1
|
Yu J, Du Q, Li X, Wei W, Fan Y, Zhang J, Chen J. Potential role of endothelial progenitor cells in the pathogenesis and treatment of cerebral aneurysm. Front Cell Neurosci 2024; 18:1456775. [PMID: 39193428 PMCID: PMC11348393 DOI: 10.3389/fncel.2024.1456775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024] Open
Abstract
Cerebral aneurysm (CA) is a significant health concern that results from pathological dilations of blood vessels in the brain and can lead to severe and potentially life-threatening conditions. While the pathogenesis of CA is complex, emerging studies suggest that endothelial progenitor cells (EPCs) play a crucial role. In this paper, we conducted a comprehensive literature review to investigate the potential role of EPCs in the pathogenesis and treatment of CA. Current research indicates that a decreased count and dysfunction of EPCs disrupt the balance between endothelial dysfunction and repair, thus increasing the risk of CA formation. Reversing these EPCs abnormalities may reduce the progression of vascular degeneration after aneurysm induction, indicating EPCs as a promising target for developing new therapeutic strategies to facilitate CA repair. This has motivated researchers to develop novel treatment options, including drug applications, endovascular-combined and tissue engineering therapies. Although preclinical studies have shown promising results, there is still a considerable way to go before clinical translation and eventual benefits for patients. Nonetheless, these findings offer hope for improving the treatment and management of this condition.
Collapse
Affiliation(s)
- Jin Yu
- Department of Neurosurgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qian Du
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuncun Fan
- Department of Respiratory and Critical Care Medicine, Laifeng County People’s Hospital, Enshi, Hubei, China
| | - Jianjian Zhang
- Department of Neurosurgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Jincao Chen
- Department of Neurosurgery, Wuhan Asia General Hospital, Wuhan, Hubei, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Tkacz M, Zgutka K, Tomasiak P, Tarnowski M. Responses of Endothelial Progenitor Cells to Chronic and Acute Physical Activity in Healthy Individuals. Int J Mol Sci 2024; 25:6085. [PMID: 38892272 PMCID: PMC11173310 DOI: 10.3390/ijms25116085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Endothelial progenitor cells (EPCs) are circulating cells of various origins that possess the capacity for renewing and regenerating the endothelial lining of blood vessels. During physical activity, in response to factors such as hypoxia, changes in osmotic pressure, and mechanical forces, endothelial cells undergo intense physiological stress that results in endothelial damage. Circulating EPCs participate in blood vessel repair and vascular healing mainly through paracrine signalling. Furthermore, physical activity may play an important role in mobilising this important cell population. In this narrative review, we summarise the current knowledge on the biology of EPCs, including their characteristics, assessment, and mobilisation in response to both chronic and acute physical activity in healthy individuals.
Collapse
Affiliation(s)
- Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
| | - Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Zolnierska 48, 70-210 Szczecin, Poland
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| |
Collapse
|
3
|
Iqbal F, Johnston A, Wyse B, Rabani R, Mander P, Hoseini B, Wu J, Li RK, Gauthier-Fisher A, Szaraz P, Librach C. Combination human umbilical cord perivascular and endothelial colony forming cell therapy for ischemic cardiac injury. NPJ Regen Med 2023; 8:45. [PMID: 37626067 PMCID: PMC10457300 DOI: 10.1038/s41536-023-00321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Cell-based therapeutics are promising interventions to repair ischemic cardiac tissue. However, no single cell type has yet been found to be both specialized and versatile enough to heal the heart. The synergistic effects of two regenerative cell types including endothelial colony forming cells (ECFC) and first-trimester human umbilical cord perivascular cells (FTM HUCPVC) with endothelial cell and pericyte properties respectively, on angiogenic and regenerative properties were tested in a rat model of myocardial infarction (MI), in vitro tube formation and Matrigel plug assay. The combination of FTM HUCPVCs and ECFCs synergistically reduced fibrosis and cardiomyocyte apoptosis, while promoting favorable cardiac remodeling and contractility. These effects were in part mediated by ANGPT2, PDGF-β, and VEGF-C. PDGF-β signaling-dependent synergistic effects on angiogenesis were also observed in vitro and in vivo. FTM HUCPVCs and ECFCs represent a cell combination therapy for promoting and sustaining vascularization following ischemic cardiac injury.
Collapse
Affiliation(s)
- Farwah Iqbal
- Create Fertility Centre, Toronto, ON, Canada
- Virginia Tech Carillion School of Medicine, Roanoke, VA, USA
| | | | | | | | | | | | - Jun Wu
- Toronto General Research Institute (TGRI), University Health Network (UHN), Toronto, ON, Canada
| | - Ren-Ke Li
- Toronto General Research Institute (TGRI), University Health Network (UHN), Toronto, ON, Canada
| | | | | | - Clifford Librach
- Create Fertility Centre, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Sciences, Department of Physiology, University of Toronto, Toronto, ON, Canada.
- Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, ON, Canada.
| |
Collapse
|
4
|
Sacco AM, Castaldo C, Di Meglio FD, Nurzynska D, Palermi S, Spera R, Gnasso R, Zinno G, Romano V, Belviso I. The Long and Winding Road to Cardiac Regeneration. APPLIED SCIENCES 2023; 13:9432. [DOI: 10.3390/app13169432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Cardiac regeneration is a critical endeavor in the treatment of heart diseases, aimed at repairing and enhancing the structure and function of damaged myocardium. This review offers a comprehensive overview of current advancements and strategies in cardiac regeneration, with a specific focus on regenerative medicine and tissue engineering-based approaches. Stem cell-based therapies, which involve the utilization of adult stem cells and pluripotent stem cells hold immense potential for replenishing lost cardiomyocytes and facilitating cardiac tissue repair and regeneration. Tissue engineering also plays a prominent role employing synthetic or natural biomaterials, engineering cardiac patches and grafts with suitable properties, and fabricating upscale bioreactors to create functional constructs for cardiac recovery. These constructs can be transplanted into the heart to provide mechanical support and facilitate tissue healing. Additionally, the production of organoids and chips that accurately replicate the structure and function of the whole organ is an area of extensive research. Despite significant progress, several challenges persist in the field of cardiac regeneration. These include enhancing cell survival and engraftment, achieving proper vascularization, and ensuring the long-term functionality of engineered constructs. Overcoming these obstacles and offering effective therapies to restore cardiac function could improve the quality of life for individuals with heart diseases.
Collapse
Affiliation(s)
- Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Franca Di Di Meglio
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Daria Nurzynska
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84081 Baronissi, Italy
| | - Stefano Palermi
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rocco Spera
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Rossana Gnasso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Giorgio Zinno
- Department of Clinical and Surgical Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Veronica Romano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Immacolata Belviso
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
5
|
Dehkordi NR, Dehkordi NR, Farjoo MH. Therapeutic properties of stem cell-derived exosomes in ischemic heart disease. Eur J Pharmacol 2022; 920:174839. [DOI: 10.1016/j.ejphar.2022.174839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/10/2022] [Accepted: 02/15/2022] [Indexed: 12/18/2022]
|
6
|
Jayaraman S, Gnanasampanthapandian D, Rajasingh J, Palaniyandi K. Stem Cell-Derived Exosomes Potential Therapeutic Roles in Cardiovascular Diseases. Front Cardiovasc Med 2021; 8:723236. [PMID: 34447796 PMCID: PMC8382889 DOI: 10.3389/fcvm.2021.723236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Owing to myocardial abnormalities, cardiac ailments are considered to be the major cause of morbidity and mortality worldwide. According to a recent study, membranous vesicles that are produced naturally, termed as "exosomes", have emerged as the potential candidate in the field of cardiac regenerative medicine. A wide spectrum of stem cells has also been investigated in the treatment of cardiovascular diseases (CVD). Exosomes obtained from the stem cells are found to be cardioprotective and offer great hope in the treatment of CVD. The basic nature of exosomes is to deal with the intracellular delivery of both proteins and nucleic acids. This activity of exosomes helps us to rely on them as the attractive pharmaceutical delivery agents. Most importantly, exosomes derived from microRNAs (miRNAs) hold great promise in assessing the risk of CVD, as they serve as notable biomarkers of the disease. Exosomes are small, less immunogenic, and lack toxicity. These nanovesicles harbor immense potential as a therapeutic entity and would provide fruitful benefits if consequential research were focused on their upbringing and development as a useful diagnostic and therapeutic tool in the field of medicine.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Dhanavathy Gnanasampanthapandian
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| | - Johnson Rajasingh
- Department of Bioscience Research & Medicine-Cardiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Kanagaraj Palaniyandi
- Cancer Science Laboratory, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
7
|
Wei H, Tan T, Cheng L, Liu J, Song H, Li L, Zhang K. MRI tracing of ultrasmall superparamagnetic iron oxide nanoparticle‑labeled endothelial progenitor cells for repairing atherosclerotic vessels in rabbits. Mol Med Rep 2020; 22:3327-3337. [PMID: 32945451 PMCID: PMC7453557 DOI: 10.3892/mmr.2020.11431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Endothelial progenitor cells (EPCs) have been discovered to be relevant to the prognosis of cardiovascular diseases. Previous research has demonstrated that EPCs serve vital roles in the occurrence and development of atherosclerosis. Significant improvements have been made in MRI technology and in the experimental use of EPCs for therapeutic angiogenesis and vascular repair. Nevertheless, the migratory, adhesive, proliferative and angiogenic properties of EPCs remain unknown. The aims of the present study were to investigate the potential of using non-invasive monitoring with ultrasmall superparamagnetic iron oxide nanoparticle (USPION)-labeled endothelial progenitor cells (EPCs) after transplantation, and to assess the treatment outcomes in an atherosclerotic rabbit model. EPCs derived from rabbit peripheral blood samples were labeled with USPION-poly-l-lysine (USPION-PLL). The morphology, proliferation, adhesive ability and labeling efficiency of the EPCs were determined by optical and electron microscopy. Moreover, biological activity was assessed by flow cytometry. In addition, T2-weighted image fast spin-echo MRI was used to detect cell labeling. USPION content in the labeled EPCs was determined by Prussian blue staining and scanning electron microscopy. Rabbit atherosclerosis model was established using a high-fat diet. USPION-labeled EPCs were transplanted into rabbits, and in vivo MRI was performed 1 and 7 days after transplantation. It was found that EPCs cultured on Matrigel formed capillary-like structures, and expressed the surface markers CD133, CD31, CD34 and vascular endothelial growth factor receptor 2 (VEGFR2). The optimal USPION concentration was 32 µg/ml, as determined by adhesion and proliferation assays. It was identified that USPION-PLL nanoparticles were 10–20 nm in diameter. Histopathological analysis results indicated that 1 day after transplantation of the labeled EPCs, blue-stained granules were observed in the intima of vascular lesions in rabbit models after Prussian blue staining. Therefore, the present results suggest that USPION-labeled EPCs may play a role in repairing endothelial injury and preventing atherosclerosis in vivo.
