1
|
D’Haese S, Deluyker D, Bito V. Acute Exposure to Glycated Proteins Impaired in the Endothelium-Dependent Aortic Relaxation: A Matter of Oxidative Stress. Int J Mol Sci 2022; 23:ijms232314916. [PMID: 36499244 PMCID: PMC9740119 DOI: 10.3390/ijms232314916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/03/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Chronically increased levels of high molecular weight advanced glycation end products (HMW-AGEs) are known to induce cardiovascular dysfunction. Whether an acute increase in HMW-AGE levels affects vascular function remains unknown. In this study, we examined whether acute exposure to HMW-AGEs disturbs aortic vasomotor function. Aortae were obtained from healthy male rats and were acutely pre-treated with HMW-AGEs in organ baths. Aortic relaxation responses to cumulative doses of acetylcholine (ACh), in the presence or absence of superoxide dismutase (SOD), were measured after precontraction with phenylephrine (PE). Furthermore, levels of 3-nitrotyrosine were evaluated on aortic paraffine sections. In our study, we show that acute exposure to HMW-AGEs significantly decreases the aortic relaxation response to ACh. SOD pre-treatment prevents acute HMW-AGEs-induced impairment by limiting superoxide formation. In conclusion, our data demonstrate that acute exposure to HMW-AGEs causes adverse vascular remodelling, characterised by disturbed vasomotor function due to increased oxidative stress. These results create opportunities for future research regarding the acute role of HMW-AGEs in cardiovascular dysfunction.
Collapse
|
2
|
Motevalian M, Joukar S, Esmaeili-Mahani S, Karimi A, Masoumi-Ardakani Y, Safari S. Interaction of high-intensity endurance exercise and nandrolone on cardiac remodeling: role of adipo-cardiac axis. Horm Mol Biol Clin Investig 2021; 43:63-70. [PMID: 34786896 DOI: 10.1515/hmbci-2021-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 11/02/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Given the cardiac pathological remodeling following to anabolic androgenic steroids (AASs) consumption, we examined the effect of chronic administration of nandrolone decanoate with high-intensity endurance exercise on the left ventricular hypertrophy index, levels of hydroxyproline, tumor necrosis factor-alpha (TNF-α), adiponectin (APN) and its receptors (AdipoR1 and AdipoR2) expression in rats' hearts. METHODS The male Wistar rats randomly divided to six groups included the control (CTL), exercise (Ex), nandrolone (Nan), vehicle (Arach), trained vehicle (Ex + Arach), and trained nandrolone (Ex + Nan) groups that were treated for eight weeks. RESULTS Nandrolone consumption significantly enhanced the hypertrophy index (p<0.05) and exercise intensified this effect. It also increased the level of cardiac hydroxyproline (p<0.001), however exercise completely masked this effect. The values of TNF-α protein and AdipoR1 protein significantly increased in trained nandrolone-treated (Ex + Nan) group in comparison with CTL group (p<0.05), however, did not show significant alteration in Nan or Ex groups. High-intensity endurance exercise significantly enhanced the AdipoR2 protein (p<0.05), but, co-administration of nandrolone with exercise prevented this effect. The mRNA expression of AdipoR1 significantly reduced in the animals that received nandrolone for eight weeks and exercise recovered this effect (p<0.001). CONCLUSIONS Despite an additive effect of high-intensity endurance exercise plus nandrolone on TNF-α level, their effects on hydroxyproline and APN receptors expression is incompatible in heart of rat. It is suggests a part of beneficial regulatory role of endurance exercise against nandrolone induced heart remodeling may apply through modulation of APN system.
Collapse
Affiliation(s)
- Manijeh Motevalian
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman, Kerman, Iran
| | - Abdollah Karimi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masoumi-Ardakani
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.,Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Sepideh Safari
- Department of Biology, Faculty of Sciences, ShahidBahonar University of Kerman, Kerman, Iran.,Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Dantas PS, Guzzoni V, Perez JD, Arita DY, Novaes PD, Marcondes FK, Casarini DE, Cunha TS. Nandrolone combined with strenuous resistance training impairs myocardial proteome profile of rats. Steroids 2021; 175:108916. [PMID: 34492258 DOI: 10.1016/j.steroids.2021.108916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022]
Abstract
We aimed to investigate the effects of high doses of nandrolone decanoate and resistance training (RT) on the proteomic profile of the left ventricle (LV) of rats, using a label-free quantitative approach. Male rats were randomized into four groups: untrained vehicle (UTV), trained vehicle (TV), untrained nandrolone (UTN), and trained nandrolone (TN). Rats were familiarized with the exercise training protocol (jump exercise) for one week. Jump-exercise was performed five days a week for 6 weeks, with 30 s of inter-set rest intervals. Nandrolone was administrated for 6 weeks (5 mg/kg, twice a week, via intramuscular). Systolic and diastolic arterial pressure and heart rate were measured 48 h post-training. LV was isolated and collagen content was measured. The expression of cardiac proteins was analyzed by ultra-efficiency liquid chromatography with mass spectrometry high / low collision energy (UPLC/MSE). Nandrolone and RT led to cardiac hypertrophy, even though high doses of nandrolone counteracted the RT-induced arterial pressures lowering. Nandrolone also affected the proteome profile negatively in LV of rats, including critical proteins related to biological processes (metabolism, oxidative stress, inflammation), structural function and membrane transporters. Our findings show physiological relevance since high doses of nandrolone induced detrimental effects on the proteome profile of heart tissue and hemodynamic parameters of rats. Furthermore, as nandrolone abuse has become increasingly common among recreational athletes and casual fitness enthusiasts, we consider that our findings have clinical relevance as well.
Collapse
Affiliation(s)
- Patrícia Sousa Dantas
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Vinicius Guzzoni
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, São Paulo, Brazil
| | - Juliana Dinéia Perez
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Danielle Yuri Arita
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Pedro Duarte Novaes
- Piracicaba Dental School, Department of Morphology, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Fernanda Klein Marcondes
- Piracicaba Dental School, Department of Physiological Sciences, University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Dulce Elena Casarini
- Federal University of São Paulo (UNIFESP), Department of Medicine, Nephrology Division, São Paulo, São Paulo, Brazil
| | - Tatiana Sousa Cunha
- Federal University of São Paulo (UNIFESP), Institute of Science and Technology, Department of Science and Technology, São José dos Campos, São Paulo, Brazil.
| |
Collapse
|
4
|
Seara FAC, Pereira-Junior PP, Silva-Almeida C, Dos-Santos RC, Souza RN, Costa CRM, Domingos AE, Barbosa RAQ, Ferraz AP, Machado AAN, Ceccato VM, Takiya CM, Ponte CG, Reis LC, Olivares EL, Nascimento JHM. Anabolic steroid excess promotes hydroelectrolytic and autonomic imbalance in adult male rats: Is it enough to alter blood pressure? Steroids 2020; 163:108711. [PMID: 32739291 DOI: 10.1016/j.steroids.2020.108711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 11/29/2022]
Abstract
AIM The present study investigated the effects of anabolic steroid (AS) excess on blood pressure regulation. METHODS Male Wistar rats were treated with nandrolone decanoate (AS) or vehicle (CTL) for 8 or 10 weeks. Saline (1.8%) and water intake were measured in metabolic cages. Urinary volume, osmolarity, Na+ and K+ concentrations, and plasma osmolarity were measured. The autonomic balance was estimated by heart rate variability at baseline or after icv injection of losartan. Cardiac function was assessed by echocardiography and ex vivo recordings. Myocardial collagen deposition was evaluated by Picrosirius-Red staining. Vascular reactivity and wall thickness were investigated in aortic sections. Blood pressure (BP) was assessed by tail-cuff plethysmography. Angiotensin II type I receptor (AT1R), renin, and mineralocorticoid receptor (MR) mRNA expression was measured in the kidneys and whole hypothalamus. RESULTS AS group exhibited decreased urinary volume and Na+ concentration, while urinary K+ concentration, plasma osmolarity, and renal AT1R and renin mRNA levels were increased compared to CTL (p < 0.05). Water intake was increased, and saline intake was decreased in the AS group (p < 0.01). AS group exhibited increased low-frequency/high-frequency-ratio, while it was decreased by icv injection of losartan (p < 0.05) compared to baseline. Neither cardiac function nor vascular reactivity/morphology was affected by AS excess (p > 0.05). Ultimately, BP levels were not altered by AS excess (p > 0.05). CONCLUSION AS excess promoted hydroelectrolytic and autonomic imbalance but did not alter vascular or cardiac function/morphology.
