1
|
Li X, Walhout AJM, Yilmaz LS. Enhanced flux potential analysis links changes in enzyme expression to metabolic flux. Mol Syst Biol 2025; 21:413-445. [PMID: 39962320 PMCID: PMC11965317 DOI: 10.1038/s44320-025-00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 03/28/2025] Open
Abstract
Algorithms that constrain metabolic network models with enzyme levels to predict metabolic activity assume that changes in enzyme levels are indicative of flux variations. However, metabolic flux can also be regulated by other mechanisms such as allostery and mass action. To systematically explore the relationship between fluctuations in enzyme expression and flux, we combine available yeast proteomic and fluxomic data to reveal that flux changes can be best predicted from changes in enzyme levels of pathways, rather than the whole network or only cognate reactions. We implement this principle in an 'enhanced flux potential analysis' (eFPA) algorithm that integrates enzyme expression data with metabolic network architecture to predict relative flux levels of reactions including those regulated by other mechanisms. Applied to human data, eFPA consistently predicts tissue metabolic function using either proteomic or transcriptomic data. Additionally, eFPA efficiently handles data sparsity and noisiness, generating robust flux predictions with single-cell gene expression data. Our approach outperforms alternatives by striking an optimal balance, evaluating enzyme expression at pathway level, rather than either single-reaction or whole-network levels.
Collapse
Affiliation(s)
- Xuhang Li
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Albertha J M Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - L Safak Yilmaz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
2
|
Xiang KF, Wan JJ, Wang PY, Liu X. Role of glycogen in cardiac metabolic stress. Metabolism 2025; 162:156059. [PMID: 39500406 DOI: 10.1016/j.metabol.2024.156059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/11/2024]
Abstract
Metabolic stress in the myocardium arises from a diverse array of acute and chronic pathophysiological contexts. Glycogen mishandling is a key feature of metabolic stress, while maladaptation in energy-stress situations confers functional deficits. Cardiac glycogen serves as a pivotal reserve for myocardial energy, which is classically described as an energy source and contributes to glucose homeostasis during hypoxia or ischemia. Despite extensive research activity, how glycogen metabolism affects cardiovascular disease remains unclear. In this review, we focus on its regulation across myocardial energy metabolism in response to stress, and its role in metabolism, immunity, and autophagy. We further summarize the cardiovascular-related drugs regulating glycogen metabolism. In this way, we provide current knowledge for the understanding of glycogen metabolism in the myocardium.
Collapse
Affiliation(s)
- Ke-Fa Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China; Department of Cardiology, The 72nd Group Army Hospital, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jing-Jing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Peng-Yuan Wang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
3
|
Huang L, Nishimura Y. Recognition of specific monosaccharides by fluorescence change through the suppression effect on excited-state intermolecular proton transfer reactions. J Mater Chem B 2024; 12:10616-10623. [PMID: 39314207 DOI: 10.1039/d4tb01745e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Pyrene-urea derivatives and acetate anions were used to investigate the excited-state intermolecular proton transfer (ESPT) reaction, where a molecule undergoes intermolecular proton transfer to form a tautomer species in the excited state. Since ESPT occurs when intermolecular hydrogen bonds exist between urea compounds and acetate species, we hypothesize that this reaction might be influenced by compounds with hydroxy groups. In this study, cyclodextrins, saccharides, and ethanol were examined to assess the effects of hydroxy groups on the ESPT reaction. After introducing various hydroxy compounds into the urea-acetate system in dimethylformamide, we observed differences in the fluorescence spectra and fluorescence decay curves. These differences indicate varying interactions between the hydroxy compounds and complexes, leading to distinct fluorescence lifetime behaviors, which makes fluorescence lifetime imaging technology particularly suitable.
Collapse
Affiliation(s)
- Leyun Huang
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| | - Yoshinobu Nishimura
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8571, Japan.
| |
Collapse
|
4
|
Bode D, Pronto JRD, Schiattarella GG, Voigt N. Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications. Nat Rev Cardiol 2024; 21:682-700. [PMID: 38816507 DOI: 10.1038/s41569-024-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Atrial fibrillation (AF) is a continually growing health-care burden that often presents together with metabolic disorders, including diabetes mellitus and obesity. Current treatments often fall short of preventing AF and its adverse outcomes. Accumulating evidence suggests that metabolic disturbances can promote the development of AF through structural and electrophysiological remodelling, but the underlying mechanisms that predispose an individual to AF are aetiology-dependent, thus emphasizing the need for tailored therapeutic strategies to treat AF that target an individual's metabolic profile. AF itself can induce changes in glucose, lipid and ketone metabolism, mitochondrial function and myofibrillar energetics (as part of a process referred to as 'metabolic remodelling'), which can all contribute to atrial dysfunction. In this Review, we discuss our current understanding of AF in the setting of metabolic disorders, as well as changes in atrial metabolism that are relevant to the development of AF. We also describe the potential of available and emerging treatment strategies to target metabolic remodelling in the setting of AF and highlight key questions and challenges that need to be addressed to improve outcomes in these patients.
Collapse
Affiliation(s)
- David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
5
|
Sammartino AM, Bonfioli GB, Dondi F, Riccardi M, Bertagna F, Metra M, Vizzardi E. Contemporary Role of Positron Emission Tomography (PET) in Endocarditis: A Narrative Review. J Clin Med 2024; 13:4124. [PMID: 39064164 PMCID: PMC11277723 DOI: 10.3390/jcm13144124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/20/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Endocarditis, a serious infectious disease, remains a diagnostic challenge in contemporary clinical practice. The advent of advanced imaging modalities has contributed significantly to the improved understanding and management of this complex disease. 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) imaging has shown remarkable potential in improving the diagnostic accuracy of endocarditis. In the update of the Modified Duke Criteria, in 2023, The International Society for Cardiovascular Infectious Diseases (ISCVID) Working Group recognized specific 18F-FDG PET/CT findings as a major diagnostic criterion, particularly in patient with prosthetic valve endocarditis. The ability of PET to visualize metabolic activity allows for the identification of infective foci and could differentiate between infective and non-infective processes. This review examines the clinical utility of PET in differentiating infective endocarditis from other cardiovascular pathologies, highlighting its sensitivity and specificity in detecting native and prosthetic valve infections, including patients with transcatheter aortic valve implantation (TAVI), cardiac implantable devices (CIEDs), and left ventricular assistance devices (LVAD). Also, practical aspects and indications are illustrated to optimize the quality of imaging and reduce potential false positive results. In conclusion, the current use of PET in endocarditis has become a valuable diagnostic tool; as technological advances continue, PET will play an increasingly important role in the multidisciplinary approach to the management of endocarditis.
Collapse
Affiliation(s)
- Antonio Maria Sammartino
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy; (G.B.B.)
| | - Giovanni Battista Bonfioli
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy; (G.B.B.)
| | - Francesco Dondi
- Nuclear Medicine, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Mauro Riccardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy; (G.B.B.)
| | - Francesco Bertagna
- Nuclear Medicine, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy
| | - Marco Metra
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy; (G.B.B.)
| | - Enrico Vizzardi
- Institute of Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25121 Brescia, Italy; (G.B.B.)
| |
Collapse
|
6
|
Varghese LN, Katare R. Exploring the Link between Metabolic Remodelling and Reactive Oxygen Species in the Aged and Diseased Heart. FRONT BIOSCI-LANDMRK 2024; 29:249. [PMID: 39082360 DOI: 10.31083/j.fbl2907249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 01/23/2025]
Affiliation(s)
- Lijo N Varghese
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 9010 Dunedin, New Zealand
| | - Rajesh Katare
- Department of Physiology, HeartOtago, School of Biomedical Sciences, University of Otago, 9010 Dunedin, New Zealand
| |
Collapse
|
7
|
Zhang X, Zheng W, Sun S, Du Y, Xu W, Sun Z, Liu F, Wang M, Zhao Z, Liu J, Liu Q. Cadmium contributes to cardiac metabolic disruption by activating endothelial HIF1A-GLUT1 axis. Cell Signal 2024; 119:111170. [PMID: 38604344 DOI: 10.1016/j.cellsig.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Wendan Zheng
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Shiyu Sun
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Yang Du
- Department of Personnel, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Wenjuan Xu
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering Laboratory for Health Management, Ji'nan, Shandong, China
| | - Zongguo Sun
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Fuhong Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Manzhi Wang
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Zuohui Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Ju Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Qiang Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Ji'nan, Shandong, China.
| |
Collapse
|
8
|
Vidonja Uzelac T, Tatalović N, Mijović M, Miler M, Grahovac T, Oreščanin Dušić Z, Nikolić-Kokić A, Blagojević D. Ibogaine Induces Cardiotoxic Necrosis in Rats-The Role of Redox Processes. Int J Mol Sci 2024; 25:6527. [PMID: 38928231 PMCID: PMC11203496 DOI: 10.3390/ijms25126527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Ibogaine is an organic indole alkaloid that is used in alternative medicine to combat addiction. Numerous cases of life-threatening complications and sudden deaths associated with ibogaine use have been reported, and it has been hypothesized that the adverse effects are related to ibogaine's tendency to induce cardiac arrhythmias. Considering that the bioavailability of ibogaine and its primary metabolite noribogaine is two to three times higher in female rats than in male rats, we here investigated the effect of a single oral dose (1 or 20 mg/kg) of ibogaine on cardiac histopathology and oxidative/antioxidant balance. Our results show that ibogaine induced dose-dependent cardiotoxic necrosis 6 and 24 h after treatment and that this necrosis was not a consequence of inflammation. In addition, no consistent dose- and time-dependent changes in antioxidant defense or indicators of oxidative damage were observed. The results of this study may contribute to a better understanding of ibogaine-induced cardiotoxicity, which is one of the main side effects of ibogaine use in humans and is often fatal. Nevertheless, based on this experiment, it is not possible to draw a definitive conclusion regarding the role of redox processes or oxidative stress in the occurrence of cardiotoxic necrosis after ibogaine administration.
Collapse
Affiliation(s)
- Teodora Vidonja Uzelac
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.V.U.); (T.G.); (Z.O.D.); (A.N.-K.)
| | - Nikola Tatalović
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.V.U.); (T.G.); (Z.O.D.); (A.N.-K.)
| | - Milica Mijović
- Institute of Pathology, Faculty of Medicine, University of Priština, Anri Dinana bb, 38220 Kosovska Mitrovica, Serbia;
| | - Marko Miler
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Tanja Grahovac
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.V.U.); (T.G.); (Z.O.D.); (A.N.-K.)
| | - Zorana Oreščanin Dušić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.V.U.); (T.G.); (Z.O.D.); (A.N.-K.)
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.V.U.); (T.G.); (Z.O.D.); (A.N.-K.)
