1
|
Rapp JP, Joe B. Dissecting Epistatic QTL for Blood Pressure in Rats: Congenic Strains versus Heterogeneous Stocks, a Reality Check. Compr Physiol 2019; 9:1305-1337. [PMID: 31688958 DOI: 10.1002/cphy.c180038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advances in molecular genetics have provided well-defined physical genetic maps and large numbers of genetic markers for both model organisms and humans. It is now possible to gain a fundamental understanding of the genetic architecture underlying quantitative traits, of which blood pressure (BP) is an important example. This review emphasizes analytical techniques and results obtained using the Dahl salt-sensitive (S) rat as a model of hypertension by presenting results in detail for three specific chromosomal regions harboring genetic elements of increasing complexity controlling BP. These results highlight the critical importance of genetic interactions (epistasis) on BP at all levels of structure, intragenic, intergenic, intrachromosomal, interchromosomal, and across whole genomes. In two of the three examples presented, specific DNA structural variations leading to biochemical, physiological, and pathological mechanisms are well defined. This proves the usefulness of the techniques involving interval mapping followed by substitution mapping using congenic strains. These classic techniques are compared to newer approaches using sophisticated statistical analysis on various segregating or outbred model-organism populations, which in some cases are uniquely useful in demonstrating the existence of higher-order interactions. It is speculated that hypertension as an outlier quantitative phenotype is dependent on higher-order genetic interactions. The obstacle to the identification of genetic elements and the biochemical/physiological mechanisms involved in higher-order interactions is not theoretical or technical but the lack of future resources to finish the job of identifying the individual genetic elements underlying the quantitative trait loci for BP and ascertaining their molecular functions. © 2019 American Physiological Society. Compr Physiol 9:1305-1337, 2019.
Collapse
Affiliation(s)
- John P Rapp
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Bina Joe
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| |
Collapse
|
2
|
Padmanabhan S, Joe B. Towards Precision Medicine for Hypertension: A Review of Genomic, Epigenomic, and Microbiomic Effects on Blood Pressure in Experimental Rat Models and Humans. Physiol Rev 2017; 97:1469-1528. [PMID: 28931564 PMCID: PMC6347103 DOI: 10.1152/physrev.00035.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/11/2022] Open
Abstract
Compelling evidence for the inherited nature of essential hypertension has led to extensive research in rats and humans. Rats have served as the primary model for research on the genetics of hypertension resulting in identification of genomic regions that are causally associated with hypertension. In more recent times, genome-wide studies in humans have also begun to improve our understanding of the inheritance of polygenic forms of hypertension. Based on the chronological progression of research into the genetics of hypertension as the "structural backbone," this review catalogs and discusses the rat and human genetic elements mapped and implicated in blood pressure regulation. Furthermore, the knowledge gained from these genetic studies that provide evidence to suggest that much of the genetic influence on hypertension residing within noncoding elements of our DNA and operating through pervasive epistasis or gene-gene interactions is highlighted. Lastly, perspectives on current thinking that the more complex "triad" of the genome, epigenome, and the microbiome operating to influence the inheritance of hypertension, is documented. Overall, the collective knowledge gained from rats and humans is disappointing in the sense that major hypertension-causing genes as targets for clinical management of essential hypertension may not be a clinical reality. On the other hand, the realization that the polygenic nature of hypertension prevents any single locus from being a relevant clinical target for all humans directs future studies on the genetics of hypertension towards an individualized genomic approach.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Bina Joe
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom; and Center for Hypertension and Personalized Medicine; Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|
