1
|
Li M, He M, Sun M, Li Y, Li M, Jiang X, Wang Y, Wang H. Oxylipins as therapeutic indicators of herbal medicines in cardiovascular diseases: a review. Front Pharmacol 2024; 15:1454348. [PMID: 39749208 PMCID: PMC11693728 DOI: 10.3389/fphar.2024.1454348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
Globally, cardiovascular diseases (CVDs) remain the leading cause of death, and their prevention and treatment continue to face major challenges. Oxylipins, as novel circulating markers of cardiovascular disease, are crucial mediators linking cardiovascular risk factors such as inflammation and platelet activation, and they play an important role in unraveling cardiovascular pathogenesis and therapeutic mechanisms. Chinese herbal medicine plays an important role in the adjuvant treatment of cardiovascular diseases, which has predominantly focused on the key pathways of classic lipids, inflammation, and oxidative stress to elucidate the therapeutic mechanisms of cardiovascular diseases. However,The regulatory effect of traditional Chinese medicine on oxylipins in cardiovascular diseases remains largely unknown. With the increasing number of recent reports on the regulation of oxylipins by Chinese herbal medicine in cardiovascular diseases, it is necessary to comprehensively elucidate the regulatory role of Chinese herbal medicine in cardiovascular diseases from the perspective of oxylipins. This approach not only benefits further research on the therapeutic targets of Chinese herbal medicine, but also brings new perspectives to the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mengqi Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Min He
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengmeng Sun
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yongping Li
- Changchun Sino-Russian Science and Technology Park Co., Ltd., Changchun, Jilin, China
| | - Mengyuan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaobo Jiang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin Wang
- Department of Cardiovascular Rehabilitation, The Third Clinical Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongfeng Wang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
2
|
Dunn ME, Kithcart A, Kim JH, Ho AJH, Franklin MC, Romero Hernandez A, de Hoon J, Botermans W, Meyer J, Jin X, Zhang D, Torello J, Jasewicz D, Kamat V, Garnova E, Liu N, Rosconi M, Pan H, Karnik S, Burczynski ME, Zheng W, Rafique A, Nielsen JB, De T, Verweij N, Pandit A, Locke A, Chalasani N, Melander O, Schwantes-An TH, Baras A, Lotta LA, Musser BJ, Mastaitis J, Devalaraja-Narashimha KB, Rankin AJ, Huang T, Herman G, Olson W, Murphy AJ, Yancopoulos GD, Olenchock BA, Morton L. Agonist antibody to guanylate cyclase receptor NPR1 regulates vascular tone. Nature 2024; 633:654-661. [PMID: 39261724 PMCID: PMC11410649 DOI: 10.1038/s41586-024-07903-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
Heart failure is a leading cause of morbidity and mortality1,2. Elevated intracardiac pressures and myocyte stretch in heart failure trigger the release of counter-regulatory natriuretic peptides, which act through their receptor (NPR1) to affect vasodilation, diuresis and natriuresis, lowering venous pressures and relieving venous congestion3-8. Recombinant natriuretic peptide infusions were developed to treat heart failure but have been limited by a short duration of effect9,10. Here we report that in a human genetic analysis of over 700,000 individuals, lifelong exposure to coding variants of the NPR1 gene is associated with changes in blood pressure and risk of heart failure. We describe the development of REGN5381, an investigational monoclonal agonist antibody that targets the membrane-bound guanylate cyclase receptor NPR1. REGN5381, an allosteric agonist of NPR1, induces an active-like receptor conformation that results in haemodynamic effects preferentially on venous vasculature, including reductions in systolic blood pressure and venous pressure in animal models. In healthy human volunteers, REGN5381 produced the expected haemodynamic effects, reflecting reductions in venous pressures, without obvious changes in diuresis and natriuresis. These data support the development of REGN5381 for long-lasting and selective lowering of venous pressures that drive symptomatology in patients with heart failure.
Collapse
Affiliation(s)
| | | | - Jee Hae Kim
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | - Jan de Hoon
- Center for Clinical Pharmacology, University Hospitals Leuven, Leuven, Belgium
| | - Wouter Botermans
- Center for Clinical Pharmacology, University Hospitals Leuven, Leuven, Belgium
| | | | - Ximei Jin
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | | | - Nina Liu
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | - Hao Pan
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | - Jonas B Nielsen
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Tanima De
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Niek Verweij
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Anita Pandit
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Adam Locke
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Naga Chalasani
- Indiana University School of Medicine & Indiana University Health, Indianapolis, IN, USA
| | - Olle Melander
- The Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
- Department of Emergency and Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Tae-Hwi Schwantes-An
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Aris Baras
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Luca A Lotta
- Regeneron Genetics Center, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | - Tammy Huang
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Gary Herman
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | | | | | | | | | - Lori Morton
- Regeneron Pharmaceuticals, Tarrytown, NY, USA
| |
Collapse
|
3
|
Helal SA, Gerges SH, El-Kadi AOS. Enantioselectivity in some physiological and pathophysiological roles of hydroxyeicosatetraenoic acids. Drug Metab Rev 2024; 56:31-45. [PMID: 38358327 DOI: 10.1080/03602532.2023.2284110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/12/2023] [Indexed: 02/16/2024]
Abstract
The phenomenon of chirality has been shown to greatly impact drug activities and effects. Different enantiomers may exhibit different effects in a certain biological condition or disease state. Cytochrome P450 (CYP) enzymes metabolize arachidonic acid (AA) into a large variety of metabolites with a wide range of activities. Hydroxylation of AA by CYP hydroxylases produces hydroxyeicosatetraenoic acids (HETEs), which are classified into mid-chain (5, 8, 9, 11, 12, and 15-HETE), subterminal (16-, 17-, 18- and 19-HETE) and terminal (20-HETE) HETEs. Except for 20-HETE, these metabolites exist as a racemic mixture of R and S enantiomers in the physiological system. The two enantiomers could have different degrees of activity or sometimes opposing effects. In this review article, we aimed to discuss the role of mid-chain and subterminal HETEs in different organs, importantly the heart and the kidneys. Moreover, we summarized their effects in some conditions such as neutrophil migration, inflammation, angiogenesis, and tumorigenesis, with a focus on the reported enantiospecific effects. We also reported some studies using genetically modified models to investigate the roles of HETEs in different conditions.