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (T.V.U.); (T.G.); (Z.O.D.); (A.N.-K.)
| |
Collapse
|
9
|
Weiss RC, Pyles KD, Cho K, Brennan M, Fisher JS, Patti GJ, McCommis KS. Loss of mitochondrial pyruvate transport initiates cardiac glycogen accumulation and heart failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597841. [PMID: 38895296 PMCID: PMC11185624 DOI: 10.1101/2024.06.06.597841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Heart failure involves metabolic alterations including increased glycolysis despite unchanged or decreased glucose oxidation. The mitochondrial pyruvate carrier (MPC) regulates pyruvate entry into the mitochondrial matrix, and cardiac deletion of the MPC in mice causes heart failure. How MPC deletion results in heart failure is unknown. Methods We performed targeted metabolomics and isotope tracing in wildtype (fl/fl) and cardiac-specific Mpc2-/- (CS-Mpc2-/-) hearts after in vivo injection of U-13C-glucose. Cardiac glycogen was assessed biochemically and by transmission electron microscopy. Cardiac uptake of 2-deoxyglucose was measured and western blotting performed to analyze insulin signaling and enzymatic regulators of glycogen synthesis and degradation. Isotope tracing and glycogen analysis was also performed in hearts from mice fed either low-fat diet or a ketogenic diet previously shown to reverse the CS-Mpc2-/- heart failure. Cardiac glycogen was also assessed in mice infused with angiotensin-II that were fed low-fat or ketogenic diet. Results Failing CS-Mpc2-/- hearts contained normal levels of ATP and phosphocreatine, yet these hearts displayed increased enrichment from U-13C-glucose and increased glycolytic metabolite pool sizes. 13C enrichment and pool size was also increased for the glycogen intermediate UDP-glucose, as well as increased enrichment of the glycogen pool. Glycogen levels were increased ~6-fold in the failing CS-Mpc2-/- hearts, and glycogen granules were easily detected by electron microscopy. This increased glycogen synthesis occurred despite enhanced inhibitory phosphorylation of glycogen synthase and reduced expression of glycogenin-1. In young, non-failing CS-Mpc2-/- hearts, increased glycolytic 13C enrichment occurred, but glycogen levels remained low and unchanged compared to fl/fl hearts. Feeding a ketogenic diet to CS-Mpc2-/- mice reversed the heart failure and normalized the cardiac glycogen and glycolytic metabolite accumulation. Cardiac glycogen levels were also elevated in mice infused with angiotensin-II, and both the cardiac hypertrophy and glycogen levels were improved by ketogenic diet. Conclusions Our results indicate that loss of MPC in the heart causes glycogen accumulation and heart failure, while a ketogenic diet can reverse both the glycogen accumulation and heart failure. We conclude that maintaining mitochondrial pyruvate import and metabolism is critical for the heart, unless cardiac pyruvate metabolism is reduced by consumption of a ketogenic diet.
Collapse
Affiliation(s)
- Rachel C. Weiss
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine
| | - Kelly D. Pyles
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine
| | - Kevin Cho
- Departments of Chemistry, Medicine, and Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis
| | - Michelle Brennan
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine
| | | | - Gary J. Patti
- Departments of Chemistry, Medicine, and Center for Mass Spectrometry and Metabolic Tracing, Washington University in St. Louis
| | - Kyle S. McCommis
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine
| |
Collapse
|
10
|
Arnold M, Do P, Davidson SM, Large SR, Helmer A, Beer G, Siepe M, Longnus SL. Metabolic Considerations in Direct Procurement and Perfusion Protocols with DCD Heart Transplantation. Int J Mol Sci 2024; 25:4153. [PMID: 38673737 PMCID: PMC11050041 DOI: 10.3390/ijms25084153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Heart transplantation with donation after circulatory death (DCD) provides excellent patient outcomes and increases donor heart availability. However, unlike conventional grafts obtained through donation after brain death, DCD cardiac grafts are not only exposed to warm, unprotected ischemia, but also to a potentially damaging pre-ischemic phase after withdrawal of life-sustaining therapy (WLST). In this review, we aim to bring together knowledge about changes in cardiac energy metabolism and its regulation that occur in DCD donors during WLST, circulatory arrest, and following the onset of warm ischemia. Acute metabolic, hemodynamic, and biochemical changes in the DCD donor expose hearts to high circulating catecholamines, hypoxia, and warm ischemia, all of which can negatively impact the heart. Further metabolic changes and cellular damage occur with reperfusion. The altered energy substrate availability prior to organ procurement likely plays an important role in graft quality and post-ischemic cardiac recovery. These aspects should, therefore, be considered in clinical protocols, as well as in pre-clinical DCD models. Notably, interventions prior to graft procurement are limited for ethical reasons in DCD donors; thus, it is important to understand these mechanisms to optimize conditions during initial reperfusion in concert with graft evaluation and re-evaluation for the purpose of tailoring and adjusting therapies and ensuring optimal graft quality for transplantation.
Collapse
Affiliation(s)
- Maria Arnold
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Peter Do
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sean M. Davidson
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| | - Stephen R. Large
- Royal Papworth Hospital, Biomedical Campus, Cambridge CB2 0AY, UK
| | - Anja Helmer
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Georgia Beer
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Matthias Siepe
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sarah L. Longnus
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
11
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Ibrahim S, Gaborit B, Lenoir M, Collod-Beroud G, Stefanovic S. Maternal Pre-Existing Diabetes: A Non-Inherited Risk Factor for Congenital Cardiopathies. Int J Mol Sci 2023; 24:16258. [PMID: 38003449 PMCID: PMC10671602 DOI: 10.3390/ijms242216258] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.
Collapse
Affiliation(s)
- Stéphanie Ibrahim
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| | - Bénédicte Gaborit
- Department of Endocrinology, Metabolic Diseases and Nutrition, Pôle ENDO, APHM, 13005 Marseille, France
| | - Marien Lenoir
- Department of Congenital Heart Surgery, La Timone Children Hospital, APHM, Aix Marseille University, 13005 Marseille, France
| | | | - Sonia Stefanovic
- Aix Marseille University, INSERM, INRAE, C2VN, 13005 Marseille, France;
| |
Collapse
|
13
|
Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, Zhang Z, Geng D, Sun W, Ouyang N, Zhang N, Li Z, Sun G, Zhang Y, Sun Y, Zhang Y. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol 2023; 118:48. [PMID: 37938421 PMCID: PMC10632287 DOI: 10.1007/s00395-023-01018-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Cardiovascular disease (CVD) is a major threat to human health, accounting for 46% of non-communicable disease deaths. Glycolysis is a conserved and rigorous biological process that breaks down glucose into pyruvate, and its primary function is to provide the body with the energy and intermediate products needed for life activities. The non-glycolytic actions of enzymes associated with the glycolytic pathway have long been found to be associated with the development of CVD, typically exemplified by metabolic remodeling in heart failure, which is a condition in which the heart exhibits a rapid adaptive response to hypoxic and hypoxic conditions, occurring early in the course of heart failure. It is mainly characterized by a decrease in oxidative phosphorylation and a rise in the glycolytic pathway, and the rise in glycolysis is considered a hallmark of metabolic remodeling. In addition to this, the glycolytic metabolic pathway is the main source of energy for cardiomyocytes during ischemia-reperfusion. Not only that, the auxiliary pathways of glycolysis, such as the polyol pathway, hexosamine pathway, and pentose phosphate pathway, are also closely related to CVD. Therefore, targeting glycolysis is very attractive for therapeutic intervention in CVD. However, the relationship between glycolytic pathway and CVD is very complex, and some preclinical studies have confirmed that targeting glycolysis does have a certain degree of efficacy, but its specific role in the development of CVD has yet to be explored. This article aims to summarize the current knowledge regarding the glycolytic pathway and its key enzymes (including hexokinase (HK), phosphoglucose isomerase (PGI), phosphofructokinase-1 (PFK1), aldolase (Aldolase), phosphoglycerate metatase (PGAM), enolase (ENO) pyruvate kinase (PKM) lactate dehydrogenase (LDH)) for their role in cardiovascular diseases (e.g., heart failure, myocardial infarction, atherosclerosis) and possible emerging therapeutic targets.
Collapse
Affiliation(s)
- Shuxian Chen
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yuanming Zou
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Nanxiang Ouyang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Naijin Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Zhao Li
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| | - Ying Zhang
- Department of Cardiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
- Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110122, Liaoning Province, People's Republic of China.
| |
Collapse
|
14
|
Oyabambi AO, Bamidele O, Boluwatife AB, Adedayo LD. Glucoregulatory effect of butyrate is associated with elevated circulating VEGF and reduced cardiac lactate in high fructose fed rats. Heliyon 2023; 9:e22008. [PMID: 38034766 PMCID: PMC10682615 DOI: 10.1016/j.heliyon.2023.e22008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
Background High fructose diet has been linked with impaired body metabolism and cardiovascular diseases. Sodium butyrate (NaB) was documented to improve glucoregulation and cardiometabolic problems associated with high fructose diet (HFrD) but the mechanisms behind it are unclear. As a result, the purpose of this study was to look into the effects of NaB on VEGF and cardiac lactate in HFrD-induced dysmetabolism. Methods Twenty male Wistar rats of weight 130-140 g were assigned randomly after a week of acclimation into four groups: Control diet (CTR), High fructose drink (HFrD); 10 % (w/v), NaB (200 mg/kg bw), and HFrD + NaB (200 mg/kg bw). The animals were induced to be unconscious with 50 mg/kg of pentobarbital sodium intraperitoneally, blood samples were taken via cardiac puncture and cardiac tissue homogenates were obtained for Fasting Blood Sugar (FBS) and plasma insulin, cardiac glycogen, plasma and cardiac glycogen synthase, plasma and cardiac nitric oxide as well as vascular endothelial growth factor (VEGF). Result HFrD resulted in statistical elevation body and cardiac weight, plasma glucose, plasma insulin, cardiac lactate, glycogen and decreased nitric oxide level (NO) when compared with the control group. Administration of NaB reduced cardiac weight, blood glucose, plasma insulin, cardiac lactate while nitric oxide and glycogen increased (P < 0.05). NaB increased plasma glycogen synthase in normal rats, plasma and cardiac circulating VEGF in HFrD administered rats (P < 0.05) while no change was produced in plasma and cardiac glycogen synthase level of HFrD treated rats. Conclusion Sodium butyrate improves glucoregulation by reducing cardiac lactate and increasing circulating VEGF in HFrD-treated rats.
