1
|
Mukherji ST, Brambilla L, Stuart KB, Mayes I, Kutz LC, Chen Y, Barbosa LA, Elmadbouh I, McDermott JP, Haller ST, Romero MF, Soleimani M, Liu J, Shapiro JI, Blanco GV, Xie Z, Pierre SV. Na/K-ATPase signaling tonically inhibits sodium reabsorption in the renal proximal tubule. FASEB J 2023; 37:e22835. [PMID: 36856735 PMCID: PMC10028530 DOI: 10.1096/fj.202200785rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 03/02/2023]
Abstract
Through its classic ATP-dependent ion-pumping function, basolateral Na/K-ATPase (NKA) generates the Na+ gradient that drives apical Na+ reabsorption in the renal proximal tubule (RPT), primarily through the Na+ /H+ exchanger (NHE3). Accordingly, activation of NKA-mediated ion transport decreases natriuresis through activation of basolateral (NKA) and apical (NHE3) Na+ reabsorption. In contrast, activation of the more recently discovered NKA signaling function triggers cellular redistribution of RPT NKA and NHE3 and decreases Na+ reabsorption. We used gene targeting to test the respective contributions of NKA signaling and ion pumping to the overall regulation of RPT Na+ reabsorption. Knockdown of RPT NKA in cells and mice increased membrane NHE3 and Na+ /HCO3 - cotransporter (NBCe1A). Urine output and absolute Na+ excretion decreased by 65%, driven by increased RPT Na+ reabsorption (as indicated by decreased lithium clearance and unchanged glomerular filtration rate), and accompanied by elevated blood pressure. This hyper reabsorptive phenotype was rescued upon crossing with RPT NHE3-/- mice, confirming the importance of NKA/NHE3 coupling. Hence, NKA signaling exerts a tonic inhibition on Na+ reabsorption by regulating key apical and basolateral Na+ transporters. This action, lifted upon NKA genetic suppression, tonically counteracts NKA's ATP-driven function of basolateral Na+ reabsorption. Strikingly, NKA signaling is not only physiologically relevant but it also appears to be functionally dominant over NKA ion pumping in the control of RPT reabsorption.
Collapse
Affiliation(s)
- Shreya T. Mukherji
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Luca Brambilla
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Kailey B. Stuart
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Isabella Mayes
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Laura C. Kutz
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Yiliang Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Blood Research Institute, Versiti, WI
| | - Leandro A Barbosa
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
- Universidade Federal de São João del-Rei, Campus Centro-Oeste Dona Lindu, Divinópolis, MG, Brazil
| | - Ibrahim Elmadbouh
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Jeff P. McDermott
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Michael F. Romero
- Physiology & Biomedical Engineering and Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, Rochester, MN
| | - Manoocher Soleimani
- Department of Medicine, The University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Jiang Liu
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Joseph I. Shapiro
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV
| | - Gustavo V. Blanco
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV
| |
Collapse
|
2
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Maaliki D, Itani MM, Itani HA. Pathophysiology and genetics of salt-sensitive hypertension. Front Physiol 2022; 13:1001434. [PMID: 36176775 PMCID: PMC9513236 DOI: 10.3389/fphys.2022.1001434] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Most hypertensive cases are primary and heavily associated with modifiable risk factors like salt intake. Evidence suggests that even small reductions in salt consumption reduce blood pressure in all age groups. In that regard, the ACC/AHA described a distinct set of individuals who exhibit salt-sensitivity, regardless of their hypertensive status. Data has shown that salt-sensitivity is an independent risk factor for cardiovascular events and mortality. However, despite extensive research, the pathogenesis of salt-sensitive hypertension is still unclear and tremendously challenged by its multifactorial etiology, complicated genetic influences, and the unavailability of a diagnostic tool. So far, the important roles of the renin-angiotensin-aldosterone system, sympathetic nervous system, and immune system in the pathogenesis of salt-sensitive hypertension have been studied. In the first part of this review, we focus on how the systems mentioned above are aberrantly regulated in salt-sensitive hypertension. We follow this with an emphasis on genetic variants in those systems that are associated with and/or increase predisposition to salt-sensitivity in humans.
Collapse
Affiliation(s)
- Dina Maaliki
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Maha M. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
4
|
Davis H, Paterson DJ, Herring N. Post-Ganglionic Sympathetic Neurons can Directly Sense Raised Extracellular Na + via SCN7a/Na x. Front Physiol 2022; 13:931094. [PMID: 35784866 PMCID: PMC9247455 DOI: 10.3389/fphys.2022.931094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The relationship between dietary NaCl intake and high blood pressure is well-established, and occurs primarily through activation of the sympathetic nervous system. Nax, a Na+-sensitive Na+ channel, plays a pivotal role in driving sympathetic excitability, which is thought to originate from central regions controlling neural outflow. We investigated whether post-ganglionic sympathetic neurons from different ganglia innervating cardiac and vasculature tissue can also directly sense extracellular Na+. Using whole-cell patch clamp recordings we demonstrate that sympathetic neurons from three sympathetic ganglia (superior cervical, stellate and superior mesenteric/coeliac) respond to elevated extracellular NaCl concentration. In sympathetic stellate ganglia neurons, we established that the effect of NaCl was dose-dependent and independent of osmolarity, Cl- and membrane Ca2+ flux, and critically dependent on extracellular Na+ concentration. We show that Nax is expressed in sympathetic stellate ganglia neurons at a transcript and protein level using single-cell RNA-sequencing and immunohistochemistry respectively. Additionally, the response to NaCl was prevented by siRNA-mediated knockdown of Nax, but not by inhibition of other membrane Na+ pathways. Together, these results demonstrate that post-ganglionic sympathetic neurons are direct sensors of extracellular Na+ via Nax, which could contribute to sympathetic driven hypertension.
Collapse
Affiliation(s)
- Harvey Davis
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust OXION Initiative in Ion Channels and Disease, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Heart Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
5
|
Kurtz T, Pravenec M, DiCarlo S. Mechanism-based strategies to prevent salt sensitivity and salt-induced hypertension. Clin Sci (Lond) 2022; 136:599-620. [PMID: 35452099 PMCID: PMC9069470 DOI: 10.1042/cs20210566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022]
Abstract
High-salt diets are a major cause of hypertension and cardiovascular (CV) disease. Many governments are interested in using food salt reduction programs to reduce the risk for salt-induced increases in blood pressure and CV events. It is assumed that reducing the salt concentration of processed foods will substantially reduce mean salt intake in the general population. However, contrary to expectations, reducing the sodium density of nearly all foods consumed in England by 21% had little or no effect on salt intake in the general population. This may be due to the fact that in England, as in other countries including the U.S.A., mean salt intake is already close to the lower normal physiologic limit for mean salt intake of free-living populations. Thus, mechanism-based strategies for preventing salt-induced increases in blood pressure that do not solely depend on reducing salt intake merit attention. It is now recognized that the initiation of salt-induced increases in blood pressure often involves a combination of normal increases in sodium balance, blood volume and cardiac output together with abnormal vascular resistance responses to increased salt intake. Therefore, preventing either the normal increases in sodium balance and cardiac output, or the abnormal vascular resistance responses to salt, can prevent salt-induced increases in blood pressure. Suboptimal nutrient intake is a common cause of the hemodynamic disturbances mediating salt-induced hypertension. Accordingly, efforts to identify and correct the nutrient deficiencies that promote salt sensitivity hold promise for decreasing population risk of salt-induced hypertension without requiring reductions in salt intake.
Collapse
Affiliation(s)
- Theodore W. Kurtz
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94017-0134, U.S.A
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Stephen E. DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, U.S.A
| |
Collapse
|
6
|
Ertuglu LA, Elijovich F, Laffer CL, Kirabo A. Salt-Sensitivity of Blood Pressure and Insulin Resistance. Front Physiol 2021; 12:793924. [PMID: 34966295 PMCID: PMC8711096 DOI: 10.3389/fphys.2021.793924] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022] Open
Abstract
Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality that is seen in both hypertensive and normotensive populations. Insulin resistance (IR) strongly correlates with SSBP and affects nearly 50% of salt sensitive people. While the precise mechanism by which IR and SSBP relate remains elusive, several common pathways are involved in the genesis of both processes, including vascular dysfunction and immune activation. Vascular dysfunction associated with insulin resistance is characterized by loss of nitric oxide (NO)-mediated vasodilation and heightened endothelin-1 induced vasoconstriction, as well as capillary rarefaction. It manifests with increased blood pressure (BP) in salt sensitive murine models. Another common denominator in the pathogenesis of insulin resistance, hypertension, and salt sensitivity (SS) is immune activation involving pro-inflammatory cytokines like tumor necrosis factor (TNF)-α, IL-1β, and IL-6. In the last decade, a new understanding of interstitial sodium storage in tissues such as skin and muscle has revolutionized traditional concepts of body sodium handling and pathogenesis of SS. We have shown that interstitial Na+ can trigger a T cell mediated inflammatory response through formation of isolevuglandin protein adducts in antigen presenting cells (APCs), and that this response is implicated in salt sensitive hypertension. The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor that modulates both insulin sensitivity and BP. PPARγ agonists increase insulin sensitivity and ameliorate salt sensitivity, whereas deficiency of PPARγ results in severe insulin resistance and hypertension. These findings suggest that PPARγ plays a role in the common pathogenesis of insulin sensitivity and salt sensitivity, perhaps via effects on the immune system and vascular function. The goal of this review is to discuss those mechanisms that may play a role in both SSBP and in insulin resistance.
Collapse
Affiliation(s)
- Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Fernando Elijovich
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Cheryl L Laffer
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
7
|
Potter JC, Whiles SA, Miles CB, Whiles JB, Mitchell MA, Biederman BE, Dawoud FM, Breuel KF, Williamson GA, Picken MM, Polichnowski AJ. Salt-Sensitive Hypertension, Renal Injury, and Renal Vasodysfunction Associated With Dahl Salt-Sensitive Rats Are Abolished in Consomic SS.BN1 Rats. J Am Heart Assoc 2021; 10:e020261. [PMID: 34689582 PMCID: PMC8751849 DOI: 10.1161/jaha.120.020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Abnormal renal hemodynamic responses to salt‐loading are thought to contribute to salt‐sensitive (SS) hypertension. However, this is based largely on studies in anesthetized animals, and little data are available in conscious SS and salt‐resistant rats. Methods and Results We assessed arterial blood pressure, renal function, and renal blood flow during administration of a 0.4% NaCl and a high‐salt (4.0% NaCl) diet in conscious, chronically instrumented 10‐ to 14‐week‐old Dahl SS and consomic SS rats in which chromosome 1 from the salt‐resistant Brown‐Norway strain was introgressed into the genome of the SS strain (SS.BN1). Three weeks of high salt intake significantly increased blood pressure (20%) and exacerbated renal injury in SS rats. In contrast, the increase in blood pressure (5%) was similarly attenuated in Brown‐Norway and SS.BN1 rats, and both strains were completely protected against renal injury. In SS.BN1 rats, 1 week of high salt intake was associated with a significant decrease in renal vascular resistance (−8%) and increase in renal blood flow (15%). In contrast, renal vascular resistance failed to decrease, and renal blood flow remained unchanged in SS rats during high salt intake. Finally, urinary sodium excretion and glomerular filtration rate were similar between SS and SS.BN1 rats during 0.4% NaCl and high salt intake. Conclusions Our data support the concept that renal vasodysfunction contributes to blood pressure salt sensitivity in Dahl SS rats, and that genes on rat chromosome 1 play a major role in modulating renal hemodynamic responses to salt loading and salt‐induced hypertension.