Collapse
Affiliation(s)
- Hongxia Wei
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Tingting Tan
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Li Cheng
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Jiapeng Liu
- Department of Medical Imaging, Shanghai Jiahui International Hospital, Shanghai 200233, P.R. China
| | - Hongyan Song
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Lei Li
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| | - Kui Zhang
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
8
|
Chen P, Zhong J, Ye J, He Y, Liang Z, Cheng Y, Zheng J, Chen H, Chen C. miR-324-5p protects against oxidative stress-induced endothelial progenitor cell injury by targeting Mtfr1. J Cell Physiol 2019; 234:22082-22092. [PMID: 31066044 DOI: 10.1002/jcp.28771] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/30/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022]
Abstract
Endothelial progenitor cells (EPCs) belong to bone marrow-derived myeloid progenitor cells that have strong proliferative ability. Dysregulation of miRNAs after acute myocardial infarction (AMI) can result in EPCs injury, thus we hypothesize that correction of miRNA expression may contribute to the tolerance of EPCs against oxidative stress. The peripheral blood of healthy volunteers and patients with ST-segment elevation myocardial infarction (STEMI) was clinically collected. EPCs derived from peripheral blood were transfected by miR-324-5p mimic and simultaneously handled with hydrogen peroxide (H2 O2 ) to inducing EPCs injury. At 24 hrs after the H2 O2 treatment, cell viability, the uptake capacity on DiI-Ac-LDL, and carrying ability on FITC-UEA-l and multiplication capacity were analyzed. The mechanism process was carefully researched by valued the characteristics of the mitochondrion morphology, membrane potential, ATP levels, and the expressing of apoptosis pathways. Small RNA sequencing indicated that the expression level of miR-324-5p in peripheral blood EPCs of patients with STEMI was significantly lower compared with the healthy volunteers. The Mtfr1 has been confirmed as a targeted gene of miR-324-5p through miRTarBase software and western blot. The miR-324-5p mimic units could be contributed for the improvement of viability, the uptake capacity on DiI-Ac-LDL and carrying ability on FITC-UEA-l and multiplication capacity on oxidative stress-injured EPCs. miR-324-5p could suppress mitochondrial fragmentation, promote membrane potential, and ATP levels, as well as protect against oxidative stress-induced EPCs apoptosis. Our results suggested that miR-324-5p protects against oxidative stress-induced EPCs injury by regulating Mtfr1.
Collapse
Affiliation(s)
- Peier Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianfeng Zhong
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianfeng Ye
- People's Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Yuan He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zheng Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yu Cheng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jie Zheng
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Hao Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Can Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
9
|
Cui J, Zhang F, Cao W, Wang Y, Liu J, Liu X, Chen T, Li L, Tian J, Yu B. Erythropoietin alleviates hyperglycaemia-associated inflammation by regulating macrophage polarization via the JAK2/STAT3 signalling pathway. Mol Immunol 2018; 101:221-228. [DOI: 10.1016/j.molimm.2018.05.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022]
|
10
|
Sasaki KI, Fukumoto Y. Pretreatment of Endothelial Progenitor Cells for Effective Cell Therapy. Circ J 2018; 82:2248-2249. [PMID: 30033949 DOI: 10.1253/circj.cj-18-0768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ken-Ichiro Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| |
Collapse
|
11
|
Sasaki KI, Fukumoto Y. Mesoangioblasts - A Newcomer in Cell-Based Treatment Strategy for Cardiovascular Disease? Circ J 2018; 82:1260-1261. [PMID: 29459536 DOI: 10.1253/circj.cj-18-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ken-Ichiro Sasaki
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| | - Yoshihiro Fukumoto
- Division of Cardiovascular Medicine, Department of Internal Medicine, Kurume University School of Medicine
| |
Collapse
|
12
|
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW, Carmeliet P. Endothelial Cell Metabolism. Physiol Rev 2018; 98:3-58. [PMID: 29167330 PMCID: PMC5866357 DOI: 10.1152/physrev.00001.2017] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 02/06/2023] Open
Abstract
Endothelial cells (ECs) are more than inert blood vessel lining material. Instead, they are active players in the formation of new blood vessels (angiogenesis) both in health and (life-threatening) diseases. Recently, a new concept arose by which EC metabolism drives angiogenesis in parallel to well-established angiogenic growth factors (e.g., vascular endothelial growth factor). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3-driven glycolysis generates energy to sustain competitive behavior of the ECs at the tip of a growing vessel sprout, whereas carnitine palmitoyltransferase 1a-controlled fatty acid oxidation regulates nucleotide synthesis and proliferation of ECs in the stalk of the sprout. To maintain vascular homeostasis, ECs rely on an intricate metabolic wiring characterized by intracellular compartmentalization, use metabolites for epigenetic regulation of EC subtype differentiation, crosstalk through metabolite release with other cell types, and exhibit EC subtype-specific metabolic traits. Importantly, maladaptation of EC metabolism contributes to vascular disorders, through EC dysfunction or excess angiogenesis, and presents new opportunities for anti-angiogenic strategies. Here we provide a comprehensive overview of established as well as newly uncovered aspects of EC metabolism.
Collapse
Affiliation(s)
- Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Pauline de Zeeuw
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium; and Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
13
|
Zhang R, Xie X, Yu Q, Feng H, Wang M, Li Y, Liu Y. Constitutive Expression of Adiponectin in Endothelial Progenitor Cells Protects a Rat Model of Cerebral Ischemia. Neural Plast 2017; 2017:6809745. [PMID: 29201467 PMCID: PMC5671740 DOI: 10.1155/2017/6809745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/15/2017] [Indexed: 02/05/2023] Open
Abstract
Endothelial progenitor cells (EPCs), as precursors to endothelial cells, play a significant part in the process of endogenous blood vessel repair and maintenance of endothelial integrity. Adiponectin (APN) is an adipocyte-specific adipocytokine. In this study, we aim to test whether we transplant a combined graft of EPCs transfected with the adiponectin gene into a rat model of cerebral ischemia could improve functional recovery after middle cerebral artery occlusion (MCAO). Sprague-Dawley (SD) rats were randomly divided into a MCAO control group, a MCAO EPC treatment group, and a MCAO LV-APN-EPC treatment group. A focal cerebral ischemia and reperfusion model was induced by the intraluminal suture method. After 2 h of reperfusion, EPCs were transplanted by injection through the tail vein. A rotarod test was conducted to assess behavioral function before MCAO and on days 1, 7, and 14 after MCAO. After 14 d, TTC staining, CD31 immunofluorescence, and TUNEL staining were used to evaluate infarct volume, microvessel density, and cell apoptosis. Results revealed that behavioral function, infarct area percentage, microvessel density, and cell apoptosis rates were more favorable in the LV-APN-EPC treatment group than in the EPC treatment group. These data suggested that gene-modified cell therapy may be a useful approach for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Renwei Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiaorui Xie
- Department of Neurology, Xiangyang Central Hospital, Xiangyang 441000, China
| | - Qing Yu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hongliang Feng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Meiyao Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yan Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
14
|
Zhang L, Wu HW, Yuan W, Zheng JW. Estrogen-mediated hemangioma-derived stem cells through estrogen receptor-α for infantile hemangioma. Cancer Manag Res 2017; 9:279-286. [PMID: 28744158 PMCID: PMC5511019 DOI: 10.2147/cmar.s138687] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Infantile hemangiomas (IHs) are the most common benign vascular tumor of infancy. They occur more frequently in female infants. The cause of hemangioma is currently unknown; however, current studies suggested the importance of estrogen (E2) signaling in hemangioma proliferation. Methods Hemangioma-derived stem cells (HemSCs) were cultured with estrogen for 48–72 h; the cell viability and proliferation were evaluated with the messenger RNA (mRNA) and protein expression levels of fibroblast growth factor 2 (FGF2), vascular endothelial growth factor-A (VEGF-A) and estrogen receptor-α (ER-α), by application of several in vitro assays, such as methyl thiazolyl tetrazolium (MTT), reverse transcriptase–polymerase chain reaction (RT-PCR), real-time PCR, enzyme-linked immunosorbent assay (ELISA) and Western blotting. Also, the cell population’s response to external estrogen was investigated by in vivo experiments. HemSCs and human umbilical vein endothelial cells (HUVECs) were mixed and injected subcutaneously into 20 flank of BALB/c-nu mice, which were randomly divided into 5 groups based on different E2 treatment doses (0, 0.01, 0.1 and 1 mg, respectively), 0.1 mg dimethyl sulfoxide (DMSO) as control. Each group of mice were treated intramuscularly every week, then 2 and 4 weeks later, the subcutaneous implants were harvested and evaluated the tumor tissues with microvessel density (MVD) assay and immunohistochemistry. Results The study demonstrated that application of E2 increased the expression of FGF2, VEGF-A, and ER-α in HemSCs with the optimal concentration from 10−9 to 10−5 M. Two-week treatment of E2 promoted expression of VEGF-A and FGF2 in HemSCs culture. Morphological, histological and immunohistological improvements were observed in vivo using murine IH model in which HemSCs and HUVECs were implanted into BALB/c-nu mice that were post-injected with E2. In the grafts, mean MVD was markedly increased. Conclusion The results suggested that E2 promotes angiogenesis via combination with ER-α to up-regulate the expression of VEGF-A in HemSCs, promoting proliferation of IHs. These findings provide critical insight into the potential mechanisms of E2 action on IHs.