Collapse
Affiliation(s)
- Fernando A C Seara
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil; Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil.
| | - Pedro P Pereira-Junior
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Claudio Silva-Almeida
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil; Estácio de Sá University, Brazil
| | - Raoni C Dos-Santos
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil
| | - Raquel N Souza
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil
| | - César R M Costa
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil; Multicenter Postgraduate Program of Physiological Sciences, Brazilian Society of Physiology, Brazil
| | - Ainá E Domingos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Raiana A Q Barbosa
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Ana P Ferraz
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - André A N Machado
- Laboratory of Biochemistry and Gene Expression, University of Ceará, Brazil
| | - Vânia M Ceccato
- Laboratory of Biochemistry and Gene Expression, University of Ceará, Brazil
| | - Christina M Takiya
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| | - Cristiano G Ponte
- Federal Institute of Education, Science, and Technology of Rio de Janeiro, Brazil
| | - Luis C Reis
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil; Multicenter Postgraduate Program of Physiological Sciences, Brazilian Society of Physiology, Brazil
| | - Emerson L Olivares
- Department of Physiological Sciences, Institute of Biological and Health Sciences, Federal Rural University of Rio de Janeiro, Brazil; Multicenter Postgraduate Program of Physiological Sciences, Brazilian Society of Physiology, Brazil
| | - Jose H M Nascimento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Lipid Profile Changes Induced by Chronic Administration of Anabolic Androgenic Steroids and Taurine in Rats. ACTA ACUST UNITED AC 2019; 55:medicina55090540. [PMID: 31462007 PMCID: PMC6780624 DOI: 10.3390/medicina55090540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Anabolic androgenic steroids (AAS), used as a therapy in various diseases and abused in sports, are atherogenic in supraphysiological administration, altering the plasma lipid profile. Taurine, a conditionally-essential amino acid often used in dietary supplements, was acknowledged to delay the onset and progression of atherogenesis, and to mitigate hyperlipidemia. The aim of the present study was to verify if taurine could prevent the alterations induced by concomitant chronic administration of high doses of AAS nandrolone decanoate (DECA) in rats. Materials and Methods: Thirty-two male Wistar rats, assigned to 4 equal groups, were treated for 12 weeks either with DECA (A group), taurine (T group), both DECA and taurine (AT group) or vehicle (C group). Plasma triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), hepatic triglycerides (TGh) and liver non-esterified fatty acids (NEFA) were then determined. Results: DECA elevated TG level in A group vs. control (p = 0.01), an increase prevented by taurine association in AT group (p = 0.04). DECA decreased HDL-C in A group vs. control (p = 0.02), while taurine tended to increase it in AT group. DECA decreased TGh (p = 0.02) in A group vs. control. Taurine decreased TGh in T (p = 0.004) and AT (p < 0.001) groups vs. control and tended to lower NEFA (p = 0.08) in AT group vs. A group. Neither DECA, nor taurine influenced TC and LDL-C levels. Conclusions: Taurine partially prevented the occurrence of DECA negative effects on lipid profile, suggesting a therapeutic potential in several conditions associated with chronic high levels of plasma androgens, such as endocrine disorders or AAS-abuse.
Collapse
|
6
|
Guzzoni V, Briet L, Costa R, Souza RWA, Carani FR, Dal-Pai-Silva M, Silva KAS, Cunha TS, Marcondes FK. Intense resistance training induces pronounced metabolic stress and impairs hypertrophic response in hind-limb muscles of rats. Stress 2019; 22:377-386. [PMID: 30857457 DOI: 10.1080/10253890.2019.1573364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Skeletal muscle hypertrophy is an exercise-induced adaptation, particularly in resistance training (RT) programs that use large volumes and low loads. However, evidence regarding the role of rest intervals on metabolic stress and muscular adaptations is inconclusive. Thus, we aimed to investigate the effects of a strenuous RT model (jump-training) on skeletal muscle adaptations and metabolic stress, considering the scarce information about RT models for rats. We hypothesized that jump-training induces metabolic stress and influences negatively the growth of soleus (SOL) and extensor digitorum longus (EDL) muscles of rats. Male Wistar rats (aged 60 days) were randomly assigned to non-trained or trained groups (n = 8/group). Trained rats performed jump-training during 5 days a week for 1, 3, or 5 weeks with 30 s of inter-set rest intervals. Forty-eight hours after the experimental period, rats were euthanized and blood samples immediately drawn to measure creatine kinase activity, lactate and corticosterone concentrations. Muscle weight-to-body weight ratio (MW/BW), cross-sectional area (CSA) and myosin heavy chain (MHC) isoform expression were determined. Higher lactate levels occurred after 20 min of training in weeks 1 and 3. Corticosterone levels were higher after 5 weeks of training. Jump-training had negative effects on hypertrophy of types-I and II muscle fibers after 5 weeks of training, as evidenced by decreased CSA and reduced muscle weight. Our results demonstrated that pronounced metabolic stress and impairment of muscle growth might take place when variables of exercise training are not appropriately manipulated. Lay summary Resistance training (RT) has been used to increase muscle mass. In this regard, training variables (intensity, volume, and frequency) must be strictly controlled in order to evoke substantial muscular fitness. This study shows that rats submitted to 5 weeks of intensive resistance jump-training - high intensity, large volume, and short rest intervals - present high levels of blood corticosterone associated with negative effects on hypertrophy of types-I and II muscle fibers.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- a Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , Brazil
- b Department of Cellular and Molecular Biology , Federal University of Paraíba , João Pessoa , Brazil
| | - Larissa Briet
- c Institute of Biology , University of Campinas , Campinas , Brazil
| | - Rafaela Costa
- a Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , Brazil
| | - Rodrigo W A Souza
- d Department of Morphology, Institute of Biosciences , São Paulo State University , Botucatu , Brazil
| | - Fernanda R Carani
- d Department of Morphology, Institute of Biosciences , São Paulo State University , Botucatu , Brazil
| | - Maeli Dal-Pai-Silva
- d Department of Morphology, Institute of Biosciences , São Paulo State University , Botucatu , Brazil
| | - Kleiton A S Silva
- e Department of Medicine , University of Missouri School of Medicine , Columbia , MO, USA
| | - Tatiana S Cunha
- f Science and Technology Institute , Federal University of São Paulo , São José dos Campos , Brazil
| | - Fernanda K Marcondes
- a Department of Physiological Sciences , Piracicaba Dental School, University of Campinas , Piracicaba , Brazil
| |
Collapse
|
7
|
Guzzoni V, Cunha TS, das Neves VJ, Briet L, Costa R, Moura MJCS, Oliveira V, Franco MDCP, Novaes PD, Marcondes FK. Nandrolone combined with strenuous resistance training reduces vascular nitric oxide bioavailability and impairs endothelium-dependent vasodilation. Steroids 2018; 131:7-13. [PMID: 29317256 DOI: 10.1016/j.steroids.2017.12.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 12/11/2017] [Accepted: 12/20/2017] [Indexed: 01/04/2023]
Abstract
Anabolic Androgenic Steroids (AASs) misuse has increased among adolescents and recreational athletes due to their potential effects on muscle hypertrophy. On the other hand, AAS might induce alterations on cardiovascular system, although some controversies regarding AAS on vascular properties remain unknown. To address this question, we aimed to investigate the effects of high doses of nandrolone combined with strenuous resistance training (RT) on function and structure of thoracic aorta. Rats were randomized into four groups: non-trained vehicle (NTV), trained vehicle (TV), non-trained nandrolone (NTN), and trained nandrolone (TN), and submitted to 6 weeks of treatment with nandrolone (5 mg/kg, twice a week) and/or resistance training. In vitro response of thoracic aorta to acetylcholine (ACh) was analyzed. Vascular nitric oxide (NO) and reactive oxygen species (ROS) synthesis were evaluated using 4,5-diaminofluorescein diacetate (DAF-2) and hydroethidine fluorescent techniques, respectively. Thoracic aorta was processed for microscopy analyses and tunica media thickness was measured. ACh-mediated relaxation response was impaired in endothelium intact aortic rings isolated from trained rats (TV and TN) as compared with their matched non-trained groups. TN rats showed reduced ACh-mediated vasodilatation than NTN rats. NO production and bioavailability decreased in thoracic aorta of nandrolone-treated rats in relation to their matched non-trained group (NTN vs. NTV; TN vs. TV). ROS production and tunica media thickness were increased in TN rats when compared with TV rats. These findings indicate that high doses of nandrolone combined with strenuous RT affect NO bioavailability and might induce endothelial dysfunction and arterial morphological alterations.