Collapse
Affiliation(s)
- Jacqueline C Potter
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Shannon A Whiles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Conor B Miles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Jenna B Whiles
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Mark A Mitchell
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Brianna E Biederman
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Febronia M Dawoud
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Kevin F Breuel
- Department of Obstetrics and Gynecology Quillen College of MedicineEast Tennessee State University Johnson City TN
| | - Geoffrey A Williamson
- Department of Electrical and Computer Engineering Illinois Institute of Technology Chicago IL
| | - Maria M Picken
- Department of Pathology Loyola University Medical Center Maywood IL
| | - Aaron J Polichnowski
- Department of Biomedical Sciences Quillen College of MedicineEast Tennessee State University Johnson City TN.,Center of Excellence in Inflammation, Infectious Disease and Immunity East Tennessee State University Johnson City TN
| |
Collapse
|
8
|
Kim M, Kim I. Ovariectomy, but not orchiectomy, exacerbates metabolic syndrome after maternal high-fructose intake in adult offspring. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:39-49. [PMID: 33361536 PMCID: PMC7756538 DOI: 10.4196/kjpp.2021.25.1.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 11/23/2022]
Abstract
High fructose diet is associated with the global metabolic syndrome (MtS) pandemic. MtS develops in early life, depending on prenatal and postnatal nutritional status. We hypothesized that ovariectomy increases the chances of developing MtS in adult offspring following high fructose intake by the mother. Pregnant C57BL/6J mouse dams drank water with or without 20% fructose during pregnancy and lactation. After weaning, the pups were fed regular chow. The offspring were evaluated until they were 7 months of age after the mice in each group, both sexes, were gonadectomized at 4 weeks of age. The offspring (both sexes) of the dams who had high fructose intake developed MtS. In the offspring of dams who drank tap water, orchiectomy increased the body weight gain and body fat accumulation, while ovariectomy increased the body fat accumulation as compared to the sham controls. In the offspring of dams with high fructose intake, orchiectomy decreased the body weight gain, body fat accumulation, visceral adiposity, and glucose intolerance, while ovariectomy exacerbated all of them as compared to the sham operations. These data indicate that ovariectomy encourages the development of MtS in adult offspring after maternal high fructose intake, while orchiectomy prevents the development of MtS. The sex difference indicates that male and female sex hormones play contradictory roles in the development of MtS.
Collapse
Affiliation(s)
- Mina Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Korea
| | - Inkyeom Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
9
|
Zhang J, Zhu J, Wei J, Jiang S, Xu L, Qu L, Yang K, Wang L, Buggs J, Cheng F, Tan X, Liu R. New Mechanism for the Sex Differences in Salt-Sensitive Hypertension: The Role of Macula Densa NOS1β-Mediated Tubuloglomerular Feedback. Hypertension 2020; 75:449-457. [PMID: 31865794 PMCID: PMC7015450 DOI: 10.1161/hypertensionaha.119.13822] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/16/2019] [Indexed: 02/05/2023]
Abstract
Females are relatively resistant to salt-sensitive hypertension than males, but the mechanisms are not completely elucidated. We recently demonstrated a decisive role of macula densa neuronal NOS1β (nitric oxide synthase β)-mediated tubuloglomerular feedback (TGF) in the long-term control of glomerular filtration rate, sodium excretion, and blood pressure. In the present study, we hypothesized that the macula densa NOS1β-mediated TGF mechanism is different between male and female, thereby contributing to the sexual dimorphism of salt-sensitive hypertension. We used microperfusion, micropuncture, clearance of fluorescein isothiocyanate-inulin, and radio telemetry to examine the sex differences in the changes of macula densa NOS1β expression and activity, TGF response, natriuresis, and blood pressure after salt loading in wild-type and macula densa-specific NOS1 knockout mice. In wild-type mice, a high-salt diet induced greater increases in macula densa NOS1β expression and phosphorylation at Ser 1417, greater nitric oxide generation by the macula densa, and more inhibition in TGF response in vitro and in vivo in females than in males. Additionally, the increases of glomerular filtration rate, urine flow rate, and sodium excretion in response to an acute volume expansion were significantly greater in females than in males. The blood pressure responses to angiotensin II plus a high-salt diet were significantly less in females than in males. In contrast, these sex differences in TGF, natriuretic response, and blood pressure were largely diminished in knockout mice. In conclusion, macula densa NOS1β-mediated TGF is a novel and important mechanism for the sex differences in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jinxiu Zhu
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Shan Jiang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Lan Xu
- College of Public Health, University of South Florida, Tampa, FL
| | - Larry Qu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Kun Yang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jacentha Buggs
- Advanced Organ Disease & Transplantation Institute, Tampa General Hospital, Tampa, FL
| | - Feng Cheng
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL
| | - Xuerui Tan
- The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ruisheng Liu
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
10
|
Kurtz TW, DiCarlo SE, Pravenec M, Ježek F, Šilar J, Kofránek J, Morris RC. Testing Computer Models Predicting Human Responses to a High-Salt Diet. Hypertension 2019; 72:1407-1416. [PMID: 30571226 DOI: 10.1161/hypertensionaha.118.11552] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recently, mathematical models of human integrative physiology, derived from Guyton's classic 1972 model of the circulation, have been used to investigate potential mechanistic abnormalities mediating salt sensitivity and salt-induced hypertension. We performed validation testing of 2 of the most evolved derivatives of Guyton's 1972 model, Quantitative Cardiovascular Physiology-2005 and HumMod-3.0.4, to determine whether the models accurately predict sodium balance and hemodynamic responses of normal subjects to increases in salt intake within the real-life range of salt intake in humans. Neither model, nor the 1972 Guyton model, accurately predicts the usual changes in sodium balance, cardiac output, and systemic vascular resistance that normally occur in response to clinically realistic increases in salt intake. Furthermore, although both contemporary models are extensions of the 1972 Guyton model, testing revealed major inconsistencies between model predictions with respect to sodium balance and hemodynamic responses of normal subjects to short-term and long-term salt loading. These results demonstrate significant limitations with the hypotheses inherent in the Guyton models regarding the usual regulation of sodium balance, cardiac output, and vascular resistance in response to increased salt intake in normal salt-resistant humans. Accurate understanding of the normal responses to salt loading is a prerequisite for accurately establishing abnormal responses to salt loading. Accordingly, the present results raise concerns about the interpretation of studies of salt sensitivity with the various Guyton models. These findings indicate a need for continuing development of alternative models that incorporate mechanistic concepts of blood pressure regulation fundamentally different from those in the 1972 Guyton model and its contemporary derivatives.
Collapse
Affiliation(s)
- Theodore W Kurtz
- From the Department of Laboratory Medicine (T.W.K.), School of Medicine, University of California, San Francisco
| | - Stephen E DiCarlo
- Department of Physiology, College of Osteopathic Medicine, Michigan State University, East Lansing (S.E.D.)
| | - Michal Pravenec
- Institute of Physiology of the Czech Academy of Sciences, Prague (M.P.)
| | - Filip Ježek
- Department of Cybernetics, Czech Technical University in Prague (F.J.).,Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Prague (F.J., J.S., J.K.)
| | - Jan Šilar
- Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Prague (F.J., J.S., J.K.)
| | - Jiří Kofránek
- Department of Pathophysiology, 1st Faculty of Medicine, Charles University, Prague (F.J., J.S., J.K.)
| | - R Curtis Morris
- Department of Medicine (R.C.M.), School of Medicine, University of California, San Francisco
| |
Collapse
|
11
|
The American Heart Association Scientific Statement on salt sensitivity of blood pressure: Prompting consideration of alternative conceptual frameworks for the pathogenesis of salt sensitivity? J Hypertens 2018. [PMID: 28650918 DOI: 10.1097/hjh.0000000000001458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
: Recently, the American Heart Association (AHA) published a scientific statement on salt sensitivity of blood pressure which emphasized a decades old conceptual framework for the pathogenesis of this common disorder. Here we examine the extent to which the conceptual framework for salt sensitivity emphasized in the AHA Statement accommodates contemporary findings and views of the broader scientific community on the pathogenesis of salt sensitivity. In addition, we highlight alternative conceptual frameworks and important contemporary theories of salt sensitivity that are little discussed in the AHA Statement. We suggest that greater consideration of conceptual frameworks and theories for salt sensitivity beyond those emphasized in the AHA Statement may help to advance understanding of the pathogenesis of salt-induced increases in blood pressure and, in consequence, may lead to improved approaches to preventing and treating this common disorder.
Collapse
|
12
|
Jiang E, Chapp AD, Fan Y, Larson RA, Hahka T, Huber MJ, Yan J, Chen QH, Shan Z. Expression of Proinflammatory Cytokines Is Upregulated in the Hypothalamic Paraventricular Nucleus of Dahl Salt-Sensitive Hypertensive Rats. Front Physiol 2018. [PMID: 29520237 PMCID: PMC5826963 DOI: 10.3389/fphys.2018.00104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Accumulating evidence indicates that inflammation is implicated in hypertension. However, the role of brain proinflammatory cytokines (PICs) in salt sensitive hypertension remains to be determined. Thus, the objective of this study was to test the hypothesis that high salt (HS) diet increases PICs expression in the paraventricular nucleus (PVN) and leads to PVN neuronal activation. Eight-week-old male Dahl salt sensitive (Dahl S) rats, and age and sex matched normal Sprague Dawley (SD) rats were divided into two groups and fed with either a HS (4% NaCl) or normal salt (NS, 0.4% NaCl) diet for 5 consecutive weeks. HS diet induced hypertension and significantly increased cerebrospinal fluid (CSF) sodium concentration ([Na+]) in Dahl S rats, but not in normal SD rats. In addition, HS diet intake triggered increases in mRNA levels and immunoreactivities of PVN PICs including TNF-α, IL-6, and IL-1β, as well as Fra1, a chronic marker of neuronal activation, in Dahl S rats, but not in SD rats. Next, we investigated whether this increase in the expression of PVN PICs and Fra1 was induced by increased CSF [Na+]. Adult male SD rats were intracerebroventricular (ICV) infused with 8 μl of either hypertonic salt (4 μmol NaCl), mannitol (8 μmol, as osmolarity control), or isotonic salt (0.9% NaCl as vehicle control). Three hours following the ICV infusion, rats were euthanized and their PVN PICs expression was measured. The results showed that central administration of hypertonic saline in SD rats significantly increased the expression of PICs including TNF-α, IL-6, and IL-1β, as well as neuronal activation marker Fra1, compared to isotonic NaCl controls and osmolarity controls. Finally, we tested whether the increase in PICs expression occurred in neurons. Incubation of hypothalamic neurons with 10 mM NaCl in a culture medium for 6 h elicited significant increases in TNF-α, IL-6, and Fra1 mRNA levels. These observations, coupled with the important role of PICs in modulating neuronal activity and stimulating vasopressin release, suggest that HS intake induces an inflammatory state in the PVN, which, may in turn, augments sympathetic nerve activity and vasopressin secretion, contributing to the development of salt sensitive hypertension.