Collapse
Affiliation(s)
- Sara A Helal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Samar H Gerges
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| |
Collapse
|
4
|
Zhou XY, Li X, Zhang J, Li Y, Wu XM, Yang YZ, Zhang XF, Ma LZ, Liu YD, Wang Z, Chen SL. Plasma metabolomic characterization of premature ovarian insufficiency. J Ovarian Res 2023; 16:2. [PMID: 36600288 PMCID: PMC9814329 DOI: 10.1186/s13048-022-01085-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) patients are predisposed to metabolic disturbances, including in lipid metabolism and glucose metabolism, and metabolic disorders appear to be a prerequisite of the typical long-term complications of POI, such as cardiovascular diseases or osteoporosis. However, the metabolic changes underlying the development of POI and its subsequent complications are incompletely understood, and there are few studies characterizing the disturbed metabolome in POI patients. The aim of this study was to characterize the plasma metabolome in POI by using ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS/MS) metabolomics and to evaluate whether these disturbances identified in the plasma metabolome relate to ovarian reserve and have diagnostic value in POI. METHODS This observational study recruited 30 POI patients and 30 age- and body mass index (BMI)-matched controls in the Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, from January 2018 to October 2020. Fasting venous blood was collected at 9:00 am on days 2-4 of the menstrual cycle and centrifuged for analysis. An untargeted quantitative metabolomic analysis was performed using UHPLC-MS/MS. RESULTS Our study identified 48 upregulated and 21 downregulated positive metabolites, and 13 upregulated and 48 downregulated negative metabolites in the plasma of POI patients. The differentially regulated metabolites were involved in pathways such as caffeine metabolism and ubiquinone and other terpenoid-quinone biosynthesis. Six metabolites with an AUC value > 0.8, including arachidonoyl amide, 3-hydroxy-3-methylbutanoic acid, dihexyl nonanedioate, 18-HETE, cystine, and PG (16:0/18:1), were correlated with ovarian reserve and thus have the potential to be diagnostic biomarkers of POI. CONCLUSION This UHPLC-MS/MS untargeted metabolomics study revealed differentially expressed metabolites in the plasma of patients with POI. The differential metabolites may not only be involved in the aetiology of POI but also contribute to its major complications. These findings offer a panoramic view of the plasma metabolite changes caused by POI, which may provide useful diagnostic and therapeutic clues for POI disease.
Collapse
Affiliation(s)
- Xing-Yu Zhou
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Xin Li
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Jun Zhang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Ying Li
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Xiao-Min Wu
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Yi-Zhen Yang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Xiao-Fei Zhang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Lin-Zi Ma
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Yu-Dong Liu
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Zhe Wang
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| | - Shi-Ling Chen
- grid.416466.70000 0004 1757 959XCenter for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, No 1838 Guangzhou Northern Road, Guangzhou, 510515 People’s Republic of China
| |
Collapse
|
5
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
6
|
Yu Z, Zhou M, Liu J, Zhao W. Underlying antihypertensive mechanism of egg white-derived peptide QIGLF using renal metabolomics analysis. Food Res Int 2022; 157:111457. [PMID: 35761693 DOI: 10.1016/j.foodres.2022.111457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022]
Abstract
The kidney is an important target organ in the treatment of hypertension, but the effect of peptide QIGLF with antihypertensive activity on kidneys remains unknown. In the work, we aimed to further understand the hypotensive effects of QIGLF in spontaneously hypertensive rats (SHRs) using widely targeted metabolomics technology to investigate the kidney metabolic profiling variations. After four weeks of oral administration, the results showed different renal metabolomics profiles between QIGLF and model groups. Besides, a total of 10 potential biomarkers were identified, that is, 3-hydroxybutanoate, 20-hydroxyeicosatetraenoic acid, 19(S)-hydroxyeicosatetraenoic acid, 15-oxoETE, L-ornithine, malonate, uridine, uridine 5'-monophosphate, argininosuccinic acid, and N-carbamoyl-L-aspartate. These metabolites might exhibit antihypertensive activity of QIGLF by regulating synthesis and degradation of ketone bodies, arachidonic acid metabolism, pyrimidine metabolism, and arginine biosynthesis. These findings suggest that QIGLF might alleviate hypertension by inhibiting renal inflammation, promoting natriuresis, and regulating renal nitric oxide production.
Collapse
Affiliation(s)
- Zhipeng Yu
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China; School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Mingjie Zhou
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, PR China
| | - Jingbo Liu
- Lab of Nutrition and Functional Food, Jilin University, Changchun 130062, PR China
| | - Wenzhu Zhao
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| |
Collapse
|
7
|
Liu Q, Zhang Y, Zhao H, Yao X. Increased Epoxyeicosatrienoic Acids and Hydroxyeicosatetraenoic Acids After Treatment of Iodide Intake Adjustment and 1,25-Dihydroxy-Vitamin D 3 Supplementation in High Iodide Intake-Induced Hypothyroid Offspring Rats. Front Physiol 2021; 12:669652. [PMID: 34381374 PMCID: PMC8352438 DOI: 10.3389/fphys.2021.669652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Aim: This study aimed to investigate the potential role of fatty acids in high iodide intake-induced hypothyroidism and its complications and also in the intervention of iodide intake adjustment and 1,25-dihydroxy-vitamin D3 [1,25(OH)2D3] supplementation. Methods: Pregnant rats were allocated to two groups, namely, normal iodide (NI, 7.5 μg/day) intake and 100 times higher-than-normal iodide (100 HI, 750 μg/day) intake. The offspring were continuously administered potassium iodide from weaning [i.e., postnatal day 21 (PN21)] to PN90. After PN90, the offspring were either administered iodide intake adjustment (7.5 μg/day) or 1,25(OH)2D3 supplementation (5 μg·kg-1·day-1), or both, for 4 weeks. Thyroid function tests (free triiodothyronine, free thyroxine, thyrotropin, thyroid peroxidase antibody, and thyroglobulin antibody), blood lipids (triglyceride, total cholesterol, free fatty acid, and low-density lipoprotein cholesterol), and vitamin D3 (VD3) levels were detected by ELISA. Cardiac function was measured by echocardiography. Blood pressure was measured using a non-invasive tail-cuff system. The serum fatty acids profile was analyzed by liquid chromatography-mass spectrometry. Results: In the offspring rats with continued 100 HI administration, the levels of 8,9-dihydroxyeicosatrienoic acid (8,9-DHET) and thromboxane B2 (TXB2) were decreased, while those of prostaglandin J2 (PGJ2), prostaglandin B2 (PGB2), 4-hydroxydocosahexaenoic acid (4-HDoHE), 7-HDoHE, 8-HDoHE, and 20-HDoHE were increased. Significant correlations were found between PGB2, 8,9-DHET, 7-HDoHE levels and thyroid dysfunction, between PGJ2, 20-HDoHE, PGB2, 8,9-DHET levels and cardiac dysfunction, between PGJ2, 20-HDoHE levels and hypertension, between 4-HDoHE, 8-HDoHE, TXB2 levels and dyslipidemia, and between PGB2 and decreased VD3 level. After the treatment of iodide intake adjustment and 1,25(OH)2D3 supplementation, the levels of 16-hydroxyeicosatetraenoic acids (16-HETE), 18-HETE, 5,6-epoxyeicosatrienoic acid (5,6-EET), 8,9-EET, 11,12-EET, 14,15-EET, PGE2, 5-oxo-ETE, and 15-oxo-ETE were increased. The significant associations between PGE2, 16-HETE, 18-HETE and improved thyroid function and also between 5,6-EET, 11,12-EET, 14,15-EET, 16-HETE, 15-oxo-ETE and attenuated dyslipidemia were detected. Conclusion: Increased levels of prostaglandins (PGs) and HDoHEs and decreased levels of 8,9-DHET and TXB2 might occur in the progression of cardiac dysfunction, hypertension, and dyslipidemia in high iodide intake-induced hypothyroidism. The increased levels of EETs and HETEs might help to ameliorate these complications after iodide intake adjustment and 1,25(OH)2D3 supplementation.