Collapse
Affiliation(s)
- Ling Zhang
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute
| | - Hai Wei Wu
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jia Wei Zheng
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Center for Specialty Strategy Research of Shanghai Jiao Tong University China Hospital Development Institute
| |
Collapse
|
15
|
Huang Q, Yang Z, Zhou JP, Luo Y. HMGB1 induces endothelial progenitor cells apoptosis via RAGE-dependent PERK/eIF2α pathway. Mol Cell Biochem 2017; 431:67-74. [PMID: 28251435 DOI: 10.1007/s11010-017-2976-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/16/2017] [Indexed: 02/06/2023]
Abstract
Studies have demonstrated that the high-mobility group 1B protein (HMGB1) could regulate endothelial progenitor cell (EPC) homing, but the effect of HMGB1 on EPC apoptosis and associated mechanisms are still unclear. The aim of this study was to investigate the effects of HMGB1 on EPC apoptosis and the possible involvement of the endoplasmic reticulum (ER) stress pathway. EPC apoptosis was determined by flow cytometry. The expressions of PERK, eIF2α, and CHOP were detected by western blotting. Additionally, the effects of PERK shRNA on the biological behaviors of EPCs were assessed. Our results showed that incubation of EPCs with HMGB1 (0.1-1 μg/ml) for 12-48 h induced apoptosis as well as activated ER stress transducers, as assessed by up-regulating PERK protein expression and eIF2α phosphorylation in a dose or time-dependent manner. Moreover, HMGB1-mediated EPC apoptosis and CHOP expression were dramatically suppressed by PERK shRNA or a specific eIF2α inhibitor (salubrinal). Importantly, a blocking antibody specifically targeted against RAGE (anti-RAGE antibody) markedly inhibited HMGB1-induced EPC apoptosis and ER stress marker protein (PERK, eIF2α, and CHOP) expression levels. Our novel findings suggest that HMGB1 triggered EPC apoptosis in a manner of RAGE-mediated activation of the PERK/eIF2α pathway.
Collapse
Affiliation(s)
- Qun Huang
- Department of Child Health Care, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, Hunan, China
| | - Zhen Yang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510080, China
| | - Ji-Peng Zhou
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Xiangya Road 87#, Changsha, 410008, Hunan, China.
| | - Ying Luo
- Department of Geriatric Medicine, Xiangya Hospital, Central South University, Xiangya Road 87#, Changsha, 410008, Hunan, China.
| |
Collapse
|
16
|
Progenitor Cells for Arterial Repair: Incremental Advancements towards Therapeutic Reality. Stem Cells Int 2017; 2017:8270498. [PMID: 28232850 PMCID: PMC5292398 DOI: 10.1155/2017/8270498] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/18/2016] [Indexed: 02/08/2023] Open
Abstract
Coronary revascularization remains the standard treatment for obstructive coronary artery disease and can be accomplished by either percutaneous coronary intervention (PCI) or coronary artery bypass graft surgery. Considerable advances have rendered PCI the most common form of revascularization and improved clinical outcomes. However, numerous challenges to modern PCI remain, namely, in-stent restenosis and stent thrombosis, underscoring the importance of understanding the vessel wall response to injury to identify targets for intervention. Among recent promising discoveries, endothelial progenitor cells (EPCs) have garnered considerable interest given an increasing appreciation of their role in vascular homeostasis and their ability to promote vascular repair after stent placement. Circulating EPC numbers have been inversely correlated with cardiovascular risk, while administration of EPCs in humans has demonstrated improved clinical outcomes. Despite these encouraging results, however, advancing EPCs as a therapeutic modality has been hampered by a fundamental roadblock: what constitutes an EPC? We review current definitions and sources of EPCs as well as the proposed mechanisms of EPC-mediated vascular repair. Additionally, we discuss the current state of EPCs as therapeutic agents, focusing on endogenous augmentation and transplantation.
Collapse
|
17
|
Chen H, Xia R, Li Z, Zhang L, Xia C, Ai H, Yang Z, Guo Y. Mesenchymal Stem Cells Combined with Hepatocyte Growth Factor Therapy for Attenuating Ischaemic Myocardial Fibrosis: Assessment using Multimodal Molecular Imaging. Sci Rep 2016; 6:33700. [PMID: 27804974 PMCID: PMC5090211 DOI: 10.1038/srep33700] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/31/2016] [Indexed: 02/05/2023] Open
Abstract
Clinically, myocardial fibrosis is increasingly being recognized as a new therapeutic target for ischaemic heart diseases. The aim of this study was to investigate whether noninvasive multimodal molecular imaging could be used to dynamically assess whether the combination of bone marrow mesenchymal stem cells (BMSCs) and hepatocyte growth factor (HGF) therapy can synergistically attenuate myocardial fibrosis after myocardial infarction (MI). MI was induced in 28 rats by coronary ligation with subsequent injection of BMSCs/HGF, BMSCs, HGF, or saline into the border zone under echocardiography guidance. The therapeutic procedure and treatment effects were tracked and assessed using bioluminescence imaging (BLI) and cardiac magnetic resonance (MR) imaging. Four weeks after transplantation therapy, cardiac MR imaging demonstrated that BMSC/HGF-treated animals showed better ejection fractions (p < 0.001) and smaller scar sizes (p < 0.001) than those treated with BMSCs or HGF alone. Histopathological and immunohistochemical results showed less collagen deposition, increased microvessel densities and more regenerative cardiomyocytes in the BMSC/HGF-treated animals than in those receiving HGF or BMSCs alone (all p < 0.05). Multimodal molecular imaging allows a specific and timely strategy to be established for dynamically tracking treatment and noninvasively assessing the therapeutic effects. Under echocardiography guidance, intramyocardial injection of transfected HGF with BMSCs can enhance cell survival, improve cardiac function, stimulate angiogenesis, and reduce myocardial fibrosis in a post-MI rat model.