Collapse
Affiliation(s)
- Enshe Jiang
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Institute for Nursing and Health Research, Henan University, Kaifeng, China
| | - Andrew D Chapp
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Yuanyuan Fan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Robert A Larson
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Taija Hahka
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Michael J Huber
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Jianqun Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Qing-Hui Chen
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| | - Zhiying Shan
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, MI, United States
| |
Collapse
|
13
|
Morris RC, Schmidlin O, Sebastian A, Tanaka M, Kurtz TW. Vasodysfunction That Involves Renal Vasodysfunction, Not Abnormally Increased Renal Retention of Sodium, Accounts for the Initiation of Salt-Induced Hypertension. Circulation 2016; 133:881-93. [PMID: 26927006 DOI: 10.1161/circulationaha.115.017923] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- R Curtis Morris
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco.
| | - Olga Schmidlin
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Anthony Sebastian
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Masae Tanaka
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco
| | - Theodore W Kurtz
- From the Departments of Medicine (R.C.M., O.S., A.S., M.T.) and Laboratory Medicine (T.W.K.), University of California, San Francisco.
| |
Collapse
|
14
|
Laffer CL, Scott RC, Titze JM, Luft FC, Elijovich F. Hemodynamics and Salt-and-Water Balance Link Sodium Storage and Vascular Dysfunction in Salt-Sensitive Subjects. Hypertension 2016; 68:195-203. [PMID: 27160204 PMCID: PMC4900938 DOI: 10.1161/hypertensionaha.116.07289] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/05/2016] [Indexed: 01/13/2023]
Abstract
We investigated 24-hour hemodynamic changes produced by salt loading and depletion in 8 salt-sensitive (SS) and 13 salt-resistant (SR) normotensive volunteers. After salt loading, mean arterial pressure was higher in SS (96.5±2.8) than in SR (84.2±2.7 mm Hg), P<0.01, owing to higher total peripheral resistance in SS (1791±148) than in SR (1549±66 dyn*cm(-5)*s), P=0.05, whereas cardiac output was not different between groups (SS 4.5±0.3 versus SR 4.4±0.2 L/min, not significant). Following salt depletion, cardiac output was equally reduced in both groups. Total peripheral resistance increased 24±6% (P<0.001) in SR, whose mean arterial pressure remained unchanged. In contrast, total peripheral resistance did not change in SS (1±6%, not significant). Thus, their mean arterial pressure was reduced, abolishing the mean arterial pressure difference between groups. SS had higher E/e' ratios than SR in both phases of the protocol. In these 21 subjects and in 32 hypertensive patients, Na(+) balance was similar in SR and SS during salt loading or depletion. However, SR did not gain weight during salt retention (-158±250 g), whereas SS did (819±204), commensurate to iso-osmolar water retention. During salt depletion, SR lost the expected amount of weight for iso-osmolar Na(+) excretion, whereas SS lost a greater amount that failed to fully correct the fluid retention from the previous day. We conclude that SS are unable to modulate total peripheral resistance in response to salt depletion, mirroring their inability to vasodilate in response to salt loading. We suggest that differences in water balance between SS and SR indicate differences in salt-and-water storage in the interstitial compartment that may relate to vascular dysfunction in SS.
Collapse
Affiliation(s)
- Cheryl L Laffer
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (C.L.L., J.M.T., F.C.L., F.E.); Division of Cardiology, Scott and White Health Care, Texas A&M University, Temple (R.C.S.); and Experimental and Clinical Research Center, Max-Delbrück Center, and Charité Medical Faculty, Berlin, Germany (F.C.L.)
| | - Robert C Scott
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (C.L.L., J.M.T., F.C.L., F.E.); Division of Cardiology, Scott and White Health Care, Texas A&M University, Temple (R.C.S.); and Experimental and Clinical Research Center, Max-Delbrück Center, and Charité Medical Faculty, Berlin, Germany (F.C.L.)
| | - Jens M Titze
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (C.L.L., J.M.T., F.C.L., F.E.); Division of Cardiology, Scott and White Health Care, Texas A&M University, Temple (R.C.S.); and Experimental and Clinical Research Center, Max-Delbrück Center, and Charité Medical Faculty, Berlin, Germany (F.C.L.)
| | - Friedrich C Luft
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (C.L.L., J.M.T., F.C.L., F.E.); Division of Cardiology, Scott and White Health Care, Texas A&M University, Temple (R.C.S.); and Experimental and Clinical Research Center, Max-Delbrück Center, and Charité Medical Faculty, Berlin, Germany (F.C.L.)
| | - Fernando Elijovich
- From the Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN (C.L.L., J.M.T., F.C.L., F.E.); Division of Cardiology, Scott and White Health Care, Texas A&M University, Temple (R.C.S.); and Experimental and Clinical Research Center, Max-Delbrück Center, and Charité Medical Faculty, Berlin, Germany (F.C.L.).
| |
Collapse
|
15
|
Wang X, Chandrashekar K, Wang L, Lai EY, Wei J, Zhang G, Wang S, Zhang J, Juncos LA, Liu R. Inhibition of Nitric Oxide Synthase 1 Induces Salt-Sensitive Hypertension in Nitric Oxide Synthase 1α Knockout and Wild-Type Mice. Hypertension 2016; 67:792-9. [PMID: 26883268 DOI: 10.1161/hypertensionaha.115.07032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
Abstract
We recently showed that α, β, and γ splice variants of neuronal nitric oxide synthase (NOS1) expressed in the macula densa and NOS1β accounts for most of the NO generation. We have also demonstrated that the mice with deletion of NOS1 specifically from the macula densa developed salt-sensitive hypertension. However, the global NOS1 knockout (NOS1KO) strain is neither hypertensive nor salt sensitive. This global NOS1KO strain is actually an NOS1αKO model. Consequently, we hypothesized that inhibition of NOS1β in NOS1αKO mice induces salt-sensitive hypertension. NOS1αKO and C57BL/6 wild-type (WT) mice were implanted with telemetry transmitters and divided into 7-nitroindazole (10 mg/kg/d)-treated and nontreated groups. All of the mice were fed a normal salt (0.4% NaCl) diet for 5 days, followed by a high-salt diet (4% NaCl). NO generation by the macula densa was inhibited by >90% in WT and NOS1αKO mice treated with 7-nitroindazole. Glomerular filtration rate in conscious mice was increased by ≈ 40% after a high-salt diet in both NOS1αKO and WT mice. In response to acute volume expansion, glomerular filtration rate, diuretic and natriuretic response were significantly blunted in the WT and knockout mice treated with 7-nitroindazole. Mean arterial pressure had no significant changes in mice fed a high-salt diet, but increased ≈ 15 mm Hg similarly in NOS1αKO and WT mice treated with 7-nitroindazole. We conclude that NOS1β, but not NOS1α, plays an important role in control of sodium excretion and hemodynamics in response to either an acute or a chronic salt loading.
Collapse
Affiliation(s)
- Ximing Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Kiran Chandrashekar
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Lei Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - En Yin Lai
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Jin Wei
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Gensheng Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Shaohui Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Jie Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Luis A Juncos
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Ruisheng Liu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.).
| |
Collapse
|
16
|
Pointer MA, Eley S, Anderson L, Waters B, Royall B, Nichols S, Wells C. Differential Effect of Renal Cortical and Medullary Interstitial Fluid Calcium on Blood Pressure Regulation in Salt-Sensitive Hypertension. Am J Hypertens 2015; 28:1049-55. [PMID: 25552516 DOI: 10.1093/ajh/hpu255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 11/24/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Hypercalciuria is a frequent characteristic of hypertension. In this report we extend our earlier studies investigating the role of renal interstitial fluid calcium (ISF(Ca))(2+) as a link between urinary calcium excretion and blood pressure in the Dahl salt-sensitive (DS) hypertensive model. METHODS Dahl salt-sensitive and salt-resistant (DR) rats were placed on control (0.45%) and high (8%) salt diets to determine if changes in renal cortical and medullary ISF(Ca)(2+)correlated with changes in urinary calcium excretion and blood pressure. RESULTS We observed that renal ISFCa(2+) was predicted by urinary calcium excretion (P < 0.05) in DS rats but not DR rats. Renal cortical ISF(Ca)(2+) was negatively associated with blood pressure (P < 0.03) while renal medullary ISF(Ca)(2+) was positively associated with blood pressure in DS rats (P < 0.04). In contrast, neither urinary calcium excretion nor renal ISF(Ca)(2+) was associated with blood pressure in the DR rats under the conditions of this study. CONCLUSION We interpret these findings to suggest that decreased renal cortical ISF(Ca)(2+) plays a role in the increase in blood pressure following a high salt diet in salt hypertension perhaps by mediating renal vasoconstriction; the role of medullary calcium remains to be fully understood. Further studies are needed to determine the mechanism of the altered renal ISF(Ca)(2+) and its role in blood pressure regulation.
Collapse
Affiliation(s)
- Mildred A Pointer
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA; Department of Biology; North Carolina Central University, Durham, North Carolina, USA.
| | - Shaleka Eley
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA; Department of Biology; North Carolina Central University, Durham, North Carolina, USA
| | - Lauren Anderson
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA; Department of Biology; North Carolina Central University, Durham, North Carolina, USA
| | - Brittany Waters
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA; Department of Biology; North Carolina Central University, Durham, North Carolina, USA
| | - Brittany Royall
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA; Department of Biology; North Carolina Central University, Durham, North Carolina, USA
| | - Sheena Nichols
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA; Department of Biology; North Carolina Central University, Durham, North Carolina, USA
| | - Candace Wells
- Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina, USA; Department of Biology; North Carolina Central University, Durham, North Carolina, USA
| |
Collapse
|
17
|
Kurtz TW, Dominiczak AF, DiCarlo SE, Pravenec M, Morris RC. Molecular-based mechanisms of Mendelian forms of salt-dependent hypertension: questioning the prevailing theory. Hypertension 2015; 65:932-41. [PMID: 25753977 DOI: 10.1161/hypertensionaha.114.05092] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/11/2015] [Indexed: 12/20/2022]
Abstract
This critical review directly challenges the prevailing theory that a transient increase in cardiac output caused by genetically mediated increases in activity of the ENaC in the aldosterone sensitive distal nephron, or of the NCC in the distal convoluted tubule, accounts entirely for the hemodynamic initiation of all Mendelian forms of salt-dependent hypertension (Figure 1). The prevailing theory of how genetic mutations enable salt to hemodynamically initiate Mendelian forms of salt-dependent hypertension in humans (Figure 1) depends on the results of salt-loading studies of cardiac output and systemic vascular resistance in nongenetic models of hypertension that lack appropriate normal controls. The theory is inconsistent with the results of studies that include measurements of the initial hemodynamic changes induced by salt loading in normal, salt-resistant controls. The present analysis, which takes into account the results of salt-loading studies that include the requisite normal controls, indicates that mutation-induced increases in the renal tubular activity of ENaC or NCC that lead to transient increases in cardiac output will generally not be sufficient to enable increases in salt intake to initiate the increased BP that characterizes Mendelian forms of salt-dependent hypertension (Table). The present analysis also raises questions about whether mutation-dependent increases in renal tubular activity of ENaC or NCC are even necessary to account for increased risk for salt-dependent hypertension in most patients with such mutations. We propose that for the genetic alterations underlying Mendelian forms of salt-dependent hypertension to enable increases in salt intake to initiate the increased BP, they must often cause vasodysfunction, ie, an inability to normally vasodilate and decrease systemic vascular resistance in response to increases in salt intake within dietary ranges typically observed in most modern societies. A subnormal ability to vasodilate in response to salt loading could be caused by mutation-related disturbances originating in the vasculature itself or in sites outside the vasculature (eg, brain or adrenal glands) that have the capacity to affect vascular function.