Collapse
Affiliation(s)
- Vinicius Guzzoni
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil
| | - Tatiana Sousa Cunha
- Science and Technology Institute, Federal University of São Paulo, São José dos Campos, Brazil
| | - Vander José das Neves
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil
| | - Larissa Briet
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil
| | - Rafaela Costa
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil
| | | | - Vanessa Oliveira
- Nephrology Division, School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | | | - Pedro Duarte Novaes
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil
| | - Fernanda Klein Marcondes
- Department of Oral Physiology, Piracicaba Dental School, University of Campinas - FOP/UNICAMP, Piracicaba, SP, Brazil.
| |
Collapse
|
8
|
Batacan RB, Duncan MJ, Dalbo VJ, Buitrago GL, Fenning AS. Effect of different intensities of physical activity on cardiometabolic markers and vascular and cardiac function in adult rats fed with a high-fat high-carbohydrate diet. JOURNAL OF SPORT AND HEALTH SCIENCE 2018; 7:109-119. [PMID: 30356452 PMCID: PMC6180540 DOI: 10.1016/j.jshs.2016.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/30/2016] [Accepted: 06/06/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND Physical activity (PA) and diet are 2 lifestyle factors that affect cardiometabolic risk. However, data on how a high-fat high-carbohydrate (HFHC) diet influences the effect of different intensities of PA on cardiometabolic health and cardiovascular function in a controlled setting are yet to be fully established. This study investigated the effect of sedentary behavior, light-intensity training (LIT), and high-intensity interval training (HIIT) on cardiometabolic markers and vascular and cardiac function in HFHC-fed adult rats. METHODS Twelve-week-old Wistar rats were randomly allocated to 4 groups (12 rats/group): control (CTL), sedentary (SED), LIT, and HIIT. Biometric indices, glucose and lipid control, inflammatory and oxidative stress markers, vascular reactivity, and cardiac electrophysiology of the experimental groups were examined after 12 weeks of HFHC-diet feeding and PA interventions. RESULTS The SED group had slower cardiac conduction (p = 0.0426) and greater thoracic aortic contractile responses (p < 0.05) compared with the CTL group. The LIT group showed improved cardiac conduction compared with the SED group (p = 0.0003), and the HIIT group showed decreased mesenteric artery contractile responses compared with all other groups and improved endothelium-dependent mesenteric artery relaxation compared with the LIT group (both p < 0.05). The LIT and HIIT groups had lower visceral (p = 0.0057 for LIT, p = 0.0120 for HIIT) and epididymal fat (p < 0.0001 for LIT, p = 0.0002 for HIIT) compared with the CTL group. CONCLUSION LIT induced positive adaptations on fat accumulation and cardiac conduction, and HIIT induced a positive effect on fat accumulation, mesenteric artery contraction, and endothelium-dependent relaxation. No other differences were observed between groups. These findings suggest that few positive health effects can be achieved through LIT and HIIT when consuming a chronic and sustained HFHC diet.
Collapse
Affiliation(s)
- Romeo B. Batacan
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia
- Centre for Physical Activity Studies, Central Queensland University, Rockhampton, QLD 4702, Australia
- Corresponding author.
| | - Mitch J. Duncan
- School of Medicine & Public Health, Priority Research Centre for Physical Activity and Nutrition, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Vincent J. Dalbo
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia
- Clinical Biochemistry Laboratory, Central Queensland University, Rockhampton, QLD 4702, Australia
| | - Geraldine L. Buitrago
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4870, Australia
| | - Andrew S. Fenning
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4702, Australia
- Centre for Physical Activity Studies, Central Queensland University, Rockhampton, QLD 4702, Australia
| |
Collapse
|
9
|
Seara FDAC, Barbosa RAQ, de Oliveira DF, Gran da Silva DLS, Carvalho AB, Freitas Ferreira AC, Matheus Nascimento JH, Olivares EL. Administration of anabolic steroid during adolescence induces long-term cardiac hypertrophy and increases susceptibility to ischemia/reperfusion injury in adult Wistar rats. J Steroid Biochem Mol Biol 2017; 171:34-42. [PMID: 28179209 DOI: 10.1016/j.jsbmb.2017.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 01/27/2023]
Abstract
Chronic administration of anabolic androgenic steroids (AAS) in adult rats results in cardiac hypertrophy and increased susceptibility to myocardial ischemia/reperfusion (IR) injury. Molecular analyses demonstrated that hyperactivation of type 1 angiotensin II (AT1) receptor mediates cardiac hypertrophy induced by AAS and also induces down-regulation of myocardial ATP-sensitive potassium channel (KATP), resulting in loss of exercise-induced cardioprotection. Exposure to AAS during adolescence promoted long-term cardiovascular dysfunctions, such as dysautonomia. We tested the hypothesis that chronic AAS exposure in the pre/pubertal phase increases the susceptibility to myocardial ischemia/reperfusion (IR) injury in adult rats. Male Wistar rats (26day old) were treated with vehicle (Control, n=12) or testosterone propionate (TP) (AAS, 5mgkg-1 n=12) 5 times/week during 5 weeks. At the end of AAS exposure, rats underwent 23days of washout period and were submitted to euthanasia. Langendorff-perfused hearts were submitted to IR injury and evaluated for mechanical dysfunctions and infarct size. Molecular analysis was performed by mRNA levels of α-myosin heavy chain (MHC), βMHC and brain-derived natriuretic peptide (BNP), ryanodine receptor (RyR2) and sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) by quantitative RT-PCR (qRT-PCR). The expression of AT1 receptor and KATP channel subunits (Kir6.1 and SURa) was analyzed by qRT-PCR and Western Blot. NADPH oxidase (Nox)-related reactive oxygen species generation was assessed by spectrofluorimetry. The expression of antioxidant enzymes was measured by qRT-PCR in order to address a potential role of redox unbalance. AAS exposure promoted long-term cardiac hypertrophy characterized by increased expression of βMHC and βMHC/αMHC ratio. Baseline derivative of pressure (dP/dt) was impaired by AAS exposure. Postischemic recovery of mechanical properties was impaired (decreased left ventricle [LV] developed pressure and maximal dP/dt; increased LV end-diastolic pressure and minimal dP/dt) and infarct size was larger in the AAS group. Catalase mRNA expression was significantly decreased in the AAS group. In conclusion, chronic administration of AAS during adolescence promoted long-term pathological cardiac hypertrophy and persistent increase in the susceptibility to myocardial IR injury possible due to disturbances on catalase expression.