3
|
Rapp JP, Joe B. Do epistatic modules exist in the genetic control of blood pressure in Dahl rats? A critical perspective. Physiol Genomics 2013; 45:1193-5. [PMID: 24192392 DOI: 10.1152/physiolgenomics.00159.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- John P Rapp
- Program of Physiological Genomics, Center for Hypertension and Personalized Medicine, and Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | | |
Collapse
|
4
|
Chauvet C, Crespo K, Ménard A, Roy J, Deng AY. Modularization and epistatic hierarchy determine homeostatic actions of multiple blood pressure quantitative trait loci. Hum Mol Genet 2013; 22:4451-9. [DOI: 10.1093/hmg/ddt294] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
5
|
Rapp JP. Theoretical model for gene-gene, gene-environment, and gene-sex interactions based on congenic-strain analysis of blood pressure in Dahl salt-sensitive rats. Physiol Genomics 2013; 45:737-50. [PMID: 23757391 DOI: 10.1152/physiolgenomics.00046.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is a significant literature describing quantitative trait loci (QTL) controlling blood pressure (BP) in the Dahl salt-sensitive (S) rat. In studies to identify the genes underlying BP QTL it has been common practice to place chromosomal segments from low BP strains on the genetic background of the S rat and then reduce the congenic segments by substitution mapping. The present work suggests a model to simulate genetic interactions found using such congenic strains. The QTL are considered to be switches that can be either in series or in parallel represented by the logic operators AND or OR, respectively. The QTL switches can be on/off switches but are also allowed specific leak properties. The QTL switches are represented by a "universal" switch consisting of two molecules binding to form a complex. Genetic inputs enter the model as allelic products of one of the binding molecules and environmental variation (including dietary salt- and sex-related differences) enters as an influence on the concentration of the other binding molecule. The pairwise interactions of QTL are very well simulated and fall into recognizable patterns. There is, however, often more than one assumed model to predict a given pattern so that all patterns do not necessarily have a unique solution. Nevertheless, the models obtained provide a framework for placing the QTL in pathways relative to one another. Moreover, based on their leak properties pairs of QTL could be identified in which one QTL may alter the properties of the other QTL.
Collapse
Affiliation(s)
- John P Rapp
- Physiological Genomics Laboratory, Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio, USA. )
| |
Collapse
|
6
|
Pillai R, Waghulde H, Nie Y, Gopalakrishnan K, Kumarasamy S, Farms P, Garrett MR, Atanur SS, Maratou K, Aitman TJ, Joe B. Isolation and high-throughput sequencing of two closely linked epistatic hypertension susceptibility loci with a panel of bicongenic strains. Physiol Genomics 2013; 45:729-36. [PMID: 23757393 DOI: 10.1152/physiolgenomics.00077.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interactions or epistasis between genetic factors may contribute to "missing heritability." While linkage analyses detect epistasis, defining the limits of the interacting segments poses a significant challenge especially when the interactions are between loci in close proximity. The goal of the present study was to isolate two such epistatic blood pressure (BP) loci on rat chromosome 5. A panel of S.LEW bicongenic strains along with the corresponding monocongenic strains was constructed. BP of each set comprising of one bicongenic and two corresponding monocongenic strains were determined along with the parental Salt-sensitive (S) strain. Epistasis was observed in one out of four sets of congenic strains, wherein systolic blood pressures (SBP) of the two monocongenic strains S.LEW(5)x6Bx9x5a and S.LEW(5)x6Bx9x5b were comparable to that of S, but the SBP of the bicongenic strain S.LEW(5)x6Bx9x5 (157 ± 4.3 mmHg) was significantly lower than that of S (196 ± 6.8 mmHg, P < 0.001). A two-way ANOVA indicated significant interactions between the LEW alleles at the two loci. The interacting loci were 2.02 Mb apart and located within genomic segments spanning 7.77 and 4.18 Mb containing 7,360 and 2,753 candidate variants, respectively. The current study demonstrates definitive evidence for epistasis and provides genetic tools for further dissection of the isolated epistatic BP loci.