Collapse
Affiliation(s)
- Theodore W Kurtz
- From the Department of Laboratory Medicine, University of California, San Francisco (T.W.K.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (A.F.D.); Department of Physiology, Wayne State University, Detroit, MI (S.E.D.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P.); and Department of Medicine, University of California, San Francisco (R.C.M.).
| | - Anna F Dominiczak
- From the Department of Laboratory Medicine, University of California, San Francisco (T.W.K.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (A.F.D.); Department of Physiology, Wayne State University, Detroit, MI (S.E.D.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P.); and Department of Medicine, University of California, San Francisco (R.C.M.)
| | - Stephen E DiCarlo
- From the Department of Laboratory Medicine, University of California, San Francisco (T.W.K.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (A.F.D.); Department of Physiology, Wayne State University, Detroit, MI (S.E.D.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P.); and Department of Medicine, University of California, San Francisco (R.C.M.)
| | - Michal Pravenec
- From the Department of Laboratory Medicine, University of California, San Francisco (T.W.K.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (A.F.D.); Department of Physiology, Wayne State University, Detroit, MI (S.E.D.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P.); and Department of Medicine, University of California, San Francisco (R.C.M.)
| | - R Curtis Morris
- From the Department of Laboratory Medicine, University of California, San Francisco (T.W.K.); Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (A.F.D.); Department of Physiology, Wayne State University, Detroit, MI (S.E.D.); Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic (M.P.); and Department of Medicine, University of California, San Francisco (R.C.M.)
| |
Collapse
|
18
|
Wainford RD, Carmichael CY, Pascale CL, Kuwabara JT. Gαi2-protein-mediated signal transduction: central nervous system molecular mechanism countering the development of sodium-dependent hypertension. Hypertension 2014; 65:178-86. [PMID: 25312437 DOI: 10.1161/hypertensionaha.114.04463] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Excess dietary salt intake is an established cause of hypertension. At present, our understanding of the neuropathophysiology of salt-sensitive hypertension is limited by a lack of identification of the central nervous system mechanisms that modulate sympathetic outflow and blood pressure in response to dietary salt intake. We hypothesized that impairment of brain Gαi2-protein-gated signal transduction pathways would result in increased sympathetically mediated renal sodium retention, thus promoting the development of salt-sensitive hypertension. To test this hypothesis, naive or renal denervated Dahl salt-resistant and Dahl salt-sensitive (DSS) rats were assigned to receive a continuous intracerebroventricular control scrambled or a targeted Gαi2-oligodeoxynucleotide infusion, and naive Brown Norway and 8-congenic DSS rats were fed a 21-day normal or high-salt diet. High salt intake did not alter blood pressure, suppressed plasma norepinephrine, and evoked a site-specific increase in hypothalamic paraventricular nucleus Gαi2-protein levels in naive Brown Norway, Dahl salt-resistant, and scrambled oligodeoxynucleotide-infused Dahl salt-resistant but not DSS rats. In Dahl salt-resistant rats, Gαi2 downregulation evoked rapid renal nerve-dependent hypertension, sodium retention, and sympathoexcitation. In DSS rats, Gαi2 downregulation exacerbated salt-sensitive hypertension via a renal nerve-dependent mechanism. Congenic-8 DSS rats exhibited sodium-evoked paraventricular nucleus-specific Gαi2-protein upregulation and attenuated hypertension, sodium retention, and global sympathoexcitation compared with DSS rats. These data demonstrate that paraventricular nucleus Gαi2-protein-gated pathways represent a conserved central molecular pathway mediating sympathoinhibitory renal nerve-dependent responses evoked to maintain sodium homeostasis and a salt-resistant phenotype. Impairment of this mechanism contributes to the development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Richard D Wainford
- From the the Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (R.D.W., C.Y.C., J.T.K.); and Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans (R.D.W., C.L.P.).
| | - Casey Y Carmichael
- From the the Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (R.D.W., C.Y.C., J.T.K.); and Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans (R.D.W., C.L.P.)
| | - Crissey L Pascale
- From the the Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (R.D.W., C.Y.C., J.T.K.); and Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans (R.D.W., C.L.P.)
| | - Jill T Kuwabara
- From the the Department of Pharmacology and Experimental Therapeutics and the Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (R.D.W., C.Y.C., J.T.K.); and Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans (R.D.W., C.L.P.)
| |
Collapse
|
19
|
Zicha J, Dobešová Z, Vokurková M, Rauchová H, Hojná S, Kadlecová M, Behuliak M, Vaněčková I, Kuneš J. Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res 2013; 61:S35-S87. [PMID: 22827876 DOI: 10.33549/physiolres.932363] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.
Collapse
Affiliation(s)
- J Zicha
- Centre for Cardiovascular Research, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rouse RL, Stewart SR, Thompson KL, Zhang J. Kidney Injury Biomarkers in Hypertensive, Diabetic, and Nephropathy Rat Models Treated with Contrast Media. Toxicol Pathol 2012; 41:662-80. [DOI: 10.1177/0192623312464122] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Contrast-induced nephropathy (CIN) refers to a decline in renal function following exposure to iodinated contrast media (CM). The present study was initiated to explore the role of known human risk factors (spontaneous hypertension, diabetes, protein-losing nephropathy) on CIN development in rodent models and to determine the effect of CM administration on kidney injury biomarkers in the face of preexisting kidney injury. Spontaneously hypertensive rats (hypertension), streptozotocin-treated Sprague Dawley rats (diabetes), and Dahl salt-sensitive rats (protein-losing nephropathy) were given single intravenous injections of the nonionic, low osmolar contrast medium, iohexol. Blood urea nitrogen (BUN), serum creatinine (sCr), and urinary biomarkers; albumin, lipocalin 2 (Lcn-2), osteopontin (Opn), kidney injury molecule 1 (Kim-1), renal papillary antigen 1 (Rpa-1), α-glutathione S-transferase (α-Gst), µ-glutathione S-transferase (µ-Gst), and beta-2 microglobulin (β2m) were measured in disease models and appropriate controls to determine the response of these biomarkers to CM administration. Each disease model produced elevated biomarkers of kidney injury without CM. Preexisting histopathology was exacerbated by CM but little or no significant increases in biomarkers were observed. When 1.5-fold or greater sCr increases from pre-CM were used to define true positives, receiver–operating characteristic curve analysis of biomarker performance showed sCr was the best predictor of CIN across disease models. β2m, Lcn-2, and BUN were the best predictors of histopathology defined kidney injury.
Collapse
Affiliation(s)
- Rodney L. Rouse
- Division of Drug Safety Research, Office of Testing and Research, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sharron R. Stewart
- Division of Drug Safety Research, Office of Testing and Research, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Karol L. Thompson
- Division of Drug Safety Research, Office of Testing and Research, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | |
Collapse
|
21
|
Wainford RD, Kapusta DR. Hypothalamic paraventricular nucleus G alpha q subunit protein pathways mediate vasopressin dysregulation and fluid retention in salt-sensitive rats. Endocrinology 2010; 151:5403-14. [PMID: 20861238 PMCID: PMC2954710 DOI: 10.1210/en.2010-0345] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 08/16/2010] [Indexed: 11/19/2022]
Abstract
Central Gαz and Gαq protein-gated pathways play a pivotal role in modulating (inhibiting vs. stimulating, respectively) vasopressin release and urine output; these studies examined the role of brain Gαz/Gαq proteins in the regulation of vasopressin secretion during high-salt challenge. We examined the effects of 21-d normal or high salt intake on plasma vasopressin levels, daily sodium and water balance, and brain Gαz and Gαq protein levels in male Sprague-Dawley (SD), Dahl salt-resistant (DSR), and Dahl salt-sensitive (DSS) rats. Additionally, the effect of central Gαq protein down-regulation on these parameters and the diuretic response evoked by pharmacological [nociceptin/orphanin FQ; 5.5 nmol intracerebroventricularly (icv)] and physiological stimuli (isotonic-saline volume expansion, 5% bodyweight, iv) was examined. After 21 d of high salt intake, DSS, but not SD or DSR rats, exhibited vasopressin dysregulation, as evidenced by elevated plasma vasopressin levels (P < 0.05), marked positive water (and sodium) balance (P < 0.05), and an impaired diuretic response to pharmacological and physiological stimuli (P < 0.05). Chronic high salt intake (21 d) evoked down-regulation of Gαq (P < 0.05), but not Gαz, proteins in the hypothalamic paraventricular nucleus of SD and DSR, but not DSS rats. In salt-challenged (21 d) DSS rats, acute oligodeoxynucleotide-mediated down-regulation of central Gαq proteins returned plasma vasopressin to control levels (P < 0.05), decreased salt-induced water retention (P < 0.05), and restored the profound diuretic responses to pharmacological and physiological stimuli (P < 0.05). Therefore, the down-regulation of PVN Gαq proteins plays a critical counter-regulatory role in preventing vasopressin hypersecretion in salt-resistant phenotypes and may represent a new therapeutic target in pathophysiological states featuring vasopressin dysregulation.
Collapse
Affiliation(s)
- Richard D Wainford
- Department of Pharmacology, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, Louisiana 70112, USA.
| | | |
Collapse
|
22
|
Renal functional, not morphological, abnormalities account for salt sensitivity in Dahl rats. J Hypertens 2009; 27:587-98. [PMID: 19330919 DOI: 10.1097/hjh.0b013e32831ffec7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The kidney's role in the pathogenesis of salt-induced hypertension remains unclear. However, it has been suggested that inherited morphological renal abnormalities may cause hypertension. We hypothesized that functional, not morphological, derangements in Dahl salt-sensitive rats' kidneys cause NaCl retention that leads to hypertension accompanied by renal pathologic changes and proteinuria. METHOD We studied hemodynamic, renal morphologic, and biochemical differences in Dahl salt-resistant and Dahl salt-sensitive rats fed low (0.05-0.23% NaCl) or elevated (1% NaCl) salt diets. RESULTS We found similar hemodynamics, equal numbers of glomeruli, normal renal medullary interstitial cells and their osmiophilic granules, and cortical morphology in normotensive Dahl salt-resistant and Dahl salt-sensitive rats fed low dietary salt. Furthermore, aldosterone secretion, caused by angiotensin II infusion in normotensive rats fed 0.23% NaCl, was significantly less in Dahl salt-sensitive than Dahl salt-resistant rats. Increasing NaCl to 1% caused renal vasoconstriction without changing cyclic GMP excretion in Dahl salt-sensitive rats; in Dahl salt-resistant rats, cyclic GMP increased markedly and renal vascular resistance remained unchanged. On 1% NaCl for 9 months, Dahl salt-sensitive rats developed marked hypertension, severe renal vasoconstriction, glomerulosclerosis, tubulointerstitial abnormalities, and marked proteinuria; hypertension resulted from increased total peripheral resistance, as occurs in essential hypertensive humans. No hemodynamic or renal pathologic changes occurred in Dahl salt-resistant rats, and proteinuria was minimal. CONCLUSION We conclude that renal functional, not morphological, abnormalities cause salt sensitivity in Dahl rats.
