavy chain (MHC) (45%, P < 0.05) and type IIx MHC (25%, P < 0.05) associated with decreased type IIb MHC (34%, P < 0.05) was minimized by perindopril administration. These findings demonstrate that the enhancement in physical performance observed in perindopril-treated animals cannot be explained by changes in mitochondrial respiration and/or MHC distribution within muscles involved in running exercise.
Collapse
|
37
|
Kim JH, Kim JH, Yu YS, Cho CS, Kim KW. Blockade of angiotensin II attenuates VEGF-mediated blood-retinal barrier breakdown in diabetic retinopathy. J Cereb Blood Flow Metab 2009; 29:621-8. [PMID: 19107135 DOI: 10.1038/jcbfm.2008.154] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss as a major complication of diabetes mellitus. The blood-retinal barrier (BRB) breakdown is a critical early event in the pathogenesis of DR. It has been known that the rennin-angiotensin system (RAS) is important in the progression of the DR via angiotensin II (Ang II), the effector of RAS. In this study, we showed that blockade of Ang II attenuates vascular endothelial growth factor (VEGF)-mediated BRB breakdown in DR. In streptozotocin-induced diabetes, retinal vascular permeability increased with upregulation of VEGF, where Ang II and its receptors were upregulated. Ang II induced VEGF expression in retinal endothelial cells accompanied by loss of tight junction proteins. However, the blockade of Ang II by perindopril, an angiotensin converting enzyme (ACE) inhibitor, inhibited upregulation of VEGF, and prevented the loss of tight junction proteins. Moreover, inhibition of Ang II by perindopril attenuated increased vascular permeability of diabetic retina accompanied by recovery of tight junction proteins in retinal vessels. Therefore, we suggest that the RAS involves in increased vascular permeability during early stage of DR, which is mediated by VEGF. Furthermore, the ACE inhibitor may have a therapeutic potential in the treatment of diabetic BRB breakdown.
Collapse
Affiliation(s)
- Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Department of Ophthalmology, Seoul National University College of Medicine & Seoul Artificial Eye Center, Clinical Research Institute, Seoul National University Hospital, Seoul, Korea
| | | | | | | | | |
Collapse
|
38
|
The role of the renin-angiotensin-aldosterone system in cardiovascular progenitor cell function. Clin Sci (Lond) 2009; 116:301-14. [PMID: 19138171 DOI: 10.1042/cs20080157] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intervention in the RAAS (renin-angiotensin-aldosterone system) is one of the leading pharmacotherapeutic strategies, among others, used for the treatment of cardiovascular disease to improve the prognosis after myocardial infarction and to reduce hypertension. Recently, regenerative progenitor cell therapy has emerged as a possible alternative for pharmacotherapy in patients after myocardial infarction or ischaemic events elsewhere, e.g. in the limbs. Angiogenic cell therapy to restore the vascular bed in ischaemic tissues is currently being tested in a multitude of clinical studies. This has prompted researchers to investigate the effect of modulation of the RAAS on progenitor cells. Furthermore, the relationship between hypertension and endothelial progenitor cell function is being studied. Pharmacotherapy by means of angiotensin II type 1 receptor antagonists or angiotensin-converting enzyme inhibitors has varying effects on progenitor cell levels and function. These controversial effects may be explained by involvement of multiple mediators, e.g. angiotensin II and angiotensin-(1-7), that have differential effects on mesenchymal stem cells, haematopoietic progenitor cells and endothelial progenitor cells. Importantly, angiotensin II can either stimulate endothelial progenitor cells by improvement of vascular endothelial growth factor signalling, or invoke excessive production of reactive oxygen species causing premature senescence of these cells. On the other hand, angiotensin-(1-7) stimulates haematopoietic cells and possibly also endothelial progenitor cells. Furthermore, aldosterone, bradykinin and Ac-SDKP (N-acetyl-Ser-Asp-Lys-Pro) may also affect progenitor cell populations. Alternatively, the variability in effects of angiotensin II type 1 receptor and angiotensin-converting enzyme inhibition on cardiovascular progenitor cells might reflect differences between the various models or diseases with respect to circulating and local tissue RAAS activation. In the present review we discuss what is currently known with respect to the role of the RAAS in the regulation of cardiovascular progenitor cells.