Collapse
Affiliation(s)
- Fernando de Azevedo Cruz Seara
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, 23890-000 Seropedica, RJ, Brazil; Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902 RJ, Brazil
| | - Raiana Andrade Quintanilha Barbosa
- Laboratory of Cellular and Molecular Cardiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902 RJ, Brazil
| | - Dahienne Ferreira de Oliveira
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902 RJ, Brazil
| | - Diorney Luiz Souza Gran da Silva
- Laboratory of Endocrine Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902 RJ, Brazil
| | - Adriana Bastos Carvalho
- Laboratory of Cellular and Molecular Cardiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902 RJ, Brazil
| | - Andrea Claudia Freitas Ferreira
- Laboratory of Endocrine Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902 RJ, Brazil; NUMPEX-Bio, Pólo de Xerém, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902 RJ, Brazil
| | - José Hamilton Matheus Nascimento
- Laboratory of Cardiac Electrophysiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902 RJ, Brazil
| | - Emerson Lopes Olivares
- Laboratory of Cardiovascular Physiology and Pharmacology, Department of Physiological Sciences, Institute of Biology, Federal Rural University of Rio de Janeiro, 23890-000 Seropedica, RJ, Brazil.
| |
Collapse
|
10
|
Caliman IF, Bernabe CS, de Melo AF, Brasil GA, do Nascimento AM, de Lima EM, Figueiredo SG, de Andrade TU, Bissoli NS. Long-term treatment with Nandrolone Decanoate impairs mesenteric vascular relaxation in both sedentary and exercised female rats. Steroids 2017; 120:7-18. [PMID: 28192127 DOI: 10.1016/j.steroids.2017.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 12/09/2016] [Accepted: 02/01/2017] [Indexed: 12/24/2022]
Abstract
Nandrolone Decanoate (ND) is an Anabolic Androgenic Steroid (AAS) that under abusive regimen can lead to multiple physiological adverse effects. Studies of AAS-mediated cardiovascular (CV) alterations were mostly taken from male subjects, even though women are also susceptible to the effects of AAS and gender-specific differences in susceptibility to vascular diseases exist. Here we investigate ND-induced vascular reactivity alterations in both sedentary and exercised female rats and whether these alterations depend on endothelium-derived factors. We show that chronic exposure of female Wistar rats to ND (20mg/Kg/week for 4weeks) impaired the vascular mesenteric bed (MVB) reactivity to vasodilator (acetylcholine) agonist. The endothelium-dependent Nitric Oxide (NO) component was reduced in ND-treated rats, whereas neither the endothelium-derived hyperpolarizing factor (EDHF) component nor prostanoids were altered in the MVBs. Endothelial dysfunction observed in ND-treated rats was associated with decreased eNOS (Ser1177) and Akt (Ser473) phosphorylation sites and upregulation of iNOS and NADPH oxidase expression. Exercise training by weight lifting in water did not improve the vascular alterations induced by ND treatment. ND treatment also significantly reduced the serum levels of estradiol in females, overriding its CV protective effect. These results help uncover the role of ND modulating endothelial function in the setting of CV disease caused by the abuse of AAS in females. If this translates to humans, young women abusing AAS can potentially lose the cardio protective effect rendered by estrogen and be more susceptible to CV alterations.
Collapse
Affiliation(s)
- Izabela F Caliman
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil.
| | - Cristian S Bernabe
- Department of Anatomy & Cell Biology, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Antônio F de Melo
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Girlândia A Brasil
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Andrews M do Nascimento
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Ewelyne M de Lima
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil; Department of Pharmaceutical Sciences, University of Vila Velha, Vila Velha, ES, Brazil
| | - Suely G Figueiredo
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Tadeu U de Andrade
- Department of Pharmaceutical Sciences, University of Vila Velha, Vila Velha, ES, Brazil
| | - Nazaré S Bissoli
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| |
Collapse
|
11
|
Joukar S, Vahidi R, Farsinejad A, Asadi-Shekaari M, Shahouzehi B. Ameliorative Effects of Endurance Exercise with Two Different Intensities on Nandrolone Decanoate-Induced Neurodegeneration in Rats: Involving Redox and Apoptotic Systems. Neurotox Res 2017; 32:41-49. [PMID: 28144902 DOI: 10.1007/s12640-017-9705-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
Despite the importance of this issue, less has been paid to the influence of exercise on the neural side effects of anabolic androgenic steroids and mechanisms. We investigated the effects of two levels of endurance exercise on neurodegeneration side effects of nandrolone. The study period was 8 weeks. Wistar rats were divided into nine groups including the control (CTL) group, mild exercise (mEx) group, and vehicle (Arach) group which received arachis oil intramuscularly, nandrolone (Nan) group which received nandrolone decanoate 5 mg/kg two times weekly, mEx+Arach group which treated with arachis oil along with mild exercise, mEx+Nan group which treated with nandrolone along with mild exercise, severe exercise (sEx) group, sEx+Arach, and sEx+Nan groups. Finally, brain samples were taken for histopathological, biochemical, and western blot analysis. Nandrolone significantly decreased the intact cells of the hippocampus, total antioxidant capacity (TAC) (P < 0.05 versus CTL and Arach groups), TAC to malondialdehyde ratio (TAC/MDA), and Bcl-2. Nandrolone increased the Bax/Bcl-2 ratio of the brain tissue (P < 0.01 versus CTL and Arach groups). Combination of mild exercise and nandrolone rescued the intact cells to some extent, and this effect was associated with the improvement of Bcl-2 level and Bax/Bcl-2 ratio of brain tissue. Combination of severe exercise and nandrolone rescued the intact cells and improved the TAC, TAC/MDA, and Bax/Bcl-2 ratios. The findings suggest that low- and high-intensity endurance exercise decreased the risk of neurodegeneration effect of nandrolone in the hippocampus of rats. This effect can be explained by the regulation of the redox system and cell homeostasis.
Collapse
Affiliation(s)
- Siyavash Joukar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran. .,Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, P.O. Box 7616914115, Kerman, Iran.
| | - Reza Vahidi
- Department of Veterinary Sciences, Baft Branch, Islamic Azad University, Baft, Iran.
| | - Alireza Farsinejad
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Department of Laboratory Science, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Asadi-Shekaari
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Beydolah Shahouzehi
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, P.O. Box 7616914115, Kerman, Iran
| |
Collapse
|
12
|
The Effects of Nandrolone Decanoate Along with Prolonged Low-Intensity Exercise on Susceptibility to Ventricular Arrhythmias. Cardiovasc Toxicol 2016; 16:23-33. [PMID: 25636207 DOI: 10.1007/s12012-015-9313-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We examined the influence of chronic administration of nandrolone decanoate with low-intensity endurance swimming exercise on susceptibility to lethal ventricular arrhythmias in rat. The animal groups included the control group, exercise group (EX), nandrolone group (Nan), vehicle group (Arach), trained vehicle group (Arach + Ex) and trained nandrolone group (Nan + Ex) that treated for 8 weeks. Then, arrhythmia induction was performed by intravenous infusion of aconitine and electrocardiogram recorded. Then, malondialdehyde (MDA), hydroxyproline (HYP) and glutathione peroxidase of heart tissue were measured. Chronic administration of nandrolone with low-intensity endurance swimming exercise had no significant effect on blood pressure, heart rate and basal ECG parameters except RR interval that showed increase (P < 0.05). Low-intensity exercise could prevent the incremental effect of nandrolone on MDA and HYP significantly. It also increased the heart hypertrophy index (P < 0.05) and reduced the abating effect of nandrolone on animal weighting. Nandrolone along with exercise significantly increased the duration of VF (P < 0.05) and reduced the VF latency (P < 0.05). The findings suggest that chronic co-administration of nandrolone with low-intensity endurance swimming exercise to some extent facilitates the occurrence of ventricular fibrillation in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality.