Collapse
Affiliation(s)
- Resmi Pillai
- Center for Hypertension and Personalized Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Koh-Tan HHC, McBride MW, McClure JD, Beattie E, Young B, Dominiczak AF, Graham D. Interaction between chromosome 2 and 3 regulates pulse pressure in the stroke-prone spontaneously hypertensive rat. Hypertension 2013; 62:33-40. [PMID: 23648703 DOI: 10.1161/hypertensionaha.111.00814] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In an F2 cross between stroke-prone spontaneously hypertensive (SHRSP) and Wistar Kyoto (WKY) rats, we previously identified blood pressure quantitative trait loci (QTL) on rat chromosome (RNO) 2 and a pulse pressure QTL on RNO3. The aims of this study were to confirm the QTL on RNO3 and to investigate interaction between RNO2 and RNO3 loci through the generation and phenotypic assessment of single RNO3 congenic (SP.WKY(Gla)3a) and bicongenic (SP.WKY(Gla)2a/3a) strains. Hemodynamic profiling, vascular function, and renal histology were examined in these newly generated strains along with the previously reported RNO2 congenic strain (SP.WKY(Gla)2a). Our results demonstrate significant equivalent reduction in systolic, diastolic, and pulse pressure phenotypes in SP.WKY(Gla)3a and SP.WKY(Gla)2a rats, whereas greater reductions were observed with the SP.WKY(Gla)2a/3a bicongenic strain achieving blood pressure levels similar to normotensive WKY rats. Epistasis was observed between pulse pressure QTL on RNO2 and 3 at baseline and during 1% salt challenge. Vascular function and renal pathology studies indicate that QTL on RNO3 are responsible for salt-induced kidney pathology, whereas QTL on RNO2 seem to have greater impact on vascular function. RNO3 congenic and bicongenic strains have confirmed the importance of SHRSP alleles in the RNO3 congenic interval on pulse pressure variability and end-organ damage. These strains will allow interrogation of complex gene-gene and gene-environment interactions contributing to salt-sensitive hypertension and renal pathology in the SHRSP rat.
Collapse
Affiliation(s)
- H H Caline Koh-Tan
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
8
|
Delles C, McBride MW, Graham D, Padmanabhan S, Dominiczak AF. Genetics of hypertension: from experimental animals to humans. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:1299-308. [PMID: 20035862 PMCID: PMC2977068 DOI: 10.1016/j.bbadis.2009.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 12/15/2009] [Indexed: 12/17/2022]
Abstract
Essential hypertension affects 20 to 30% of the population worldwide and contributes significantly to cardiovascular mortality and morbidity. Heridability of blood pressure is around 15 to 40% but there are also substantial environmental factors affecting blood pressure variability. It is assumed that blood pressure is under the control of a large number of genes each of which has only relatively mild effects. It has therefore been difficult to discover the genes that contribute to blood pressure variation using traditional approaches including candidate gene studies and linkage studies. Animal models of hypertension, particularly in the rat, have led to the discovery of quantitative trait loci harbouring one or several hypertension related genes, but translation of these findings into human essential hypertension remains challenging. Recent development of genotyping technology made large scale genome-wide association studies possible. This approach and the study of monogenic forms of hypertension has led to the discovery of novel and robust candidate genes for human essential hypertension, many of which require functional analysis in experimental models.
Collapse
Affiliation(s)
| | | | | | | | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, University of Glasgow, UK
| |
Collapse
|
9
|
Zakaria T, Qin Z, Maurice RL. Optical-flow-based B-mode elastography: application in the hypertensive rat carotid. IEEE TRANSACTIONS ON MEDICAL IMAGING 2010; 29:570-578. [PMID: 20129856 DOI: 10.1109/tmi.2009.2038694] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Background-Ultrasound elastography is now used worldwide in tissue characterization. The primary premises of elastography are that speckle kinematics reproduces underlying tissue kinematics and that tissue motion can be inferred from speckle tracking. This implicitly assumes that speckle pattern is a material property that can be tracked with respect to time and space. It is then convenient to express the motion of such a material property in terms of total derivative, also known as optical flow (OF) equations. Aims-The present paper introduces a new iterative OF-based elastography (OFBE) method devoted to B-mode data. The first OFBE iteration computes axial and lateral displacement fields. Such displacement fields are used for data rigid registration, prior to the second OFBE iteration which computes the 2-D strain tensor. Methods-The OFBE method was validated in the common carotid artery of rat hypertension models. The effect of aging on carotid stiffness was investigated in female recombinant inbred rats (RI-17, (n=2)) in the first experiment. The outcomes of low/high-salt diets were examined in young male Dahl salt-sensitive rats (SS, n=6; SM12, n=6; SM9, n=6) in the second experiment. Results-Good concordance was observed between left and right carotid axial strain measurements with 11.4% relative error, whereas 4.6% relative error occurred between diastolic and systolic axial strain measurements. Old (80 and 85 weeks) RI-17 carotids were determined to be twice as stiff with 5.70 +/- 0.97% (strain+/-std) as young carotids (30 and 34 weeks) with 13.26 +/- 2.73%, p < 0.001. Carotid axial strain measurement also indicated that salt diets had a significant impact on SS (p=0.008) and SM12 (p < 0.001) but not on SM9 (p=0.881) rats.