Collapse
|
39
|
Mouquet F, Cuilleret F, Susen S, Sautière K, Marboeuf P, Ennezat PV, McFadden E, Pigny P, Richard F, Hennache B, Vantyghem MC, Bertrand M, Dallongeville J, Jude B, Van Belle E. Metabolic syndrome and collateral vessel formation in patients with documented occluded coronary arteries: association with hyperglycaemia, insulin-resistance, adiponectin and plasminogen activator inhibitor-1. Eur Heart J 2009; 30:840-9. [PMID: 19164335 PMCID: PMC2663725 DOI: 10.1093/eurheartj/ehn569] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aims The metabolic syndrome (MS) is associated with an increased cardiovascular risk. Patients with the MS have endothelial dysfunction, decreased circulating adiponectin, and a high expression of angiogenic inhibitors such as plasminogen activator inhibitor-1 (PAI-1). We hypothesized that such patients, in the event of a coronary occlusion, might exhibit a less developed collateral circulation. Methods and results Three hundred and eighty-seven consecutive patients with at least one coronary occlusion of a major coronary vessel at diagnostic angiography were prospectively enrolled. Collateral development was graded with validated angiographic methods. The MS was defined according to the ATP-III definition. Fasting glucose, adiponectin, insulin concentrations, and PAI-1 were measured at the time of angiography. MS was associated with less developed collateral vessels (P = 0.005). In multivariable analysis adjusting for potential confounding factors including the duration of coronary occlusion (P = 0.0001), fasting glycaemia (P = 0.0007), low adiponectin concentration (P = 0.01), insulin-resistance (HOMA-IR; P = 0.01), high circulating PAI-1 concentration (P = 0.01), and hypertension (P = 0.008) were independently associated with poor coronary collateral vessel development. Conclusion This study shows that in patients with coronary occlusion, collateral circulation is impaired in patients with the MS. This association is partly related to fasting glycaemia and to key parameters linked to insulin resistance.
Collapse
Affiliation(s)
- Frédéric Mouquet
- Departments of Cardiology, Centre Hospitalier Régional Universitaire, Lille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Attoub S, Gaben AM, Al-Salam S, Al Sultan MAH, John A, Nicholls MG, Mester J, Petroianu G. Captopril as a potential inhibitor of lung tumor growth and metastasis. Ann N Y Acad Sci 2008; 1138:65-72. [PMID: 18837885 DOI: 10.1196/annals.1414.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Lung cancer is the most common form of cancer in the world, and 90% of patients die from their disease. The angiotensin converting enzyme (ACE) inhibitors are used widely as antihypertensive agents, and it has been suggested that they decrease the risk of some cancers, although available data are conflicting. Accordingly, we investigated the anticancer activity of the ACE inhibitor, captopril, in athymic mice injected with highly tumorigenic LNM35 human lung cells as xenografts. Using this model, we demonstrated that daily IP administration of captopril (2.8 mg/mouse) for 3 weeks resulted in a remarkable reduction of tumor growth (58%, P < 0.01) and lymph node metastasis (50%, P= 0.088). There were no undesirable effects of captopril treatment on animal behavior and body weight. In order to determine the mechanism by which captopril inhibited tumor growth, we investigated the impact of this drug on cell proliferation, apoptosis, and angiogenesis. Immunohistochemical analysis demonstrated that captopril treatment significantly reduced the number of proliferating cells (Ki-67) in the tumor samples but was not associated with inhibition of tumor angiogenesis (CD31). Using cell viability and fluorescent activated cell sorting analysis tests, we demonstrated that captopril inhibited the viability of LNM35 cells by inducing apoptosis, providing insight about the mechanisms underlying its antitumorigenic activities. In view of these experimental findings, we conclude that captopril could be a promising option for the treatment of lung cancer.