Collapse
|
13
|
Nascimento AMD, Lima EMD, Brasil GA, Caliman IF, Silva JFD, Lemos VS, Andrade TUD, Bissoli NS. Serca2a and Na+/Ca2+ exchanger are involved in left ventricular function following cardiac remodelling of female rats treated with anabolic androgenic steroid. Toxicol Appl Pharmacol 2016; 301:22-30. [DOI: 10.1016/j.taap.2016.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/16/2016] [Accepted: 04/01/2016] [Indexed: 11/16/2022]
|
14
|
Unraveling the role of high-intensity resistance training on left ventricle proteome: Is there a shift towards maladaptation? Life Sci 2016; 152:156-64. [PMID: 27021786 DOI: 10.1016/j.lfs.2016.03.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/13/2016] [Accepted: 03/21/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED High-intensity resistance training (RT) induces adaptations that improve physiological function. However, high intensity, volume and/or frequency may lead to injury and other health issues such as adverse cardiac effects. The aim of this study was to evaluate the effect of RT on left ventricle proteome, and to identify the pathways involved on the harmful adaptations induced by this protocol. Male Wistar rats were randomized into 2 groups: Trained (T) and Sedentary (S). Animals from T group were trained for 6weeks, and then all the animals were sacrificed and left ventricle was isolated for analysis. We identified 955 proteins, and 93 proteins were considered; 36 were expressed exclusively in T group, and 4 in S group. Based on quantitative analysis, 42 proteins were found overexpressed and 11 underexpressed in T group compared with S group. Using the Gene Ontology to relate the biological processes in which these proteins are involved, we conclude that RT protocol promotes changes similar to those found in the initial phase of heart failure, but we also observed a concomitant increased expression of protective proteins, suggesting the activation of pathways to avoid major damages on left ventricle and delay the onset of pathological hypertrophy. STATEMENT OF SIGNIFICANCE OF THE STUDY Our study shows that high-intensity RT protocol changes left ventricle proteome, modifying metabolic profile of heart tissue and inducing the expression of proteins that acts against cardiac injury. We hypothesize that these adaptations occur to prevent the onset of cardiac dysfunction. Despite highly significant, it remains to be determined whether these adaptations are sufficient to further keep left ventricle function and exert cardioprotection, and whether this panel will be shifted towards maladaptation, and heart failure.
Collapse
|
15
|
Abdollahi F, Joukar S, Najafipour H, Karimi A, Masumi Y, Binayi F. The risk of life-threatening ventricular arrhythmias in presence of high-intensity endurance exercise along with chronic administration of nandrolone decanoate. Steroids 2016; 105:106-12. [PMID: 26686897 DOI: 10.1016/j.steroids.2015.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/22/2015] [Accepted: 12/07/2015] [Indexed: 11/17/2022]
Abstract
Anabolic steroids used to improve muscular strength and performance in athletics. Its long-term consumption may induce cardiovascular adverse effects. We assessed the risk of ventricular arrhythmias in rats which subjected to chronic nandrolone plus high-intensity endurance exercise. Animals were grouped as; control (CTL), exercise (Ex): 8 weeks under exercise, vehicle group (Arach): received arachis oil, and Nan group: received nandrolone decanoate 5 mg/kg twice a week for 8 weeks, Arach+Ex group, and Nan+Ex. Finally, under anesthesia, arrhythmia was induced by infusion of 1.5 μg/0.1 mL/min of aconitine IV and ventricular arrhythmias were recorded for 15 min. Then, animals' hearts were excised and tissue samples were taken. Nandrolone plus exercise had no significant effect on blood pressure but decreased the heart rate (P<0.01) and increased the RR (P<0.01) and JT intervals (P<0.05) of electrocardiogram. Nandrolone+exercise significantly increased the ventricular fibrillation (VF) frequency and also decreased the VF latency (P<0.05 versus CTL group). Combination of exercise and nandrolone could not recover the decreasing effects of nandrolone on animals weight gain but, it enhanced the heart hypertrophy index (P<0.05). In addition, nandrolone increased the level of hydroxyproline (HYP) and malondialdehyde (MDA) but had not significant effect on glutathione peroxidase of heart. Exercise only prevented the effect of nandrolone on HYP. Nandrolone plus severe exercise increases the risk of VF that cannot be explained only by the changes in redox system. The intensification of cardiac hypertrophy and prolongation of JT interval may be a part of involved mechanisms.
Collapse
Affiliation(s)
- Farzane Abdollahi
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Siyavash Joukar
- Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Hamid Najafipour
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Physiology and Pharmacology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolah Karimi
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaser Masumi
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fateme Binayi
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, Iran; Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
16
|
Nikolic T, Zivkovic V, Jevdjevic M, Djuric M, Srejovic I, Djuric D, Jeremic N, Djuric D, Bolevich S, Jakovljevic V. The effects of chronic administration of nandrolone decanoate on redox status in exercised rats. Mol Cell Biochem 2015; 411:95-105. [DOI: 10.1007/s11010-015-2571-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/05/2015] [Indexed: 10/23/2022]
|
17
|
Brasil GA, Lima EMD, Nascimento AMD, Caliman IF, Medeiros ARSD, Silva MSB, Abreu GRD, Reis AMD, Andrade TUD, Bissoli NS. Nandrolone decanoate induces cardiac and renal remodeling in female rats, without modification in physiological parameters: The role of ANP system. Life Sci 2015; 137:65-73. [DOI: 10.1016/j.lfs.2015.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/28/2015] [Accepted: 07/03/2015] [Indexed: 11/26/2022]
|
18
|
Ghorbani Baravati H, Joukar S, Fathpour H, Kordestani Z. Nandrolone Plus Moderate Exercise Increases the Susceptibility to Lethal Arrhythmias. Res Cardiovasc Med 2015; 4:e26233. [PMID: 26396972 PMCID: PMC4576214 DOI: 10.5812/cardiovascmed.26233v2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 01/14/2015] [Accepted: 01/26/2015] [Indexed: 11/30/2022] Open
Abstract
Background: Until now, no experimental study has directly assessed the arrhythmogenesis of chronic consumption of anabolic androgenic steroids along with moderate-intensity endurance exercise. Objectives: We evaluated the influence of integration of anabolic androgenic steroids along with moderate-intensity endurance exercise on susceptibility to lethal ventricular arrhythmias in rat. Materials and Methods: The animal groups were as follows: control group (CTL); exercise group (EX) which were under 6 weeks of treadmill exercise; nandrolone group (Nan) which received 5 mg/kg of nandrolone decanoate twice a week; vehicle group (Arach) which received Arachis oil (solvent of nandrolone); trained vehicle group (Arach + Ex); and trained nandrolone group (Nan + Ex). One day after ending of the intervention period, arrhythmia was inducted by intravenous infusion of aconitine and ventricular arrhythmias were recorded. Then malondialdehyde (MDA) and glutathione peroxidase (GPX) of heart tissue were measured. Results: Nandrolone, exercise, and their combination were associated with heart hypertrophy. Exercise could prevent the incremental effect of nandrolone on MDA/GPX ratio. Chronic administration of nandrolone with moderate-intensity endurance exercise had no significant effect on blood pressure, heart rate, and basal electrocardiographic parameters. Combination of nandrolone and exercise significantly increased the incidence of ventricular fibrillation (VF) and reduced the VF latency (P < 0.05). Conclusions: The findings suggest that chronic coadministration of nandrolone with moderate-intensity endurance exercise facilitates the VF occurrence in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality.