Collapse
Affiliation(s)
- Toufik Zakaria
- Laboratory of Biorheology and Medical Ultrasonics, Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC H3C 3P8, Canada.
| | | | | |
Collapse
|
10
|
Viel EC, Lemarié CA, Benkirane K, Paradis P, Schiffrin EL. Immune regulation and vascular inflammation in genetic hypertension. Am J Physiol Heart Circ Physiol 2009; 298:H938-44. [PMID: 20044442 DOI: 10.1152/ajpheart.00707.2009] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Immune cells have been implicated in the pathogenesis of hypertension. We hypothesized that under the influence of chromosome (chr)2, T lymphocytes contribute to vascular inflammation in genetic salt-sensitive hypertension. Normotensive (Brown Norway), hypertensive (Dahl salt-sensitive), and consomic rats (SSBN2; in which chr2 has been transferred from Brown Norway to Dahl rats) were studied. Systolic blood pressure, measured by tail cuff, and aortic preproendothelin mRNA, measured by quantitative RT-PCR, were elevated in Dahl rats compared with Brown Norway rats and were reduced in SSBN2 rats compared with Dahl rats (P < 0.01). Compared with Brown Norway rats, Dahl rats exhibited increased inflammatory markers and mediators such as nuclear translocation of the aortic p65 subunit of NF-kappaB as well as VCAM-1, ICAM-1, chemokine (C-C motif) receptor 5, and CD4 mRNA, all of which were reduced in SSBN2 rats. Aortic CD8 mRNA was equally increased in Dahl and SSBN2 rats relative to Brown Norway rats. CD4(+) T cell infiltration in the aorta of SSBN2 rats was reduced compared with Dahl rats, whereas the aortic protein expression of Foxp3b and immunosuppressors transforming growth factor (TGF)-beta(1) and IL-10, the three markers associated with the regulatory T cell lineage, were enhanced in SSBN2 rats. Activation in vitro of T cells demonstrated that CD4(+)CD25(+) and CD8(+)CD25(+) cells (Tregs) produce IL-10 in SSBN2 rats. Thus, increased vascular inflammatory responses and hypertension in a genetic salt-sensitive hypertensive rodent model are reduced by transfer of chr2 from a normotensive strain, and this is associated with enhanced levels of immunosuppressive mediators.
Collapse
Affiliation(s)
- Emilie C Viel
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
11
|
Deng AY, Ménard A, Xiao C, Roy J. Sexual Dimorphism on Hypertension of Quantitative Trait Loci Entrapped in Dahl Congenic Rats. Clin Exp Hypertens 2009; 30:511-9. [DOI: 10.1080/10641960802251933] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Alan Y. Deng
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Annie Ménard
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| | - Chunjie Xiao
- Biology Department, Yunnan University, Kunming, Yunnan, China
| | - Julie Roy
- Research Centre, Centre Hospitalier de l'Université de Montréal, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
12
|
Cardiac pathways distinguish two epistatic modules enacting BP quantitative trait loci and candidate gene analysis. Hypertens Res 2009; 32:631-7. [DOI: 10.1038/hr.2009.70] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Abstract
Hypertension is the first single modifiable cause of disease burden worldwide. Genes encoding proteins that are involved in the metabolism (CYP3A5) and transport (ABCB1) of drugs and hormones might contribute to blood pressure control in humans. Indeed, recent data have suggested that CYP3A5 and ABCB1 gene polymorphisms are associated with blood pressure in the rat as well as in humans. Interestingly, the effects of these genes on blood pressure appear to be modified by dietary salt intake. This review summarizes what is known regarding the relationships of the ABCB1 and CYP3A5 genes with blood pressure, and discusses the potential underlying mechanisms of the association. If the role of these genes in blood pressure control is confirmed in other populations and other ethnic groups, these findings would point toward a new pathway for blood pressure control in humans.