Collapse
Affiliation(s)
- Samir Attoub
- Department of Pharmacology, Faculty of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Sanchez de Miguel L, Neysari S, Jakob S, Petrimpol M, Butz N, Banfi A, Zaugg CE, Humar R, Battegay EJ. B2-kinin receptor plays a key role in B1-, angiotensin converting enzyme inhibitor-, and vascular endothelial growth factor-stimulated in vitro angiogenesis in the hypoxic mouse heart. Cardiovasc Res 2008; 80:106-13. [PMID: 18566101 DOI: 10.1093/cvr/cvn170] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Angiotensin converting enzyme (ACE) inhibition reduces heart disease and vascular stiffness in hypertension and leads to kinin accumulation. In this study, we analysed the role and importance of two kinin receptor subtypes in angiogenesis during ACE inhibition in an in vitro model of angiogenesis of the mouse heart. METHODS AND RESULTS First, we analysed the angiogenic properties of bradykinin and enalapril on wild-type C57Bl/6 and B2 receptor(-/-) mouse heart under normoxia (21% O(2)) and hypoxia (1% O(2)) in vitro and the contribution of B1 and B2 kinin receptors to this effect. Bradykinin induced dose-dependent endothelial sprout formation in vitro in adult mouse heart only under hypoxia (1.7 fold, n = 6, P < 0.05). The B2 receptor mediated sprouting that was induced by bradykinin and vascular endothelial growth factor (VEGF(164); n = 6, P < 0.05), but did not mediate sprouting that was induced by growth factors bFGF or PDGF-BB. Enalapril induced sprouting through both the B1 and B2 kinin receptors, but it required the presence of the B2 receptor in both scenarios and was dependent on BK synthesis. B1-receptor agonists induced sprout formation via the B1 receptor (2.5 fold, n = 6, P < 0.05), but it required the presence of the B2 receptor for them to do so. Both B2-receptor and B1-receptor agonist-induced angiogenesis required nitric oxide biosynthesis. CONCLUSION The kinin B2 receptor plays a crucial role in angiogenesis that is induced by different vasoactive molecules, namely bradykinin, ACE inhibitors, B1-stimulating kinin metabolites, and VEGF164 in an in vitro model of angiogenesis of mouse heart under hypoxia. Therapeutic treatment of hypertensive patients by using ACE inhibitors may potentially benefit the ischaemic heart through inducing B2-dependent heart neovascularization.
Collapse
|
42
|
You D, Cochain C, Loinard C, Vilar J, Mees B, Duriez M, Lévy BI, Silvestre JS. Combination of the angiotensin-converting enzyme inhibitor perindopril and the diuretic indapamide activate postnatal vasculogenesis in spontaneously hypertensive rats. J Pharmacol Exp Ther 2008; 325:766-73. [PMID: 18309090 DOI: 10.1124/jpet.107.131532] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular risk factors are associated with reduction in both the number and function of vascular progenitor cells. We hypothesized that 1) hypertension abrogates postnatal vasculogenesis, and 2) antihypertensive treatment based on the combination of perindopril (angiotensin-converting enzyme inhibitor) and indapamide (diuretic) may counteract hypertension-induced alteration in progenitor cell-related effects. Postischemic neovascularization was significantly lower in untreated spontaneously hypertensive rats (SHRs) compared with Wistar Kyoto (WKY) rats (p < 0.05). Treatment of SHRs with perindopril and the combination of perindopril/indapamide reduced the blood pressure levels and normalized vessel growth in ischemic area. Cotreatment with perindopril and indapamide increased vascular endothelial growth factor and endothelial nitric-oxide synthase protein contents, two key proangiogenic factors. It is interesting to note that 14 days after bone marrow mononuclear cell (BM-MNC) transplantation, revascularization was significantly lower in ischemic SHRs receiving BM-MNCs isolated from SHRs compared with those receiving BM-MNCs isolated from WKY rats (p < 0.05). Alteration in proangiogenic potential of SHR BM-MNCs was probably related to the reduction in their ability to differentiate into endothelial progenitor cells in vitro. Furthermore, the number of circulating endothelial progenitor cells (EPCs) was reduced by 3.1-fold in SHRs compared with WKY rats (p < 0.001). Treatments with perindopril or perindopril/indapamide restored the ability of BM-MNCs to differentiate in vitro into EPCs, increased the number of circulating EPCs, and re-established BM-MNC proangiogenic effects. Therefore, hypertension is associated with a decrease in the number of circulating progenitor cells and in the BM-MNC proangiogenic potential, probably leading to vascular complications in this setting. The combination of perindopril and indapamide counteracts hypertension-induced alterations in progenitor cell-related effects and restores blood vessel growth.