Collapse
Affiliation(s)
- Hamideh Ghorbani Baravati
- Deptarment of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, IR Iran
| | - Siyavash Joukar
- Physiology Research Center, Kerman University of Medical Sciences, Kerman, IR Iran
- Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, IR Iran
- Corresponding author: Siyavash Joukar, Department of Physiology and Pharmacology, Kerman University of Medical Sciences, P. O. Box: 76169-14115, Kerman, IR Iran. Tel/Fax: +98-3433220081, E-mail: ,
| | - Hossein Fathpour
- Deptarment of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, IR Iran
| | - Zeinab Kordestani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, IR Iran
| |
Collapse
|
19
|
Frati P, Busardò FP, Cipolloni L, Dominicis ED, Fineschi V. Anabolic Androgenic Steroid (AAS) related deaths: autoptic, histopathological and toxicological findings. Curr Neuropharmacol 2015; 13:146-159. [PMID: 26074749 PMCID: PMC4462039 DOI: 10.2174/1570159x13666141210225414] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 10/01/2014] [Accepted: 10/25/2014] [Indexed: 12/22/2022] Open
Abstract
Anabolic androgenic steroids (AASs) represent a large group of synthetic derivatives of testosterone, produced to maximize anabolic effects and minimize the androgenic ones. AAS can be administered orally, parenterally by intramuscular injection and transdermally. Androgens act by binding to the nuclear androgen receptor (AR) in the cytoplasm and then translocate into the nucleus. This binding results in sequential conformational changes of the receptor affecting the interaction between receptor and protein, and receptor and DNA. Skeletal muscle can be considered as the main target tissue for the anabolic effects of AAS, which are mediated by ARs which after exposure to AASs are up-regulated and their number increases with body building. Therefore, AASs determine an increase in muscle size as a consequence of a dose-dependent hypertrophy resulting in an increase of the cross-sectional areas of both type I and type II muscle fibers and myonuclear domains. Moreover, it has been reported that AASs can increase tolerance to exercise by making the muscles more capable to overload therefore shielding them from muscle fiber damage and improving the level of protein synthesis during recovery. Despite some therapeutic use of AASs, there is also wide abuse among athletes especially bodybuilders in order to improve their performances and to increase muscle growth and lean body mass, taking into account the significant anabolic effects of these drugs. The prolonged misuse and abuse of AASs can determine several adverse effects, some of which may be even fatal especially on the cardiovascular system because they may increase the risk of sudden cardiac death (SCD), myocardial infarction, altered serum lipoproteins, and cardiac hypertrophy. The aim of this review is to focus on deaths related to AAS abuse, trying to evaluate the autoptic, histopathological and toxicological findings in order to investigate the pathophysiological mechanism that underlines this type of death, which is still obscure in several aspects. The review of the literature allowed us to identify 19 fatal cases between 1990 and 2012, in which the autopsy excluded in all cases, extracardiac causes of death.
Collapse
Affiliation(s)
- Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
- Neuromed, Istituto Mediterraneo Neurologico (IRCCS), Via Atinense 18, Pozzilli, 86077 Isernia, Italy
| | - Francesco P. Busardò
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | - Luigi Cipolloni
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| | | | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161, Rome, Italy
| |
Collapse
|
20
|
Saraswathi KY, Muthal A, Kandhare A, Rojatkar S, Bodhankar S. Study of Methanolic Extract of Artemisia pallens Wall on Endurance of Laboratory Animals. ACTA ACUST UNITED AC 2014. [DOI: 10.5567/pharmacologia.2014.298.309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Santos MAPD, Oliveira CVCD, Silva AS. Adverse cardiovascular effects from the use of anabolic-androgenic steroids as ergogenic resources. Subst Use Misuse 2014; 49:1132-7. [PMID: 24832723 DOI: 10.3109/10826084.2014.903751] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review evaluates the documented cardiovascular functioning among anabolic-androgenic steroid (AAS) users. AAS users manifest a reduction in HDL cholesterol, increased inflammatory markers, and oxidative stress. Strong evidence associating AAS use with blood pressure at hypertensive levels, as well as hypertrophy and cardiac dysfunction has also been reported. Both epidemiological and autopsy studies attest the relationship between AAS use and early mortality. The review's limitations are noted.
Collapse
Affiliation(s)
- Marcos Antonio Pereira dos Santos
- 1Departamento de Biofísica e Fisiologia, Campus Universitário Ministro Petrônio Portella, Universidade Federal do Piauí , Teresina-PI , Brasil
| | | | | |
Collapse
|
22
|
das Neves VJ, Tanno AP, Cunha TS, Fernandes T, Guzzoni V, da Silva CA, de Oliveira EM, Moura MJCS, Marcondes FK. Effects of nandrolone and resistance training on the blood pressure, cardiac electrophysiology, and expression of atrial β-adrenergic receptors. Life Sci 2013; 92:1029-35. [PMID: 23603140 DOI: 10.1016/j.lfs.2013.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 03/01/2013] [Accepted: 04/02/2013] [Indexed: 12/19/2022]
Abstract
AIMS This study was performed to assess isolated and combined effects of nandrolone and resistance training on the blood pressure, cardiac electrophysiology, and expression of the β1- and β2-adrenergic receptors in the heart of rats. MAIN METHODS Wistar rats were randomly divided into four groups and submitted to a 6-week treatment with nandrolone and/or resistance training. Cardiac hypertrophy was accessed by the ratio of heart weight to the final body weight. Blood pressure was determined by a computerized tail-cuff system. Electrocardiography analyses were performed. Western blotting was used to access the protein levels of the β1- and β2-adrenergic receptors in the right atrium and left ventricle. KEY FINDINGS Both resistance training and nandrolone induced cardiac hypertrophy. Nandrolone increased systolic blood pressure depending on the treatment time. Resistance training decreased systolic, diastolic and mean arterial blood pressure, as well as induced resting bradycardia. Nandrolone prolonged the QTc interval for both trained and non-trained groups when they were compared to their respective vehicle-treated one. Nandrolone increased the expression of β1- and β2-adrenergic receptors in the right atrium for both trained and non-trained groups when they were compared to their respective vehicle-treated one. SIGNIFICANCE This study indicated that nandrolone, associated or not with resistance training increases blood pressure depending on the treatment time, induces prolongation of the QTc interval, and increases the expression of β1- and β2-adrenergic receptors in the cardiac right atrium, but not in the left ventricle.
Collapse
Affiliation(s)
- Vander José das Neves
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Franquni JVM, do Nascimento AM, de Lima EM, Brasil GA, Heringer OA, Cassaro KODS, da Cunha TVP, Musso C, Silva Santos MCLF, Kalil IC, Endringer DC, Boëchat GAP, Bissoli NS, de Andrade TU. Nandrolone decanoate determines cardiac remodelling and injury by an imbalance in cardiac inflammatory cytokines and ACE activity, blunting of the Bezold-Jarisch reflex, resulting in the development of hypertension. Steroids 2013; 78:379-85. [PMID: 23287648 DOI: 10.1016/j.steroids.2012.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 11/27/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
Abstract
The aims of this study were to evaluate the effects of nandrolone (ND) on cardiac inflammatory cytokines, ACE activity, troponin I, and the sensitivity of the Bezold-Jarisch reflex (BJR). Male Wistar rats were administered either ND (20 mg/kg; DECA) or vehicle (control animals; CONT) for 4 weeks. BJR was analyzed by measuring the bradycardia and hypotension responses elicited by serotonin administration (2-32 μg/kg). Mean arterial pressure (MAP) was assessed and myocyte hypertrophy was determined by the heart weight/body weight ratio and by morphometric analysis. Matrix collagen deposition was assessed by histological analysis of the picrosirius red-stained samples. Mesenteric vascular reactivity was performed and central venous pressure (CVP) evaluated. Cardiac inflammatory cytokine levels and angiotensin-converting enzyme (ACE) activity were studied as well the biomarker of cardiac lesion, troponin I. DECA group showed enhancement of matrix type I collagen deposition (p < 0.01) and cardiac ACE activity (p < 0.01) compared with the CONT. Interleukin (IL)-10 was reduced (p < 0.01) and pro-inflammatory cytokines (TNF-α and IL-6; p < 0.01) were increased in the DECA group compared with CONT. Cardiac injury was observed in the DECA group shown by the reduction in cardiac troponin I (p < 0.01) compared with the CONT group. Animals in the DECA group also developed myocyte hypertrophy and reduction of BJR sensitivity. The MAP of animals treated with ND reached hypertensive levels (p < 0.01; compared with CONT). No changes in CVP and vascular reactivity were observed in both experimental groups. We conclude that high doses of ND elicit cardiotoxic effects with cardiac remodelling and injury. Cardiac changes reduce the BJR sensitivity. Together, these abnormalities contributed to the development of hypertension in animals in the DECA group.