Collapse
Affiliation(s)
- Qing Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yue Zhang
- Tianjin Key Laboratory of Ionic-Molecular of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Hailing Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaomei Yao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
8
|
Pascale JV, Park EJ, Adebesin AM, Falck JR, Schwartzman ML, Garcia V. Uncovering the signalling, structure and function of the 20-HETE-GPR75 pairing: Identifying the chemokine CCL5 as a negative regulator of GPR75. Br J Pharmacol 2021; 178:3813-3828. [PMID: 33974269 PMCID: PMC10119890 DOI: 10.1111/bph.15525] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/12/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND AND PURPOSE The G-protein-coupled receptor GPR75 (Gq) and its ligand, the cytochrome P450-derived vasoactive eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE), are involved in the activation of pro-inflammatory and hypertensive signalling cascades contributing to diabetes, obesity, vascular dysfunction/remodelling, hypertension and cardiovascular disease. Little is known as to how, where and with what affinity 20-HETE interacts with GPR75. EXPERIMENTAL APPROACH To better understand the pairing of 20-HETE and its receptor (GPR75), we used surface plasmon resonance (SPR) to determine binding affinity/kinetics. The PRESTO-Tango receptor-ome methodology for GPR75 overexpression was coupled with FLIPR Calcium 6 assays, homogeneous time-resolved fluorescence (HTRF) IP-1 and β-arrestin recruitment assays to determine receptor activation and downstream signalling events. KEY RESULTS SPR confirmed 20-HETE binding to GPR75 with an estimated KD of 1.56 × 10-10 M. In GPR75-transfected HTLA cells, 20-HETE stimulated intracellular Ca2+ levels, IP-1 accumulation and β-arrestin recruitment, all of which were negated by known 20-HETE functional antagonists. Computational modelling of the putative ligand-binding pocket and mutation of Thr212 within the putative 20-HETE binding site abolished 20-HETE's ability to stimulate GPR75 activation. Knockdown of GPR75 in human endothelial cells nullified 20-HETE-stimulated intracellular Ca2+ . The chemokine CCL5, a suggested GPR75 ligand, binds to GPR75 (KD of 5.85 × 10-10 M) yet fails to activate GPR75; however, it inhibited 20-HETE's ability to activate GPR75 signalling. CONCLUSIONS AND IMPLICATIONS We have identified 20-HETE as a high-affinity ligand for GPR75 and CCL5 as a low-affinity negative regulator of GPR75, providing additional evidence for the deorphanization of GPR75 as a 20-HETE receptor.
Collapse
Affiliation(s)
- Jonathan V Pascale
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| | - Eon Joo Park
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Victor Garcia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| |
Collapse
|
9
|
Coelho NR, Matos C, Pimpão AB, Correia MJ, Sequeira CO, Morello J, Pereira SA, Monteiro EC. AHR canonical pathway: in vivo findings to support novel antihypertensive strategies. Pharmacol Res 2021; 165:105407. [PMID: 33418029 DOI: 10.1016/j.phrs.2020.105407] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/23/2022]
Abstract
Essential hypertension (HTN) is a disease where genetic and environmental factors interact to produce a high prevalent set of almost indistinguishable phenotypes. The weak definition of what is under the umbrella of HTN is a consequence of the lack of knowledge on the players involved in environment-gene interaction and their impact on blood pressure (BP) and mechanisms. The disclosure of these mechanisms that sense and (mal)adapt to toxic-environmental stimuli might at least determine some phenotypes of essential HTN and will have important therapeutic implications. In the present manuscript, we looked closer to the environmental sensor aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor involved in cardiovascular physiology, but better known by its involvement in biotransformation of xenobiotics through its canonical pathway. This review aims to disclose the contribution of the AHR-canonical pathway to HTN. For better mirror the complexity of the mechanisms involved in BP regulation, we privileged evidence from in vivo studies. Here we ascertained the level of available evidence and a comprehensive characterization of the AHR-related phenotype of HTN. We reviewed clinical and rodent studies on AHR-HTN genetic association and on AHR ligands and their impact on BP. We concluded that AHR is a druggable mechanistic linker of environmental exposure to HTN. We conclude that is worth to investigate the canonical pathway of AHR and the expression/polymorphisms of its related genes and/or other biomarkers (e.g. tryptophan-related ligands), in order to identify patients that may benefit from an AHR-centered antihypertensive treatment.
Collapse
Affiliation(s)
- Nuno R Coelho
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Clara Matos
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - António B Pimpão
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - M João Correia
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Catarina O Sequeira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Judit Morello
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| | - Sofia A Pereira
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal.
| | - Emília C Monteiro
- Translational Pharmacology Lab, CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo Mártires da Pátria, 130, Lisboa, 1169-056, Portugal
| |
Collapse
|
10
|
Dakarapu R, Errabelli R, Manthati VL, Michael Adebesin A, Barma DK, Barma D, Garcia V, Zhang F, Laniado Schwartzman M, Falck JR. 19-Hydroxyeicosatetraenoic acid analogs: Antagonism of 20-hydroxyeicosatetraenoic acid-induced vascular sensitization and hypertension. Bioorg Med Chem Lett 2019; 29:126616. [PMID: 31439380 DOI: 10.1016/j.bmcl.2019.08.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 12/19/2022]
Abstract
19-Hydroxyeicosatetraenoic acid (19-HETE, 1), a metabolically and chemically labile cytochrome P450 eicosanoid, has diverse biological activities including antagonism of the vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE, 2). A SAR study was conducted to develop robust analogs of 1 with improved in vitro and in vivo efficacy. Analogs were screened in vitro for inhibition of 20-HETE-induced sensitization of rat renal preglomerular microvessels toward phenylephrine and demonstrated to normalize the blood pressure of male Cyp4a14(-/-) mice that display androgen-driven, 20-HETE-dependent hypertension.