Collapse
Affiliation(s)
- Adewumi Oluwafemi Oyabambi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Physiology Programme, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Olubayode Bamidele
- Physiology Programme, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| | - Aindero Blessing Boluwatife
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence Dayo Adedayo
- Physiology Programme, College of Health Sciences, Bowen University, Iwo, Osun State, Nigeria
| |
Collapse
|
15
|
Mendez Garcia MF, Matsuzaki S, Batushansky A, Newhardt R, Kinter C, Jin Y, Mann SN, Stout MB, Gu H, Chiao YA, Kinter M, Humphries KM. Increased cardiac PFK-2 protects against high-fat diet-induced cardiomyopathy and mediates beneficial systemic metabolic effects. iScience 2023; 26:107131. [PMID: 37534142 PMCID: PMC10391959 DOI: 10.1016/j.isci.2023.107131] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/27/2023] [Accepted: 06/10/2023] [Indexed: 08/04/2023] Open
Abstract
A healthy heart adapts to changes in nutrient availability and energy demands. In metabolic diseases like type 2 diabetes (T2D), increased reliance on fatty acids for energy production contributes to mitochondrial dysfunction and cardiomyopathy. A principal regulator of cardiac metabolism is 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2), which is a central driver of glycolysis. We hypothesized that increasing PFK-2 activity could mitigate cardiac dysfunction induced by high-fat diet (HFD). Wild type (WT) and cardiac-specific transgenic mice expressing PFK-2 (GlycoHi) were fed a low fat or HFD for 16 weeks to induce metabolic dysfunction. Metabolic phenotypes were determined by measuring mitochondrial bioenergetics and performing targeted quantitative proteomic and metabolomic analysis. Increasing cardiac PFK-2 had beneficial effects on cardiac and mitochondrial function. Unexpectedly, GlycoHi mice also exhibited sex-dependent systemic protection from HFD, including increased glucose homeostasis. These findings support improving glycolysis via PFK-2 activity can mitigate mitochondrial and functional changes that occur with metabolic syndrome.
Collapse
Affiliation(s)
- Maria F. Mendez Garcia
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Satoshi Matsuzaki
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Albert Batushansky
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ryan Newhardt
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Caroline Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Shivani N. Mann
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Ying Ann Chiao
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael Kinter
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kenneth M. Humphries
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
16
|
Zheng P, Ma W, Gu Y, Wu H, Bian Z, Liu N, Yang D, Chen X. High-fat diet causes mitochondrial damage and downregulation of mitofusin-2 and optic atrophy-1 in multiple organs. J Clin Biochem Nutr 2023; 73:61-76. [PMID: 37534099 PMCID: PMC10390808 DOI: 10.3164/jcbn.22-73] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/19/2023] [Indexed: 08/04/2023] Open
Abstract
High-fat consumption promotes the development of obesity, which is associated with various chronic illnesses. Mitochondria are the energy factories of eukaryotic cells, maintaining self-stability through a fine-tuned quality-control network. In the present study, we evaluated high-fat diet (HFD)-induced changes in mitochondrial ultrastructure and dynamics protein expression in multiple organs. C57BL/6J male mice were fed HFD or normal diet (ND) for 24 weeks. Compared with ND-fed mice, HFD-fed mice exhibited increased body weight, cardiomyocyte enlargement, pulmonary fibrosis, hepatic steatosis, renal and splenic structural abnormalities. The cellular apoptosis of the heart, liver, and kidney increased. Cellular lipid droplet deposition and mitochondrial deformations were observed. The proteins related to mitochondrial biogenesis (TFAM), fission (DRP1), autophagy (LC3 and LC3-II: LC3-I ratio), and mitophagy (PINK1) presented different changes in different organs. The mitochondrial fusion regulators mitofusin-2 (MFN2) and optic atrophy-1 (OPA1) were consistently downregulated in multiple organs, even the spleen. TOMM20 and ATP5A protein were enhanced in the heart, skeletal muscle, and spleen, and attenuated in the kidney. These results indicated that high-fat feeding caused pathological changes in multiple organs, accompanied by mitochondrial ultrastructural damage, and MFN2 and OPA1 downregulation. The mitochondrial fusion proteins may become promising targets and/or markers for treating metabolic disease.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Wenjing Ma
- Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Yilu Gu
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Hengfang Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Zhiping Bian
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Nannan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Di Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
- Core Facility, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Xiangjian Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
17
|
Conte F, Sam JE, Lefeber DJ, Passier R. Metabolic Cardiomyopathies and Cardiac Defects in Inherited Disorders of Carbohydrate Metabolism: A Systematic Review. Int J Mol Sci 2023; 24:ijms24108632. [PMID: 37239976 DOI: 10.3390/ijms24108632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Heart failure (HF) is a progressive chronic disease that remains a primary cause of death worldwide, affecting over 64 million patients. HF can be caused by cardiomyopathies and congenital cardiac defects with monogenic etiology. The number of genes and monogenic disorders linked to development of cardiac defects is constantly growing and includes inherited metabolic disorders (IMDs). Several IMDs affecting various metabolic pathways have been reported presenting cardiomyopathies and cardiac defects. Considering the pivotal role of sugar metabolism in cardiac tissue, including energy production, nucleic acid synthesis and glycosylation, it is not surprising that an increasing number of IMDs linked to carbohydrate metabolism are described with cardiac manifestations. In this systematic review, we offer a comprehensive overview of IMDs linked to carbohydrate metabolism presenting that present with cardiomyopathies, arrhythmogenic disorders and/or structural cardiac defects. We identified 58 IMDs presenting with cardiac complications: 3 defects of sugar/sugar-linked transporters (GLUT3, GLUT10, THTR1); 2 disorders of the pentose phosphate pathway (G6PDH, TALDO); 9 diseases of glycogen metabolism (GAA, GBE1, GDE, GYG1, GYS1, LAMP2, RBCK1, PRKAG2, G6PT1); 29 congenital disorders of glycosylation (ALG3, ALG6, ALG9, ALG12, ATP6V1A, ATP6V1E1, B3GALTL, B3GAT3, COG1, COG7, DOLK, DPM3, FKRP, FKTN, GMPPB, MPDU1, NPL, PGM1, PIGA, PIGL, PIGN, PIGO, PIGT, PIGV, PMM2, POMT1, POMT2, SRD5A3, XYLT2); 15 carbohydrate-linked lysosomal storage diseases (CTSA, GBA1, GLA, GLB1, HEXB, IDUA, IDS, SGSH, NAGLU, HGSNAT, GNS, GALNS, ARSB, GUSB, ARSK). With this systematic review we aim to raise awareness about the cardiac presentations in carbohydrate-linked IMDs and draw attention to carbohydrate-linked pathogenic mechanisms that may underlie cardiac complications.
Collapse
Affiliation(s)
- Federica Conte
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
| | - Juda-El Sam
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Dirk J Lefeber
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Robert Passier
- Department of Applied Stem Cell Technologies, TechMed Centre, University of Twente, 7522 NH Enschede, The Netherlands
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
18
|
Sun Y, Xu H, Tan B, Yi Q, Liu H, Tian J, Zhu J. Andrographolide-treated bone marrow mesenchymal stem cells-derived conditioned medium protects cardiomyocytes from injury by metabolic remodeling. Mol Biol Rep 2023; 50:2651-2662. [PMID: 36641493 DOI: 10.1007/s11033-023-08250-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMSCs) transplantation therapy providing a great hope for the recovery of myocardial ischemic hypoxic injury. However, the microenvironment after myocardial injury is not conducive to the survival of BMSCs, which limits the therapeutic application of BMSCs. Our previous study has confirmed that the survival of BMSCs cells in the glucose and serum deprivation under hypoxia (GSDH) is increased after Andrographolide (AG) pretreatment, but whether this treatment could improve the effect of BMSCs in repairing of myocardial injury has not been verified. METHODS AND RESULT We first treated H9C2 with GSDH to simulate the microenvironment of myocardial injury in vitro, then we pretreated rat primary BMSCs with AG, and collected conditioned medium derived from BMSCs (BMSCs-CM) and conditioned medium derived from AG-pretreated BMSCs (AG-BMSCs-CM) after GSDH treatment. And they were used to treat H9C2 cells under GSDH to further detect oxidative stress and metabolic changes. The results showed that AG-BMSCs-CM could be more advantageous for cardiomyocyte injury repair than BMSCs-CM, as indicated by the decrease of apoptosis rate and oxidative stress. The changes of mitochondria and lipid droplets results suggested that AG-BMSCs-CM can regulate metabolic remodeling of H9C2 cells to repair cell injury, and that AMPK was activated during this process. CONCLUSIONS This study demonstrates, for the first time, the protective effect of AG-BMSCs-CM on GSDH-induced myocardial cell injury, providing a potential therapeutic strategy for clinical application.
Collapse
Affiliation(s)
- Yanting Sun
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.,Centre of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Hao Xu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.,Department of Clinical Laboratory, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Tan
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China
| | - Qin Yi
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China
| | - Huiwen Liu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China
| | - Jie Tian
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.,Department of Cardiovascular (Internal Medicine), Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Zhu
- Department of Pediatric Research Institute, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Chongqing, 400014, China.
| |
Collapse
|
19
|
Is the fundamental pathology in Duchenne's muscular dystrophy caused by a failure of glycogenolysis–glycolysis in costameres? J Genet 2023. [DOI: 10.1007/s12041-022-01410-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
20
|
Sumaiya K, Ponnusamy T, Natarajaseenivasan K, Shanmughapriya S. Cardiac Metabolism and MiRNA Interference. Int J Mol Sci 2022; 24:50. [PMID: 36613495 PMCID: PMC9820363 DOI: 10.3390/ijms24010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The aberrant increase in cardio-metabolic diseases over the past couple of decades has drawn researchers' attention to explore and unveil the novel mechanisms implicated in cardiometabolic diseases. Recent evidence disclosed that the derangement of cardiac energy substrate metabolism plays a predominant role in the development and progression of chronic cardiometabolic diseases. Hence, in-depth comprehension of the novel molecular mechanisms behind impaired cardiac metabolism-mediated diseases is crucial to expand treatment strategies. The complex and dynamic pathways of cardiac metabolism are systematically controlled by the novel executor, microRNAs (miRNAs). miRNAs regulate target gene expression by either mRNA degradation or translational repression through base pairing between miRNA and the target transcript, precisely at the 3' seed sequence and conserved heptametrical sequence in the 5' end, respectively. Multiple miRNAs are involved throughout every cardiac energy substrate metabolism and play a differential role based on the variety of target transcripts. Novel theoretical strategies have even entered the clinical phase for treating cardiometabolic diseases, but experimental evidence remains inadequate. In this review, we identify the potent miRNAs, their direct target transcripts, and discuss the remodeling of cardiac metabolism to cast light on further clinical studies and further the expansion of novel therapeutic strategies. This review is categorized into four sections which encompass (i) a review of the fundamental mechanism of cardiac metabolism, (ii) a divulgence of the regulatory role of specific miRNAs on cardiac metabolic pathways, (iii) an understanding of the association between miRNA and impaired cardiac metabolism, and (iv) summary of available miRNA targeting therapeutic approaches.