Collapse
Affiliation(s)
- Dong You
- Institut National de la Santé et de la Recherche Médicale, Unité 689, Hopital Lariboisière, 41 Blvd. de la Chapelle, 75475 Paris cedex 10, France
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Angiotensin converting enzyme inhibition enhances collateral artery remodeling in rats with femoral artery occlusion. Am J Med Sci 2008; 335:177-87. [PMID: 18344690 DOI: 10.1097/maj.0b013e318142b978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Evidence from experimental animal studies indicate that ACE inhibition expands collateral blood flow both in ischemic hearts and peripheral limbs. The present study evaluates whether ACE inhibitor induces collateral blood flow expansion and change of angiogenic gene expression profile in collateral arteries during remodeling. Male Sprague-Dawley rats, weighing 350 g were treated with vehicle (control) or quinapril (ACE inhibitor) at either low dose (3.0 mg/kg) or high dose (18 mg/kg) for 1, 3, 7, 14 days (gene expression) or 16 days (blood flow). All rats received bilateral occlusions of the femoral arteries. Collateral blood flow to the hind limb was assessed by 85Sr and 141Ce-labeled microspheres during treadmill running at 15 and 25 m/min speeds. Quinapril reduced plasma ACE activity by 58% and 88% for the low-dose and high-dose groups, respectively (P < 0.001). High-dose quinapril reduced exercising blood pressure (P < 0.05) and increased hind limb conductance. Collateral blood flows to calf muscles were 51 +/- 3.7, 73 +/- 5.0, and 68 +/- 1.9 mL/min per 100 g in control and quinapril low- and high-dose groups, respectively, during high-speed running (P < 0.001). Real-time RT-PCR revealed that ACE inhibition shifted gene expression to a proangiogenic phenotype in the newly developed collateral arteries. Our findings indicate that ACE inhibition could increase collateral-dependent blood flow and collateral vessel remodeling by promoting proangiogenic gene expression in newly developed collateral arteries. Our results support the potential utility of ACE inhibitor as a therapeutic agent in treating peripheral occlusive arterial disease.
Collapse
|
44
|
Infanger M, Faramarzi S, Grosse J, Kurth E, Ulbrich C, Bauer J, Wehland M, Kreutz R, Kossmehl P, Paul M, Grimm D. Expression of vascular endothelial growth factor and receptor tyrosine kinases in cardiac ischemia/reperfusion injury. Cardiovasc Pathol 2007; 16:291-9. [PMID: 17868880 DOI: 10.1016/j.carpath.2007.04.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 02/14/2007] [Accepted: 04/04/2007] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Vascular endothelial growth factor (VEGF) expression is regulated by hypoxia and cytokines, including insulin-like growth factor (IGF)-1. We examined the influence of ischemia/reperfusion (I/R) on IGF-1, VEGF, fetal liver kinase (flk-1), fms-like tyrosine kinase-1 (flt-1), and laminin using an isolated hemoperfused working porcine heart model of acute ischemia (2 h) and reperfusion (4 h). METHODS Twenty-three porcine hearts were randomized into the following groups: five nonischemic control hearts (Group C), five I/R hearts with occlusion of the ramus circumflexus; three I/R hearts treated with quinaprilat, a potent angiotensin-converting enzyme (ACE) inhibitor (Group Q); five I/R hearts treated with angiotensin I (Group Ang I), and 5 I/R hearts treated with Ang I and quinaprilat (Group QA). RESULTS Compared to C, VEGF mRNA and protein contents were significantly increased in I/R and Ang I hearts. flk-1 and flt-1 were increased in I/R (2.2-/1.95-fold) and further elevated by Ang I (3.2-/3.4-fold) compared with C. Quinaprilat application attenuated the amount of VEGF significantly and of flk-1 slightly but not that of flt-1. In contrast, IGF-1 and IGF-1 receptor (IGF-1R) proteins were elevated in I/R hearts (3-/1.4-fold vs. C) and further increased in the presence of Q. These findings were accompanied by an elevation of laminin mRNA and protein levels. Moreover, we observed an increase in collagen Type IV and chondroitin sulfate content in I/R (2.9-/1.4-fold) and Ang I (3.5-/1.5-fold) hearts. Quinaprilat significantly reduced laminin and chondroitin sulfate proteins. CONCLUSION These data suggest that the VEGF/VEGF receptor and IGF-1-IGF-1R systems are activated by I/R. The benefits of ACE inhibition in attenuation of cardiac remodeling may be mediated by IGF-1.