Collapse
Affiliation(s)
- Rambabu Dakarapu
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ramu Errabelli
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vijaya L Manthati
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adeniyi Michael Adebesin
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Deb K Barma
- CRO Laboratories, 9995 Monroe Drive, Suite 119, Dallas, TX 75220, USA
| | - Deepan Barma
- CRO Laboratories, 9995 Monroe Drive, Suite 119, Dallas, TX 75220, USA
| | - Victor Garcia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595, USA
| | - Fan Zhang
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, NY 10595, USA
| | | | - John R Falck
- Division of Chemistry, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
11
|
Subterminal hydroxyeicosatetraenoic acids: Crucial lipid mediators in normal physiology and disease states. Chem Biol Interact 2018; 299:140-150. [PMID: 30543782 DOI: 10.1016/j.cbi.2018.12.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/26/2018] [Accepted: 12/07/2018] [Indexed: 02/08/2023]
Abstract
Cytochrome P450 (P450) enzymes are superfamily of monooxygenases that hold the utmost diversity of substrate structures and catalytic reaction forms amongst all other enzymes. P450 enzymes metabolize arachidonic acid (AA) to a wide array of biologically active lipid mediators. P450-mediated AA metabolites have a significant role in normal physiological and pathophysiological conditions, hence they could be promising therapeutic targets in different disease states. P450 monooxygenases mediate the (ω-n)-hydroxylation reactions, which involve the introduction of a hydroxyl group to the carbon skeleton of AA, forming subterminal hydroxyeicosatetraenoic acids (HETEs). In the current review, we specified different P450 isozymes implicated in the formation of subterminal HETEs in varied tissues. In addition, we focused on the role of subterminal HETEs namely 19-HETE, 16-HETE, 17-HETE and 18-HETE in different organs, importantly the kidneys, heart, liver and brain. Furthermore, we highlighted their role in hypertension, acute coronary syndrome, diabetic retinopathy, non-alcoholic fatty liver disease, ischemic stroke as well as inflammatory diseases. Since each member of subterminal HETEs exist as R and S enantiomer, we addressed the issue of stereoselectivity related to the formation and differential effects of these enantiomers. In conclusion, elucidation of different roles of subterminal HETEs in normal and disease states leads to identification of novel therapeutic targets and development of new therapeutic modalities in different disease states.
Collapse
|
12
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Hammoud SH, Omar AG, Eid AA, El-Mas MM. CYP4A/CYP2C modulation of the interaction of calcium channel blockers with cyclosporine on EDHF-mediated renal vasodilations in rats. Toxicol Appl Pharmacol 2017; 334:110-119. [DOI: 10.1016/j.taap.2017.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/24/2017] [Accepted: 09/08/2017] [Indexed: 01/01/2023]
|
14
|
El-Sherbeni AA, El-Kadi AOS. Microsomal cytochrome P450 as a target for drug discovery and repurposing. Drug Metab Rev 2016; 49:1-17. [DOI: 10.1080/03602532.2016.1257021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ahmed A. El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O. S. El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Centre for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Zu L, Guo G, Zhou B, Gao W. Relationship between metabolites of arachidonic acid and prognosis in patients with acute coronary syndrome. Thromb Res 2016; 144:192-201. [DOI: 10.1016/j.thromres.2016.06.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/21/2016] [Accepted: 06/29/2016] [Indexed: 11/27/2022]
|
16
|
Hormetic and regulatory effects of lipid peroxidation mediators in pancreatic beta cells. Mol Aspects Med 2016; 49:49-77. [PMID: 27012748 DOI: 10.1016/j.mam.2016.03.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 02/23/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022]
Abstract
Nutrient sensing mechanisms of carbohydrates, amino acids and lipids operate distinct pathways that are essential for the adaptation to varying metabolic conditions. The role of nutrient-induced biosynthesis of hormones is paramount for attaining metabolic homeostasis in the organism. Nutrient overload attenuate key metabolic cellular functions and interfere with hormonal-regulated inter- and intra-organ communication, which may ultimately lead to metabolic derangements. Hyperglycemia and high levels of saturated free fatty acids induce excessive production of oxygen free radicals in tissues and cells. This phenomenon, which is accentuated in both type-1 and type-2 diabetic patients, has been associated with the development of impaired glucose tolerance and the etiology of peripheral complications. However, low levels of the same free radicals also induce hormetic responses that protect cells against deleterious effects of the same radicals. Of interest is the role of hydroxyl radicals in initiating peroxidation of polyunsaturated fatty acids (PUFA) and generation of α,β-unsaturated reactive 4-hydroxyalkenals that avidly form covalent adducts with nucleophilic moieties in proteins, phospholipids and nucleic acids. Numerous studies have linked the lipid peroxidation product 4-hydroxy-2E-nonenal (4-HNE) to different pathological and cytotoxic processes. Similarly, two other members of the family, 4-hydroxyl-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE), have also been identified as potential cytotoxic agents. It has been suggested that 4-HNE-induced modifications in macromolecules in cells may alter their cellular functions and modify signaling properties. Yet, it has also been acknowledged that these bioactive aldehydes also function as signaling molecules that directly modify cell functions in a hormetic fashion to enable cells adapt to various stressful stimuli. Recent studies have shown that 4-HNE and 4-HDDE, which activate peroxisome proliferator-activated receptor δ (PPARδ) in vascular endothelial cells and insulin secreting beta cells, promote such adaptive responses to ameliorate detrimental effects of high glucose and diabetes-like conditions. In addition, due to the electrophilic nature of these reactive aldehydes they form covalent adducts with electronegative moieties in proteins, phosphatidylethanolamine and nucleotides. Normally these non-enzymatic modifications are maintained below the cytotoxic range due to efficient cellular neutralization processes of 4-hydroxyalkenals. The major neutralizing enzymes include fatty aldehyde dehydrogenase (FALDH), aldose reductase (AR) and alcohol dehydrogenase (ADH), which transform the aldehyde to the corresponding carboxylic acid or alcohols, respectively, or by biding to the thiol group in glutathione (GSH) by the action of glutathione-S-transferase (GST). This review describes the hormetic and cytotoxic roles of oxygen free radicals and 4-hydroxyalkenals in beta cells exposed to nutritional challenges and the cellular mechanisms they employ to maintain their level at functional range below the cytotoxic threshold.
