1
|
Karabulut D, Başaran KE, Kuloğlu N, Değer N, Yakan B. Effect of chronic sustained hypoxia on NPR-A, NPR-B, MAP-2 and GFAP expressions in cerebral cortex and hippocampus. Neuroscience 2025; 573:237-243. [PMID: 40127756 DOI: 10.1016/j.neuroscience.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Chronic sustained hypoxia affects various mechanisms depending on changes in blood flow in the brain. The natriuretic peptide system acts as a modulatory regulator of blood pressure and body fluid homeostasis. This study aimed to evaluate the expressions of natriuretic peptide receptor (NPR) and monoamine oxidase levels in rats' cerebral cortex and hippocampus under chronic sustained hypoxia. Groups; Sham: Rats exposed to 21 % O2 in a normobaric chamber for 1 week. Moderate-chronic sustained hypoxia (mCSH): Rats exposed to 13 % O2 in a normobaric chamber for 1 week. Severe-chronic sustained hypoxia (sCSH): Rats exposed to 10 % O2 in a normobaric chamber for 1 week. Significant histopathological changes occurred in the cerebral cortex and hippocampus. NPR-A and NPR-B immunoreactivities increased in the hypoxia groups. Hypoxia decreased microtubule-associated protein-2 (MAP-2) immunoreactivity while increasing glial fibrillary acidic protein (GFAP) immunoreactivity. Monoamine oxidase was upregulated in sCSH. The NPR system is one of the mechanisms affected by hypoxia-induced damage in parallel with the degree of hypoxia. The use of natriuretic peptides or monoamine oxidase inhibitors against hypoxia exposure will serve to increase the potential efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Kemal Erdem Başaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurhan Kuloğlu
- Department of Healthcare Services, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Necla Değer
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey; Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Juraver-Geslin H, Devotta A, Saint-Jeannet JP. Developmental roles of natriuretic peptides and their receptors. Cells Dev 2023; 176:203878. [PMID: 37742795 PMCID: PMC10841480 DOI: 10.1016/j.cdev.2023.203878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Natriuretic peptides and their receptors are implicated in the physiological control of blood pressure, bone growth, and cardiovascular and renal homeostasis. They mediate their action through the modulation of intracellular levels of cGMP and cAMP, two second-messengers that have broad biological roles. In this review, we briefly describe the major players of this signaling pathway and their physiological roles in the adult, and discuss several reports describing their activity in the control of various aspects of embryonic development in several species. While the core components of this signaling pathway are well conserved, their functions have diverged in the embryo and the adult to control a diverse array of biological processes.
Collapse
Affiliation(s)
- Hugo Juraver-Geslin
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA
| | - Arun Devotta
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University, College of Dentistry, New York, NY 10010, USA.
| |
Collapse
|
3
|
Horikoshi T, Nakamura T, Yamaguchi K, Yoshizaki T, Watanabe Y, Kuroki K, Uematsu M, Nakamura K, Kobayashi T, Sato A. Prognostic Value of Novel Natriuretic Peptide Index After Percutaneous Coronary Intervention. Circ J 2023; 87:296-305. [PMID: 36261336 DOI: 10.1253/circj.cj-22-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The predictive value of both atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) is well known. This study evaluated the prognostic value of a novel natriuretic peptide index (NPI) combining ANP and BNP. METHODS AND RESULTS This study included 849 consecutive patients with coronary artery disease who underwent successful percutaneous coronary intervention (PCI). Patients were followed up clinically for up to 3 years or until the occurrence of major adverse cardiac events (MACE). The primary endpoint was a composite of all-cause death and non-fatal myocardial infarction. The NPI (pg/mL) was defined as √ANP×BNP. MACE occurred in 73 patients (8.6%) during the follow-up period. Receiver operating characteristic curve analysis showed the highest area under the curve for NPI (0.779) compared with ANP and BNP (0.773 and 0.755, respectively). A risk analysis of MACE occurrence adjusted for the multivariable model showed the highest hazard ratio (HR) for NPI (1.33; 95% confidence interval [CI] 1.18-1.51; P<0.001) compared with ANP and BNP (HR 1.25 [95% CI 1.13-1.39] and 1.30 [95% CI 1.13-1.49], respectively; P<0.001). The NPI was a significant independent predictor of MACE, among other clinical parameters, in the multivariable analysis. CONCLUSIONS Compared with ANP and BNP, the NPI was more effective in predicting future adverse events after PCI.