Collapse
Affiliation(s)
- Manfred Infanger
- Department of Trauma and Reconstructive Surgery, Charité-Universitätsmedizin Berlin, Benjamin Franklin Campus, 12203, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Ribatti D, Conconi MT, Nussdorfer GG. Nonclassic endogenous novel [corrected] regulators of angiogenesis. Pharmacol Rev 2007; 59:185-205. [PMID: 17540906 DOI: 10.1124/pr.59.2.3] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Angiogenesis, the process through which new blood vessels arise from preexisting ones, is regulated by several "classic" factors, among which the most studied are vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2). In recent years, investigations showed that, in addition to the classic factors, numerous endogenous peptides play a relevant regulatory role in angiogenesis. Such regulatory peptides, each of which exerts well-known specific biological activities, are present, along with their receptors, in the blood vessels and may take part in the control of the "angiogenic switch." An in vivo and in vitro proangiogenic effect has been demonstrated for erythropoietin, angiotensin II (ANG-II), endothelins (ETs), adrenomedullin (AM), proadrenomedullin N-terminal 20 peptide (PAMP), urotensin-II, leptin, adiponectin, resistin, neuropeptide-Y, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating polypeptide (PACAP), and substance P. There is evidence that the angiogenic action of some of these peptides is at least partly mediated by their stimulating effect on VEGF (ANG-II, ETs, PAMP, resistin, VIP and PACAP) and/or FGF-2 systems (PAMP and leptin). AM raises the expression of VEGF in endothelial cells, but VEGF blockade does not affect the proangiogenic action of AM. Other endogenous peptides have been reported to exert an in vivo and in vitro antiangiogenic action. These include somatostatin and natriuretic peptides, which suppress the VEGF system, and ghrelin, that antagonizes FGF-2 effects. Investigations on "nonclassic" regulators of angiogenesis could open new perspectives in the therapy of diseases coupled to dysregulation of angiogenesis.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Human Anatomy and Histology, School of Medicine, University of Bari, Bari, Italy.
| | | | | |
Collapse
|
46
|
Tufan H, Zaki BM, Tecder-Unal M, Erdem SR, Take G. Angiotensin II Captopril Cotreatment Augments Angiogenesis in Abdominal Skin Flap in Rats. Ann Plast Surg 2007; 58:441-8. [PMID: 17413889 DOI: 10.1097/01.sap.0000241682.42511.07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The effect of captopril, angiotensin-converting enzyme inhibitor, on angiogenesis in several reports remained unclear. Its effect on neovascularization in rat abdominal skin flaps was investigated. Flap elevation, based on the right superficial inferior epigastric artery was performed with or without the administration of captopril (10 mg/kg/d), Ang II (100 microg/kg/d), or captopril and Ang II cotreatment. Mean arterial pressure (MAP), microangiography, capillary density measurement, necrosis area determination, laser Doppler flowmetry (LDF), AT1 and vascular endothelial growth factor (VEGF) immunostaining were used to evaluate the effects of captopril and the interaction between captopril and Ang II on the angiogenesis. Ang II and captopril cotreatment improved angiogenesis more than Ang II or captopril alone. The reduction of necrosis, enhancement of vascular network formation, capillary density, VEGF immunostaining, and local blood flow were evident in the cotreated group. We suggest that Ang II and captopril cotreatment improves ischemia-induced angiogenesis and increased viability and vascularity of skin flap in rats.