Collapse
|
17
|
El-Sherbeni AA, El-Kadi AOS. Repurposing Resveratrol and Fluconazole To Modulate Human Cytochrome P450-Mediated Arachidonic Acid Metabolism. Mol Pharm 2016; 13:1278-88. [PMID: 26918316 DOI: 10.1021/acs.molpharmaceut.5b00873] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytochrome P450 (P450) enzymes metabolize arachidonic acid (AA) to several biologically active epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs). Repurposing clinically-approved drugs could provide safe and readily available means to control EETs and HETEs levels in humans. Our aim was to determine how to significantly and selectively modulate P450-AA metabolism in humans by clinically-approved drugs. Liquid chromatography-mass spectrometry was used to determine the formation of 15 AA metabolites by human recombinant P450 enzymes, as well as human liver and kidney microsomes. CYP2C19 showed the highest EET-forming activity, while CYP1B1 and CYP2C8 showed the highest midchain HETE-forming activities. CYP1A1 and CYP4 showed the highest subterminal- and 20-HETE-forming activity, respectively. Resveratrol and fluconazole produced the most selective and significant modulation of hepatic P450-AA metabolism, comparable to investigational agents. Monte Carlo simulations showed that 90% of human population would experience a decrease by 6-22%, 16-39%, and 16-35% in 16-, 18-, and 20-HETE formation, respectively, after 2.5 g daily of resveratrol, and by 22-31% and 14-23% in 8,9- and 14,15-EET formation after 50 mg of fluconazole. In conclusion, clinically-approved drugs can provide selective and effective means to modulate P450-AA metabolism, comparable to investigational drugs. Resveratrol and fluconazole are good candidates to be repurposed as new P450-based treatments.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta , Edmonton, Alberta, Canada T6G 2E1
| |
Collapse
|
18
|
Zhang F, Yu X, He C, Ouyang X, Wu J, Li J, Zhang J, Duan X, Wan Y, Yue J. Effects of sexually dimorphic growth hormone secretory patterns on arachidonic acid metabolizing enzymes in rodent heart. Toxicol Appl Pharmacol 2015; 289:495-506. [PMID: 26493931 DOI: 10.1016/j.taap.2015.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 11/26/2022]
Abstract
The arachidonic acid (AA) metabolizing enzymes are the potential therapeutic targets of cardiovascular diseases (CVDs). As sex differences have been shown in the risk and outcome of CVDs, we investigated the regulation of heart AA metabolizing enzymes (COXs, LOXs, and CYPs) by sex-dependent growth hormone (GH) secretory patterns. The pulsatile (masculine) GH secretion at a physiological concentration decreased CYP1A1 and CYP2J3 mRNA levels more efficiently in the H9c2 cells compared with the constant (feminine) GH secretion; however, CYP1B1 mRNA levels were higher following the pulsatile GH secretion. Sex differences in CYP1A1, CYP1B1, and CYP2J11 mRNA levels were observed in both the wild-type and GHR deficient mice. No sex differences in the mRNA levels of COXs, LOXs, or CYP2E1 were observed in the wild-type mice. The constant GH infusion induced heart CYP1A1 and CYP2J11, and decreased CYP1B1 in the male C57/B6 mice constantly infused with GH (0.4 μg/h, 7 days). The activity of rat Cyp2j3 promoter was inhibited by the STAT5B protein, but was activated by C/EBPα (CEBPA). Compared with the constant GH administration, the levels of the nuclear phosphorylated STAT5B protein and its binding to the rat Cyp2j3 promoter were higher following the pulsatile GH administration. The constant GH infusion decreased the binding of the nuclear phosphorylated STAT5B protein to the mouse Cyp2j11 promoter. The data suggest the sexually dimorphic transcription of heart AA metabolizing enzymes, which might alter the risk and outcome of CVDs. GHR-STAT5B signal transduction pathway may be involved in the sex difference in heart CYP2J levels.
Collapse
Affiliation(s)
- Furong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuming Yu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Chunyan He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiufang Ouyang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jinhua Wu
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Junjie Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xuejiao Duan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu Wan
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Jiang Yue
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
19
|
Padilla J, Jenkins NT, Thorne PK, Martin JS, Rector RS, Davis JW, Laughlin MH. Identification of genes whose expression is altered by obesity throughout the arterial tree. Physiol Genomics 2014; 46:821-32. [PMID: 25271210 DOI: 10.1152/physiolgenomics.00091.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used next-generation RNA sequencing (RNA-Seq) technology on the whole transcriptome to identify genes whose expression is consistently affected by obesity across multiple arteries. Specifically, we examined transcriptional profiles of the iliac artery as well as the feed artery, first, second, and third branch order arterioles in the soleus, gastrocnemius, and diaphragm muscles from obese Otsuka Long-Evans Tokushima Fatty (OLETF) and lean Long-Evans Tokushima Otsuka (LETO) rats. Within the gastrocnemius and soleus muscles, the number of genes differentially expressed with obesity tended to increase with increasing branch order arteriole number (i.e., decreasing size of the artery). This trend was opposite in the diaphragm. We found a total of 15 genes that were consistently upregulated with obesity (MIS18A, CTRB1, FAM151B, FOLR2, PXMP4, OAS1B, SREBF2, KLRA17, SLC25A44, SNX10, SLFN3, MEF2BNB, IRF7, RAD23A, LGALS3BP) and five genes that were consistently downregulated with obesity (C2, GOLGA7, RIN3, PCP4, CYP2E1). A small fraction (∼9%) of the genes affected by obesity was modulated across all arteries examined. In conclusion, the present study identifies a select number of genes (i.e., 20 genes) whose expression is consistently altered throughout the arterial network in response to obesity and provides further insight into the heterogeneous vascular effects of obesity. Although there is no known direct function of the majority of 20 genes related to vascular health, the obesity-associated upregulation of SREBF2, LGALS3BP, IRF7, and FOLR2 across all arteries is suggestive of an unfavorable vascular phenotypic alteration with obesity. These data may serve as an important resource for identifying novel therapeutic targets against obesity-related vascular complications.