Collapse
Affiliation(s)
- Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Thiruvelselvan Ponnusamy
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
21
|
Minamimoto R. Oncology and cardiology positron emission tomography/computed tomography faced with COVID-19: A review of available literature data. Front Med (Lausanne) 2022; 9:1052921. [PMID: 36341267 PMCID: PMC9626818 DOI: 10.3389/fmed.2022.1052921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 09/07/2024] Open
Abstract
The COVID-19 pandemic has forced people to significantly change their lifestyles and attitudes, and has greatly burdened healthcare delivery systems worldwide. The redistribution of the medical delivery system to maintain normal medical care while responding generously to COVID-19 is a continuing challenge that weighs heavily on medical institutions. Among imaging modalities, chest X-rays and computed tomography (CT) examinations have clearly made a large contribution to treatment of COVID-19. In contrast, it is difficult to express the standpoint of nuclear medicine examinations in a straightforward manner, as the greatest emphasis in this modality has been on how necessary medical care can continue to be provided. Many clinical reports of nuclear medicine examinations related to COVID-19 have been published, and knowledge continues to accumulate. This review provides a summary of the current state of oncology and cardiology positron emission tomography (PET) examinations related to COVID-19, and includes preparation of the nuclear medicine department, trends in PET examinations, specific imaging findings on 18F-fluorodeoxyglucose (FDG) PET/CT, imaging of complications of COVID-19, PET tracers other than FDG, and the effects of vaccines on PET imaging findings.
Collapse
Affiliation(s)
- Ryogo Minamimoto
- Division of Nuclear Medicine, National Center for Global Health and Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Nakayama Y, Mukai N, Kreitzer G, Patwari P, Yoshioka J. Interaction of ARRDC4 With GLUT1 Mediates Metabolic Stress in the Ischemic Heart. Circ Res 2022; 131:510-527. [PMID: 35950500 PMCID: PMC9444972 DOI: 10.1161/circresaha.122.321351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND An ancient family of arrestin-fold proteins, termed alpha-arrestins, may have conserved roles in regulating nutrient transporter trafficking and cellular metabolism as adaptor proteins. One alpha-arrestin, TXNIP (thioredoxin-interacting protein), is known to regulate myocardial glucose uptake. However, the in vivo role of the related alpha-arrestin, ARRDC4 (arrestin domain-containing protein 4), is unknown. METHODS We first tested whether interaction with GLUTs (glucose transporters) is a conserved function of the mammalian alpha-arrestins. To define the in vivo function of ARRDC4, we generated and characterized a novel Arrdc4 knockout (KO) mouse model. We then analyzed the molecular interaction between arrestin domains and the basal GLUT1. RESULTS ARRDC4 binds to GLUT1, induces its endocytosis, and blocks cellular glucose uptake in cardiomyocytes. Despite the closely shared protein structure, ARRDC4 and its homologue TXNIP operate by distinct molecular pathways. Unlike TXNIP, ARRDC4 does not increase oxidative stress. Instead, ARRDC4 uniquely mediates cardiomyocyte death through its effects on glucose deprivation and endoplasmic reticulum stress. At baseline, Arrdc4-KO mice have mild fasting hypoglycemia. Arrdc4-KO hearts exhibit a robust increase in myocardial glucose uptake and glycogen storage. Accordingly, deletion of Arrdc4 improves energy homeostasis during ischemia and protects cardiomyocytes against myocardial infarction. Furthermore, structure-function analyses of the interaction of ARRDC4 with GLUT1 using both scanning mutagenesis and deep-learning Artificial Intelligence identify specific residues in the C-terminal arrestin-fold domain as the interaction interface that regulates GLUT1 function, revealing a new molecular target for potential therapeutic intervention against myocardial ischemia. CONCLUSIONS These results uncover a new mechanism of ischemic injury in which ARRDC4 drives glucose deprivation-induced endoplasmic reticulum stress leading to cardiomyocyte death. Our findings establish ARRDC4 as a new scaffold protein for GLUT1 that regulates cardiac metabolism in response to ischemia and provide insight into the therapeutic strategy for ischemic heart disease.
Collapse
Affiliation(s)
- Yoshinobu Nakayama
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Nobuhiro Mukai
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Geri Kreitzer
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Parth Patwari
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jun Yoshioka
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Jong J, Pinney JR, Packard RRS. Anthracycline-induced cardiotoxicity: From pathobiology to identification of molecular targets for nuclear imaging. Front Cardiovasc Med 2022; 9:919719. [PMID: 35990941 PMCID: PMC9381993 DOI: 10.3389/fcvm.2022.919719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/28/2022] [Indexed: 11/19/2022] Open
Abstract
Anthracyclines are a widely used class of chemotherapy in pediatric and adult cancers, however, their use is hampered by the development of cardiotoxic side-effects and ensuing complications, primarily heart failure. Clinically used imaging modalities to screen for cardiotoxicity are mostly echocardiography and occasionally cardiac magnetic resonance imaging. However, the assessment of diastolic and global or segmental systolic function may not be sensitive to detect subclinical or early stages of cardiotoxicity. Multiple studies have scrutinized molecular nuclear imaging strategies to improve the detection of anthracycline-induced cardiotoxicity. Anthracyclines can activate all forms of cell death in cardiomyocytes. Injury mechanisms associated with anthracycline usage include apoptosis, necrosis, autophagy, ferroptosis, pyroptosis, reactive oxygen species, mitochondrial dysfunction, as well as cardiac fibrosis and perturbation in sympathetic drive and myocardial blood flow; some of which have been targeted using nuclear probes. This review retraces the pathobiology of anthracycline-induced cardiac injury, details the evidence to date supporting a molecular nuclear imaging strategy, explores disease mechanisms which have not yet been targeted, and proposes a clinical strategy incorporating molecular imaging to improve patient management.
Collapse
Affiliation(s)
- Jeremy Jong
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - James R. Pinney
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, United States
| | - René R. Sevag Packard
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, United States
- Veterans Affairs West Los Angeles Medical Center, Los Angeles, CA, United States
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
24
|
Adipocyte Gq signaling is a regulator of glucose and lipid homeostasis in mice. Nat Commun 2022; 13:1652. [PMID: 35351896 PMCID: PMC8964770 DOI: 10.1038/s41467-022-29231-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/04/2022] [Indexed: 01/05/2023] Open
Abstract
AbstractObesity is the major driver of the global epidemic in type 2 diabetes (T2D). In individuals with obesity, impaired insulin action leads to increased lipolysis in adipocytes, resulting in elevated plasma free fatty acid (FFA) levels that promote peripheral insulin resistance, a hallmark of T2D. Here we show, by using a combined genetic/biochemical/pharmacologic approach, that increased adipocyte lipolysis can be prevented by selective activation of adipocyte Gq signaling in vitro and in vivo (in mice). Activation of this pathway by a Gq-coupled designer receptor or by an agonist acting on an endogenous adipocyte Gq-coupled receptor (CysLT2 receptor) greatly improved glucose and lipid homeostasis in obese mice or in mice with adipocyte insulin receptor deficiency. Our findings identify adipocyte Gq signaling as an essential regulator of whole-body glucose and lipid homeostasis and should inform the development of novel classes of GPCR-based antidiabetic drugs.
Collapse
|
25
|
Laurila S, Rebelos E, Lahesmaa M, Sun L, Schnabl K, Peltomaa TM, Klén R, U-Din M, Honka MJ, Eskola O, Kirjavainen AK, Nummenmaa L, Klingenspor M, Virtanen KA, Nuutila P. Novel effects of the gastrointestinal hormone secretin on cardiac metabolism and renal function. Am J Physiol Endocrinol Metab 2022; 322:E54-E62. [PMID: 34806426 PMCID: PMC8791786 DOI: 10.1152/ajpendo.00260.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
The cardiac benefits of gastrointestinal hormones have been of interest in recent years. The aim of this study was to explore the myocardial and renal effects of the gastrointestinal hormone secretin in the GUTBAT trial (NCT03290846). A placebo-controlled crossover study was conducted on 15 healthy males in fasting conditions, where subjects were blinded to the intervention. Myocardial glucose uptake was measured with [18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG) positron emission tomography. Kidney function was measured with [18F]FDG renal clearance and estimated glomerular filtration rate (eGFR). Secretin increased myocardial glucose uptake compared with placebo (secretin vs. placebo, means ± SD, 15.5 ± 7.4 vs. 9.7 ± 4.9 μmol/100 g/min, 95% confidence interval (CI) [2.2, 9.4], P = 0.004). Secretin also increased [18F]FDG renal clearance (44.5 ± 5.4 vs. 39.5 ± 8.5 mL/min, 95%CI [1.9, 8.1], P = 0.004), and eGFR was significantly increased from baseline after secretin, compared with placebo (17.8 ± 9.8 vs. 6.0 ± 5.2 ΔmL/min/1.73 m2, 95%CI [6.0, 17.6], P = 0.001). Our results implicate that secretin increases heart work and renal filtration, making it an interesting drug candidate for future studies in heart and kidney failure.NEW & NOTEWORTHY Secretin increases myocardial glucose uptake compared with placebo, supporting a previously proposed inotropic effect. Secretin also increased renal filtration rate.
Collapse
Affiliation(s)
- Sanna Laurila
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
- Heart Center, Satakunta Central Hospital, Pori, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | - Minna Lahesmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Internal Medicine, Jorvi Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Lihua Sun
- Turku PET Centre, University of Turku, Turku, Finland
| | - Katharina Schnabl
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | | | - Riku Klén
- Turku PET Centre, University of Turku, Turku, Finland
| | - Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | - Olli Eskola
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
- Department of Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
26
|
Sun X, Siri S, Hurst A, Qiu H. Heat Shock Protein 22 in Physiological and Pathological Hearts: Small Molecule, Large Potentials. Cells 2021; 11:cells11010114. [PMID: 35011676 PMCID: PMC8750610 DOI: 10.3390/cells11010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Small heat shock protein 22 (HSP22) belongs to the superfamily of heat shock proteins and is predominantly expressed in the heart, brain, skeletal muscle, and different types of cancers. It has been found that HSP22 is involved in variant cellular functions in cardiomyocytes and plays a vital role in cardiac protection against cardiomyocyte injury under diverse stress. This review summarizes the multiple functions of HSP22 in the heart and the underlying molecular mechanisms through modulating gene transcription, post-translational modification, subcellular translocation of its interacting proteins, and protein degradation, facilitating mitochondrial function, cardiac metabolism, autophagy, and ROS production and antiapoptotic effect. We also discuss the association of HSP22 in cardiac pathologies, including human dilated cardiomyopathy, pressure overload-induced heart failure, ischemic heart diseases, and aging-related cardiac metabolism disorder. The collected information would provide insights into the understanding of the HSP22 in heart diseases and lead to discovering the therapeutic targets.