Collapse
Affiliation(s)
- Hale Tufan
- Başkent University, Faculty of Medicine, Department of Pharmacology, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
47
|
Miller SJ, Norton LE, Murphy MP, Dalsing MC, Unthank JL. The role of the renin-angiotensin system and oxidative stress in spontaneously hypertensive rat mesenteric collateral growth impairment. Am J Physiol Heart Circ Physiol 2007; 292:H2523-31. [PMID: 17277018 DOI: 10.1152/ajpheart.01296.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent clinical and animal studies have shown that collateral artery growth is impaired in the presence of vascular risk factors, including hypertension. Available evidence suggests that angiotensin-converting enzyme inhibitors (ACEI) promote collateral growth in both hypertensive humans and animals; however, the specific mechanisms are not established. This study evaluated the hypothesis that collateral growth impairment in hypertension is mediated by excess superoxide produced by NAD(P)H oxidase in response to stimulation of the ANG II type 1 receptor. After ileal artery ligation, mesenteric collateral growth did not occur in untreated, young, spontaneously hypertensive rats. Significant luminal expansion occurred in collaterals of spontaneously hypertensive rats treated with the superoxide dismutase mimetic tempol, the NAD(P)H oxidase inhibitor apocynin, and the ACEI captopril, but not ANG II type 1 (losartan) or type 2 (PD-123319) receptor blockers. The ACEI enalapril produced equivalent reduction of arterial pressure as captopril but did not promote luminal expansion. This suggests the effects of captopril on collateral growth might result from its antioxidant properties. RT-PCR demonstrated that ANG II type 1 receptor and angiotensinogen expression was reduced in collaterals of untreated rats. This local suppression of the renin angiotensin system provides a potential explanation for the lack of effect of enalapril and losartan on collateral growth. The results demonstrate the capability of antioxidant therapies, including captopril, to reverse impaired collateral artery growth and the novel finding that components of the local renin angiotensin system are naturally suppressed in collaterals.
Collapse
Affiliation(s)
- Steven J Miller
- Department of Surgery, Indiana University Medical Center, 1001 West Tenth Street, Indianapolis, IN 46202-2879, USA
| | | | | | | | | |
Collapse
|
48
|
Imai N, Hashimoto T, Kihara M, Yoshida SI, Kawana I, Yazawa T, Kitamura H, Umemura S. Roles for host and tumor angiotensin II type 1 receptor in tumor growth and tumor-associated angiogenesis. J Transl Med 2007; 87:189-98. [PMID: 17318197 DOI: 10.1038/labinvest.3700504] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Angiotensin II (AII) is a multifunctional bioactive peptide, and host renin-angiotensin system (RAS) is closely associated with tumor growth. Recent reports have described that AII is a proangiogenic growth factor, and that Angiotensin II type 1 (AT1) receptor antagonists reduce tumor growth and tumor-associated angiogenesis. In this paper, we investigated the participation of AT1 receptor-signaling in cancer progression using murine Lewis lung carcinoma (LLC) cells, which express AT1 receptor, and AT1a receptor gene-deficient (AT1a-/-) mice. When LLC cells were implanted subcutaneously into wild-type (WT) mice, developed tumors showed intensive angiogenesis with an induction of vascular endothelial growth factor (VEGF) a. Compared with WT mice, tumor growth and tumor-associated angiogenesis was reduced in AT1a-/- mice with reduced expression of VEGFa. In AT1a-/- mice, administration of the AT1 receptor antagonist, TCV-116, showed further reductions of tumor growth, tumor-associated angiogenesis, and VEGFa expression. In vitro study, the expression of VEGFa mRNA and the production of VEGFa protein in LLC cells were significantly increased by AII, which were cancelled by AT1 receptor antagonist, CV-11974. Although the expression of other angiogenic factors, such as angiopoietin-1, angiopoietin-2, epidermal growth factor, and VEGF receptor 2 mRNA, was also investigated in tumor tissues, the expression of VEGFa was most correlated with tumor size among those other angiogenic factors. VEGFa induction by AT1 receptor-signaling in both host and tumor tissues is one of key regulators of tumor growth and tumor-associated angiogenesis. In conclusion, tumor tissue RAS as well as host tissue RAS were found to have an important role in tumor growth. AT1 receptor-signaling blockade may be a novel and effective target in the treatment of cancer.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Analysis of Variance
- Animals
- Benzimidazoles/pharmacology
- Biphenyl Compounds/pharmacology
- Blotting, Western
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/physiopathology
- Enzyme-Linked Immunosorbent Assay
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/physiopathology