Collapse
Affiliation(s)
- Huizhu Chen
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, China
| | - Rui Xia
- Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Zhenlin Li
- Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Lizhi Zhang
- Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Chunchao Xia
- Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, China
| | - Zhigang Yang
- Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, China
| |
Collapse
|
18
|
Nunes MA, Pimentel F, Costa AS, Alves RC, Oliveira MBP. Cardioprotective properties of grape seed proanthocyanidins: An update. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.08.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Cao Z, Tong X, Xia W, Chen L, Zhang X, Yu B, Yang Z, Tao J. CXCR7/p-ERK-Signaling Is a Novel Target for Therapeutic Vasculogenesis in Patients with Coronary Artery Disease. PLoS One 2016; 11:e0161255. [PMID: 27612090 PMCID: PMC5017667 DOI: 10.1371/journal.pone.0161255] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
Coronary artery disease (CAD) is characterized by insufficient vasculogenic response to ischemia, which is typically accompanied by dysfunction of endothelial outgrowth cells (EOCs). CXC chemokine receptor 7 (CXCR7) is a key modulator of the neovascularization of EOCs to perfusion defect area. However, the mechanism underlying the role of EOCs in CAD-related abnormal vasculogenesis is still not clear. Here, we investigated the alteration of EOCs-related vasculogenic capacity in patients with CAD and its potential mechanism. Compared with EOCs isolated from healthy subjects, EOCs from CAD patients showed an impaired vasculogenic function in vitro. CXCR7 expression of EOCs from CAD patients was downregulated. Meanwhile, the phosphorylation of extracellular signal-regulated kinase (ERK), downstream of CXCR7 signaling, was also reduced. CXCR7 expression introduced by adenovirus increased the phosphorylation of ERK, which was parallel to improved function of EOCs. The enhanced adhesion and vasculogenesis of EOCs can be blocked by short interfering RNA (siRNA) against CXCR7 and ERK inhibitor PD098059. Therefore, our study demonstrates that the upregulation of CXCR7 signaling contributes to increased vasculogenic capacity of EOCs from CAD patients, indicating that CXCR7 signaling may be a novel therapeutic vasculogenic target for CAD.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Hubei, China
| | - Xinzhu Tong
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, Hubei, China
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wenhao Xia
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Long Chen
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoyu Zhang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingbo Yu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhen Yang
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jun Tao
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
20
|
Hsia K, Yao CL, Chen WM, Chen JH, Lee H, Lu JH. Scaffolds and Cell-Based Tissue Engineering for Blood Vessel Therapy. Cells Tissues Organs 2016; 202:281-295. [PMID: 27548610 DOI: 10.1159/000448169] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2016] [Indexed: 11/19/2022] Open
Abstract
The increasing morbidity of cardiovascular diseases in modern society has made it crucial to develop a small-caliber blood vessel. In the absence of appropriate autologous vascular grafts, an alternative prosthesis must be constructed for cardiovascular disease patients. The aim of this article is to describe the advances in making cell-seeded cardiovascular prostheses. It also discusses the combinations of types of scaffolds and cells, especially autologous stem cells, which are suitable for application in tissue-engineered vessels with the favorable properties of mechanical strength, antithrombogenicity, biocompliance, anti-inflammation, fatigue resistance and long-term durability. This article highlights the advancements in cellular tissue-engineered vessels in recent years.
Collapse
|
21
|
DiMuzio P, Fischer L, McIlhenny S, DiMatteo C, Golesorhki N, Grabo D, Tarola N, Mericli A, Shapiro I, Tulenko T. Development of a Tissue-Engineered Bypass Graft Seeded with Stem Cells. Vascular 2016; 14:338-42. [PMID: 17150154 DOI: 10.2310/6670.2006.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gold standard conduit for bypass of diseased small-diameter arteries remains autologous vascular tissue. In the absence of such tissue, patients are offered bypass with prosthetic material, with far less durable results. Vascular tissue engineering, the creation of a vascular conduit by seeding a tubular scaffold with various cells, may offer an alternative approach to this difficult situation. Herein we review some of the significant challenges that remain in designing an ideal vascular conduit and outline potential solutions offered by a graft created by seeding natural vascular tissue (decellularized vein allograft) with readily available autologous cells (adipose-derived stem cells).
Collapse
Affiliation(s)
- Paul DiMuzio
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hodgkinson CP, Bareja A, Gomez JA, Dzau VJ. Emerging Concepts in Paracrine Mechanisms in Regenerative Cardiovascular Medicine and Biology. Circ Res 2016; 118:95-107. [PMID: 26837742 DOI: 10.1161/circresaha.115.305373] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the past decade, substantial evidence supports the paradigm that stem cells exert their reparative and regenerative effects, in large part, through the release of biologically active molecules acting in a paracrine fashion on resident cells. The data suggest the existence of a tissue microenvironment where stem cell factors influence cell survival, inflammation, angiogenesis, repair, and regeneration in a temporal and spatial manner.
Collapse
Affiliation(s)
- Conrad P Hodgkinson
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - Akshay Bareja
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - José A Gomez
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC
| | - Victor J Dzau
- From the Department of Medicine, Mandel Center for Hypertension Research and Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC.
| |
Collapse
|
23
|
Chang TT, Wu TC, Huang PH, Chen JS, Lin LY, Lin SJ, Chen JW. Aliskiren directly improves endothelial progenitor cell function from Type II diabetic patients. Eur J Clin Invest 2016; 46:544-54. [PMID: 27062013 DOI: 10.1111/eci.12632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 04/08/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Endothelial progenitor cell (EPC) functions are impaired in the presence of diabetes mellitus. Aliskiren is a direct renin inhibitor, which is expected to modify proangiogenic cells. This study aimed to investigate whether and how aliskiren could improve the function of EPCs from patients with type II diabetes (T2DM). MATERIALS AND METHODS Endothelial progenitor cells fibronectin adhesion assay, chamber assay and in vitro tube formation assay were used to estimate the degree of EPC adhesion, migration and tube formation abilities. EPC protein and mRNA expressions were evaluated by Western blot and quantitative RT-PCR, respectively. EPC vascular endothelial growth factor (VEGF) and (pro)renin receptor ((P)RR) expression was knocked down by VEGF and (P)RR siRNA. RESULTS Aliskiren (0·1 or 10 μM) dose-dependently improved functions and increased both VEGF and stromal cell-derived factor-1α (SDF-1α) expression of EPCs from patients with T2DM or EPCs from healthy volunteers and treated with high glucose. Transfection with VEGF siRNA significantly reduced the aliskiren-induced SDF-1α expression. Furthermore, (P)RR siRNA transfection impaired the aliskiren-induced VEGF and SDF-1 expression. CONCLUSIONS The results show that aliskiren improved EPC function from patients with T2DM in a dose-dependent manner probably via the (P)RR and VEGF/SDF-1α-related mechanisms.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Tao-Cheng Wu
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jia-Shiong Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Liang-Yu Lin
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jaw-Wen Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan.,Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
24
|
Tan H, Song Y, Jin J, Zhao X, Chen J, Qing Z, Yu S, Huang L. vwF A3-GPI modification of EPCs accelerates reendothelialization of injured vessels via collagen targeting in mice. J Drug Target 2016; 24:744-51. [PMID: 26878652 DOI: 10.3109/1061186x.2016.1154563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hu Tan
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Yaoming Song
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Jun Jin
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Xiaohui Zhao
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Jianfei Chen
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Zhexue Qing
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Shiyong Yu
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| | - Lan Huang
- Institute of Cardiovascular Diseases of PLA, Xinqiao Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Altabas V, Altabas K, Kirigin L. Endothelial progenitor cells (EPCs) in ageing and age-related diseases: How currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes. Mech Ageing Dev 2016; 159:49-62. [PMID: 26919825 DOI: 10.1016/j.mad.2016.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/25/2016] [Accepted: 02/22/2016] [Indexed: 12/15/2022]
Abstract
Endothelial progenitor cells (EPCs) are mononuclear cells that circulate in the blood and are derived from different tissues, expressing cell surface markers that are similar to mature endothelial cells. The discovery of EPCs has lead to new insights in vascular repair and atherosclerosis and also a new theory for ageing. EPCs from the bone marrow and some other organs aid in vascular repair by migrating to distant vessels where they differentiate into mature endothelial cells and replace old and injured endothelial cells. The ability of EPCs to repair vascular damage depends on their number and functionality. Currently marketed drugs used in a variety of diseases can modulate these characteristics. In this review, the effect of currently available treatment options for cardiovascular and metabolic disorders on EPC biology will be discussed. The various EPC-based therapies that will be discussed include lipid-lowering agents, antihypertensive agents, antidiabetic drugs, phosphodiesteraze inhibitors, hormones, as well as EPC capturing stents.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| | - Karmela Altabas
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| | - Lora Kirigin
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| |
Collapse
|
26
|
Zhang ZK, Li J, Yan DX, Leung WN, Zhang BT. Icaritin Inhibits Collagen Degradation-Related Factors and Facilitates Collagen Accumulation in Atherosclerotic Lesions: A Potential Action for Plaque Stabilization. Int J Mol Sci 2016; 17:E169. [PMID: 26828485 PMCID: PMC4783903 DOI: 10.3390/ijms17020169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 01/29/2023] Open
Abstract
Most acute coronary syndromes result from rupture of vulnerable atherosclerotic plaques. The collagen content of plaques may critically affect plaque stability. This study tested whether Icaritin (ICT), an intestinal metabolite of Epimedium-derived flavonoids, could alter the collagen synthesis/degradation balance in atherosclerotic lesions. Rabbits were fed with an atherogenic diet for four months. Oral administration of ICT (10 mg·kg(-1)·day(-1)) was started after two months of an atherogenic diet and lasted for two months. The collagen degradation-related parameters, including macrophages accumulation, content and activity of interstitial collagenase-1 (MMP-1), and the collagen synthesis-related parameters, including amount and distribution of smooth muscle cells (SMC) and collagen mRNA/protein levels, were evaluated in the aorta. ICT reduced plasma lipid levels, inhibited macrophage accumulation, lowered MMP-1 mRNA and protein expression, and suppressed proteolytic activity of pro-MMP-1 and MMP-1 in the aorta. ICT changed the distribution of the SMCs towards the fibrous cap of lesions without increasing the amount of SMCs. Higher collagen protein content in lesions and aorta homogenates was observed with ICT treatment compared with the atherogenic diet only, without altered collagen mRNA level. These results suggest that ICT could inhibit the collagen degradation-related factors and facilitate collagen accumulation in atherosclerotic lesions, indicating a new potential of ICT in atherosclerotic plaques.