Collapse
|
27
|
Multi-Omics Approach Profiling Metabolic Remodeling in Early Systolic Dysfunction and in Overt Systolic Heart Failure. Int J Mol Sci 2021; 23:ijms23010235. [PMID: 35008662 PMCID: PMC8745344 DOI: 10.3390/ijms23010235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 01/19/2023] Open
Abstract
Metabolic remodeling plays an important role in the pathophysiology of heart failure (HF). We sought to characterize metabolic remodeling and implicated signaling pathways in two rat models of early systolic dysfunction (MOD), and overt systolic HF (SHF). Tandem mass tag-labeled shotgun proteomics, phospho-(p)-proteomics, and non-targeted metabolomics analyses were performed in left ventricular myocardium tissue from Sham, MOD, and SHF using liquid chromatography–mass spectrometry, n = 3 biological samples per group. Mitochondrial proteins were predominantly down-regulated in MOD (125) and SHF (328) vs. Sham. Of these, 82% (103/125) and 66% (218/328) were involved in metabolism and respiration. Oxidative phosphorylation, mitochondrial fatty acid β-oxidation, Krebs cycle, branched-chain amino acids, and amino acid (glutamine and tryptophan) degradation were highly enriched metabolic pathways that decreased in SHF > MOD. Glycogen and glucose degradation increased predominantly in MOD, whereas glycolysis and pyruvate metabolism decreased predominantly in SHF. PKA signaling at the endoplasmic reticulum–mt interface was attenuated in MOD, whereas overall PKA and AMPK cellular signaling were attenuated in SHF vs. Sham. In conclusion, metabolic remodeling plays an important role in myocardial remodeling. PKA and AMPK signaling crosstalk governs metabolic remodeling in progression to SHF.
Collapse
|
28
|
Tinsman AE, Bellis TJ. Hyperinsulinemia/euglycemia and intravenous lipid emulsion therapy for the management of severe amlodipine toxicosis in a cat. Clin Case Rep 2021; 9:e05175. [PMID: 34934496 PMCID: PMC8650752 DOI: 10.1002/ccr3.5175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/23/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
Calcium-channel blockers (CCBs) are widely used in people and animals. Overdose can result in cardiovascular collapse and death. Hyperinsulinemia/euglycemia therapy (HIET) and intralipid therapy (ILT) are reported treatment options in people. This is the first report describing HIET and ILT as treatments for amlodipine toxicosis in a cat.
Collapse
Affiliation(s)
| | - Tara J. Bellis
- Emergency & Critical CareGarden State Veterinary ServicesIselinNJUSA
| |
Collapse
|
29
|
Divakaran S, Osborne MT. Preparation is everything: The impact of a structured preparation protocol on cardiac 18F-FDG PET imaging for cardiac sarcoidosis. J Nucl Cardiol 2021; 28:2638-2641. [PMID: 31250323 PMCID: PMC6933094 DOI: 10.1007/s12350-019-01788-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Sanjay Divakaran
- Cardiovascular Imaging Program, Departments of Radiology and Medicine and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael T Osborne
- Cardiac MR-PET-CT Program, Department of Radiology and Cardiology Division, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Yawkey 5E, Boston, MA, 02114-2750, USA.
| |
Collapse
|
30
|
Relevance of mitochondrial dysfunction in heart disease associated with insulin resistance conditions. Pflugers Arch 2021; 474:21-31. [PMID: 34807312 DOI: 10.1007/s00424-021-02638-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 12/27/2022]
Abstract
Insulin resistance plays a key role in the development and progression of obesity, diabetes, and their complications. Moreover, insulin resistance is considered the principal link between metabolic diseases and cardiovascular diseases. Heart disease associated with insulin resistance is one of the most important consequences of both obesity and diabetes, and it is characterized by impaired cardiac energetics, diastolic dysfunction, and finally heart failure. Mitochondrion plays a key role in cell energy homeostasis and is the main source of reactive oxygen species. Obesity and diabetes are associated with alterations in mitochondrial function and dynamics. Mitochondrial dysfunction is characterized by changes in mitochondrial respiratory chain with reduced ATP production and elevated reactive oxygen species production. These mitochondrial alterations together with inflammation contribute to the development and progression of heart disease under insulin resistance conditions. Finally, numerous miRNAs participate in the regulation of energy substrate metabolism, reactive oxygen species production, and apoptotic pathways within the mitochondria. This notion supports the relevance of interactions between miRNAs and mitochondrial dysfunction in the pathophysiology of metabolic heart disease.
Collapse
|
31
|
A pilot feasibility study investigating the impact of increasing sucrose intakes on body composition and blood pressure. J Nutr Sci 2021; 10:e60. [PMID: 34422262 PMCID: PMC8358843 DOI: 10.1017/jns.2021.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/19/2023] Open
Abstract
Epidemiological and intervention studies have reported negative health effects of sucrose intake, but many of these studies were not representative of typical dietary habits. In this pilot study, we aimed to test the effect of increasing sucrose intakes for 1 week on body composition and blood pressure and explore the feasibility of consuming high intakes of sucrose in addition to a habitual diet. In a randomised crossover design study, twelve healthy participants (50 % female, age 28⋅4 ± 10 years, BMI 25 ± 3 kg/m2), consumed either 40, 80 or 120 g sucrose in 500 ml water in addition to their habitual diet every day for 1 week, with a 1-week washout between treatment periods. Body composition (assessed using bioelectrical impedance) and blood pressure measurements were taken before and after each intervention phase. All participants reported no issues with consuming the sucrose dose for the intervention period. There was a significant increase in systolic blood pressure following 120 g sucrose intake (P = 0⋅006), however there was no significant changes to blood pressure, body weight, BMI, percentage protein, fat or water (P > 0⋅05) when comparing change from baseline values. There was also no effect of sucrose intakes on energy or macronutrient intakes during the intervention (P > 0⋅05). We show here that varying doses of sucrose over a 1-week period have no effect on body composition or blood pressure. The amounts of sucrose used were an acceptable addition to the habitual diet and demonstrate the feasibility of larger-scale studies of chronic sucrose supplementation.
Collapse
|
32
|
Mendez DA, Ortiz RM. Thyroid hormones and the potential for regulating glucose metabolism in cardiomyocytes during insulin resistance and T2DM. Physiol Rep 2021; 9:e14858. [PMID: 34405550 PMCID: PMC8371345 DOI: 10.14814/phy2.14858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/30/2022] Open
Abstract
In order for the heart to maintain its continuous mechanical work and provide the systolic movement to uphold coronary blood flow, substantial synthesis of adenosine triphosphate (ATP) is required. Under normal conditions cardiac tissue utilizes roughly 70% fatty acids (FA), and 30% glucose for the production of ATP; however, during impaired metabolic conditions like insulin resistance and diabetes glucose metabolism is dysregulated and FA account for 99% of energy production. One of the major consequences of a shift in FA metabolism in cardiac tissue is an increase in reactive oxygen species (ROS) and lipotoxicity, which ultimately lead to mitochondrial dysfunction. Thyroid hormones (TH) have direct effects on cardiac function and glucose metabolism during impaired metabolic conditions suggesting that TH may improve glucose metabolism in an insulin resistant condition. None-classical TH signaling in the heart has shown to phosphorylate protein kinase B (Akt) and increase activity of phosphoinositide-3-kinase (PI3K), which are critical mediators in the insulin-stimulated glucose uptake pathway. Studies on peripheral tissues such as skeletal muscle and adipocytes have demonstrated TH treatment improved glucose intolerance in a diabetic model and increased insulin-regulated glucose transporter (GLUT4) mRNA levels. GLUT4 is a downstream target of thyroid response element (TRE), which demonstrates that THs regulate glucose via GLUT4. Elevated 3,5,3'-triiodothyronine (T3) increased glucose oxidation rate and decreased the glycolytic intermediate, fructose 6-phosphate (F6P) in cardiomyocytes, in addition to increasing mitochondrial biogenesis and pyruvate transport across the mitochondrial membrane. These findings along with a few other studies on T3 treatment in cardiac tissue suggest TH may improve glucose metabolism in an insulin resistant model and ameliorate the effects of diabetes and metabolic syndrome. This review highlights the potential benefits of exogenous TH on ameliorating metabolic dysfunction in the heart.
Collapse
Affiliation(s)
- Dora A. Mendez
- Department of Molecular & Cell BiologySchool of Natural SciencesUniversity of CaliforniaMercedCAUSA
| | - Rudy M. Ortiz
- Department of Molecular & Cell BiologySchool of Natural SciencesUniversity of CaliforniaMercedCAUSA
| |
Collapse
|
33
|
Acquisition, Processing, and Interpretation of PET 18F-FDG Viability and Inflammation Studies. Curr Cardiol Rep 2021; 23:124. [PMID: 34269917 DOI: 10.1007/s11886-021-01555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE OF REVIEW This article reviews the acquisition protocols and image interpretation for 18F-fluorodeoxyglucose (18F-FDG) imaging with positron emission tomography (PET) applied to the evaluation of myocardial viability and inflammation. RECENT FINDINGS Cardiac PET with 18F-FDG provides essential information for the assessment of myocardial viability and inflammation and is usually combined with PET perfusion imaging using 82Rb or 13N-ammonia. Viable myocardium maintains glucose metabolism which can be detected via the uptake of 18F-FDG by PET imaging. The patient is prepared for viability imaging by shifting the metabolism of the heart to maximize the uptake of glucose and hence of 18F-FDG. Comparison of the 18F-FDG and myocardial perfusion images allows distinction between regions of the myocardium that are hibernating and thus may recover function with intervention, from those that are infarcted. Increased glucose utilization in the inflammatory cells also makes 18F-FDG a useful imaging technique in conditions such as cardiac sarcoidosis. Here, suppression of normal myocardial uptake is essential for accurate image interpretation. 18F-FDG PET broadens the scope of information potentially available through a cardiac PET study. With careful patient preparation, it provides valuable insights into myocardial viability and inflammatory processes such as sarcoidosis.
Collapse
|
34
|
Nakano H, Fajardo VM, Nakano A. The role of glucose in physiological and pathological heart formation. Dev Biol 2021; 475:222-233. [PMID: 33577830 PMCID: PMC8107118 DOI: 10.1016/j.ydbio.2021.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/30/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023]
Abstract
Cells display distinct metabolic characteristics depending on its differentiation stage. The fuel type of the cells serves not only as a source of energy but also as a driver of differentiation. Glucose, the primary nutrient to the cells, is a critical regulator of rapidly growing embryos. This metabolic change is a consequence as well as a cause of changes in genetic program. Disturbance of fetal glucose metabolism such as in diabetic pregnancy is associated with congenital heart disease. In utero hyperglycemia impacts the left-right axis establishment, migration of cardiac neural crest cells, conotruncal formation and mesenchymal formation of the cardiac cushion during early embryogenesis and causes cardiac hypertrophy in late fetal stages. In this review, we focus on the role of glucose in cardiogenesis and the molecular mechanisms underlying heart diseases associated with hyperglycemia.