Collapse
Affiliation(s)
- Murielle Bochud
- Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) et Université de Lausanne, Rue du Bugnon 17, CH-1005 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
14
|
Mattson DL, Dwinell MR, Greene AS, Kwitek AE, Roman RJ, Jacob HJ, Cowley AW. Chromosome substitution reveals the genetic basis of Dahl salt-sensitive hypertension and renal disease. Am J Physiol Renal Physiol 2008; 295:F837-42. [PMID: 18653478 DOI: 10.1152/ajprenal.90341.2008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
This study examined the genetic basis of hypertension and renal disease in Dahl SS/Mcwi (Dahl Salt-Sensitive) rats using a complete chromosome substitution panel of consomic rats in which each of the 20 autosomes and the X and Y chromosomes were individually transferred from the Brown Norway (BN) rat onto the Dahl SS/Mcwi genetic background. Male and female rats of each of the two parental and 22 consomic strains (10-12 rats/group) were fed a high-salt (8.0% NaCl) diet for 3 wk. Mean arterial blood pressure rose by 60 mmHg and urinary protein and albumin excretion increased 3- and 20-fold, respectively, in male SS/Mcwi rats compared with BN controls. Substitution of chromosomes 1, 5, 7, 8, 13, or 18 from the BN onto the SS/Mcwi background attenuated the development of hypertension, proteinuria, and albuminuria in male rats. In female rats, substitution of chromosomes 1 and 5 also decreased blood pressure, protein excretion, and albumin excretion. These studies also identified several chromosomes in male (6, 11, Y) and female (4, 6, 11, 19, 20) rats that reduced albuminuria without altering blood pressure. These data indicate that genes contributing to salt-sensitive hypertension are found on multiple chromosomes of the Dahl SS/Mcwi rat. Furthermore, this consomic rat panel provides a stable genetic platform that can facilitate further gene mapping by either linkage studies or the breeding of congenic and subcongenic rats.
Collapse
Affiliation(s)
- David L Mattson
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Moreno C, Kaldunski ML, Wang T, Roman RJ, Greene AS, Lazar J, Jacob HJ, Cowley AW. Multiple blood pressure loci on rat chromosome 13 attenuate development of hypertension in the Dahl S hypertensive rat. Physiol Genomics 2007; 31:228-35. [PMID: 17566075 DOI: 10.1152/physiolgenomics.00280.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies have indicated that substitution of chromosome 13 of the salt-resistant Brown Norway BN/SsNHsdMcwi (BN) rat into the genomic background of the Dahl salt-sensitive SS/JrHsdMcwi (SS) rat attenuates the development of salt-sensitive hypertension and renal damage. To identify the regions within chromosome 13 that attenuate the development of hypertension during a high-salt diet in the SS rat, we phenotyped a series of overlapping congenic lines covering chromosome 13, generated from an intercross between the consomic SS-13BN rat and the SS rat. Blood pressure was determined in chronically catheterized rats after 2 wk of high-salt diet (8% NaCl) together with microalbuminuria as an index of renal damage. Four discrete regions were identified, ranging in size from 4.5 to 16 Mbp, each of which independently provided significant protection from hypertension during high-salt diet, reducing blood pressure by 20–29 mmHg. Protection was more robust in female than male rats in some of the congenic strains, suggesting a sex interaction with some of the genes determining blood pressure during high-salt diet. Among the 23 congenic strains, several regions overlapped. When three of the “protective” regions were combined onto one broad congenic strain, no summation effect was seen, obtaining the same decrease in blood pressure as with each one independently. We conclude from these studies that there are four regions within chromosome 13 containing genes that interact epistatically and influence arterial pressure.