Collapse
Affiliation(s)
- Jaume Padilla
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Child Health, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri;
| | | | - Pamela K Thorne
- Biomedical Sciences, University of Missouri, Columbia, Missouri
| | | | - R Scott Rector
- Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Research Service-Harry S Truman Memorial VA Medical Center, Columbia, Missouri; Medicine-Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri
| | - J Wade Davis
- Health Management and Informatics, University of Missouri, Columbia, Missouri; Statistics, University of Missouri, Columbia, Missouri; MU Informatics Institute, University of Missouri, Columbia, Missouri; and
| | - M Harold Laughlin
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Biomedical Sciences, University of Missouri, Columbia, Missouri; Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
20
|
El-Sherbeni AA, El-Kadi AOS. Characterization of arachidonic acid metabolism by rat cytochrome P450 enzymes: the involvement of CYP1As. Drug Metab Dispos 2014; 42:1498-507. [PMID: 24969701 DOI: 10.1124/dmd.114.057836] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytochrome P450 (P450) enzymes mediate arachidonic acid (AA) oxidation to several biologically active metabolites. Our aims in this study were to characterize AA metabolism by different recombinant rat P450 enzymes and to identify new targets for modulating P450-AA metabolism in vivo. A liquid chromatography-mass spectrometry method was developed and validated for the simultaneous measurements of AA and 15 of its P450 metabolites. CYP1A1, CYP1A2, CYP2B1, CYP2C6, and CYP2C11 were found to metabolize AA with high catalytic activity, and CYP2A1, CYP2C13, CYP2D1, CYP2E1, and CYP3A1 had lower activity. CYP1A1 and CYP1A2 produced ω-1→4 hydroxyeicosatetraenoic acids (HETEs) as 88.7 and 62.7%, respectively, of the total metabolites formed. CYP2C11 produced epoxyeicosatrienoic acids (EETs) as 61.3%, and CYP2C6 produced midchain HETEs and EETs as 48.3 and 29.4%, respectively, of the total metabolites formed. The formation of CYP1A1, CYP1A2, CYP2C6, and CYP2C11 major metabolites followed an atypical kinetic profile of substrate inhibition. CYP1As inhibition by α-naphthoflavone or anti-CYP1As antibodies significantly reduced ω-1→4 HETE formation in the lungs and liver, whereas CYP1As induction by 3-methylcholanthrene resulted in a significant increase in ω-1→4 HETEs formation in the heart, lungs, kidney, and livers by 370, 646, 532, and 848%, respectively. In conclusion, our results suggest that CYP1As and CYP2Cs are major players in the metabolism of AA. The significant contribution of CYP1As to AA metabolism and their strong inducibility suggest their possible use as targets for the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
El-Sherbeni AA, El-Kadi AOS. Alterations in cytochrome P450-derived arachidonic acid metabolism during pressure overload-induced cardiac hypertrophy. Biochem Pharmacol 2013; 87:456-66. [PMID: 24300133 DOI: 10.1016/j.bcp.2013.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/21/2013] [Accepted: 11/22/2013] [Indexed: 01/01/2023]
Abstract
Cardiac hypertrophy is a major risk factor for many serious heart diseases. Recent data demonstrated the role of cytochrome P450 (CYP)-derived arachidonic acid (AA) metabolites in cardiovascular pathophysiology. In the current study our aim was to determine the aberrations in CYP-mediated AA metabolism in the heart during cardiac hypertrophy. Pressure overload cardiac hypertrophy was induced in Sprague Dawley rats using the descending aortic constriction procedure. Five weeks post-surgery, the cardiac levels of AA metabolites were determined in hypertrophied and normal hearts. In addition, the formation rate of AA metabolites, as well as, CYP expression in cardiac microsomal fraction was also determined. AA metabolites were measured by liquid chromatography-electrospray ionization-mass spectroscopy, whereas, the expression of CYPs was determined by Western blot analysis. Non-parametric analysis was performed to examine the association between metabolites formation and CYP expressions. Our results showed that 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), and 5-, 12-, 15-, and 20-hydroxyeicosatetraenoic acids (HETEs) levels were increased, whereas, 19-HETE formation was decreased in hypertrophied hearts. The increase in EETs was linked to CYP2B2. On the other hand, CYP1B1 and CYP2J3 were involved in mid-chain HETE metabolism, whereas, CYP4A2/3 inhibition was involved in the decrease in 19-HETE formation in hypertrophied hearts. In conclusion, CYP1B1 played cardiotoxic role, whereas, CYP2B2, CYP2J3 and CYP4A2/3 played cardioprotective roles during pressure overload-induced cardiac hypertrophy. These CYP can be valid targets for the development of drugs to treat and prevent cardiac hypertrophy and heart failure.
Collapse
Affiliation(s)
- Ahmed A El-Sherbeni
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Ayman O S El-Kadi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1.
| |
Collapse
|
22
|
Sun D, Jiang H, Wu H, Yang Y, Kaley G, Huang A. A novel vascular EET synthase: role of CYP2C7. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1723-30. [PMID: 21940400 DOI: 10.1152/ajpregu.00382.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We demonstrated previously that cytochrome P-450 (CYP) 2C29 is the epoxyeicosatrienoic acid (EET) synthase responsible for the EET-mediated flow/shear stress-induced dilation of vessels of female nitric oxide (NO)-deficient mice (Sun D, Yang YM, Jiang H, Wu H, Ojami C, Kaley G, Huang A. Am J Physiol Regul Integr Comp Physiol 298: R862-R869, 2010). In the present study, we aimed to identify which specific CYP isoform(s) is the source of the synthesis and release of EETs in response to stimulation by shear stress in vessels of rats. Cannulated mesenteric arteries isolated from both sexes of N(G)-nitro-L-arginine methyl ester (L-NAME)-treated rats were perfused with 2 and 10 dyn/cm(2) shear stress, followed by collection of the perfusate to determine EET concentrations and isoforms. Shear stress stimulated release of EETs in the perfusate of female (but not male) NO-deficient vessels, associated with an EET-mediated vasodilation, in which 11,12- and 14,15-EET contributed predominantly to the responses. Rat CYP cDNA array screened a total of 32 CYP genes of mesenteric arteries, indicating a significant upregulation of CYP2C7 in female L-NAME-treated rats. Endothelial RNA and protein were extracted from intact single vessels. Expression of CYP2C7 mRNA and protein in pooled extractions of endothelial lysate was identified by PCR and Western blot analyses. Transfection of the vessels with CYP2C7 short interfering RNA eliminated the release of EETs, consequently abolishing the EET-mediated flow-induced dilation; these responses, however, were maintained in vessels transfected with nonsilencing short interfering RNA. Knockdown of endothelial CYP2C7 was confirmed by PCR and Western blot analyses. In conclusion, CYP2C7 is an endothelial EET synthase in the female rat vasculature, by which, in NO deficiency, shear stress stimulates the release of EETs to initiate vasodilation.
Collapse
Affiliation(s)
- Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | |
Collapse
|
23
|
Role of cytochrome P450 enzymes in the bioactivation of polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:210-22. [PMID: 20869469 DOI: 10.1016/j.bbapap.2010.09.009] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/07/2010] [Accepted: 09/09/2010] [Indexed: 12/21/2022]
Abstract
Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA), such as epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid, serve as second messengers of various hormones and growth factors and play pivotal roles in the regulation of vascular, renal and cardiac function. As discussed in the present review, virtually all of the major AA metabolizing CYP isoforms accept a variety of other polyunsaturated fatty acids (PUFA), including linoleic, eicosapentaenoic (EPA) and docosahexaenoic acids (DHA), as efficient alternative substrates. The metabolites of these alternative PUFAs also elicit profound biological effects. The CYP enzymes respond to alterations in the chain-length and double bond structure of their substrates with remarkable changes in the regio- and stereoselectivity of product formation. The omega-3 double bond that distinguishes EPA and DHA from their omega-6 counterparts provides a preferred epoxidation site for CYP1A, CYP2C, CYP2J and CYP2E subfamily members. CYP4A enzymes that predominantly function as AA ω-hydroxylases show largely increased (ω-1)-hydroxylase activities towards EPA and DHA. Taken together, these findings indicate that CYP-dependent signaling pathways are highly susceptible to changes in the relative bioavailability of the different PUFAs and may provide novel insight into the complex mechanisms that link essential dietary fatty acids to the development of cardiovascular disease.