Collapse
|
24
|
Sun M, Shen W, Zhong M, Wu P, Chen H, Lu A. Nandrolone attenuates aortic adaptation to exercise in rats. Cardiovasc Res 2013; 97:686-95. [PMID: 23338851 DOI: 10.1093/cvr/cvs423] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS In this study, we investigated the interaction between exercise-induced mitochondrial adaptation of large vessels and the effects of chronic anabolic androgenic steroids (AASs). METHODS AND RESULTS Four groups of Sprague-Dawley rats were studied: (i) sedentary, (ii) sedentary + nandrolone-treated, (iii) aerobic exercise trained, and (iv) trained + nandrolone-treated. Aerobic training increased the levels of aortic endothelial nitric oxide synthase (eNOS) and heme oxygenase-1 (HO-1) in accordance with improved acetylcholine-induced vascular relaxation. These beneficial effects were associated with induction of mitochondrial complexes I and V, increased mitochondrial DNA copy number, and greater expression of transcription factors involved in mitochondrial biogenesis/fusion. We also observed enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of beclin1 and autophagy-related protein-7 (ATG7). The levels of thiobarbituric acid-reactive substances and protein carbonyls remained unchanged, whereas significant increases in catalase and mitochondrial manganese superoxide dismutase (MnSOD) levels were observed in the aortas of trained animals, when compared with sedentary controls. Nandrolone increased oxidative stress biomarkers and inhibited exercise-induced increases of eNOS, HO-1, catalase, and MnSOD expression. In addition, it also attenuated elevated peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and mitofusin-2 expression, and further up-regulated LC3II conversion, beclin1, ATG7, and dynamin-related protein-1 expression. CONCLUSION These results demonstrate that nandrolone attenuates aortic adaptations to exercise by regulating mitochondrial dynamic remodelling, including down-regulation of mitochondrial biogenesis and intensive autophagy.
Collapse
Affiliation(s)
- Mengwei Sun
- Key Laboratory of General Administration of Sport, Shanghai Research Institute of Sports Science, China
| | | | | | | | | | | |
Collapse
|
25
|
Neves VJ, Moura MJCS, Almeida BS, Costa R, Sanches A, Ferreira R, Tamascia ML, Romani EAO, Novaes PD, Marcondes FK. Chronic stress, but not hypercaloric diet, impairs vascular function in rats. Stress 2012; 15:138-48. [PMID: 21801080 DOI: 10.3109/10253890.2011.601369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The aim of this study was to evaluate vascular and metabolic effects of chronic mild unpredictable stress (CMS) and hypercaloric diet (HD) without carbohydrate supplementation in rats. Male Sprague-Dawley rats were randomly assigned to four groups: Control, HD, CMS, and HD plus CMS. CMS consisted of the application of different stressors for 3 weeks. The rats were killed 15 days after CMS exposure. The HD group presented higher plasma lipid concentrations, without changes in fasting glucose concentration, glucose tolerance test, and vascular function and morphology, in comparison with the control group. Stressed rats presented higher fasting blood concentration of insulin, higher homeostasis model assessment index values and area under the curve in an oral glucose tolerance test, in comparison with non-stressed rats. CMS increased the plasma concentrations of corticosterone and lipids, and the atherogenic index values, without change in high-density lipoprotein level. CMS increased intima-media thickness and induced endothelium-dependent supersensitivity to phenylephrine, and lowered the relaxation response to acetylcholine in the thoracic aorta isolated from rats fed with control or HD, in comparison with non-stressed groups. CMS effects were independent of diet. In non-stressed rats, the HD induced dyslipidemia, but did not change glucose metabolism, vascular function, or morphology. The data from this study indicate that CMS promotes a set of events which together can contribute to impair function of the thoracic aorta.
Collapse
Affiliation(s)
- V J Neves
- Laboratory of Stress, Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Uggere de Andrade T, Loiola LZ, Alcure SMN, Medeiros ARS, Santos MCLFS, Moysés MR, Abreu GRD, Lenz D, Bissoli NS. Role of the renin–angiotensin system in the nandrolone-decanoate-induced attenuation of the Bezold–Jarisch reflex. Can J Physiol Pharmacol 2011; 89:891-7. [DOI: 10.1139/y11-090] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The androgen nandrolone decanoate (ND) is known to cause cardiovascular abnormalities, such as attenuation of the Bezold–Jarisch Reflex (BJR), cardiac hypertrophy, and elevation of mean arterial pressure (MAP). Futhermore, a relationship between androgens and the renin–angiotensin system (RAS) has been reported. The purpose of this study was to evaluate the influence of RAS on the BJR, cardiac and prostatic hypertrophy, and MAP evoked by ND. For this, male Wistar rats were treated with ND (10 mg·(kg body mass)–1 for 8 weeks; DECA), or vehicle (control animals; CON), or enalapril (10 mg·(kg body mass)–1, daily; CONE), or ND and enalapril (10 mg ND + 10 mg enalapril per kilogram of body mass; DECAE). After 8 weeks of treatment, the BJR was evaluated by bradycardia and hypotensive responses that were elicited by serotonin administration (2–32 µg·(kg body mass)–1). MAP was assessed; cardiac and prostate hypertrophy were determined by the ratio of the tissue mass:body mass, and by histological analysis of the heart. Animals from the DECA group showed prostatic and cardiac hypertrophy, elevation in mean arterial pressure, and an impairment of BJR. Co-treatment with enalapril inhibited these changes. The data from the present study suggest that RAS has an impact on BJR attenuation, cardiac and prostatic hypertrophy, and the elevation in MAP evoked by ND.
Collapse
Affiliation(s)
| | - Leonardo Zanoteli Loiola
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos, 1468, Vitória, ES 29042-755, Brazil
| | | | - Ana Raquel Santos Medeiros
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos, 1468, Vitória, ES 29042-755, Brazil
| | | | - Margareth Ribeiro Moysés
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos, 1468, Vitória, ES 29042-755, Brazil
| | - Gláucia Rodrigues de Abreu
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos, 1468, Vitória, ES 29042-755, Brazil
| | - Dominik Lenz
- Department of Pharmacy, University Center of Vila Velha, Espírito Santo, Brazil
| | - Nazaré Souza Bissoli
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos, 1468, Vitória, ES 29042-755, Brazil
| |
Collapse
|
27
|
Nandrolone and resistance training induce heart remodeling: Role of fetal genes and implications for cardiac pathophysiology. Life Sci 2011; 89:631-7. [DOI: 10.1016/j.lfs.2011.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/30/2011] [Accepted: 07/27/2011] [Indexed: 01/13/2023]
|
28
|
Bruder-Nascimento T, Cordellini S. Vascular adaptive responses to physical exercise and to stress are affected differently by nandrolone administration. Braz J Med Biol Res 2011; 44:337-44. [PMID: 21445526 DOI: 10.1590/s0100-879x2011007500043] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 02/18/2011] [Indexed: 11/21/2022] Open
Abstract
Androgenic anabolic steroid, physical exercise and stress induce cardiovascular adaptations including increased endothelial function. The present study investigated the effects of these conditions alone and in combination on the vascular responses of male Wistar rats. Exercise was started at 8 weeks of life (60-min swimming sessions 5 days per week for 8 weeks, while carrying a 5% body-weight load). One group received nandrolone (5 mg/kg, twice per week for 8 weeks, im). Acute immobilization stress (2 h) was induced immediately before the experimental protocol. Curves for noradrenaline were obtained for thoracic aorta, with and without endothelium from sedentary and trained rats, submitted or not to stress, treated or not with nandrolone. None of the procedures altered the vascular reactivity to noradrenaline in denuded aorta. In intact aorta, stress and exercise produced vascular adaptive responses characterized by endothelium-dependent hyporeactivity to noradrenaline. These conditions in combination did not potentiate the vascular adaptive response. Exercise-induced vascular adaptive response was abolished by nandrolone. In contrast, the aortal reactivity to noradrenaline of sedentary rats and the vascular adaptive response to stress of sedentary and trained rats were not affected by nandrolone. Maximum response for 7-10 rats/group (g): sedentary 3.8 ± 0.2 vs trained 3.0 ± 0.2*; sedentary/stress 2.7 ± 0.2 vs trained/stress 3.1 ± 0.1*; sedentary/nandrolone 3.6 ± 0.1 vs trained/nandrolone 3.8 ± 0.1; sedentary/stress/nandrolone 3.2 ± 0.1 vs trained/stress/nandrolone 2.5 ± 0.1*; *P < 0.05 compared to its respective control. Stress and physical exercise determine similar vascular adaptive response involving distinct mechanisms as indicated by the observation that only the physical exercise-induced adaptive response was abolished by nandrolone.