Collapse
|
23
|
Bagrov AY, Agalakova NI, Kashkin VA, Fedorova OV. Endogenous cardiotonic steroids and differential patterns of sodium pump inhibition in NaCl-loaded salt-sensitive and normotensive rats. Am J Hypertens 2009; 22:559-63. [PMID: 19229192 PMCID: PMC2678964 DOI: 10.1038/ajh.2009.22] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Endogenous sodium pump inhibitors promote sodium excretion in normotensives and contribute to vasoconstriction in NaCl-sensitive hypertension. Marinobufagenin (MBG), an endogenous bufadienolide inhibitor of alpha-1 sodium pump, contributes to hypertension in Dahl salt-sensitive rats (DS). We hypothesized that in NaCl-loaded DS and normotensive Sprague-Dawley rats (S-D), MBG would elicit different patterns of sodium pump inhibition. METHODS We compared systolic blood pressure (SBP), renal sodium excretion, activity of the sodium pump in aorta and renal medulla, and levels of MBG, atrial natriuretic peptide (ANP), and cyclic guanosine monophosphate (cGMP) in salt-loaded DS and S-D (20% NaCl, 2.5 ml/kg, intraperitoneally). RESULTS NaCl loading produced sustained elevations in renal MBG excretion in both DS (2.41 +/- 0.24 vs. 0.79 +/- 0.08 pmol/h/kg, P < 0.01) and S-D (1.97 +/- 0.37 vs. 0.60 +/- 0.07 pmol/h/kg, P < 0.01) vs. that at baseline (n = 10 for each group). In NaCl-loaded DS, SBP rose by 18 mm Hg (P < 0.01) and aortic sodium pump was inhibited by 22% (P < 0.05 vs. control), while in S-D, SBP and activity of aortic sodium pump did not change. NaCl-loaded S-D excreted twice as much sodium as DS; in S-D, renal sodium pump was inhibited by 24% vs. 14% inhibition in DS (P < 0.05). NaCl loading elicited increases in plasma ANP and in renal cGMP excretion in S-D but not in DS. CONCLUSIONS Our present observations demonstrate that in NaCl-loaded S-D and DS, a comparable MBG response is associated with preferential inhibition of the sodium pump in the kidney and in vascular smooth muscle, respectively, resulting in an adaptive natriuresis in S-D but sodium retention and pressor response in DS.
Collapse
Affiliation(s)
- Alexei Y. Bagrov
- Laboratory of Cardiovascular Science, National Institute of Aging, NIH, Baltimore, Maryland, USA
| | - Natalia I. Agalakova
- Laboratory of Cardiovascular Science, National Institute of Aging, NIH, Baltimore, Maryland, USA
| | - Vladimir A. Kashkin
- Laboratory of Cardiovascular Science, National Institute of Aging, NIH, Baltimore, Maryland, USA
| | - Olga V. Fedorova
- Laboratory of Cardiovascular Science, National Institute of Aging, NIH, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Forde P, Scribner AW, Dial R, Loscalzo J, Trolliet MR. Prevention of hypertension and renal dysfunction in Dahl rats by alpha-tocopherol. J Cardiovasc Pharmacol 2003; 42:82-8. [PMID: 12827031 DOI: 10.1097/00005344-200307000-00013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although hypertension is a risk factor for the development of end-stage renal disease, not all hypertensive patients progress to develop renal dysfunction. The mechanisms underlying hypertensive nephropathy are poorly understood. The authors have recently shown that the development of hypertension and renal dysfunction is accompanied by an accumulation of partially reduced oxygen and its derivatives, known collectively as reactive oxygen species. In the present study, the effect of a lipid-soluble antioxidant on the development of salt-dependent hypertensive nephropathy was evaluated in the Dahl rat. It was found that a high-salt diet (8% NaCl) led to the development of hypertension, increased renal oxidative stress (superoxide production and 8-epi-prostaglandin F2alpha), and decreased glomerular filtration rate and renal plasma flow in the Dahl salt-sensitive (DSS) rat, and that these adverse effects of salt were prevented by supplementing the high-salt diet with 1000 U/kg chow of alpha-tocopherol. It is well known that urinary cyclic guanosine monophosphate (cGMP) levels are lower in hypertensive DSS rats than in Dahl salt-resistant (DSR) rats on a high-salt diet. Most surprisingly, when supplemented with alpha-tocopherol, DSS rats on an 8% NaCl diet were able to excrete as much cGMP as DSR rats. Taken together, these findings suggest that, in the DSS rat, salt-dependent hypertensive nephropathy and decreased nitric oxide bioavailability are associated with increased oxidative stress, and that antioxidants can preclude these adverse effects of salt feeding, and consequently, prevent salt-dependent hypertension and nephropathy.
Collapse
Affiliation(s)
- Patrick Forde
- Whitaker Cardiovascular Institute, Evans Department of Medicine, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
25
|
Cosentino F, Bonetti S, Rehorik R, Eto M, Werner-Felmayer G, Volpe M, Lüscher TF. Nitric-oxide-mediated relaxations in salt-induced hypertension: effect of chronic beta1 -selective receptor blockade. J Hypertens 2002; 20:421-8. [PMID: 11875309 DOI: 10.1097/00004872-200203000-00017] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Nebivolol is a new beta1-selective adrenergic receptor antagonist with a direct vasorelaxant effect that involves activation of the l-arginine-nitric oxide (NO) pathway. Therefore, treatment with nebivolol may protect against endothelial injury in hypertension. OBJECTIVE To investigate whether chronic selective beta1-blockade with nebivolol could prevent endothelial dysfunction in salt-induced hypertension, and to compare it with atenolol. METHODS Dahl salt-sensitive rats were treated for 8 weeks with standard chow or chow containing 4% NaCl alone or in combination with nebivolol (10 mg/kg per day) or atenolol (100 mg/kg per day). Isometric tension was continuously recorded in isolated aorta and small mesenteric arteries. Constitutive NO synthase (cNOS) activity was determined by [3H]citrulline assay. RESULTS Chronic salt administration increased systolic blood pressure by 38 +/- 5 mmHg in salt-treated rats as compared with that in control rats. Both nebivolol and atenolol prevented a salt-induced increase in pressure. cNOS activity was significantly decreased by a high-salt diet. The impairment of endothelium-dependent relaxations in response to acetylcholine in salt-treated rats was prevented only by nebivolol, in both large and small arteries. In contrast, the reduced endothelium-independent relaxations and contractions in response to sodium nitroprusside and endothelin-1, respectively, were restored by both drugs. Nebivolol, but not atenolol, restored cNOS activity. CONCLUSIONS Despite nebivolol and atenolol having the same blood-pressure-decreasing effect, only nebivolol was able to prevent endothelial dysfunction. This study demonstrates for the first time that the acute NO-mediated vasodilatory action of nebivolol is also present during chronic treatment. Hence, nebivolol might become a new therapeutic tool with which to exert vascular protective effects against end-organ damage in conditions associated with NO deficiency.
Collapse
Affiliation(s)
- Francesco Cosentino
- Department of Cardiology and Cardiovascular Research, University Hospital, Zürich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
26
|
Luippold G, Zimmermann C, Mai M, Kloor D, Starck D, Gross G, Mühlbauer B. Dopamine D(3) receptors and salt-dependent hypertension. J Am Soc Nephrol 2001; 12:2272-2279. [PMID: 11675403 DOI: 10.1681/asn.v12112272] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Alterations in the dopaminergic system may contribute to the pathogenesis of hypertension. Dopamine D(3) receptors have been shown to be involved in the regulation of sodium balance and hemodynamics in rodents. For determining the role of D(3) receptors in salt-dependent hypertension, clearance experiments were performed in anesthetized salt-sensitive (DS) and salt-resistant (DR) Dahl rats that were fed a standard diet with either normal (0.2%) or high (4%) sodium content for 21 to 26 d, which induced hypertension in DS but not in DR rats. The D(3) receptor agonist R(+)-7-hydroxydipropyl-aminotetralin (7-OH-DPAT) increased GFR by up to 35% and urinary sodium excretion by up to 4.4-fold in DR rats that were on both normal and high-sodium diet. 7-OH-DPAT-induced natriuresis also was observed in DS rats that were on normal diet but not in hypertensive DS rats that were on high-salt diet. No GFR response to 7-OH-DPAT was found in DS rats, irrespective of sodium diet. The diminished functional response to D(3) receptor stimulation in DS rats was associated with a significantly lower [(3)H]-7-OH-DPAT binding to renal membrane protein when comparing DS with DR rats. Consequently, DR rats were treated with BSF 135170, a novel, highly selective D(3) receptor antagonist, for 29 d. Whereas no change in systolic BP was observed during normal diet, high sodium intake significantly increased BP by almost 40 mmHg. In summary, both expression and function of the renal dopamine D(3) receptor are impaired in salt-sensitive Dahl rats. Together with the induction of salt-dependent hypertension in genetically salt-resistant Dahl rats by D(3) receptor blockade, the data strongly suggest that the deficiency in dopamine D(3) receptors represents an important pathophysiological factor in the development of salt-dependent hypertension.
Collapse
Affiliation(s)
- Gerd Luippold
- Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | | | - Matthias Mai
- Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | - Doris Kloor
- Department of Pharmacology, University of Tübingen, Tübingen, Germany
| | | | - Gerhard Gross
- Department of Pharmacology, Knoll AG, Ludwigshafen, Germany
| | - Bernd Mühlbauer
- Department of Pharmacology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Li Y, Adachi T, Bolotina VM, Knowles C, Ault KA, Cohen RA. Abnormal platelet function and calcium handling in Dahl salt-hypertensive rats. Hypertension 2001; 37:1129-35. [PMID: 11304514 DOI: 10.1161/01.hyp.37.4.1129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effect of dietary salt on platelet function and Ca(2+) homeostasis was studied in Dahl (DS) rats, a genetic model of salt-sensitive hypertension. DS rats were fed a high-salt (DSHS) or a low-salt diet (DSLS) for up to 4 weeks, and the effects of salt loading on systolic blood pressure, platelet P-selectin expression, and platelet Ca(2+) homeostasis were measured. The high-salt diet increased blood pressure and markedly increased the amount of ionomycin (IM)-releasable Ca(2+) in platelet intracellular stores (Ca(2+)/IM). The alteration in Ca(2+) stores was not prevented when the hypertension was prevented by treatment with hydralazine and reserpine. The Ca(2+) store filling during platelet exposure to 1 mmol/L Ca(2+) for 5 minutes and the rate of sarcoplasmic/endoplasmic Ca(2+) ATPase-dependent Ca(45) uptake were higher in DSHS compared with that in DSLS. There was a decrease in thrombin-induced Ca(2+) influx in platelets from DSHS; consistent with this, agonist-induced P-selectin expression was decreased. In DSLS, nitric oxide accelerated reloading of platelet Ca(2+) stores after their emptying by thrombin but failed to do so in DSHS. These results indicate that in DS rats, a high-salt diet increases sarcoplasmic/endoplasmic Ca(2+) ATPase activity and the Ca(2+)/IM but decreases the reuptake of Ca(2+) caused by nitric oxide. Decreases in Ca(2+) influx and platelet P-selectin expression might be explained by changes in intracellular Ca(2+) stores in DSHS rats, which apparently is a heritable response to a high-salt diet.