Collapse
Affiliation(s)
- Carol Moreno
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53266, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Mattson DL, Dwinell MR, Greene AS, Kwitek AE, Roman RJ, Cowley AW, Jacob HJ. Chromosomal mapping of the genetic basis of hypertension and renal disease in FHH rats. Am J Physiol Renal Physiol 2007; 293:F1905-14. [PMID: 17898042 DOI: 10.1152/ajprenal.00012.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the genetic basis for hypertension and renal disease phenotypes in Fawn Hooded hypertensive (FHH) rats using chromosome substitution strains (consomic rats) in which each of the 20 autosomes as well as the X and Y chromosomes were transferred from the normal Brown Norway (BN) rat onto the FHH genetic background. Male and female rats of each of the parental and consomic strains were maintained for 2 wk on high-salt (8.0% NaCl) chow with N(G)-nitro-l-arginine methyl ester (l-NAME) in the drinking water (12.5 mg/l) to induce hypertension and renal disease. Mean arterial blood pressure (MAP) was significantly higher (by over 60 mmHg) in the male FHH compared with BN rats. Urinary protein and albumin excretion rates were increased by 15- and 40-fold, respectively, in the male FHH compared with the BN. Plasma renin activity was 10-fold higher in the FHH than the BN. Similar significant differences were observed between the female FHH and BN, but the degree of hypertension and proteinuria was of a lesser magnitude. Substitution of chromosome 20 from the BN to the FHH attenuated the development of l-NAME-induced hypertension, normalized plasma renin activity, and decreased plasma creatinine in male rats. In female rats, substitution of chromosome 15 decreased MAP and urinary protein excretion. Urinary excretion of albumin in males was decreased by substitution of chromosomes 1, 15, 16, and 18 from the BN into the FHH genetic background. The present data indicate that genes that can modify l-NAME-induced hypertension and proteinuria are on chromosomes 1, 15, 16, 18, and 20.
Collapse
Affiliation(s)
- David L Mattson
- Dept. of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Excess dietary salt intake represents a predominant cause of hypertension. However, individual blood pressure response to salt is heterogeneous, possibly due to different inherited susceptibility. The early identification of rare monogenic forms of hypertension associated with abnormalities of renal tubular sodium handling and response to diuretics highlighted the important role of renal alterations in salt-sensitive hypertension. Thereafter, interest has concentrated on the identification of more common allelic variants of candidate genes for hypertension in relation to the salt-sensitivity phenotype. By now, relatively large numbers of such variants have been described, and the pathogenic role of gene-gene interaction has received increasing attention. The alternative approach, consisting of the search for quantitative trait loci in the human genome linked to the transmission of salt-sensitive hypertension, has so far been less successful and cost-effective. This review summarizes consolidated knowledge and discusses the most recent novel findings on the impact of genetic variance on salt-sensitivity of blood pressure.
Collapse
Affiliation(s)
- Pasquale Strazzullo
- Department of Clinical and Experimental Medicine, Federico II University of Naples Medical School, Via S. Pansini, 5, 80131 Naples, Italy.
| | | |
Collapse
|
18
|
|
19
|
Deng AY. Positional cloning of quantitative trait Loci for blood pressure: how close are we?: a critical perspective. Hypertension 2007; 49:740-7. [PMID: 17296871 DOI: 10.1161/01.hyp.0000259105.09235.56] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Alan Y Deng
- Research Centre, Centre Hospitalier de l'Université de Montréal, l'Université de Montréal Montréal, Québec, Canada.