Collapse
Affiliation(s)
- Haruko Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Viviana M Fajardo
- Department of Pediatrics, Division of Neonatology and Developmental Biology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Atsushi Nakano
- Department of Molecular, Cell, and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Afshar-Oromieh A, Prosch H, Schaefer-Prokop C, Bohn KP, Alberts I, Mingels C, Thurnher M, Cumming P, Shi K, Peters A, Geleff S, Lan X, Wang F, Huber A, Gräni C, Heverhagen JT, Rominger A, Fontanellaz M, Schöder H, Christe A, Mougiakakou S, Ebner L. A comprehensive review of imaging findings in COVID-19 - status in early 2021. Eur J Nucl Med Mol Imaging 2021; 48:2500-2524. [PMID: 33932183 PMCID: PMC8087891 DOI: 10.1007/s00259-021-05375-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Medical imaging methods are assuming a greater role in the workup of patients with COVID-19, mainly in relation to the primary manifestation of pulmonary disease and the tissue distribution of the angiotensin-converting-enzyme 2 (ACE 2) receptor. However, the field is so new that no consensus view has emerged guiding clinical decisions to employ imaging procedures such as radiography, computer tomography (CT), positron emission tomography (PET), and magnetic resonance imaging, and in what measure the risk of exposure of staff to possible infection could be justified by the knowledge gained. The insensitivity of current RT-PCR methods for positive diagnosis is part of the rationale for resorting to imaging procedures. While CT is more sensitive than genetic testing in hospitalized patients, positive findings of ground glass opacities depend on the disease stage. There is sparse reporting on PET/CT with [18F]-FDG in COVID-19, but available results are congruent with the earlier literature on viral pneumonias. There is a high incidence of cerebral findings in COVID-19, and likewise evidence of gastrointestinal involvement. Artificial intelligence, notably machine learning is emerging as an effective method for diagnostic image analysis, with performance in the discriminative diagnosis of diagnosis of COVID-19 pneumonia comparable to that of human practitioners.
Collapse
Affiliation(s)
- Ali Afshar-Oromieh
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, CH-3010, Bern, Switzerland.
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Cornelia Schaefer-Prokop
- Department of Radiology, Meander Medical Center, Amersfoort, Netherlands
- Department of Medical Imaging, Radboud University, Nijmegen, Netherlands
| | - Karl Peter Bohn
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, CH-3010, Bern, Switzerland
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, CH-3010, Bern, Switzerland
| | - Clemens Mingels
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, CH-3010, Bern, Switzerland
| | - Majda Thurnher
- Department of Biomedical Imaging and Image-guided Therapy, Medical University Vienna, Vienna, Austria
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, CH-3010, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, CH-3010, Bern, Switzerland
| | - Alan Peters
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Silvana Geleff
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Adrian Huber
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Gräni
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Johannes T Heverhagen
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstr. 18, CH-3010, Bern, Switzerland
| | - Matthias Fontanellaz
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Emergency Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Heiko Schöder
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andreas Christe
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stavroula Mougiakakou
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Lukas Ebner
- Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
36
|
Activated Alpha-2 Macroglobulin Improves Insulin Response via LRP1 in Lipid-Loaded HL-1 Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22136915. [PMID: 34203120 PMCID: PMC8268138 DOI: 10.3390/ijms22136915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 02/07/2023] Open
Abstract
Activated alpha-2 Macroglobulin (α2M*) is specifically recognized by the cluster I/II of LRP1 (Low-density lipoprotein Receptor-related Protein-1). LRP1 is a scaffold protein for insulin receptor involved in the insulin-induced glucose transporter type 4 (GLUT4) translocation to plasma membrane and glucose uptake in different types of cells. Moreover, the cluster II of LRP1 plays a critical role in the internalization of atherogenic lipoproteins, such as aggregated Low-density Lipoproteins (aggLDL), promoting intracellular cholesteryl ester (CE) accumulation mainly in arterial intima and myocardium. The aggLDL uptake by LRP1 impairs GLUT4 traffic and the insulin response in cardiomyocytes. However, the link between CE accumulation, insulin action, and cardiac dysfunction are largely unknown. Here, we found that α2M* increased GLUT4 expression on cell surface by Rab4, Rab8A, and Rab10-mediated recycling through PI3K/Akt and MAPK/ERK signaling activation. Moreover, α2M* enhanced the insulin response increasing insulin-induced glucose uptake rate in the myocardium under normal conditions. On the other hand, α2M* blocked the intracellular CE accumulation, improved the insulin response and reduced cardiac damage in HL-1 cardiomyocytes exposed to aggLDL. In conclusion, α2M* by its agonist action on LRP1, counteracts the deleterious effects of aggLDL in cardiomyocytes, which may have therapeutic implications in cardiovascular diseases associated with hypercholesterolemia.
Collapse
|
37
|
Feng K, Liu Y, Sun J, Zhao C, Duan Y, Wang W, Yan K, Yan X, Sun H, Hu Y, Han J. Compound Danshen Dripping Pill inhibits doxorubicin or isoproterenol-induced cardiotoxicity. Biomed Pharmacother 2021; 138:111531. [PMID: 34311530 DOI: 10.1016/j.biopha.2021.111531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is the advanced heart disease with high morbidity and mortality. Compound DanShen Dripping Pill (CDDP) is a widely used Traditional Chinese Medicine for cardiovascular disease treatment. Herein, we investigated if CDDP can protect mice against doxorubicin (DOX) or isoprenaline (ISO)-induced HF. After 3 days feeding of normal chow containing CDDP, mice were started DOX or ISO treatment for 4 weeks or 18 days. At the end of treatment, mice were conducted electrocardiogram and echocardiographic test. Blood and heart samples were determined biochemical parameters, myocardial structure and expression of the related molecules. CDDP normalized DOX/ISO-induced heart weight changes, HF parameters and fibrogenesis. The DOX/ISO-impaired left ventricular ejection fraction and fractional shortening were restored by CDDP. Mechanistically, CDDP blocked DOX/ISO-inhibited expression of antioxidant enzymes and DOX/ISO-induced expression of pro-fibrotic molecules, inflammation and cell apoptosis. Additional DOX/ISO-impaired targets in cardiac function but protected by CDDP were identified by RNAseq, qRT-PCR and Western blot. In addition, CDDP protected cardiomyocytes against oxygen-glucose deprivation-induced injuries. Taken together, our study shows that CDDP can protect against myocardial injuries in different models, suggesting its potential application for HF treatment.
Collapse
Affiliation(s)
- Ke Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Yuxin Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jia Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Chunlai Zhao
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Yajun Duan
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Kaijing Yan
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China; The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China; Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Xijun Yan
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China; The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China; Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - He Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China; The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China; Tasly Pharmaceutical Group Co., Ltd, Tianjin, China
| | - Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China.
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China.
| |
Collapse
|
38
|
Dietz M, Paulmier B, Berthier F, Civaia F, Mocquot F, Serrano B, Nataf V, Hugonnet F, Faraggi M. An Intravenous 100-mL Lipid Emulsion Infusion Dramatically Improves Myocardial Glucose Metabolism Extinction in Cardiac FDG PET Clinical Practice. Clin Nucl Med 2021; 46:e317-e324. [PMID: 33630808 DOI: 10.1097/rlu.0000000000003556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Physiological myocardial accumulation of FDG impairs the diagnosis of inflammatory/infectious or tumoral myocardial detection by FDG PET/CT. We prospectively evaluated the addition, 3 hours before imaging, of an intravenous 100-mL lipid emulsion infusion (Intralipid) to a high-fat, low-carbohydrate diet (HFLCD) for at least 2 meals followed by a fast of at least 6 to 12 hours in patients referred for the diagnosis of myocardial inflammation, endocarditis, cardiac or paracardiac masses, intracardiac device, or prosthetic valve infections. METHODS Data of 58 patients consecutively included (28 Intralipid patients, 30 controls with HFLCD alone) were compared. FDG uptake in normal myocardium was scored from 0 (complete myocardial suppression) to 3 (high diffuse uptake). Myocardial maximal, peak, and mean SUV and the rate of interpretable images according to the clinical indication were measured. RESULTS Compared with controls, Intralipid infusion significantly improved the rate of score 0 (89% vs 63%, P = 0.021), of interpretable images according to the clinical indication (100% vs 72%, P = 0.0047) and decreased all myocardial SUV values (eg, SUVmax median, 1.9 [interquartile range, 1.7-2.5] vs 3.1 [interquartile range, 2.3-4.1]; P < 0.001). CONCLUSIONS A lipid emulsion infusion in addition to HFLCD better suppresses cardiac glucose metabolism than HFLCD alone.
Collapse
Affiliation(s)
| | | | | | | | | | - Benjamin Serrano
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco
| | | | | | | |
Collapse
|
39
|
Lactate Dehydrogenase A Governs Cardiac Hypertrophic Growth in Response to Hemodynamic Stress. Cell Rep 2021; 32:108087. [PMID: 32877669 PMCID: PMC7520916 DOI: 10.1016/j.celrep.2020.108087] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 01/06/2023] Open
Abstract
The heart manifests hypertrophic growth in response to high blood pressure, which may decompensate and progress to heart failure under persistent stress. Metabolic remodeling is an early event in this process. However, its role remains to be fully characterized. Here, we show that lactate dehydrogenase A (LDHA), a critical glycolytic enzyme, is elevated in the heart in response to hemodynamic stress. Cardiomyocyte-restricted deletion of LDHA leads to defective cardiac hypertrophic growth and heart failure by pressure overload. Silencing of LDHA in cultured cardiomyocytes suppresses cell growth from pro-hypertrophic stimulation in vitro, while overexpression of LDHA is sufficient to drive cardiomyocyte growth. Furthermore, we find that lactate is capable of rescuing the growth defect from LDHA knockdown. Mechanistically, lactate stabilizes NDRG3 (N-myc downregulated gene family 3) and stimulates ERK (extracellular signal-regulated kinase). Our results together suggest that the LDHA/NDRG3 axis may play a critical role in adaptive cardiomyocyte growth in response to hemodynamic stress. Dai et al. find that LDHA is significantly increased in the heart under hemodynamic stress, and cardiomyocyte-specific deletion of LDHA leads to severe cardiac dysfunction in response to pressure overload. LDHA may govern adaptive growth through elevation of NDRG3 and activation of ERK.