Collapse
Affiliation(s)
- Y Li
- Vascular Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
28
|
Barton M, Vos I, Shaw S, Boer P, D'Uscio LV, Gröne HJ, Rabelink TJ, Lattmann T, Moreau P, Lüscher TF. Dysfunctional renal nitric oxide synthase as a determinant of salt-sensitive hypertension: mechanisms of renal artery endothelial dysfunction and role of endothelin for vascular hypertrophy and Glomerulosclerosis. J Am Soc Nephrol 2000; 11:835-845. [PMID: 10770961 DOI: 10.1681/asn.v115835] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
This study investigated the role of renal nitric oxide synthase (NOS), endothelin, and possible mechanisms of renovascular dysfunction in salt-sensitive hypertension. Salt-sensitive (DS) and salt-resistant (DR) Dahl rats were treated for 8 wk with high salt diet (4% NaCl) alone or in combination with the ET(A) receptor antagonist LU135252 (60 mg/kg per d). Salt loading markedly increased NOS activity (pmol citrulline/mg protein per min) in renal cortex and medulla in DR but not in DS rats by 270 and 246%, respectively. Hypertension in DS rats was associated with renal artery hypertrophy, increased vascular and renal endothelin-1 (ET-1) protein content, and glomerulosclerosis. In the renal artery but not in the aorta of hypertensive DS rats, endothelium-dependent relaxation to acetylcholine was unchanged; however, endothelial dysfunction due to enhanced prostanoid-mediated, endothelium-dependent contractions and attenuation of basal nitric oxide release was present. Treatment with LU135252 reduced hypertension in part, but completely prevented activation of tissue ET-1 without affecting ET-3 levels. This was associated with a slight increase of renal NOS activity, normalization of endothelial dysfunction and renal artery hypertrophy, and marked attenuation of glomerulosclerosis. Thus, DS rats fail to increase NOS activity in response to salt loading. This abnormality may predispose to activation of the tissue ET-1 system, abnormal renal vasoconstriction, and renal injury. Chronic ET(A) receptor blockade normalized salt-induced changes in the renal artery and reduced glomerular injury, suggesting therapeutic potential for ET antagonists in salt-sensitive forms of hypertension.
Collapse
Affiliation(s)
- Matthias Barton
- Cardiology, University Hospital Zürich and Cardiovascular Research, Institute of Physiology, University of Zürich, Switzerland
| | - Ingrid Vos
- Nephrology and Hypertension, University Hospital Utrecht, The Netherlands
| | - Sidney Shaw
- Department of Clinical Research, University Hospital Bern, Switzerland
| | - Peter Boer
- Nephrology and Hypertension, University Hospital Utrecht, The Netherlands
| | - Livius V D'Uscio
- Cardiology, University Hospital Zürich and Cardiovascular Research, Institute of Physiology, University of Zürich, Switzerland
| | | | - Ton J Rabelink
- Nephrology and Hypertension, University Hospital Utrecht, The Netherlands
| | - Thomas Lattmann
- Cardiology, University Hospital Zürich and Cardiovascular Research, Institute of Physiology, University of Zürich, Switzerland
| | - Pierre Moreau
- Cardiology, University Hospital Zürich and Cardiovascular Research, Institute of Physiology, University of Zürich, Switzerland
| | - Thomas F Lüscher
- Cardiology, University Hospital Zürich and Cardiovascular Research, Institute of Physiology, University of Zürich, Switzerland
| |
Collapse
|
29
|
Ni Z, Oveisi F, Vaziri ND. Nitric oxide synthase isotype expression in salt-sensitive and salt-resistant Dahl rats. Hypertension 1999; 34:552-7. [PMID: 10523325 DOI: 10.1161/01.hyp.34.4.552] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have suggested that salt-sensitive hypertension in humans and experimental animals may in part be due to dysregulation of the L-arginine/nitric oxide system. This study was conducted to determine the endothelial, inducible, and neuronal nitric oxide synthase expressions in the kidney, heart, aorta, and brain of salt-sensitive and salt-resistant Dahl rats. We studied salt-sensitive and salt-resistant Dahl rats maintained on high- (8%) and regular- (0.2%) salt diets for 3 weeks. Blood pressure was modestly elevated in both Dahl salt-sensitive and salt-resistant rats consuming regular diet and severely increased in sensitive but not resistant rats consuming the high-salt diet. The Dahl salt-sensitive animals showed a significant reduction in kidney, heart, and aorta inducible nitric oxide synthase protein abundance on the regular diet, with further reductions on the high-salt diet. In addition, the high-salt diet markedly downregulated endothelial nitric oxide synthase expression in the kidney and aorta but not in the heart of the Dahl salt-sensitive animals. The rise in blood pressure in the Dahl salt-sensitive rats on the high-salt diet was accompanied by a significant elevation of brain neuronal nitric oxide synthase protein. In contrast, salt-resistant animals showed no change in heart, kidney, and aorta endothelial or brain neuronal nitric oxide synthase and considerably less intense changes in inducible isotype than that seen in the salt-sensitive group in response to the high-salt diet. In conclusion, the study revealed a marked downregulation of inducible nitric oxide synthase in the Dahl salt-sensitive rats on the regular diet, with further reductions on the high-salt diet. Furthermore, Dahl salt-sensitive rats consuming the high-salt diet showed significant reductions of kidney and aorta endothelial nitric oxide synthase and an upregulation of brain neuronal nitric oxide synthase expression.
Collapse
Affiliation(s)
- Z Ni
- Division of Nephrology, Department of Medicine, University of California, Irvine, USA
| | | | | |
Collapse
|
30
|
Bayorh MA, Williams E, Thierry-Palmer M, Sanford G, Emmett N, Harris-Hooker S, Socci RR, Chu TC. Enhanced nitric oxide synthesis reverses salt-induced alterations in blood flow and cGMP levels. Clin Exp Hypertens 1999; 21:333-52. [PMID: 10369379 DOI: 10.3109/10641969909068669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To understand the role of nitric oxide in salt-induced hypertension, we evaluated cardiovascular, hemodynamic and biochemical parameters in Dahl salt-sensitive rats fed low (0.3%) and high (8.0%) sodium diets. Two high salt groups received 1.25 and 2.5 g/L l-arginine in their drinking water. After three weeks of treatment, blood pressure was greater in the high salt groups. l-arginine did not modify salt-induced hypertension. Eicosapentaenoic acid (EPA) caused a smaller depressor response compared to normotensive rats. The increase in blood pressure was associated with decreases in aortic and renal blood flows. In renal artery, the reduction was counteracted by both l-arginine doses; whereas in the aorta, only the higher l-arginine one restored blood flow. The salt-induced reduction in aortic cyclic GMP level was only overcome by the higher l-arginine treatment. These data suggest that at the dose levels tested, nitric oxide reverses the reduction in cGMP and blood flow, but not the blood pressure changes associated with salt-induced hypertension.
Collapse
Affiliation(s)
- M A Bayorh
- Department of Pharmacology/Toxicology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Simchon S, Manger W, Golanov E, Kamen J, Sommer G, Marshall CH. Handling 22NaCl by the blood-brain barrier and kidney: its relevance to salt-induced hypertension in dahl rats. Hypertension 1999; 33:517-23. [PMID: 9931158 DOI: 10.1161/01.hyp.33.1.517] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously reported that inappropriate renal vasoconstriction in Dahl salt-sensitive (DS) rats fed high NaCl diets may cause sodium retention. The present study examined the distribution and elimination of 22Na in DS and Dahl salt-resistant (DR) rats, and we determined whether an abnormality in renal function might also cause sodium retention in DS rats. Following an intravenous bolus of 4 microCi 22NaCl in prehypertensive DS and DR rats with similar blood pressures on low (0.23%) or high (8% for 4 days) NaCl diets, urinary clearance of 22Na in 1 hour was about 4 times less in DS than DR rats, and renal retention of 22Na was up to 8 times greater in DS than DR rats (P<0.01), suggesting that a renal functional defect may contribute to salt retention in DS rats; however, its uptake in tail artery, heart, lungs, liver, and spleen was similar in DS and DR rats. Uptake in brain was up to 5 times greater in DS than DR rats (P<0.01). Cerebrospinal fluid 22Na radioactivity (in counts per minute) revealed that the blood-brain barrier is 5 to 8 times more permeable to sodium in DS than DR rats (P<0.01). Cerebrospinal fluid volume and brain water content increased significantly (P<0.01) in DS but not DR rats on an 8% NaCl diet. Intracerebroventricular bolus injection of 0.06 mL of 4.5 mol/L NaCl acutely and transiently induced the same degree of hypertension in DR and DS rats, whereas similar volume injections of isotonic saline, 4.5 mol/L Na-acetate, or 4.5 mol/L NaBr did not produce hypertension in either strain. We conclude that functional abnormalities in DS rat kidneys may cause retention of NaCl and that an increased blood-brain barrier permeability to NaCl may enhance its access to sites in the brain that are then activated and induce hypertension.
Collapse
Affiliation(s)
- S Simchon
- Department of Medicine, Columbia University and New York University Medical Center, New York, USA
| | | | | | | | | | | |
Collapse
|
32
|
Bayorh MA, Ogbolu EC, Williams E, Thierry-Palmer M, Sanford G, Emmett N, Harris-Hooker S, Socci RR, Chu TC, Chenault VM. Possible mechanisms of salt-induced hypertension in Dahl salt-sensitive rats. Physiol Behav 1998; 65:563-8. [PMID: 9877424 DOI: 10.1016/s0031-9384(98)00194-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic factors, diet, and salt sensitivity have all been implicated in hypertension. To further understand the mechanisms involved in salt-induced hypertension, cardiovascular, hemodynamics, and biochemical parameters in Dahl salt-sensitive rats were evaluated in animals on high- and low-sodium diets. During a 4-week treatment period, blood pressure was significantly elevated in the high (8.0%) salt group compared to the low (0.3%) salt group (p< or =0.05 for weeks 2 and 4, respectively). No significant changes were observed in heart rate. The increase in blood pressure was associated with significant increases in lower abdominal aortic and renal vascular resistance, along with a reduction in blood flow. A fourfold increase in arginine vasopressin was observed in animals on the high-salt diet. In contrast, there was no effect on plasma sodium, potassium, or aldosterone levels during the treatment period. As measured in isolated aortic rings, the high-salt diet also caused a significant elevation in stimulated norepinephrine release and a reduction in cyclic GMP levels. These data suggest that salt-induced elevation in blood pressure is due to activation of both the sympathetic and arginine vasopressin systems via mechanisms involving decreased cyclic GMP generation in vascular smooth muscle.