| |
Collapse
|
20
|
Duong C, Charron S, Xiao C, Hamet P, Ménard A, Roy J, Deng AY. Distinct quantitative trait loci for kidney, cardiac, and aortic mass dissociated from and associated with blood pressure in Dahl congenic rats. Mamm Genome 2006; 17:1147-61. [PMID: 17143582 DOI: 10.1007/s00335-006-0086-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Accepted: 08/30/2006] [Indexed: 01/19/2023]
Abstract
Blood pressure (BP) is largely determined by quantitative trait loci (QTLs) in Dahl salt-sensitive (DSS) rats. Little is known about QTLs controlling kidney (K), cardiac (C), and aortic (A) mass (i.e. Km, Cm, and Am, respectively) of DSS rats independent of BP. Their identification can facilitate our understanding of end organ damage. In this work, 36 congenic strains were employed to define QTLs for Km, Cm, and Am either independent of or associated with BP. Five new QTLs, i.e., KmQTLs, that influence Km independent of Cm, Am, and BP were defined. Four new CakmQTLs were defined for Cm, Am, and Km independent of BP. Among them, the CakmC10QTL1 interval contained 13 genes and undefined loci, and none was known to influence the phenotypes in question, paving the way for a novel gene discovery. Among 17 individual QTLs for BP, 14 also affected Cm, Km, and Am, i.e., they are BpcakmQTLs. In contrast, one BpQTL had no effect on Cm, Am, and Kam. Therefore, BP and Cm, Am, and Km have distinct and shared genetic determinants. The discovery of individual Km and Cakm QTLs will likely facilitate the identification of mechanisms underlying renal, cardiac, and/or aortic hypertrophy independent of hypertension.
Collapse
Affiliation(s)
- Chenda Duong
- Research Centre, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Duong C, Charron S, Deng Y, Xiao C, Ménard A, Roy J, Deng AY. Individual QTLs controlling quantitative variation in blood pressure inherited in a Mendelian mode. Heredity (Edinb) 2006; 98:165-71. [PMID: 17119551 DOI: 10.1038/sj.hdy.6800920] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We studied three possible genotypes at 10 well-defined blood pressure (BP) QTLs using congenic rat lines. The central question was whether the hypertensive or normotensive allele is dominant, or whether there is partial dominance. The congenic strains were employed to investigate the BP effects of alleles originating from normotensive rats in the background of hypertensive Dahl salt-sensitive (DSS) rats. The normotensive alleles at eight QTLs were fully dominant over DSS alleles, which we tentatively interpreted as indicating that DSS rats incurred a loss of function at these loci and that the QTLs produced BP-reducing agents. In contrast, the normotensive allele of only one QTL was recessive over its DSS counterpart, implying a gain of function at this QTL or a null allele involved in generating a BP-elevating agent. Only one locus, C17QTL, had alleles exhibiting partial dominance. These estimates of dominance differ considerably from those obtained by QTL analysis in a F2 cross. This disagreement demonstrates the importance of establishing a cause-effect relationship between a QTL and its phenotypic effect via congenic strains. The dominance relationships suggest pertinent strategies for gene identification and pharmaceutical intervention.
Collapse
Affiliation(s)
- C Duong
- Department of Medicine, Research Centre, Centre hospitalier de l'Université de Montréal (CHUM)-Technopôle Angus, 2901 Rachel Street East, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW Essential hypertension is a complex polygenetic disease with a major impact on health worldwide. Despite earlier detection of promising candidate genes, only recent advances in genotyping technology and new approaches to examining gene and protein function have provided the tools to unravel the genetic basis of hypertension. RECENT FINDINGS In humans, genome-wide scans resulted in the identification of several chromosomal loci that are linked to hypertension. These regions still contain a large number of potential candidate genes, but high-throughput genotyping methods will facilitate the detection and analysis of single-nucleotide polymorphisms within these genes. The focus will be on animal models of hypertension, specifically rats. Congenic strains facilitate the identification of genetic determinants of hypertension, and new technologies such as RNA interference (which silences the expression of target genes) and transgenic rescue models will help us to analyse the relationship between genes and function. Analysis of conserved synteny (preserved order of genes) between species allows translation of findings from rodent models to essential hypertension in humans. Recent discoveries and approaches beyond genomics will also be discussed, including the regulatory role of microRNA and the concept of proteomics. SUMMARY The genetic basis of hypertension is complex, and the examination of the functional consequences of genetic variants in particular is still challenging. A number of tools are now available with which to examine gene-function relationships, and these will provide an improved understanding of cardiovascular genomics. This will eventually lead to targeted prevention and treatment strategies in patients with hypertension and other cardiovascular diseases.