Collapse
|
40
|
Abstract
Positron emission tomography and/or computed tomography (PET/CT) MPI is a powerful imaging modality for the assessment of cardiovascular diseases. It offers several advantages over single-photon emission computed tomography (SPECT) MPI including robust attenuation correction and absolute quantification of radiotracer activity. PET MPI has a large evidence base and is the only clinical tool to evaluate coronary microvascular dysfunction. In addition, the clinical use and evidence base for 2-deoxy-2-[18F]fluoro-D-g1ucose (18F-FDG) cardiac PET imaging for inflammation and metabolism imaging is rising exponentially. In order to gain from the advances of this sophisticated quantitative technique, a high-quality scan is critical. It is important for readers to recognize a poor-quality scan, identify artifacts contributing to the poor image quality, and understand how to correct them prior to reporting the results. In this review, we will discuss some normal variants and pitfalls in cardiac PET/CT radionuclide MPI, myocardial viability, and inflammation imaging.
Collapse
Affiliation(s)
- Vasvi Singh
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA; Midwest Heart and Vascular Specialists, HCA Midwest Health, Kansas City, MO
| | - Sharmila Dorbala
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.
| |
Collapse
|
41
|
Jannapureddy S, Sharma M, Yepuri G, Schmidt AM, Ramasamy R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. Front Endocrinol (Lausanne) 2021; 12:636267. [PMID: 33776930 PMCID: PMC7992003 DOI: 10.3389/fendo.2021.636267] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes is a leading cause of cardiovascular morbidity and mortality. Despite numerous treatments for cardiovascular disease (CVD), for patients with diabetes, these therapies provide less benefit for protection from CVD. These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify especially as the diabetes epidemic continues to expand. In this context, high levels of blood glucose stimulate the flux via aldose reductase (AR) pathway leading to metabolic and signaling changes in cells of the cardiovascular system. In animal models flux via AR in hearts is increased by diabetes and ischemia and its inhibition protects diabetic and non-diabetic hearts from ischemia-reperfusion injury. In mouse models of diabetic atherosclerosis, human AR expression accelerates progression and impairs regression of atherosclerotic plaques. Genetic studies have revealed that single nucleotide polymorphisms (SNPs) of the ALD2 (human AR gene) is associated with diabetic complications, including cardiorenal complications. This Review presents current knowledge regarding the roles for AR in the causes and consequences of diabetic cardiovascular disease and the status of AR inhibitors in clinical trials. Studies from both human subjects and animal models are presented to highlight the breadth of evidence linking AR to the cardiovascular consequences of diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Ravichandran Ramasamy
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
42
|
Dambrova M, Zuurbier CJ, Borutaite V, Liepinsh E, Makrecka-Kuka M. Energy substrate metabolism and mitochondrial oxidative stress in cardiac ischemia/reperfusion injury. Free Radic Biol Med 2021; 165:24-37. [PMID: 33484825 DOI: 10.1016/j.freeradbiomed.2021.01.036] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
The heart is the most metabolically flexible organ with respect to the use of substrates available in different states of energy metabolism. Cardiac mitochondria sense substrate availability and ensure the efficiency of oxidative phosphorylation and heart function. Mitochondria also play a critical role in cardiac ischemia/reperfusion injury, during which they are directly involved in ROS-producing pathophysiological mechanisms. This review explores the mechanisms of ROS production within the energy metabolism pathways and focuses on the impact of different substrates. We describe the main metabolites accumulating during ischemia in the glucose, fatty acid, and Krebs cycle pathways. Hyperglycemia, often present in the acute stress condition of ischemia/reperfusion, increases cytosolic ROS concentrations through the activation of NADPH oxidase 2 and increases mitochondrial ROS through the metabolic overloading and decreased binding of hexokinase II to mitochondria. Fatty acid-linked ROS production is related to the increased fatty acid flux and corresponding accumulation of long-chain acylcarnitines. Succinate that accumulates during anoxia/ischemia is suggested to be the main source of ROS, and the role of itaconate as an inhibitor of succinate dehydrogenase is emerging. We discuss the strategies to modulate and counteract the accumulation of substrates that yield ROS and the therapeutic implications of this concept.
Collapse
Affiliation(s)
- Maija Dambrova
- Latvian Institute of Organic Synthesis, Riga, Latvia; Riga Stradins University, Riga, Latvia.
| | - Coert J Zuurbier
- Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam Cardiovascular Sciences, Meibergdreef 9, AZ 1105, Amsterdam, the Netherlands
| | - Vilmante Borutaite
- Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | |
Collapse
|
43
|
Pasqua T, Rocca C, Giglio A, Angelone T. Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. J Clin Med 2021; 10:721. [PMID: 33673114 PMCID: PMC7918460 DOI: 10.3390/jcm10040721] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
| | - Anita Giglio
- Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
| |
Collapse
|
44
|
Liu M, Li N, Qu C, Gao Y, Wu L, Hu LG. Amylin deposition activates HIF1α and 6-phosphofructo-2-kinase/fructose-2, 6-biphosphatase 3 (PFKFB3) signaling in failing hearts of non-human primates. Commun Biol 2021; 4:188. [PMID: 33580152 PMCID: PMC7881154 DOI: 10.1038/s42003-021-01676-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023] Open
Abstract
Hyperamylinemia induces amylin aggregation and toxicity in the pancreas and contributes to the development of type-2 diabetes (T2D). Cardiac amylin deposition in patients with obesity and T2D was found to accelerate heart dysfunction. Non-human primates (NHPs) have similar genetic, metabolic, and cardiovascular processes as humans. However, the underlying mechanisms of cardiac amylin in NHPs, particularly related to the hypoxia inducible factor (HIF)1α and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling pathways, are unknown. Here, we demonstrate that in NHPs, amylin deposition in heart failure (HF) contributes to cardiac dysfunction via activation of HIF1α and PFKFB3 signaling. This was confirmed in two in vitro cardiomyocyte models. Furthermore, alterations of intracellular Ca2+, reactive oxygen species, mitochondrial function, and lactate levels were observed in amylin-treated cells. Our study demonstrates a pathological role for amylin in the activation of HIF1α and PFKFB3 signaling in NHPs with HF, establishing amylin as a promising target for heart disease patients.
Collapse
Affiliation(s)
- Miao Liu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Nan Li
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Chun Qu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Yilin Gao
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Lijie Wu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China
| | - Liangbiao George Hu
- Department of Translational Safety and Bioanalytical Sciences, Amgen R&D (Shanghai) Co. Ltd., Shanghai, China.
| |
Collapse
|
45
|
Liu XS, Zeng J, Yang YX, Qi CL, Xiong T, Wu GZ, Zeng CY, Wang DX. DRD4 Mitigates Myocardial Ischemia/Reperfusion Injury in Association With PI3K/AKT Mediated Glucose Metabolism. Front Pharmacol 2021; 11:619426. [PMID: 33584304 PMCID: PMC7873565 DOI: 10.3389/fphar.2020.619426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 11/13/2022] Open
Abstract
Ischemia-reperfusion (I/R) could cause heart irreversible damage, which is tightly combined with glucose metabolism disorder. It is demonstrated that GLUT4 (glucose transporter 4) translocation is critical for glucose metabolism in the cardiomyocytes under I/R injury. Moreover, DRD4 (dopamine receptor D4) modulate glucose metabolism, and protect neurocytes from anoxia/reoxygenation (A/R) injury. Thus, DRD4 might regulate myocardial I/R injury in association with GLUT4-mediated glucose metabolism. However, the effects and mechanisms are largely unknown. In the present study, the effect of DRD4 in heart I/R injury were studied ex vivo and in vitro. For I/R injury ex vivo, DRD4 agonist (PD168077) was perfused by Langendorff system in the isolated rat heart. DRD4 activated by PD168077 improved cardiac function in the I/R-injured heart as determined by the left ventricular developed pressure (LVDP), +dp/dt, and left ventricular end diastolic pressure (LVEDP), and reduced heart damage evidenced by infarct size, the release of troponin T (TNT) and lactate dehydrogenase (LDH). DRD4 activation diminished I/R injury induced apoptosis and enhanced cell viability impaired by I/R injury in cardiomyocyte, showed by TUNEL staining, flow cytometer and CCK8 assay. Furthermore, DRD4 activation did not change total GULT4 protein expression level but increased the membrane GULT4 localization determined by western blot. In terms of mechanism, DRD4 activation increased pPI3K/p-AKT but not the total PI3K/AKT during anoxia/reoxygenation (A/R) injury in vitro. Interestingly, PI3K inhibitor, Wortmannin, blocked PI3K/AKT pathway and depleted the membrane GULT4, and further promoted apoptosis showed by TUNEL staining, flow cytometer, western blot of cleaved caspase 3, BAX and BCL2 expression. Thus, DRD4 activation exerted a protective effect against I/R injury by promoting GLUT4 translocation depended on PI3K/AKT pathway, which enhanced the ability of glucose uptake, and ultimately reduced the apoptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Xue-Song Liu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Yu-Xue Yang
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Chun-Lei Qi
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ting Xiong
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Geng-Ze Wu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Chun-Yu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Da-Xin Wang
- The Hospital Affiliated to Medical School of Yangzhou University (Taizhou people's Hospital), Taizhou, China
| |
Collapse
|
46
|
Kang JY, Lee MY, Kim YH. Associations of physiologic myocardial 18F-FDG uptake with fasting duration, HbA1c, and regular exercise. Ann Nucl Med 2021; 35:195-202. [PMID: 33387280 DOI: 10.1007/s12149-020-01551-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The variability of physiologic 18F-FDG uptake in the myocardium has hampered the accurate evaluation of cardiac glucose metabolism. We investigated the effects of multiple factors, including fasting duration and physical activity, on the physiologic uptake of 18F-FDG by the myocardium in healthy participants. METHODS A total of 446 participants (predominantly male, 91%) in a health screening program were included in this retrospective study. For the visual analysis of myocardial 18F-FDG uptake, the participants were categorized into three groups according to qualitative visual scales (QVS). For the quantitative analysis, the maximum SUV of the left ventricular myocardium was measured. RESULTS Significant differences were observed in fasting duration (p < 0.001), SUVmax (p < 0.001), aspartate aminotransferase (AST) (p < 0.001), alanine aminotransferase (ALT) (p < 0.001), gamma-glutamyl transpeptidase (γ-GTP) (p = 0.001), and uric acid (p = 0.015) among the QVS groups. Participants who regularly exercised with vigorous activity (p = 0.032) and HbA1c > 6% (p = 0.005) showed significant association with myocardial FDG uptake in the Chi-squared test. The median value of fasting duration decreased significantly as the QVS of the myocardium increased. Twenty-nine of the 31 participants (93.5%) who fasted for 21.5 h or more showed a suppressed FDG uptake (mean SUVmax = 2.1). In multivariate logistic regression analysis, fasting duration (OR = 0.74, 95% CI 0.69-0.80, p < 0.001), HbA1c > 6% (OR = 0.29, 95% CI: 0.12 - 0.66, p = 0.004), uric acid (OR = 0.82, 95% CI 0.68-1.00, p = 0.049) and regular exercise with vigorous activity (OR = 1.75, 95% CI 1.13-2.70, p = 0.012) were significant factors for physiologic myocardial FDG uptake. CONCLUSIONS Reduced physiologic 18F-FDG uptake of the myocardium was associated with longer fasting duration, higher level of HbA1c, and less frequency of regular exercise with vigorous activity. For the preparation of cardiac 18F-FDG PET, inclusion of longer fasting duration (more than 18 h) might be necessary for the adequate suppression of physiologic 18F-FDG myocardial uptake.