Collapse
Affiliation(s)
- Zong-Kang Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Jie Li
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - De-Xin Yan
- Shanghai Clinical Center of Cardiovascular and Cerebrovascular Diseases in Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China.
| | - Wing-Nang Leung
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| | - Bao-Ting Zhang
- School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
27
|
Wilson HK, Canfield SG, Shusta EV, Palecek SP. Concise review: tissue-specific microvascular endothelial cells derived from human pluripotent stem cells. Stem Cells 2015; 32:3037-45. [PMID: 25070152 DOI: 10.1002/stem.1797] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/22/2014] [Indexed: 01/06/2023]
Abstract
Accumulating evidence suggests that endothelial cells (ECs) display significant heterogeneity across tissue types, playing an important role in tissue regeneration and homeostasis. Recent work demonstrating the derivation of tissue-specific microvascular endothelial cells (TS-MVECs) from human pluripotent stem cells (hPSCs) has ignited the potential to generate tissue-specific models which may be applied to regenerative medicine and in vitro modeling applications. Here, we review techniques by which hPSC-derived TS-MVECs have been made to date and discuss how current hPSC-EC differentiation protocols may be directed toward tissue-specific fates. We begin by discussing the nature of EC tissue specificity in vivo and review general hPSC-EC differentiation protocols generated over the last decade. Finally, we describe how specificity can be integrated into hPSC-EC protocols to generate hPSC-derived TS-MVECs in vitro, including EC and parenchymal cell coculture, directed differentiation, and direct reprogramming strategies.
Collapse
Affiliation(s)
- Hannah K Wilson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
28
|
Cuadrado-Godia E, Regueiro A, Núñez J, Díaz-Ricard M, Novella S, Oliveras A, Valverde MA, Marrugat J, Ois A, Giralt-Steinhauer E, Sanchís J, Escolar G, Hermenegildo C, Heras M, Roquer J. Endothelial Progenitor Cells Predict Cardiovascular Events after Atherothrombotic Stroke and Acute Myocardial Infarction. A PROCELL Substudy. PLoS One 2015; 10:e0132415. [PMID: 26332322 PMCID: PMC4557832 DOI: 10.1371/journal.pone.0132415] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/13/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction The aim of this study was to determine prognostic factors for the risk of new vascular events during the first 6 months after acute myocardial infarction (AMI) or atherothrombotic stroke (AS). We were interested in the prognostic role of endothelial progenitor cells (EPC) and circulating endothelial cells (CEC) Methods Between February 2009 and July 2012, 100 AMI and 50 AS patients were consecutively studied in three Spanish centres. Patients with previously documented coronary artery disease or ischemic strokes were excluded. Samples were collected within 24h of onset of symptoms. EPC and CEC were studied using flow cytometry and categorized by quartiles. Patients were followed for up to 6 months. NVE was defined as new acute coronary syndrome, transient ischemic attack (TIA), stroke, or any hospitalization or death from cardiovascular causes. The variables included in the analysis included: vascular risk factors, carotid intima-media thickness (IMT), atherosclerotic burden and basal EPC and CEC count. Multivariate survival analysis was performed using Cox regression analysis. Results During follow-up, 19 patients (12.66%) had a new vascular event (5 strokes; 3 TIAs; 4 AMI; 6 hospitalizations; 1 death). Vascular events were associated with age (P = 0.039), carotid IMT≥0.9 (P = 0.044), and EPC count (P = 0.041) in the univariate analysis. Multivariate Cox regression analysis showed an independent association with EPC in the lowest quartile (HR: 10.33, 95%CI (1.22–87.34), P = 0.032] and IMT≥0.9 [HR: 4.12, 95%CI (1.21–13.95), P = 0.023]. Conclusions Basal EPC and IMT≥0.9 can predict future vascular events in patients with AMI and AS, but CEC count does not affect cardiovascular risk.
Collapse
Affiliation(s)
- Elisa Cuadrado-Godia
- Department of Neurology, Neurovascular Research Group, IMIM-Hospital del Mar (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
- * E-mail:
| | - Ander Regueiro
- Cardiology Department, Thorax Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Julio Núñez
- Cardiology Department, Hospital Clínico Universitario, Valencia.School of Medicine.Universitat de València, Valencia, Spain
| | - Maribel Díaz-Ricard
- Hemotherapy-Hemostasis Department, Biomedical Diagnostics Center, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Susana Novella
- Valencia INCLIVA Biomedical Research Institute, Hospital Clínico, Valencia; Department of Physiology, Universitat de València, València, Spain
| | - Anna Oliveras
- Nephrology Department, Hospital del Mar. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel A. Valverde
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jaume Marrugat
- Epidemiology and Cardiovascular Genetics Group. IMIM, Barcelona, Spain
| | - Angel Ois
- Department of Neurology, Neurovascular Research Group, IMIM-Hospital del Mar (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Eva Giralt-Steinhauer
- Department of Neurology, Neurovascular Research Group, IMIM-Hospital del Mar (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| | - Juan Sanchís
- Cardiology Department, Hospital Clínico Universitario, Valencia.School of Medicine.Universitat de València, Valencia, Spain
| | - Ginès Escolar
- Hemotherapy-Hemostasis Department, Biomedical Diagnostics Center, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Carlos Hermenegildo
- Valencia INCLIVA Biomedical Research Institute, Hospital Clínico, Valencia; Department of Physiology, Universitat de València, València, Spain
| | - Magda Heras
- Cardiology Department, Thorax Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Jaume Roquer
- Department of Neurology, Neurovascular Research Group, IMIM-Hospital del Mar (Institut Hospital del Mar d'Investigacions Mèdiques), Universitat Autònoma de Barcelona/DCEXS-Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
29
|
Xiao HB, Liu ZK, Lu XY, Deng CN, Luo ZF. Icariin regulates PRMT/ADMA/DDAH pathway to improve endothelial function. Pharmacol Rep 2015; 67:1147-54. [PMID: 26481534 DOI: 10.1016/j.pharep.2015.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND Oxidative stress may affect PRMT/ADMA/DDAH (protein arginine methyltransferases/asymmetric dimethylarginine/dimethylarginine dimethylaminohydrolase) pathway to impair endothelial dysfunction. The present study was carried out to test the effect of icariin on endothelial function and the mechanisms responsible for this. METHODS Eighty mice at 12 weeks of age were separated randomly into four groups (n = 20): C57BL/6J control, untreated apolipoprotein E-deficient (ApoE(-/-)), two groups of icariin-treated (10 or 30 mg/kg body wt/day, intragastrically) ApoE(-/-). Primary human umbilical vein endothelial cells (HUVECs) were randomly divided into 7 groups: control group, vehicle of icariin (10 μmol/L) group, icariin (10 μmol/L) group, lysophosphatidylcholine (LPC) (10 μg/mL) group, LPC plus icariin (1 μmol/L) group, LPC plus icariin (3 μmol/L) group, and LPC plus icariin (10 μmol/L) group. RESULTS In ApoE(-/-) mice and primary HUVECs, icariin treatment decreased reactive oxygen species production, PRMT I expression, ADMA level, half-maximum effective concentration of ApoE(-/-) mice aortic rings. Icariin increased DDAH II expression, DDAH activity, maximal relaxation value and endothelium-dependent vasorelaxation in aortic rings from ApoE(-/-) mice (p < 0.05 or p < 0.01). CONCLUSIONS The present results suggest that icariin regulates PRMT/ADMA/DDAH pathway to improve endothelial function.
Collapse
Affiliation(s)
- Hong-Bo Xiao
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.
| | - Zi-Kui Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Xiang-Yang Lu
- Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China
| | | | - Zhi-Feng Luo
- Department of Basic Medicine, Xiangnan University, Chenzhou, China
| |
Collapse
|
30
|
Winkelmayer WC, Chang TI, Mitani AA, Wilhelm-Leen ER, Ding V, Chertow GM, Brookhart MA, Goldstein BA. Longer-term outcomes of darbepoetin alfa versus epoetin alfa in patients with ESRD initiating hemodialysis: a quasi-experimental cohort study. Am J Kidney Dis 2015; 66:106-13. [PMID: 25943715 DOI: 10.1053/j.ajkd.2015.02.339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adequately powered studies directly comparing hard clinical outcomes of darbepoetin alfa (DPO) versus epoetin alfa (EPO) in patients undergoing dialysis are lacking. STUDY DESIGN Observational, registry-based, retrospective cohort study; we mimicked a cluster-randomized trial by comparing mortality and cardiovascular events in US patients initiating hemodialysis therapy in facilities (almost) exclusively using DPO versus EPO. SETTING & PARTICIPANTS Nonchain US hemodialysis facilities; each facility switching from EPO to DPO (2003-2010) was matched for location, profit status, and facility type with one EPO facility. Patients subsequently initiating hemodialysis therapy in these facilities were assigned their facility-level exposure. INTERVENTION DPO versus EPO. OUTCOMES All-cause mortality, cardiovascular mortality; composite of cardiovascular death, nonfatal myocardial infarction (MI), and nonfatal stroke. MEASUREMENTS Unadjusted and adjusted HRs from Cox proportional hazards regression models. RESULTS Of 508 dialysis facilities that switched to DPO, 492 were matched with a similar EPO facility; 19,932 (DPO: 9,465 [47.5%]; EPO: 10,467 [52.5%]) incident hemodialysis patients were followed up for 21,918 person-years during which 5,550 deaths occurred. Almost all baseline characteristics were tightly balanced. The demographics-adjusted mortality HR for DPO (vs EPO) was 1.06 (95% CI, 1.00-1.13) and was materially unchanged after adjustment for all other baseline characteristics (HR, 1.05; 95% CI, 0.99-1.12). Cardiovascular mortality did not differ between groups (HR, 1.05; 95% CI, 0.94-1.16). Nonfatal outcomes were evaluated among 9,455 patients with fee-for-service Medicare: 4,542 (48.0%) in DPO and 4,913 (52.0%) in EPO facilities. During 10,457 and 10,363 person-years, 248 and 372 events were recorded, respectively, for strokes and MIs. We found no differences in adjusted stroke or MI rates or their composite with cardiovascular death (HR, 1.10; 95% CI, 0.96-1.25). LIMITATIONS Nonrandom treatment assignment, potential residual confounding. CONCLUSIONS In incident hemodialysis patients, mortality and cardiovascular event rates did not differ between patients treated at facilities predominantly using DPO versus EPO.