Collapse
Affiliation(s)
- Martin W McBride
- BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
23
|
Charron S, Duong C, Ménard A, Roy J, Eliopoulos V, Lambert R, Deng AY. Epistasis, Not Numbers, Regulates Functions of Clustered Dahl Rat Quantitative Trait Loci Applicable to Human Hypertension. Hypertension 2005; 46:1300-8. [PMID: 16286573 DOI: 10.1161/01.hyp.0000192024.72367.c3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Quantitative trait loci (QTLs) for blood pressure (BP) were found on chromosome 10 of Dahl salt-sensitive rats and are potentially important to human essential hypertension. But their identities and how they influence BP together were not known. Presently, we first fine mapped existing QTLs, C10QTL1, C10QTL2, and C10QTL3, by constructing congenic strains. In the process, a new QTL, C10QTL4, was identified. Because the intervals harboring C10QTL1 and C10QTL4 contain a maximum of 16 and 10 possible genes, respectively, a limited number of specific gene targets has been identified to be QTLs residing in human homologous regions on chromosome 17. Moreover, because none of these candidates encodes a gene known to influence BP, the 2 QTLs will represent novel genes for BP regulations. Second, we used congenic strains with QTL combinations to analyze the interactions between the QTLs. Consequently, a double combination of C10QTL4 and C10QTL1 possessed the same BP as each of the 2 QTLs alone. BP of a triple combination of C10QTL4, C10QTL1, and C10QTL3 was not different from BP of the C10QTL4 and C10QTL1 double combination. These results demonstrate that C10QTL4, C10QTL1, and C10QTL3 are epistatic to one another in their BP effects. In contrast, when adding C10QTL2 into the triple formation of the 3 QTLs above to create a quadruple QTL combination, BP increased proportionately, indicating that C10QTL2 acts independently of C10QTL4, C10QTL1, and C10QTL3. The epistatic and additive interactions uncovered in the animal model will help elucidate similar interactions playing a role in human essential hypertension.
Collapse
Affiliation(s)
- Sophie Charron
- Research Centre-Centre Hospitalier, Université de Montréal, Hôtel Dieu, 3840 rue St. Urbain, Montréal, Québec, H2W 1T8, Canada
| | | | | | | | | | | | | |
Collapse
|
24
|
Charron S, Lambert R, Eliopoulos V, Duong C, Ménard A, Roy J, Deng AY. A loss of genome buffering capacity of Dahl salt-sensitive model to modulate blood pressure as a cause of hypertension. Hum Mol Genet 2005; 14:3877-84. [PMID: 16278234 DOI: 10.1093/hmg/ddi412] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Essential hypertension is a complex trait influenced by multiple genes known as quantitative trait loci (QTLs) for blood pressure (BP). It is not clear, however, what roles these QTLs play in maintaining normotension. Insights gained toward the maintenance of normotension will shed light on how hypertension can result from a deficiency or malfunctioning of this maintenance. Currently, congenic strains were systematically constructed using Dahl salt-sensitive (DSS) and Lewis (LEW) rats not only to define QTLs (i.e. in DSS background), but also to ascertain effects of the same QTLs in preserving normotension (i.e. in LEW background), a first such study. Results showed that although LEW alleles for two QTLs on Chromosome (Chr) 18 lowered BP on the DSS background, their BP-increasing DSS alleles failed to influence BP in the LEW background. To further prove that the LEW background is resistant and the DSS background is susceptible to the effects of QTLs, BP-increasing alleles of a QTL on Chr 2 were introgressed into the DSS background, and its BP-decreasing alleles into the LEW background. Indeed, there was no BP-decreasing effect on the LEW background while demonstrating a BP-increasing effect on the DSS background. Thus, a genetic regulation of BP QTLs in the LEW genome inhibits BP changes by nullifying the effects of BP-altering QTLs. In comparison, the DSS genome must have lost the buffering capacity for stabilizing BP. The current work presents good evidence that a lack of regulation for functions of BP QTLs is a potential underlying cause of hypertension.
Collapse
|