Collapse
Affiliation(s)
- T Bruder-Nascimento
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brasil
| | | |
Collapse
|
29
|
Abstract
Abuse of anabolic androgenic steroids (AAS) has been linked to a variety of different cardiovascular side effects. In case reports, acute myocardial infarction is the most common event presented, but other adverse cardiovascular effects such as left ventricular hypertrophy, reduced left ventricular function, arterial thrombosis, pulmonary embolism and several cases of sudden cardiac death have also been reported. However, to date there are no prospective, randomized, interventional studies on the long-term cardiovascular effects of abuse of AAS. In this review we have studied the relevant literature regarding several risk factors for cardiovascular disease where the effects of AAS have been scrutinized:(1) Echocardiographic studies show that supraphysiologic doses of AAS lead to both morphologic and functional changes of the heart. These include a tendency to produce myocardial hypertrophy (Fig. 3), a possible increase of heart chamber diameters, unequivocal alterations of diastolic function and ventricular relaxation, and most likely a subclinically compromised left ventricular contractile function. (2) AAS induce a mild, but transient increase of blood pressure. However, the clinical significance of this effect remains modest. (3) Furthermore, AAS confer an enhanced pro-thrombotic state, most prominently through an activation of platelet aggregability. The concomitant effects on the humoral coagulation cascade are more complex and include activation of both pro-coagulatory and fibrinolytic pathways. (4) Users of AAS often demonstrate unfavorable measurements of vascular reactivity involving endothelial-dependent or endothelial-independent vasodilatation. A degree of reversibility seems to be consistent, though. (5) There is a comprehensive body of evidence documenting that AAS induce various alterations of lipid metabolism. The most prominent changes are concomitant elevations of LDL and decreases of HDL, effects that increase the risk of coronary artery disease. And finally, (6) the use of AAS appears to confer an increased risk of life-threatening arrhythmia leading to sudden death, although the underlying mechanisms are still far from being elucidated. Taken together, various lines of evidence involving a variety of pathophysiologic mechanisms suggest an increased risk for cardiovascular disease in users of anabolic androgenic steroids.
Collapse
Affiliation(s)
- Paul Vanberg
- Chief Physician/Senior Cardiologist, Oslo University Hospital - Aker, Trondheimsveien 235, 0514-Oslo University Hospital, Oslo, Norway.
| | | |
Collapse
|
30
|
Neves VJ, Moura MJCS, Tamascia ML, Ferreira R, Silva NS, Costa R, Montemor PL, Narvaes EAO, Bernardes CF, Novaes PD, Marcondes FK. Proatherosclerotic effects of chronic stress in male rats: altered phenylephrine sensitivity and nitric oxide synthase activity of aorta and circulating lipids. Stress 2009; 12:320-7. [PMID: 19085621 DOI: 10.1080/10253890802437779] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to analyze the effects of chronic mild unpredictable stress (CMS) on the vasoconstrictor response and morphology of the thoracic aorta and serum lipid profiles in rats. Male Sprague-Dawley rats were submitted to CMS, which consisted of the application of different stressors for 7 days per week across 3 weeks. The rats were sacrificed 15 days after CMS exposure. CMS induced supersensitivity to the vasoconstrictor effect of phenylephrine in endothelium-intact thoracic aortic rings without changes in aortic rings without endothelium, or pre-incubated with nitric oxide (NO) synthesis inhibitor. Rats submitted to CMS showed hypertrophy of the intima and tunica media of thoracic aorta, increased serum levels of triglycerides, total cholesterol, very low-density lipoprotein cholesterol, low-density lipoprotein cholesterol and atherogenic index, without changes in high-density lipoprotein cholesterol levels, when compared with control rats. These data indicate that CMS induces physiological and morphological changes that may contribute to the development of atherosclerosis by mechanisms related to deficiency in NO production and dyslipidemia.
Collapse
Affiliation(s)
- V J Neves
- Department of Physiological Sciences, Laboratory of Stress, Piracicaba Dental School, University of Campinas, Piracicaba, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rocha VM, Calil CM, Ferreira R, Moura MJCS, Marcondes FK. Influence of anabolic steroid on anxiety levels in sedentary male rats. Stress 2007; 10:326-31. [PMID: 17853074 DOI: 10.1080/10253890701281344] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The aim of this study was to evaluate the influence of nandrolone decanoate on anxiety levels in rats. Male Wistar rats were treated with nandrolone decanoate (5mg/kg, two times per week, i.m.) or vehicle (propylene glycol--0.2 ml/kg, two times per week, IM) for 6 weeks. Control rats were subject only to procedures related to their routine husbandry. By the end of 6 weeks, all groups (24-29 rats/group) were submitted to the elevated plus maze test in order to evaluate their anxiety level. Some of these animals (12-14/group) were treated with diazepam (1 mg/kg i.p.) 30 min before the elevated plus maze test. Nandrolone decanoate significantly decreased the percentage of time spent in the open arms (1.46+/-0.49%) compared with control (3.80+/-0.97%) and vehicle (3.96+/-0.85%) groups, with no difference between control and vehicle treatments. The percentage of open arm entries was also reduced in the group treated with nandrolone decanoate in comparison with the vehicle and control. No changes in the number of closed arm entries were detected. Diazepam abolished the effects of nandrolone decanoate on the percentage of time in, and entries into the open arms. The present study showed that chronic treatment with a high dose of nandrolone decanoate increased the anxiety level in male rats.
Collapse
Affiliation(s)
- V M Rocha
- Faculty of Dentistry of Piracicaba, State University of Campinas, Piracicaba, SP, Brazil
| | | | | | | | | |
Collapse
|
32
|
Rocha FL, Carmo EC, Roque FR, Hashimoto NY, Rossoni LV, Frimm C, Anéas I, Negrão CE, Krieger JE, Oliveira EM. Anabolic steroids induce cardiac renin-angiotensin system and impair the beneficial effects of aerobic training in rats. Am J Physiol Heart Circ Physiol 2007; 293:H3575-83. [PMID: 17906098 DOI: 10.1152/ajpheart.01251.2006] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the effects of swimming and anabolic steroids (AS) on ventricular function, collagen synthesis, and the local renin-angiotensin system in rats. Male Wistar rats were randomized into control (C), steroid (S; nandrolone decanoate; 5 mg/kg sc, 2x/wk), steroid + losartan (SL; 20 mg.kg(-1).day(-1)), trained (T), trained + steroid (T+S), and trained + steroid + losartan (T+SL; n = 14/group) groups. Swimming was performed 5 times/wk for 10 wk. Serum testosterone increased in S and T+S. Resting heart rate was lower in T and T+S. Percent change in left ventricular (LV) weight-to-body weight ratio increased in S, T, and T+S. LV systolic pressure declined in S and T+S. LV contractility increased in T (P < 0.05). LV relaxation increased in T (P < 0.05). It was significantly lower in T+S compared with C. Collagen volumetric fraction (CVF) and hydroxyproline were higher in S and T+S than in C and T (P < 0.05), and the CVF and LV hypertrophy were prevented by losartan treatment. LV-ANG I-converting enzyme activity increased (28%) in the S group (33%), and type III collagen synthesis increased (56%) in T+S but not in T group. A positive correlation existed between LV-ANG I-converting enzyme activity and collagen type III expression (r(2) = 0.88; P < 0.05, for all groups). The ANG II and angiotensin type 1a receptor expression increased in the S and T+S groups but not in T group. Supraphysiological doses of AS exacerbated the cardiac hypertrophy in exercise-trained rats. Exercise training associated with AS induces maladaptive remodeling and further deterioration in cardiac performance. Exercise training associated with AS causes loss of the beneficial effects in LV function induced by exercising. These results suggest that aerobic exercise plus AS increases cardiac collagen content associated with activation of the local renin-angiotensin system.
Collapse
Affiliation(s)
- F L Rocha
- Laboratory of Biochemistry, School of Physical Education and Sport, Avenida Prof. Mello Moraes 65, Butantã, Cidade Universitária, CEP 05508-9000 São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|