Collapse
Affiliation(s)
- Wolfgang C Winkelmayer
- Section of Nephrology, Baylor College of Medicine, Houston, TX; Division of Nephrology, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA.
| | - Tara I Chang
- Division of Nephrology, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA
| | - Aya A Mitani
- Division of General Medical Disciplines, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA
| | - Emilee R Wilhelm-Leen
- Division of Nephrology, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA
| | - Victoria Ding
- Division of General Medical Disciplines, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA
| | - Glenn M Chertow
- Division of Nephrology, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA
| | - M Alan Brookhart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | - Benjamin A Goldstein
- Division of General Medical Disciplines, Department of Medicine; Stanford University School of Medicine, Palo Alto, CA; Duke University School of Medicine, Durham, NC
| |
Collapse
|
31
|
Atkins GB, Orasanu G, Jain MK. Endothelial Cells. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
32
|
Deb A. Stem Cells. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
33
|
Ali-Hassan-Sayegh S, Mirhosseini SJ, Tahernejad M, Mahdavi P, Haddad F, Shahidzadeh A, Lotfaliani MR, Sedaghat-Hamedani F, Kayvanpour E, Weymann A, Sabashnikov A, Popov AF. Administration of erythropoietin in patients with myocardial infarction: does it make sense? An updated and comprehensive meta-analysis and systematic review. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2015; 16:179-89. [PMID: 25704158 DOI: 10.1016/j.carrev.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 12/29/2014] [Accepted: 01/14/2015] [Indexed: 01/14/2023]
Abstract
This systematic review with meta-analysis sought to determine protective effects of erythropoietin on clinical outcomes following percutaneous coronary intervention (PCI). Medline, Embase, Elsevier and Sciences online database as well as Google scholar literature were used for selecting appropriate studies with randomized controlled design. The effect sizes measured were odds ratio (OR) for categorical variables and weighted mean difference (WMD) with 95% confidence interval for calculating differences between mean values of duration of hospitalization in intervention and control groups. Values of P<0.1 for Q test or I(2)>50% indicated significant heterogeneity between the studies. The literature searches of all major databases retrieved 973 studies. After screening, a total of 15 trials that reported outcomes were identified. Pooled analysis was performed on left ventricular ejection fraction (WMD of -0.047; 95% CI: -0.912 to 0.819; P=0.9), left ventricular end diastolic volume (WMD of -0.363; 95% CI: -3.902 to 3.175; P=0.8), left ventricular end systolic volume (WMD of 0.346; 95% CI: -2.533 to 3.226; P=0.8), infarct size (WMD of -0.446; 95% CI: -2.352 to -1.460; P=0.6), stroke (OR of 2.1; 95% CI: 0.58 to 7.54; P=0.2), re-myocardial infarction (OR of 1.06; 95% CI: 0.52 to 2.185; P=0.8), heart failure (OR of 0.53; 95% CI: 0.259 to 1.105; P=0.09), mortality (OR of 0.56; 95% CI: 0.27 to 1.19; P=0.13), thrombosis (OR of 0.774; 95% CI: 0.41 to 1.45; P=0.4), major adverse cardiovascular events (OR of 0.926; 95% CI: 0.63 to 1.35; P=0.6). Short-term administration of EPO in patients with myocardial infarction (MI) undergoing PCI does not result in improvement in cardiac function, reduction of infarct size and all-cause mortality. Low dose EPO therapy may not be the choice of treatment for the patients with MI, while higher doses might be more effective.
Collapse
Affiliation(s)
| | | | - Mahbube Tahernejad
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parisa Mahdavi
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Haddad
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Azadeh Shahidzadeh
- Cardiovascular Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Elham Kayvanpour
- Department of Medicine III, University of Heidelberg, Heidelberg, Germany
| | - Alexander Weymann
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Anton Sabashnikov
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Aron-Frederik Popov
- Department of Cardiothoracic Transplantation and Mechanical Circulatory Support, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
34
|
Wilhelm-Leen ER, Winkelmayer WC. Mortality risk of darbepoetin alfa versus epoetin alfa in patients with CKD: systematic review and meta-analysis. Am J Kidney Dis 2015; 66:69-74. [PMID: 25636816 DOI: 10.1053/j.ajkd.2014.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/21/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epoetin alfa (EPO) and darbepoetin alfa (DPO) are erythropoiesis-stimulating agents that are widely and interchangeably used for the treatment of anemia in patients with advanced chronic kidney disease and end-stage renal disease. No study has specifically compared the risks of hard study outcomes between EPO and DPO, including mortality. STUDY DESIGN Systematic review of the literature and meta-analysis. SETTING & POPULATION Patients enrolled in randomized trials comparing EPO versus DPO for the treatment of anemia in adults with chronic kidney disease, including those requiring dialysis. SELECTION CRITERIA FOR STUDIES We conducted a systematic search of the literature (PubMed, CENTRAL, SCOPUS, and EMBASE, all years) and industry resources, using predefined search terms and data abstraction tools. We then summarized key characteristics and findings of these trials and performed a random-effects meta-analysis of trials with at least 3 months' duration to identify the summary OR of mortality between patients randomly assigned to DPO versus EPO. INTERVENTION DPO versus EPO. OUTCOME All-cause mortality. RESULTS We identified 9 trials that met the stated inclusion criteria. Overall, 2,024 patients were included in the meta-analysis, of whom 126 died during follow-up, which ranged from 20 to 52 weeks. We found no significant difference in mortality between patients randomly assigned to DPO versus EPO (OR, 1.33; 95% CI, 0.88-2.01). No treatment heterogeneity across studies was detected (Q statistic=4.60; P=0.8). LIMITATIONS Generalizability to nontrial populations is uncertain. CONCLUSIONS Few trials directly comparing DPO and EPO have been conducted and follow-up was limited. In aggregate, no effect of specific erythropoiesis-stimulating agent on mortality was identified, but the confidence limits were wide and remained compatible with considerable harm from DPO. Absent adequately powered randomized trials, observational postmarketing comparative effectiveness studies comparing these erythropoiesis-stimulating agents are required to better characterize the long-term safety profiles of these agents.
Collapse
Affiliation(s)
| | - Wolfgang C Winkelmayer
- Division of Nephrology, Stanford University School of Medicine, Palo Alto, CA; Section of Nephrology, Baylor College of Medicine, Houston, TX.
| |
Collapse
|
35
|
Plouffe BD, Murthy SK, Lewis LH. Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2015; 78:016601. [PMID: 25471081 PMCID: PMC4310825 DOI: 10.1088/0034-4885/78/1/016601] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Magnetic sorting using magnetic beads has become a routine methodology for the separation of key cell populations from biological suspensions. Due to the inherent ability of magnets to provide forces at a distance, magnetic cell manipulation is now a standardized process step in numerous processes in tissue engineering, medicine, and in fundamental biological research. Herein we review the current status of magnetic particles to enable isolation and separation of cells, with a strong focus on the fundamental governing physical phenomena, properties and syntheses of magnetic particles and on current applications of magnet-based cell separation in laboratory and clinical settings. We highlight the contribution of cell separation to biomedical research and medicine and detail modern cell-separation methods (both magnetic and non-magnetic). In addition to a review of the current state-of-the-art in magnet-based cell sorting, we discuss current challenges and available opportunities for further research, development and commercialization of magnetic particle-based cell-separation systems.
Collapse
Affiliation(s)
- Brian D Plouffe
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA. The Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
36
|
Altabas V. Diabetes, Endothelial Dysfunction, and Vascular Repair: What Should a Diabetologist Keep His Eye on? Int J Endocrinol 2015; 2015:848272. [PMID: 26089898 PMCID: PMC4452196 DOI: 10.1155/2015/848272] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 01/13/2015] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular complications are the most common complications of diabetes mellitus. A prominent attribute of diabetic cardiovascular complications is accelerated atherosclerosis, considered as a still incurable disease, at least at more advanced stages. The discovery of endothelial progenitor cells (EPCs), able to replace old and injured mature endothelial cells and capable of differentiating into healthy and functional endothelial cells, has offered the prospect of merging the traditional theories on the pathogenesis of atherosclerosis with evolving concepts of vascular biology. The literature supports the notion that EPC alterations are involved in the pathogenesis of vascular diseases in diabetics, but at present many questions remain unanswered. In this review the aspects linking endothelial progenitor cells to the altered vascular biology in diabetes mellitus are discussed.