Collapse
Affiliation(s)
- Ji Yeon Kang
- Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea.
| | - Mi-Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| | - Young-Hwan Kim
- Department of Nuclear Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul, 03181, Republic of Korea
| |
Collapse
|
47
|
Dietz M, Chironi G, Claessens YE, Farhad RL, Rouquette I, Serrano B, Nataf V, Hugonnet F, Paulmier B, Berthier F, Keita-Perse O, Giammarile F, Perrin C, Faraggi M. COVID-19 pneumonia: relationship between inflammation assessed by whole-body FDG PET/CT and short-term clinical outcome. Eur J Nucl Med Mol Imaging 2021; 48:260-268. [PMID: 32712702 PMCID: PMC7382557 DOI: 10.1007/s00259-020-04968-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/19/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE [18F]-2-Fluoro-2-deoxy-D-glucose PET/CT (FDG PET/CT) is a sensitive and quantitative technic for detecting inflammatory process. Glucose uptake is correlated with an increased anaerobic glycolysis seen in activated inflammatory cells such as monocytes, lymphocytes, and granulocytes. The aim of the study was to assess the inflammatory status at the presumed peak of the inflammatory phase in non-critically ill patients requiring admission for COVID-19. METHODS Patients admitted with COVID-19 were prospectively enrolled. FDG PET/CT was performed from day 6 to day 14 of the onset of symptoms. Depending on FDG PET/CT findings, patients' profiles were classified as "inflammatory" or "low inflammatory." FDG PET/CT data were compared with chest CT evolution and short-term clinical outcome. All inflammatory sites were reported to screen potential extra-pulmonary tropism. RESULTS Thirteen patients were included. Maximum standardized uptake values ranged from 4.7 to 16.3 in lungs. All patients demonstrated increased mediastinal lymph nodes glucose uptake. Three patients (23%) presented mild nasopharyngeal, two patients (15%) bone marrow, and five patients (38%) splenic mild increase in glucose uptake. No patient had significant digestive focal or segmental glucose uptake. There was no significant physiological myocardial glucose uptake in all patients except one. There was no correlation between PET lung inflammatory status and chest CT evolution or short-term clinical outcome. CONCLUSION Inflammatory process at the presumed peak of the inflammatory phase in COVID-19 patients is obvious in FDG PET/CT scans. Glucose uptake is heterogeneous and typically focused on lungs. TRIAL REGISTRATION NCT04441489. Registered 22 June 2020 (retrospectively registered).
Collapse
Affiliation(s)
- Matthieu Dietz
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur, 98000, Monaco, Monaco
| | - Gilles Chironi
- Check-up Unit, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Yann-Erick Claessens
- Department of Emergency Medicine, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Ryan Lukas Farhad
- Pulmonary Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Isabelle Rouquette
- Department of Intensive Care Medicine, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Benjamin Serrano
- Medical Physics Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Valérie Nataf
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur, 98000, Monaco, Monaco
| | - Florent Hugonnet
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur, 98000, Monaco, Monaco
| | - Benoît Paulmier
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur, 98000, Monaco, Monaco
| | - Frédéric Berthier
- Department of Biostatistics, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Olivia Keita-Perse
- Infection disease Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Francesco Giammarile
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
- Centre Leon Berard, Lyon, France
| | - Christophe Perrin
- Pulmonary Department, Centre Hospitalier Princesse Grace, Monaco, Monaco
| | - Marc Faraggi
- Nuclear Medicine Department, Centre Hospitalier Princesse Grace, 1 Avenue Pasteur, 98000, Monaco, Monaco.
| |
Collapse
|
48
|
Li Y, Torp MK, Norheim F, Khanal P, Kimmel AR, Stensløkken KO, Vaage J, Dalen KT. Isolated Plin5-deficient cardiomyocytes store less lipid droplets than normal, but without increased sensitivity to hypoxia. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158873. [PMID: 33373698 DOI: 10.1016/j.bbalip.2020.158873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023]
Abstract
Plin5 is abundantly expressed in the heart where it binds to lipid droplets (LDs) and facilitates physical interaction between LDs and mitochondria. We isolated cardiomyocytes from adult Plin5+/+ and Plin5-/- mice to study the role of Plin5 for fatty acid uptake, LD accumulation, fatty acid oxidation, and tolerance to hypoxia. Cardiomyocytes isolated from Plin5-/- mice cultured with oleic acid stored less LDs than Plin5+/+, but comparable levels to Plin5+/+ cardiomyocytes when adipose triglyceride lipase activity was inhibited. The ability to oxidize fatty acids into CO2 was similar between Plin5+/+ and Plin5-/- cardiomyocytes, but Plin5-/- cardiomyocytes had a transient increase in intracellular fatty acid oxidation intermediates. After pre-incubation with oleic acids, Plin5-/- cardiomyocytes retained a higher content of glycogen and showed improved tolerance to hypoxia compared to Plin5+/+. In isolated, perfused hearts, deletion of Plin5 had no important effect on ventricular pressures or infarct size after ischemia. Old Plin5-/- mice had reduced levels of cardiac triacylglycerides, increased heart weight, and apart from modest elevated expression of mRNAs for beta myosin heavy chain Myh7 and the fatty acid transporter Cd36, other genes involved in fatty acid oxidation, glycogen metabolism and glucose utilization were essentially unchanged by removal of Plin5. Plin5 seems to facilitate cardiac LD storage primarily by repressing adipose triglyceride lipase activity without altering cardiac fatty acid oxidation capacity. Expression of Plin5 and cardiac LD content of isolated cardiomyocytes has little importance for tolerance to acute hypoxia and ischemia, which contrasts the protective role for Plin5 in mouse models during myocardial ischemia.
Collapse
Affiliation(s)
- Yuchuan Li
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - May-Kristin Torp
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway
| | - Prabhat Khanal
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; Faculty of Biosciences and Aquaculture (FBA), Nord University, Norway
| | - Alan R Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA
| | - Kåre-Olav Stensløkken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - Jarle Vaage
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Norway; Department of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Norway; The Norwegian Transgenic Center, Institute of Basic Medical Sciences, University of Oslo, Norway.
| |
Collapse
|
49
|
Bauckneht M, Pastorino F, Castellani P, Cossu V, Orengo AM, Piccioli P, Emionite L, Capitanio S, Yosifov N, Bruno S, Lazzarini E, Ponzoni M, Ameri P, Rubartelli A, Ravera S, Morbelli S, Sambuceti G, Marini C. Increased myocardial 18F-FDG uptake as a marker of Doxorubicin-induced oxidative stress. J Nucl Cardiol 2020; 27:2183-2194. [PMID: 30737636 DOI: 10.1007/s12350-019-01618-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/07/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Oxidative stress and its interference on myocardial metabolism play a major role in Doxorubicin (DXR) cardiotoxic cascade. METHODS Mice models of neuroblastoma (NB) were treated with 5 mg DXR/kg, either free (Free-DXR) or encapsulated in untargeted (SL[DXR]) or in NB-targeting Stealth Liposomes (pep-SL[DXR] and TP-pep-SL[DXR]). Control mice received saline. FDG-PET was performed at baseline (PET1) and 7 days after therapy (PET2). At PET2 Troponin-I and NT-proBNP were assessed. Explanted hearts underwent biochemical, histological, and immunohistochemical analyses. Finally, FDG uptake and glucose consumption were simultaneously measured in cultured H9c2 in the presence/absence of Free-DXR (1 μM). RESULTS Free-DXR significantly enhanced the myocardial oxidative stress. Myocardial-SUV remained relatively stable in controls and mice treated with liposomal formulations, while it significantly increased at PET2 with respect to baseline in Free-DXR. At this timepoint, myocardial-SUV was directly correlated with both myocardial redox stress and hexose-6-phosphate-dehydrogenase (H6PD) enzymatic activity, which selectively sustain cellular anti-oxidant mechanisms. Intriguingly, in vitro, Free-DXR selectively increased FDG extraction fraction without altering the corresponding value for glucose. CONCLUSION The direct correlation between cardiac FDG uptake and oxidative stress indexes supports the potential role of FDG-PET as an early biomarker of DXR oxidative damage.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, Largo R. Benzi 10, 16132, Genoa, Italy.
| | - Fabio Pastorino
- Laboratory of Experimental Therapy in Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | | | - Vanessa Cossu
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Maria Orengo
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Patrizia Piccioli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Emionite
- Animal Facility, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Selene Capitanio
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nikola Yosifov
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Bruno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Edoardo Lazzarini
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine & Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mirco Ponzoni
- Laboratory of Experimental Therapy in Oncology, Istituto Giannina Gaslini, Genoa, Italy
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine & Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Anna Rubartelli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine, Department of Health Sciences (DISSAL), University of Genoa, Largo R. Benzi 10, 16132, Genoa, Italy
- CNR Institute of Molecular Bioimaging and Physiology, Milan, Italy
| |
Collapse
|
50
|
Brown SM, Larsen NK, Thankam FG, Agrawal DK. Fetal cardiomyocyte phenotype, ketone body metabolism, and mitochondrial dysfunction in the pathology of atrial fibrillation. Mol Cell Biochem 2020; 476:1165-1178. [PMID: 33188453 DOI: 10.1007/s11010-020-03980-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia diagnosed in clinical practice. Even though hypertension, congestive heart failure, pulmonary disease, and coronary artery disease are the potential risk factors for AF, the underlying molecular pathology is largely unknown. The reversion of the mature cardiomyocytes to fetal phenotype, impaired ketone body metabolism, mitochondrial dysfunction, and the cellular effect of reactive oxygen species (ROS) are the major underlying biochemical events associated with the molecular pathology of AF. On this background, the present manuscript sheds light into these biochemical events in regard to the metabolic derangements in cardiomyocyte leading to AF, especially with respect to structural, contractile, and electrophysiological properties. In addition, the article critically reviews the current understanding, potential demerits, and translational strategies in the management of AF.
Collapse
Affiliation(s)
- Sean M Brown
- Creighton University School of Medicine, Omaha, NE, 68178, USA
| | | | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766, USA.
| |
Collapse
|