Collapse
|
24
|
Schäfer A, Galuppo P, Fraccarollo D, Vogt C, Widder JD, Pfrang J, Tas P, Barbosa-Sicard E, Ruetten H, Ertl G, Fleming I, Bauersachs J. Increased cytochrome P4502E1 expression and altered hydroxyeicosatetraenoic acid formation mediate diabetic vascular dysfunction: rescue by guanylyl-cyclase activation. Diabetes 2010; 59:2001-9. [PMID: 20522591 PMCID: PMC2911073 DOI: 10.2337/db09-1668] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 05/17/2010] [Indexed: 01/21/2023]
Abstract
OBJECTIVE We investigated the mechanisms underlying vascular endothelial and contractile dysfunction in diabetes as well as the effect of HMR1766, a novel nitric oxide (NO)-independent activator of soluble guanylyl cyclase (sGC). RESEARCH DESIGN AND METHODS Two weeks after induction of diabetes by streptozotocin, Wistar rats received either placebo or HMR1766 (10 mg/kg twice daily) for another 2 weeks; thereafter, vascular function was assessed. RESULTS Endothelial function and contractile responses were significantly impaired, while vascular superoxide formation was increased in the aortae from diabetic versus healthy control rats. Using RNA microarrays, cytochrome P4502E1 (CYP2E1) was identified as the highest upregulated gene in diabetic aorta. CYP2E1 protein was significantly increased (16-fold) by diabetes, leading to a reduction in levels of the potent vasoconstrictor 20-hydroxy-eicosatetraenoic acid (20-HETE). Induction of CYP2E1 expression in healthy rats using isoniazide mimicked the diabetic noncontractile vascular response while preincubation of aortae from STZ-diabetic rats in vitro with 20-HETE rescued contractile function. Chronic treatment with the sGC activator HMR1766 improved NO sensitivity and endothelial function, reduced CYP2E1 expression and superoxide formation, enhanced 20-HETE levels, and reversed the contractile deficit observed in the diabetic rats that received placebo. CONCLUSIONS Upregulation of CYP2E1 is essentially involved in diabetic vascular dysfunction. Chronic treatment with the sGC activator HMR1766 reduced oxidative stress, decreased CYP2E1 levels, and normalized vasomotor function in diabetic rats.
Collapse
Affiliation(s)
- Andreas Schäfer
- Department of Internal Medicine I, University Hospital Würzburg, Julius-Maximilians-University Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Cheng J, Ou JS, Singh H, Falck JR, Narsimhaswamy D, Pritchard KA, Schwartzman ML. 20-Hydroxyeicosatetraenoic acid causes endothelial dysfunction via eNOS uncoupling. Am J Physiol Heart Circ Physiol 2008; 294:H1018-26. [DOI: 10.1152/ajpheart.01172.2007] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO), generated from l-arginine by endothelial nitric oxide synthase (eNOS), is a key endothelial-derived factor whose bioavailability is essential to the normal function of the endothelium. Endothelium dysfunction is characterized by loss of NO bioavailability because of either reduced formation or accelerated degradation of NO. We have recently reported that overexpression of vascular cytochrome P-450 (CYP) 4A in rats caused hypertension and endothelial dysfunction driven by increased production of 20-hydroxyeicosatetraenoic acid (20-HETE), a major vasoconstrictor eicosanoid in the microcirculation. To further explore cellular mechanisms underlying CYP4A-20-HETE-driven endothelial dysfunction, the interactions between 20-HETE and the eNOS-NO system were examined in vitro. Addition of 20-HETE to endothelial cells at concentrations as low as 1 nM reduced calcium ionophore-stimulated NO release by 50%. This reduction was associated with a significant increase in superoxide production. The increase in superoxide in response to 20-HETE was prevented by NG-nitro-l-arginine methyl ester, suggesting that uncoupled eNOS is a source of this superoxide. The response to 20-HETE was specific in that 19-HETE did not affect NO or superoxide production, and, in fact, the response to 20-HETE could be competitively antagonized by 19(R)-HETE. 20-HETE had no effect on phosphorylation of eNOS protein at serine-1179 or threonine-497 following addition of calcium ionophore; however, 20-HETE inhibited association of eNOS with 90-kDa heat shock protein (HSP90). In vivo, impaired acetylcholine-induced relaxation in arteries overexpressing CYP4A was associated with a marked reduction in the levels of phosphorylated vasodilator-stimulated phosphoprotein, an indicator of bioactive NO, that was reversed by inhibition of 20-HETE synthesis or action. Because association of HSP90 with eNOS is critical for eNOS activation and coupled enzyme activity, inhibition of this association by 20-HETE may underlie the mechanism, at least in part, by which increased CYP4A expression and activity cause endothelial dysfunction.
Collapse
|
26
|
Le HT, Boquet MP, Clark EA, Callahan SM, Croyle MA. Renal pathophysiology after systemic administration of recombinant adenovirus: changes in renal cytochromes P450 based on vector dose. Hum Gene Ther 2007; 17:1095-111. [PMID: 17069534 DOI: 10.1089/hum.2006.17.1095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recombinant adenovirus (Ad) significantly alters hepatic cytochrome P450 (CYP). Because changes in renal function can alter hepatic CYP, the effect of Ad on renal CYPs 4A1, 4A2, 4F1, and 2E1 was evaluated. Male Sprague-Dawley rats were given one of six intravenous doses (5.7x10(6)-5.7x10(12) viral particles/kg [VP/kg]) of Ad expressing beta-galactosidase or saline. CYP protein, activity, gene expression, and serum creatinine (SCr) were evaluated 0.25, 1, 4, and 14 days later. Doses of 5.7x10(11) and 5.7x10(12) VP/kg increased CYP4A protein within 24 hr by 35 and 48%, respectively (p<0.05). A similar trend was observed on day 4. CYP4A1 mRNA doubled 6 hr after doses of 5.7x10(10)-10(12) VP/kg (p<0.01). Similar effects were observed 1 day after each dose tested. CYP4A2 gene expression was 20% above control 1 day after treatment with 5.7x10(10)-10(12) VP/kg and remained high through day 14. CYP4F1 expression was unaffected by all doses (p=0.08). CYP2E1 activity and gene expression were significantly suppressed 24 hr after administration of all doses and began to normalize by day 14 (p<0.01). SCr was significantly reduced (approximately 50%) throughout the study for doses at and below 5.7x10(11) VP/kg. SCr was increased by a factor of 3 by 5.7x10(12) VP/kg and glomerular filtration was significantly reduced (p<0.01). This suggests that changes in renal CYP and corresponding arachidonic acid metabolites may play a role in the documented toxicity associated with the systemic administration of recombinant Ad.