Collapse
Affiliation(s)
- V. Altabas
- Department for Endocrinology, Diabetes and Metabolic Diseases “Mladen Sekso”, Clinic for Internal Medicine, University Hospital Center “Sestre Milosrdnice”, 10000 Zagreb, Croatia
- *V. Altabas:
| |
Collapse
|
37
|
Abstract
The incidence of stroke and myocardial infarction increases in aged patients and it is associated with an adverse outcome. Considering the aging population and the increasing incidence of cardiovascular disease, the prediction for population well-being and health economics is daunting. Accordingly, there is an unmet need to focus on fundamental processes underlying vascular aging. A better understanding of the pathways leading to arterial aging may contribute to design mechanism-based therapeutic approaches to prevent or attenuate features of vascular senescence. In the present review, we discuss advances in the pathophysiology of age-related vascular dysfunction including nitric oxide signalling, dysregulation of oxidant/inflammatory genes, epigenetic modifications and mechanisms of vascular calcification as well as insights into vascular repair. Such an overview highlights attractive molecular targets for the prevention of age-driven vascular disease.
Collapse
|
38
|
Li J, Zhang Q, Li D, An Y, Kutryk MBJ. Hydroxybutyl Chitosan Polymer-Mediated CD133 Antibody Coating of Metallic Stents to Reduce Restenosis in a Porcine Model of Atherosclerosis. J Cardiovasc Pharmacol Ther 2014; 20:322-9. [PMID: 25412893 DOI: 10.1177/1074248414558518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/07/2014] [Indexed: 12/11/2022]
Abstract
Antibody-coated stents to capture circulating endothelial progenitor cells (EPCs) for re-endothelialization appear to be a novel therapeutic option for the treatment of atherosclerotic disease. Hydroxybutyl chitosan (HBC), a linear polysaccharide made from shrimps and other crustacean shells, is biocompatible, nontoxic, and hydrophilic, making it ideal for biomedical applications. In this study, HBC was explored for the immobilization of anti-CD133 antibodies. We demonstrated that CD133 antibodies mediated by HBC were successfully coated on cobalt-chromium alloy discs and metal stents. The coating was homogeneous and smooth as shown by electronic microscopy analysis. Balloon expansion of coated stents did not cause cracking or peeling. The HBC discs promoted CD133+ EPCs and human umbilical vein endothelial cell growth in vitro. The CD133 antibody-coated but not bare discs bound CD133+ EPCs in vitro. Implantation of CD133 antibody-coated stents significantly inhibited intimal hyperplasia and reduced restenosis compared with implantation of bare stents in a porcine model of atherosclerosis. These findings suggest HBC is a valuable anchoring agent that can be applied for bioactive coating of stents and that CD133 antibody-coated stents might be a potential therapeutic alternative for the treatment of atherosclerotic disease.
Collapse
Affiliation(s)
- Jian Li
- Department of Cardiology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Qiuwang Zhang
- Division of Cardiology, Keenan Research Center for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Canada
| | - Dan Li
- Department of Cardiology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Yi An
- Department of Cardiology, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, China
| | - Michael B J Kutryk
- Division of Cardiology, Keenan Research Center for Biomedical Science at the Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Canada
| |
Collapse
|
39
|
The effects of endothelial progenitor cells on rat atherosclerosis. Biotechnol Appl Biochem 2014; 62:186-92. [DOI: 10.1002/bab.1254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
|
40
|
Shimada K, Uzui H, Ueda T, Lee JD, Kishimoto C. N-Acetylcysteine Ameliorates Experimental Autoimmune Myocarditis in Rats via Nitric Oxide. J Cardiovasc Pharmacol Ther 2014; 20:203-10. [PMID: 25147347 DOI: 10.1177/1074248414547574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Oxidative stress may play an important role in the development of myocarditis. We investigated the effects of N-acetylcysteine (NAC), a potent antioxidant, on experimental autoimmune myocarditis (EAM) in rats. METHODS AND RESULTS A rat model of porcine myosin-induced EAM was used. After the immunization with myosin, NAC (20 mg/kg/d) or saline was injected intraperitoneally on days 1 to 21. Additional myosin-immunized rats treated with NAC were orally given 25 mg/kg/d of N(G)-nitro-l-arginine methylester (l-NAME), an inhibitor of nitric oxide (NO) synthase, and N(G)-nitro-d-arginine methylester (d-NAME), an inactive enantiomer. The NAC treatment improved cardiac pathology associated with reduced superoxide production. In the EAM rats treated with NAC associated with oral l-NAME, but not with oral d-NAME, the severity of myocarditis was not reduced. Expression of intercellular adhesion molecule 1 was reduced by NAC treatment. Myocardial c-kit(+) cells were demonstrated only in the NAC-treated group. Hemodynamic study showed that the increased left ventricular mass produced by myocardial inflammation tended to be reduced by NAC treatment. CONCLUSION Treatment with NAC ameliorated myocardial injury via NO system in a rat model of myocarditis.
Collapse
Affiliation(s)
- Kana Shimada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyasu Uzui
- First Department of Internal Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Takanori Ueda
- First Department of Internal Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Jong-Dae Lee
- First Department of Internal Medicine, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Chiharu Kishimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Lee PSS, Poh KK. Endothelial progenitor cells in cardiovascular diseases. World J Stem Cells 2014; 6:355-366. [PMID: 25126384 PMCID: PMC4131276 DOI: 10.4252/wjsc.v6.i3.355] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 04/03/2014] [Indexed: 02/06/2023] Open
Abstract
Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells (EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vasculogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk factors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardiovascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evaluate the challenges facing EPC research and how these may be overcome.
Collapse
|
42
|
Wang Y, Peng W, Liu X, Zhu M, Sun T, Peng Q, Zeng Y, Feng B, Zhi W, Weng J, Wang J. Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/N-succinyl chitosan hydrogels and synergistic effects of RGD modification and low-intensity pulsed ultrasound. Acta Biomater 2014; 10:2518-2528. [PMID: 24394634 DOI: 10.1016/j.actbio.2013.12.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/05/2013] [Accepted: 12/26/2013] [Indexed: 12/15/2022]
Abstract
The level of formation of new bone and vascularization in bone tissue engineering scaffold implants is considered as a critical factor for clinical application. In this study, an approach using an RGD-grafted oxidized sodium alginate/N-succinyl chitosan (RGD-OSA/NSC) hydrogel as a scaffold and low-intensity pulsed ultrasound (LIPUS) as mechanical stimulation was proposed to achieve a high level of formation of new bone and vascularization. An in vitro study of endothelial and osteogenic differentiations of human-bone-marrow-derived mesenchymal stem cells (hMSCs) was conducted to evaluate it. The results showed that RGD-OSA/NSC composite hydrogels presented good biological properties in attachment, proliferation and differentiation of cells. The MTT cell viability assay showed that the total number of cells increased more significantly in the LIPUS-stimulated groups with RGD than that in the control ones; similar results were obtained for alkaline phosphatase activity/staining and mineralized nodule formation assay of osteogenic induction and immunohistochemical test of endothelial induction. The positive synergistic effect of LIPUS and RGD on the enhancement of proliferation and differentiation of hMSCs was observed. These findings suggest that the hybrid use of RGD modification and LIPUS might provide one approach to achieve a high level of formation of new bone and vascularization in bone tissue engineering scaffold implants.
Collapse
Affiliation(s)
- Yingying Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Wenzhen Peng
- Department of Biochemistry and Molecular Biology, College of Basic and Forensic Medicine, Sichuan University, Chengdu 610041, People's Republic of China
| | - Xia Liu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Minghua Zhu
- Sichuan Centre for Disease Control and Prevention, Chengdu 610041, People's Republic of China
| | - Tao Sun
- Sichuan Centre for Disease Control and Prevention, Chengdu 610041, People's Republic of China
| | - Qiang Peng
- Sichuan Centre for Disease Control and Prevention, Chengdu 610041, People's Republic of China
| | - Yi Zeng
- Sichuan Centre for Disease Control and Prevention, Chengdu 610041, People's Republic of China
| | - Bo Feng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Wei Zhi
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, People's Republic of China.
| |
Collapse
|
43
|
Iohara K, Murakami M, Nakata K, Nakashima M. Age-dependent decline in dental pulp regeneration after pulpectomy in dogs. Exp Gerontol 2014; 52:39-45. [DOI: 10.1016/j.exger.2014.01.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 01/16/2014] [Indexed: 12/13/2022]
|
44
|
De Biase C, De Rosa R, Luciano R, De Luca S, Capuano E, Trimarco B, Galasso G. Effects of physical activity on endothelial progenitor cells (EPCs). Front Physiol 2014; 4:414. [PMID: 24550833 PMCID: PMC3909827 DOI: 10.3389/fphys.2013.00414] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/29/2013] [Indexed: 12/28/2022] Open
Abstract
Physical activity has a therapeutic role in cardiovascular disease (CVD), through its beneficial effects on endothelial function and cardiovascular system. Circulating endothelial progenitor cells (EPCs) are bone marrow (BM) derived cells that represent a novel therapeutic target in CVD patients, because of their ability to home to sites of ischemic injury and repair the damaged vessels. Several studies show that physical activity results in a significant increase in circulating EPCs, and, in particular, there are some evidence of the beneficial exercise-induced effects on EPCs activity in CVD settings, including coronary artery disease (CAD), heart failure (HF), and peripheral artery disease (PAD). The aim of this paper is to review the current evidence about the beneficial effects of physical exercise on endothelial function and EPCs levels and activity in both healthy subjects and patients with CVD.