Collapse
Affiliation(s)
- M A Bayorh
- Department of Pharmacology/Toxicology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tank JE, Moe OW, Henrich WL. Abnormal regulation of proximal tubule renin mRNA in the Dahl/Rapp salt-sensitive rat. Kidney Int 1998; 54:1608-16. [PMID: 9844137 DOI: 10.1046/j.1523-1755.1998.00160.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The precise pathogenesis of salt-sensitive hypertension in the Dahl rat is unknown. Abnormalities in renal hemodynamics and NaCl handling have been implicated, and may relate to changes in the activity of the intrarenal renin-angiotensin system. METHODS Circulating, juxtaglomerular and intrarenal (glomerular and proximal tubular) renin were studied in Dahl/Rapp salt-sensitive and salt-resistant rats fed with a normal (0.5%) or high (4%) NaCl diet. Circulating and juxtaglomerular renin were assessed by measurement of plasma renin activity and renin secretory rates. Glomerular and proximal tubular renin mRNA were assessed by microdissection and quantitative competitive RT-PCR. RESULTS Circulating and juxtaglomerular renin were suppressed by high dietary NaCl in salt-sensitive rats (plasma renin activity, 0.5%, 10.9 +/- 0.7 vs. 4%, 7.9 +/- 0.3 ng/ml/hr, P < 0.05; renin secretory rate, 0.5% 220 +/- 32 vs. 4%, 58 +/- 5 ng/mg/hr, P < 0.05). Glomerular renin mRNA was also suppressed by the higher salt diet in salt-sensitive animals (0.5%, 411 +/- 84 vs. 4%, 67 +/- 22 x 103 copies/glomerulus, P < 0.05). In contrast, proximal tubular renin was not suppressed by a high NaCl diet in salt-sensitive animals (0.5%, 13.9 +/- 2.7 vs. 4%, 12.1 +/- 3.6 x 103 copies/mm tubule, P = NS), but was suppressed in salt-resistant rats (0.5%, 9.5 +/- 2.8 vs. 4%, 3.2 +/- 1.2 x 103 copies/mm, P < 0. 05). CONCLUSIONS Failure to suppress proximal tubular renin in response to high dietary NaCl may result in increased local generation of angiotensin II and enhanced proximal tubular NaCl absorption, and thereby contribute to the generation of salt sensitive hypertension.
Collapse
Affiliation(s)
- J E Tank
- Department of Internal Medicine, University of Texas Southwestern Medical Center and Dallas VA Medical Center, Dallas, Texas, USA
| | | | | |
Collapse
|
34
|
Gauthier-Rein KM, Rusch NJ. Distinct endothelial impairment in coronary microvessels from hypertensive Dahl rats. Hypertension 1998; 31:328-34. [PMID: 9453324 DOI: 10.1161/01.hyp.31.1.328] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypertension has been linked to an impaired dilator function of the coronary microvascular endothelium in vivo. However, the profile and mechanism of this dysfunction remain obscure. Thus, this study compared diameter responses to acetylcholine (ACH), bradykinin (BKN), and substance P (SP) between coronary microvessels (i.d.=106+/-4 microm) dissected from left ventricles of normotensive and hypertensive Dahl rats (Dahl-NT and Dahl-HT, respectively). Vessels were cannulated and pressurized on glass pipettes at 80 mm Hg, and internal diameters were monitored by videomicroscopy. Coronary microvessels from Dahl-NT and Dahl-HT showed similar dilator responses to ACH (100 pmol/L to 10 micromol/L), with maximal diameter increases of 63+/-5 microm and 63+/-7 microm, respectively (n=31,17). However, only vessels from Dahl-NT showed dilator responses to SP (10 fmol/L to 1 nmol/L) and BKN (100 fmol/L to 10 nmol/L). All dilator responses persisted after N-nitro-L-arginine (10 micromol/L) or indomethacin (10 micromol/L), but were blunted after inhibition of cytochrome P450 by 10 micromol/L octadecynoic acid (n=6-8). These results suggest that: (1) coronary microvessels from Dahl-HT show a unique pattern of endothelial impairment, whereby ACH-induced relaxations persist at a time when dilator responses to SP and BKN are severely blunted, and (2) a cytochrome P450 product, rather than nitric oxide or prostacyclin, may partly mediate the vasodilator responses to ACH, SP and BKN.
Collapse
Affiliation(s)
- K M Gauthier-Rein
- Department of Physiology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
35
|
Galletti F, Strazzullo P, Ferrara I, Annuzzi G, Rivellese AA, Gatto S, Mancini M. NaCl sensitivity of essential hypertensive patients is related to insulin resistance. J Hypertens 1997; 15:1485-91. [PMID: 9431856 DOI: 10.1097/00004872-199715120-00017] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate insulin sensitivity of essential hypertensive patients with different salt sensitivities of blood pressure in the absence of confounding factors such as obesity, glucose intolerance and the inclusion both of normotensive and of hypertensive subjects that have affected most previous studies. PATIENTS Ninety-nine patients with untreated mild or moderate essential hypertension, World Health Organization class I-II, participated in the study. METHODS Salt sensitivity was estimated using the Weinberger protocol with minor modifications and the patients were classified into tertiles of salt sensitivity. RESULTS Patients with high NaCl sensitivities were slightly older and had somewhat higher blood pressures than did subjects with low salt sensitivities. Plasma renin activity significantly decreased with increasing salt sensitivity. There were no differences among the three groups in terms of body mass index, fasting blood glucose and insulin plasma levels. There were no differences among the groups in the integrated glucose and insulin response to a standard oral-glucose tolerance test However, there was a significant difference in insulin sensitivity between two subgroups of the upper and lower tertile of salt sensitivity, the salt-sensitive hypertensives having a markedly lower utilization of glucose than did the salt-resistant ones, with a minor overlap (5.4 +/- 0.6 versus 7.4 +/- 0.3 mg/kg per min, P < 0.01). CONCLUSIONS This study showed that essential hypertensive patients with high NaCl sensitivities were relatively insulin resistant compared with those with low NaCl sensitivities, independently of confounding factors such as age, obesity and glucose intolerance. Insulin resistance was not associated with overt hyperinsulinaemia among these patients.
Collapse
Affiliation(s)
- F Galletti
- Department of Clinical and Experimental Medicine, Medical School, Federico II University of Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Gupta G, Azam M, Yang L, Danziger RS. The beta2 subunit inhibits stimulation of the alpha1/beta1 form of soluble guanylyl cyclase by nitric oxide. Potential relevance to regulation of blood pressure. J Clin Invest 1997; 100:1488-92. [PMID: 9294115 PMCID: PMC508328 DOI: 10.1172/jci119670] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cytosolic guanylyl cyclases (GTP pyrophosphate-lyase [cyclizing; EC 4.6.1.2]), primary receptors for nitric oxide (NO) generated by NO synthases, are obligate heterodimers consisting of an alpha and a beta subunit. The alpha1/beta1 form of guanylyl cyclase has the greatest activity and is considered the universal form. An isomer of the beta1 subunit, i.e., beta2, has been detected in the liver and kidney, however, its role is not known. In this study, we investigated the function of beta2. Immunoprecipitation experiments showed that the beta2 subunit forms a heterodimer with the alpha1 subunit. NO-stimulated cGMP formation in COS 7 cells cotransfected with the alpha1 and beta2 subunits was approximately 1/3 of that when alpha1 and beta1 subunits were cotransfected. The beta2 subunit inhibited NO-stimulated activity of the alpha1/beta1 form of guanylyl cyclase and NO-stimulated cGMP formation in cultured smooth muscle cells. Our results provide the first evidence that the beta2 subunit can regulate NO sensitivity of the alpha1/beta1 form of guanylyl cyclase. Northern analysis for guanylyl cyclase subunits was performed on RNA from kidneys of Dahl salt-sensitive rats, which have been shown to have decreased renal sensitivity to NO. Compared to the Dahl salt-resistant rat, message for beta2 was increased, beta1 was decreased, and alpha1 was unchanged. These results suggest a molecular basis for decreased renal guanylyl cyclase activity, i.e. , an increase in the alpha1/beta2 heterodimer, and decrease in the alpha1/beta1 heterodimer.
Collapse
Affiliation(s)
- G Gupta
- Department of Medicine, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
37
|
Tsunooka K, Morita H. Effect of a chronic high-salt diet on whole-body and organ sodium contents of Dahl rats. J Hypertens 1997; 15:851-6. [PMID: 9280207 DOI: 10.1097/00004872-199715080-00008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To evaluate whether a high-salt diet causes retention of Na in Dahl rats. DESIGN To compare the whole-body and organ (liver, spleen, kidney, heart, lung, femur, submaxillary gland and muscle) Na contents in Dahl salt-sensitive rats and Dahl salt-resistant rats. METHODS Rats aged 6-10 weeks of both strains were fed a normal-salt (0.4% NaCl) or a high-salt (8% NaCl) diet. The whole-body and organs were then ashed and their respective Na contents determined. RESULTS Salt-resistant rats fed the normal-salt diet had a higher whole-body Na content than did salt-sensitive rats. The high-salt diet increased the whole-body Na content of salt-sensitive rats significantly, but it did not increase that of salt-resistant rats. The high-salt diet caused a significant increase in the organ weight: body weight ratio for all organs of the salt-sensitive rats, except the submaxillary gland, but had no effect on the ratios for salt-resistant rats, apart from that for the kidney. The kidney, submaxillary gland and muscle Na concentrations were greater in salt-sensitive rats than they were in salt-resistant rats. Nonetheless, regardless of strain, the high-salt diet had no effect on organ and plasma Na concentrations. The high-salt diet increased the organ weights (liver, spleen, kidney, heart and lung) and the organ Na contents per kg body weight significantly for salt-sensitive rats but not for salt-resistant rats. CONCLUSIONS A high-salt diet caused Na retention in salt-sensitive rats only and this was partially due to enlargement of the organs.
Collapse
Affiliation(s)
- K Tsunooka
- Department of Physiology, Gifu University, School of Medicine, Japan
| | | |
Collapse
|
38
|
Simchon S, Manger W, Blumberg G, Brensilver J, Cortell S. Impaired renal vasodilation and urinary cGMP excretion in Dahl salt-sensitive rats. Hypertension 1996; 27:653-7. [PMID: 8613219 DOI: 10.1161/01.hyp.27.3.653] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously have shown that Dahl salt-sensitive rats increase renal vascular resistance in response to excessive salt feeding before total peripheral resistance increases and hypertension occurs. Failure of renal vasculature to dilate, as normally occurs in Dahl salt-resistant rats fed a high salt diet, may play a role in the development of hypertension in Dahl salt-sensitive rats. We also showed that renal vasculature in salt-sensitive rats is hyperreactive to vasoconstrictors and hyporeactive to vasodilators. Atrial natriuretic peptide, by stimulating cell-bound receptors, and nitroprusside, by generating nitric oxide, cause renal vasodilation by generating cGMP. Studies were undertaken to determine whether defective renal vasodilation in Dahl salt-sensitive rats is due to impaired production of cGMP. We examined the influence of nitroprusside infusion and salt intake on renal vascular resistance and cGMP excretion in salt-sensitive rats. Results demonstrate that salt feeding and nitroprusside infusion increase cGMP excretion and decrease renal vascular resistance in salt-resistant rats (P < .01), and, although this relationship was less clear in salt-sensitive rats, there was a reciprocal relationship between renal vascular resistance and cGMP excretion in all animals studied. Salt feeding and nitroprusside infusion caused less of an increase in cGMP excretion in salt-sensitive than in salt-resistant rats (P < .01). In conclusion, these studies support the concept that impairment in cGMP generation may play a primary role in the inability of the kidneys of Dahl salt-sensitive rats to vasodilate in response to increased salt intake. Such an impairment could contribute to salt retention and the development of hypertension.