Collapse
Affiliation(s)
- Hong T Le
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
27
|
Sunder‐Plassmann R. Cytochrome P450: Another Player in the Myocardial Infarction Game? Adv Clin Chem 2007. [DOI: 10.1016/s0065-2423(06)43008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Le HT, Boquet MP, Clark EA, Callahan SM, Croyle MA. Renal Pathophysiology After Systemic Administration of Recombinant Adenovirus: Changes in Renal Cytochromes P450 Based on Vector Dose. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Goligorsky MS, Rabelink T. Meeting report: ISN forefronts in nephrology on endothelial biology and renal disease: from bench to prevention. Kidney Int 2006; 70:258-64. [PMID: 16775602 DOI: 10.1038/sj.ki.5001559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This ISN-sponsored Forefront in Nephrology meeting, which has brought together 120 scientists from 21 countries, has been concerned with various aspects of endothelial function and dysfunction and their contribution to progression of chronic kidney disease and/or its cardiovascular complications. The following themes were discussed in great depth: (1) phenotypical changes in the vascular endothelium - permeability, senescence, and apoptosis; (2) regulation of endothelial nitric oxide (NO) synthase function - caveolar and shear stress mechanisms, epigenetic regulation, S-nitrosylation, and Rho-kinase regulation; (3) oxidative stress and hypoxia-induced changes; (4) organellar dysfunction - lysosomes, mitochondria, and endoplasmic reticulum; (5) NO-independent mechanisms of vasomotion - epoxides, heme oxygenase-1 and carbon monoxide, thromboxane, tumor necrosis factor-alpha, and uric acid; (6) endothelial crosstalk with podocytes, monocytes, smooth muscle cells, and platelets; (7) candidate clinical biomarkers of endothelial dysfunction - functional testing of macro- and micro-vascular functions, surrogate markers, circulating detached endothelial cells, and endothelial precursor cells; and culminated in Round Table discussion on the diagnosis of endothelial dysfunction and its treatment options. In conclusion, this meeting has focused on several key problems of endothelial cell pathobiology relevant to chronic kidney disease.
Collapse
Affiliation(s)
- M S Goligorsky
- New York Medical College, Valhalla, New York, USA and Leiden University Medical School, Leiden, The Netherlands.
| | | |
Collapse
|
30
|
Abstract
Epoxyeicosatrienoic acids (EETs) are epoxides of arachidonic acid generated by cytochrome P450 (CYP) epoxygenases. The activation of CYP epoxygenases in endothelial cells is an important step in the NO and prostacyclin-independent vasodilatation of several vascular beds, and EETs have been identified as an endothelium-derived hyperpolarizing factor. However, EETs also exert membrane potential-independent effects and modulate several signaling cascades that affect endothelial cell proliferation and angiogenesis. This review summarizes the role of CYP-derived EETs in endothelium-derived hyperpolarizing factor-mediated responses and highlights the evidence indicating that EETs are important second messengers involved in endothelial cell signaling pathways related to angiogenesis.
Collapse
Affiliation(s)
- Ingrid Fleming
- Institut für Kardiovaskuläre Physiologie, Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.
| | | |
Collapse
|
31
|
Benter IF, Francis I, Cojocel C, Juggi JS, Yousif MHM, Canatan H. Contribution of cytochrome P450 metabolites of arachidonic acid to hypertension and end-organ damage in spontaneously hypertensive rats treated with l-NAME. ACTA ACUST UNITED AC 2005; 25:143-54. [PMID: 16176445 DOI: 10.1111/j.1474-8673.2005.00343.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1 The purpose of this study was to examine the effect of inhibition of the formation of cytochrome P450 metabolites of arachidonic acid with 1-aminobenzotriazole (ABT) on the development of hypertension and end-organ damage in spontaneously hypertensive rats (SHR) chronically treated with nitric oxide synthesis inhibitor L-NAME (SHR-L-NAME). 2 Administration of L-NAME in drinking water (80 mg l(-1)) to SHR for 3 weeks significantly elevated mean arterial blood pressure (MABP) (223 +/- 4 mmHg) as compared to SHR controls drinking regular water (165 +/- 3 mmHg). The administration of ABT (50 mg kg(-1) i.p. alt diem) for 6 days significantly attenuated elevation of blood pressure in SHR-L-NAME (204 +/- 4 mmHg). 3 L-NAME-induced increase in urine volume and protein was significantly lower in ABT-treated animals. 4 The impaired vascular responsiveness to noradrenaline and isoprenaline in the perfused mesenteric vascular bed of SHR-L-NAME-treated animals was significantly improved by ABT treatment. 5 Morphological studies of the kidneys and hearts showed that treatment with ABT minimized the extensive arterial fibrinoid necrosis, arterial thrombosis, significant narrowing of arterial lumen with marked arterial hyperplastic arterial changes that were observed in vehicle treated SHR-L-NAME. 6 In isolated perfused hearts, recovery of left ventricular function from 40 min of global ischaemia was significantly better in ABT-treated SHR-L-NAME. 7 These results suggest that in hypertensive individuals with endothelial dysfunction and chronic NO deficiency, inhibitors of 20-HETE synthesis may be able to attenuate development of high blood pressure and end-organ damage.
Collapse
Affiliation(s)
- I F Benter
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait Univesity, P.O. box 24923, Safat 13110, Kuwait
| | | | | | | | | | | |
Collapse
|
32
|
Stark K, Wongsud B, Burman R, Oliw EH. Oxygenation of polyunsaturated long chain fatty acids by recombinant CYP4F8 and CYP4F12 and catalytic importance of Tyr-125 and Gly-328 of CYP4F8. Arch Biochem Biophys 2005; 441:174-81. [PMID: 16112640 DOI: 10.1016/j.abb.2005.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
Recombinant CYP4F8 and CYP4F12 metabolize prostaglandin H2 (PGH2) analogs by omega2- and omega3-hydroxylation and arachidonic acid (20:4n-6) by omega3-hydroxylation. CYP4F8 was found to catalyze epoxidation of docosahexaenoic acid (22:6n-3) and docosapentaenoic acid (22:5n-3) and omega3-hydroxylation of 22:5n-6. CYP4F12 oxidized 22:6n-3 and 22:5n-3 in the same way, but 22:5n-6 was a poor substrate. The products were identified by liquid chromatography-mass spectrometry. The missense mutation 374A>T of CYP4F8 (Tyr125Phe in substrate recognition site-1 (SRS-1)) occurs in low frequency. This variant oxidized two PGH2 analogs, U-51605 and U-44069, in analogy with CYP4F8, but 20:4n-6 and 22:5n-6 were not oxidized. CYP4F enzymes with omega-hydroxylase activity contain a heme-binding Glu residue, whereas CYP4F8 (and CYP4F12) with omega2- and omega 3-hydroxylase activities has a Gly residue in this position of SRS-4. The mutant CYP4F8 Gly328Glu oxidized U-51605 and U-44069 as recombinant CYP4F8, but the hydroxylation of arachidonic acid was shifted from C-18 to C-19. Single amino acid substitutions in SRS-1 and SRS-4 of CYP4F8 may thus influence oxygenation of certain substrates. We conclude that CYP4F8 and CYP4F12 catalyze epoxidation of 22:6n-3 and 22:5n-3, and CYP4F8 omega3-hydroxylation of 22:5n-6.
Collapse
Affiliation(s)
- Katarina Stark
- Department of Pharmaceutical Biosciences, Division of Biochemical Pharmacology, Uppsala University, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|