Collapse
Affiliation(s)
- Chiara De Biase
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Roberta De Rosa
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Rossella Luciano
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Stefania De Luca
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Ernesto Capuano
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| | - Gennaro Galasso
- Department of Advanced Biomedical Sciences, "Federico II" University of Naples Naples, Italy
| |
Collapse
|
45
|
Cai X. Regulation of smooth muscle cells in development and vascular disease: current therapeutic strategies. Expert Rev Cardiovasc Ther 2014; 4:789-800. [PMID: 17173496 DOI: 10.1586/14779072.4.6.789] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vascular smooth muscle cells (SMCs) exhibit extensive phenotypic diversity and rapid growth during embryonic development, but maintain a quiescent, differentiated state in adult. The pathogenesis of vascular proliferative diseases involves the proliferation and migration of medial vascular SMCs into the vessel intima, possibly reinstating their embryonic gene expression programs. Multiple mitogenic stimuli induce vascular SMC proliferation through cell cycle progression. Therapeutic strategies targeting cell cycle progression and mitogenic stimuli have been developed and evaluated in animal models of atherosclerosis and vascular injury, and several clinical studies. Recent discoveries on the recruitment of vascular progenitor cells to the sites of vascular injury suggest new therapeutic potentials of progenitor cell-based therapies to accelerate re-endothelialization and prevent engraftment of SMC-lineage progenitor cells. Owing to the complex and multifactorial nature of SMC regulation, combinatorial antiproliferative approaches are likely to be used in the future in order to achieve maximal efficacy and reduce toxicity.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cellular Senescence
- Clinical Trials as Topic
- Disease Progression
- Drug Delivery Systems
- Gene Expression
- Genetic Therapy
- Humans
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/embryology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phenotype
- Stents
- Vascular Diseases/drug therapy
- Vascular Diseases/genetics
- Vascular Diseases/metabolism
- Vascular Diseases/pathology
Collapse
Affiliation(s)
- Xinjiang Cai
- Duke University Medical Center, Departments of Medicine (Cardiology) & Cell Biology, Durham, North Carolina 27710, USA.
| |
Collapse
|
46
|
Krautkrämer E, Zeier M. Old World hantaviruses: aspects of pathogenesis and clinical course of acute renal failure. Virus Res 2014; 187:59-64. [PMID: 24412712 DOI: 10.1016/j.virusres.2013.12.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/09/2013] [Accepted: 12/24/2013] [Indexed: 12/31/2022]
Abstract
Hantavirus-associated diseases represent emerging infections that are ranked in the highest priority group of communicable diseases for surveillance and epidemiological research. In the last years, several novel hantavirus species were described and the number of host reservoir species harboring hantaviruses is also increasing. Reports of cases with severe or atypical clinical courses become also more frequent. These facts raise more and more questions concerning host reservoir specificity, pathogenicity and molecular mechanism of pathogenesis. Hantavirus disease is characterized by vascular leakage due to increased capillary permeability. The infection manifests often in the lung (hantaviral cardiopulmonary syndrome; HCPS) or in the kidney (hemorrhagic fever with renal syndrome, HFRS). The underlying mechanisms of both syndromes are probably similar despite the difference in organ tropism. Characterization of hantaviral replication cycle and of patient-specific determinants will help to identify factors responsible for the clinical symptoms and course.
Collapse
Affiliation(s)
- Ellen Krautkrämer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
47
|
Arsov S, Graaff R, van Oeveren W, Stegmayr B, Sikole A, Rakhorst G, Smit AJ. Advanced glycation end-products and skin autofluorescence in end-stage renal disease: a review. Clin Chem Lab Med 2014; 52:11-20. [DOI: 10.1515/cclm-2012-0832] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/08/2013] [Indexed: 11/15/2022]
|
48
|
Kim AK, Kim MH, Kim BS, Kim DI. Long-term Angiogenesis Efficacy Using a Heparin-Conjugated Fibrin (HCF) Delivery System with HBM-MSCs. Int J Stem Cells 2013; 5:23-30. [PMID: 24298352 DOI: 10.15283/ijsc.2012.5.1.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Heparin-conjugated fibrin (HCF) is suitable for the release and localization of bFGF. We analyzed the effects of a bFGF delivery system using HCF with human bone marrow-derived mesenchymal stem cells (HBM- MSCs) in a dog ischemic limb model. METHODS AND RESULTS Animals were divided into HBM-MSCs, HBM-MSCs+HCF, bFGF-HCF, and HBM-MSCs+ bFGF-HCF groups. A total of 1×10(7) HBM-MSCs were injected per animal, and the amount of bFGF was 1 mg per dog. Ischemic muscles were harvested at eight weeks and six months after injection of cells. The HBM-MSCs+ bFGF-HCF group exhibited decreased proportions of capillaries and arterioles six months after transplantation. However, there were more cells positive for the angiogenic factors, VEGF and PDGF, in the eight-week specimens compared with those harvested six months after transplantation. CONCLUSIONS Our results demonstrated that a single injection of HBM-MSCs did not have significant long-term angiogenic effects; however, a bFGF delivery system using HCF exerted prolonged angiogenic effects when combined with HBM-MSCs.
Collapse
Affiliation(s)
- Ae-Kyeong Kim
- Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine
| | | | | | | |
Collapse
|
49
|
Mobilization of circulating endothelial progenitor cells correlates with the clinical course of hantavirus disease. J Virol 2013; 88:483-9. [PMID: 24155401 DOI: 10.1128/jvi.02063-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Infections with hemorrhagic fever viruses are characterized by increased permeability leading to capillary leakage. Hantavirus infection is associated with endothelial dysfunction, and the clinical course is related to the degree of vascular injury. Circulating endothelial progenitor cells (cEPCs) play a pivotal role in the repair of the damaged endothelium. Therefore, we analyzed the number of cEPCs and their mobilizing growth factors in patients suffering from hantavirus disease induced by infection with Puumala virus. The numbers of EPCs of 36 hantavirus-infected patients and age- and gender-matched healthy controls were analyzed by flow cytometry. Concentrations of cEPC-mobilizing growth factors in plasma were determined by enzyme-linked immunosorbent assay. Laboratory parameters were correlated with the number of cEPCs. In patients infected with hantavirus, the number of cEPCs was significantly higher than that in healthy controls. Levels of mobilizing cytokines were upregulated in patients, and the mobilization of cEPCs is paralleled with the normalization of clinical parameters. Moreover, higher levels of cEPCs correlated with higher serum albumin levels and platelet concentrations. Our data indicate that cEPCs may play a role in the repair of hantavirus-induced endothelial damage, thereby influencing the clinical course and the severity of symptoms.
Collapse
|
50
|
Liu X, Zhang GX, Zhang XY, Xia WH, Yang Z, Su C, Qiu YX, Xu SY, Zhan H, Tao J. Lacidipine improves endothelial repair capacity of endothelial progenitor cells from patients with essential hypertension. Int J Cardiol 2013; 168:3317-3326. [PMID: 23642821 DOI: 10.1016/j.ijcard.2013.04.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 02/08/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) play a critical role in maintaining the integrity of vascular endothelium following arterial injury. Lacidipine has a beneficial effect on endothelium of hypertensive patients, but limited data are available on EPCs-mediated endothelial protection. This study tests the hypothesis that lacidipine treatment can improve endothelial repair capacity of EPCs from hypertensive patients through increasing CXC chemokine receptor four (CXCR4) signaling. METHODS In vivo reendothelialization capacity of EPCs from hypertensive patients with or without in vitro lacidipine treatment was examined in a nude mouse model of carotid artery injury. Expression of CXCR4 and alteration in migration and adhesion functions of EPCs were evaluated. RESULTS Basal CXCR4 expression was markedly reduced in EPCs from hypertensive patients compared with normal subjects. In parallel, the phosphorylation of Janus kinase-2 (JAK-2) of EPCs, a CXCR4 downstream signaling, was also significantly decreased. Lacidipine promoted CXCR4/JAK-2 signaling expression of in vitro EPCs. Transplantation of EPCs pretreated with lacidipine significantly accelerated in vivo reendothelialization. The enhanced in vitro function and in vivo reendothelialization capacity of EPCs were inhibited by shRNA-mediated knockdown of CXCR4 expression or pretreatment with JAK-2 inhibitor AG490, respectively. In hypertensive patients, lacidipine treatment for 4 weeks also resulted in an upregulation of CXCR4/JAK-2 signaling of EPCs, which was associated with augmented EPCs-mediated reendothelialization and improved endothelial function. CONCLUSION Deterioration of CXCR4 signaling may lead to impaired EPCs-mediated reendothelialization of hypertensive patients. Lacidipine-modified EPCs via a partially CXCR4 signaling contribute to enhanced endothelial repair capacity in hypertension.
Collapse
Affiliation(s)
- Xing Liu
- Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China; Department of Cardiovascular Disease, The Jiangmen Central Hospital, Jiangmen 529030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|