Collapse
Affiliation(s)
- S Simchon
- Department of Medicine, New York University Medical Center, NY 10025, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
The mode of inheritance of salt-dependent hypertension in the inbred Dahl salt-sensitive rat strain was examined by genetic crosses with the corresponding salt-resistant strain. The blood pressure responses to ingestion of a high NaCl (8%) diet defined three phenotypes: early onset (within 17 days) of systolic hypertension, defined as greater than or equal to 140 mm Hg, the parental salt-sensitive phenotype; late onset of systolic hypertension requiring 50 to 60 days in males and more than 200 days in females, characteristic of the F1 progeny; and normotension, less than 140 mm Hg, the parental salt-resistant phenotype. The frequencies of the phenotypes observed among 91 F2 progeny and 45 progeny of the backcross to parental salt-sensitive animals agree well with values predicted by a model in which two autosomal, unlinked, allelic loci, termed alpha and beta, determine the inheritance. For F2 male progeny, the predicted frequencies of early-onset hypertension, late-onset hypertension, and normotension are 0.1875, 0.5625, and 0.25, respectively, and the corresponding observed frequencies were 0.156, 0.50, and 0.34 (X2 = 0.48, P > .50). F1 progeny of reciprocal parental crosses were maintained on the 8% NaCl diet for 255 days. Male F1 rats developed systolic hypertension sooner than did females. From 60 to 200 days, the average blood pressure value within each group remained approximately stable; the male values exceeded those for females (P < .01); and the direction of the parental cross significantly influenced (P < .05) the levels in males and females, suggestive of genomic imprinting.
Collapse
Affiliation(s)
- R E Abbott
- Department of Physiology and Cellular Biophysics, Columbia University, College of Physicians and Surgeons, New York, NY 10032
| | | |
Collapse
|
40
|
Simchon S, Manger WM, Shi GS, Brensilver J. Impaired renal vascular reactivity in prehypertensive Dahl salt-sensitive rats. Hypertension 1992; 20:524-32. [PMID: 1398888 DOI: 10.1161/01.hyp.20.4.524] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have previously shown that renal vascular resistance is less in Dahl salt-sensitive rats than salt-resistant rats fed 1% NaCl diets; however, renal vascular resistance increases before nonrenal vascular resistance as salt-sensitive rats develop hypertension when fed 8% NaCl diets. When salt-resistant rats are given 8% NaCl diets, renal vascular resistance decreases. The current study reports effects of atrial natriuretic peptide, nitroprusside, norepinephrine, angiotensin II, and endothelin-1 on renal and nonrenal vascular resistance in prehypertensive salt-sensitive and salt-resistant rats given 1% NaCl diets; doses used did not affect blood pressure. Resistance of nonrenal vessels in salt-sensitive and salt-resistant rats responded similarly to dilators or constrictors. However, atrial natriuretic peptide and nitroprusside decreased renal vascular resistance of salt-resistant rats (by 65%, p less than 0.01) but not that of salt-sensitive rats. Norepinephrine, angiotensin II, and endothelin-1 increased renal vascular resistance in salt-sensitive rats by 126%, 135%, and 135%, respectively (p less than 0.01); norepinephrine and angiotensin II did not change renal vascular resistance of salt-resistant rats, but endothelin-1 decreased renal vascular resistance in salt-resistant rats by 30% (p less than 0.01). Reactivity of nonrenal blood vessels in prehypertensive salt-sensitive and salt-resistant rats was similar when infused with dilators or constrictors in doses used. By contrast, renal vessels of salt-sensitive rats did not dilate in response to atrial natriuretic peptide and nitroprusside but were hypersensitive to norepinephrine and angiotensin II. Endothelin-1 caused renal vasoconstriction in salt-sensitive rats and renal vasodilation in salt-resistant rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Simchon
- Department of Medicine, New York University Medical Center, College of Physicians and Surgeons, Columbia University, NY 10016
| | | | | | | |
Collapse
|
41
|
Kaup SM, Behling AR, Greger JL. Sodium, potassium and chloride utilization by rats given various inorganic anions. Br J Nutr 1991; 66:523-32. [PMID: 1837733 DOI: 10.1079/bjn19910052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The purpose of the present studies was to examine the effect of ingestion of sodium and potassium salts of various fixed anions on blood pressure, and to assess interactions among electrolytes. In the first study, Sprague-Dawley rats fed on purified diets supplemented with Na salts of chloride, sulphate, bisulphate, carbonate and bicarbonate for 7 weeks developed higher blood pressures than rats fed on the basal diet. In a second study, rats fed on Na or K salts of HSO4, HCO3 or Cl had higher blood pressures than rats fed on the basal diet. Blood pressure measurements were not correlated with plasma volume, plasma renin activity, or plasma atrial natriuretic peptide concentrations at 7 weeks. Plasma renin activity was depressed in rats fed on supplemental Na and even more in rats fed on supplemental K salts rather than the basal diet. Generally, rats fed on supplemental Na excreted Na in urine and absorbed Na in the gut more efficiently than rats fed on the basal diet or diets supplemented with K, but the anions fed also altered Na absorption and excretion. In a third study, rats fed on diets supplemented with any Cl salt, but especially KCl, absorbed K more efficiently than those fed on the basal diet. In studies 1 and 2, the efficiency of urinary excretion of K was greatest when HCO3 and CO3 salts were fed and least when HSO4 salts were fed. Despite large variations in the efficiency of absorption and excretion of Na and K, tissue levels of the electrolytes remained constant.
Collapse
Affiliation(s)
- S M Kaup
- Department of Nutritional Sciences, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
42
|
Abstract
The pathogenesis of essential hypertension (EH) is reviewed with a special focus on the development phase or the pre-hypertensive period. Three animal models are presented: the spontaneously hypertensive rat, the Dahl's salt-sensitive rat, and the Milan hypertensive rat. Some of the findings in animal models have inspired new fields and technical approaches for studying EH in man. From the original idea of Page, a new mosaic of various etiological parameters serves as a basis for reviewing the multiple facets of EH in man. One must conclude that EH is heterogeneous disease and most likely every single hypertensive patient belongs to a subgroup of the whole population of hypertensives.
Collapse
Affiliation(s)
- J G Mongeau
- Centre de recherche et Service de Néphrologie, Hôpital Sainte-Justine, Université de Montréal, Québec, Canada
| |
Collapse
|
43
|
Simchon S, Manger WM, Brown TW. Dual hemodynamic mechanisms for salt-induced hypertension in Dahl salt-sensitive rats. Hypertension 1991; 17:1063-71. [PMID: 2045150 DOI: 10.1161/01.hyp.17.6.1063] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cardiac output, blood volume, total peripheral resistance, and renal blood flow were measured in awake salt-sensitive and salt-resistant Dahl rats on normal rat chow (1% NaCl) and on high salt (8% NaCl) diets. Rats were studied after 4, 8, and 46 weeks on a 1% NaCl diet and after 4 and 8 weeks on an 8% NaCl diet. Salt-sensitive rats on 8% NaCl for 4 weeks developed systolic hypertension; by 8 weeks they developed greater systolic and also diastolic hypertension. Salt-resistant rats on 8% NaCl remained normotensive throughout the studies, although renal resistance decreased (p less than 0.05). At 4 weeks, hypertension in salt-sensitive rats on 8% NaCl was caused by increased blood volume and cardiac output (p less than 0.05), with normal total peripheral resistance. At 8 weeks, hypertension was due to increased total peripheral resistance (p less than 0.05); cardiac output was below normal despite persistent elevation of blood volume (p less than 0.05). Salt-sensitive rats on 1% NaCl for 46 weeks were hypertensive, with elevated total peripheral resistance (p less than 0.05); cardiac output decreased (p less than 0.05), whereas blood volume remained unchanged. Salt-resistant rats on 1% NaCl remained normotensive with no charges in hemodynamics. Salt-sensitive rats on 8% NaCl for 4 weeks had an increase in renal vascular resistance but no significant change in nonrenal resistance or total peripheral resistance. The increased total peripheral resistance in salt-sensitive rats on 8% NaCl for 8 weeks and on 1% NaCl for 46 weeks was a reflection of increases of both renal and nonrenal vascular resistance.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Simchon
- Department of Medicine, New York University Medical Center, NY 10016
| | | | | |
Collapse
|
44
|
The effect of volume expansion on placental blood flow in awake hypovolemic rats in late pregnancy. Am J Obstet Gynecol 1991; 164:921-6. [PMID: 2003559 DOI: 10.1016/0002-9378(91)90540-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Symptomatic hypovolemia in preeclampsia is often treated by volume expansion. However, the effect of this treatment on placental blood flow is unclear. In the present study the hypothesis was tested that slow volume expansion, imposed on volume-depleted rats, does not compromise placental blood flow. Mild hypovolemia was induced in rats in late pregnancy by 24 hours' thirsting. The resulting gradual dehydration was associated with a 7% reduction in blood volume. These rats were then subjected to blood volume expansion by a continuous infusion with a plasma substitute. Volume expansion increased blood volume by 32% and cardiac output by 73%. The extra cardiac output was distributed to kidneys, carcass, and portal bed. Placental blood flow decreased by 31%. The pattern of response was comparable to the one previously observed in normovolemic rats. However, the magnitude of the changes was larger, probably associated with a delayed or impaired diuretic response. These data suggest that volume expansion therapy in mildly hypovolemic pregnant rats elicits an exaggerated hemodynamic response as compared with normovolemic rats, including placental compromise.
Collapse
|
45
|
Boegehold MA, Kotchen TA. Importance of dietary chloride for salt sensitivity of blood pressure. Hypertension 1991; 17:I158-61. [PMID: 1986995 DOI: 10.1161/01.hyp.17.1_suppl.i158] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recent evidence indicates that the anion accompanying sodium plays an important role in determining the magnitude of the blood pressure increase in response to a high dietary intake of NaCl. The purpose of this review is to describe studies of blood pressure responses to selective dietary sodium loading (without chloride) and to selective dietary chloride loading (without sodium) in several experimental models of salt-sensitive hypertension and in hypertensive humans. The full expression of salt sensitivity depends on high dietary intakes of both sodium and chloride. This observation has implications for understanding mechanisms contributing to NaCl-induced hypertension.
Collapse
Affiliation(s)
- M A Boegehold
- Department of Medicine, West Virginia University School of Medicine, Morgantown
| | | |
Collapse
|