- RNA, Small Interfering/genetics
- Radioimmunoassay
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tetrazoles/pharmacology
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Nozomi Imai
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine and School of Medicine, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Altin T, Kilickap M, Tutar E, Turhan S, Atmaca Y, Gulec S, Oral D, Erol C. The Relationship of Chronic Angiotensin Converting Enzyme Inhibitor Use and Coronary Collateral Vessel Development. Int Heart J 2007; 48:435-42. [PMID: 17827815 DOI: 10.1536/ihj.48.435] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Angiotensin II induces various growth factors such as vascular endothelial growth factor, platelet-derived growth factor, and fibroblast growth factor, and recent studies suggest that the expression of these growth factors promotes collateral growth. We hypothesized that the blockage of angiotensin II production by ACE inhibitors might interfere with collateral development in patients with coronary occlusion. METHODS The study group consisted of 187 patients (114 males, mean ages, 62 +/- 11 years) who had chronic (> 1 month) coronary occlusion (TIMI flow grade < or = 1) in one of 3 epicardial coronary arteries. Collaterals were graded using the Rentrop classification, and the patients were divided into 2 groups according to having good (grade 2 and 3) or poor (grade 0 and 1) collaterals (n = 127 and 60, respectively). Clinical and angiographic characteristics were compared in the 2 groups. RESULTS ACE inhibitor use (52% versus 35%, P = 0.04) and the prevalence of diabetes mellitus (DM) (43% versus 27%, P = 0.02) was higher in patients with poor collaterals. Patients with poor collaterals had a higher frequency of circumflex artery (Cx) occlusion, worse wall motion, and lower ejection fraction. In multivariate analysis, ACE inhibitor use (OR: 2.4; 95% CI = 1.23-4.68, P = 0.01) and the occlusion of Cx (OR: 3.3, 95% CI; 1.33-8.12, P = 0.01) were found to be independent predictors for poor collateral development, whereas there was a trend for DM as a predictor for poor collaterals (OR: 1.9, 95% CI = 0.97-3.8, P = 0.06). CONCLUSION The findings suggest that ACE inhibitor therapy may contribute to poor collateral development in patients with coronary occlusion.
Collapse
Affiliation(s)
- Timucin Altin
- Department of Cardiology, Ankara University School of Medicine, Ankara, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Donnini S, Solito R, Giachetti A, Granger HJ, Ziche M, Morbidelli L. Fibroblast growth factor-2 mediates Angiotensin-converting enzyme inhibitor-induced angiogenesis in coronary endothelium. J Pharmacol Exp Ther 2006; 319:515-22. [PMID: 16868034 DOI: 10.1124/jpet.106.108803] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The beneficial effect exerted by angiotensin-converting enzyme inhibitors (ACEI) on vascular endothelium has been attributed to restoration of endothelial cell survival properties and improvement of angiogenesis. Fibroblast growth factor (FGF)-2 is an angiogenic factor for the microvascular endothelium, which tonically promotes endothelial cell growth and survival through an autocrine/paracrine mechanism. Here, we formulate the hypothesis that FGF-2 might contribute to the prosurvival/proangiogenic effect of ACEI. We investigated zofenoprilat and, in selected experiments, lisinopril, as representatives of ACEI. These compounds induced formation of pseudocapillaries in vessel fragments isolated from porcine coronary and human umbilical arteries by increasing endothelial cell growth up to 5-fold. Angiogenesis was abolished by inhibitors of nitric-oxide synthase (NOS) pathway and by anti-FGF-2 antibodies. Consistently, in cultured coronary endothelial cells (CVECs), ACEI up-regulated endothelial NOS (eNOS) and FGF-2 and induced mitogen-activated protein kinase extracellular signal-regulated kinase 1/2 activation. The overexpression of eNOS/FGF-2 produced, at the functional level, enhanced cell proliferation and migration, the latter effect being dose-dependent and maximal at 0.1 microM zofenoprilat. The importance of FGF-2 for the acquisition of the angiogenic phenotype elicited by ACEI was clearly demonstrated by the impairment of endothelial functions following transfection of CVECs with small interference RNA for FGF-2. Moreover, FGF-2 silencing greatly affected the nuclear translocation of the FGF receptor (FGFR)-1, highlighting the autocrine mode of action of FGF-2. At the endothelial membrane level, zofenoprilat appeared to activate the bradykinin B1 receptor, a known stimulant of FGF-2 expression. In conclusion, we show that ACEI exert protective/proangiogenic effects in microvascular coronary endothelial cells by activating the endogenous FGF-2/FGFR-1 system.
Collapse
Affiliation(s)
- Sandra Donnini
- Pharmacology Section, Department of Molecular Biology, Via A. Moro 2, 53100 Siena, Italy
| | | | | | | | | | | |
Collapse
|