Collapse
Affiliation(s)
- Takeo Horikoshi
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | | | | | - Toru Yoshizaki
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | - Yosuke Watanabe
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | - Kenji Kuroki
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | - Manabu Uematsu
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | - Kazuto Nakamura
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| | | | - Akira Sato
- Department of Cardiology, University of Yamanashi, Faculty of Medicine
| |
Collapse
|
4
|
Pandey KN. Guanylyl cyclase/natriuretic peptide receptor-A: Identification, molecular characterization, and physiological genomics. Front Mol Neurosci 2023; 15:1076799. [PMID: 36683859 PMCID: PMC9846370 DOI: 10.3389/fnmol.2022.1076799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/02/2022] [Indexed: 01/06/2023] Open
Abstract
The natriuretic peptides (NPs) hormone family, which consists mainly of atrial, brain, and C-type NPs (ANP, BNP, and CNP), play diverse roles in mammalian species, ranging from renal, cardiac, endocrine, neural, and vascular hemodynamics to metabolic regulations, immune responsiveness, and energy distributions. Over the last four decades, new data has transpired regarding the biochemical and molecular compositions, signaling mechanisms, and physiological and pathophysiological functions of NPs and their receptors. NPs are incremented mainly in eliciting natriuretic, diuretic, endocrine, vasodilatory, and neurological activities, along with antiproliferative, antimitogenic, antiinflammatory, and antifibrotic responses. The main locus responsible in the biological and physiological regulatory actions of NPs (ANP and BNP) is the plasma membrane guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), a member of the growing multi-limbed GC family of receptors. Advances in this field have provided tremendous insights into the critical role of Npr1 (encoding GC-A/NPRA) in the reduction of fluid volume and blood pressure homeostasis, protection against renal and cardiac remodeling, and moderation and mediation of neurological disorders. The generation and use of genetically engineered animals, including gene-targeted (gene-knockout and gene-duplication) and transgenic mutant mouse models has revealed and clarified the varied roles and pleiotropic functions of GC-A/NPRA in vivo in intact animals. This review provides a chronological development of the biochemical, molecular, physiological, and pathophysiological functions of GC-A/NPRA, including signaling pathways, genomics, and gene regulation in both normal and disease states.
Collapse
|
5
|
Fan CS, Chu YS, Hsu JW, Chan YC, Wu CL, Chang CH. Cyclosporin A Inhibits the Activation of Membrane-Bound Guanylate Cyclase GC-A of Atrial Natriuretic Factor <i>via</i> NAD(P)H Oxidase. Chem Pharm Bull (Tokyo) 2022; 70:791-795. [DOI: 10.1248/cpb.c22-00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chuan-San Fan
- Division of Gastroenterology, Department of Internal Medicine, Changhua Christian Hospital
| | - Ying-Shan Chu
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital
| | - Jhih-Wen Hsu
- Renal Medicine Laboratory, Changhua Christian Hospital
| | - Ya-Chi Chan
- Renal Medicine Laboratory, Changhua Christian Hospital
| | - Chia-Lin Wu
- Division of Nephrology, Department of Internal Medicine, Changhua Christian Hospital
| | - Chung-Ho Chang
- Institute of Cellular and System Medicine, National Health Research Institutes
| |
Collapse
|
6
|
Rubattu S, Gallo G. The Natriuretic Peptides for Hypertension Treatment. High Blood Press Cardiovasc Prev 2021; 29:15-21. [PMID: 34727352 DOI: 10.1007/s40292-021-00483-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 10/19/2022] Open
Abstract
Hypertension is a common pathological condition predisposing to a higher occurrence of cardiovascular diseases and events. Unfortunately, treatment of hypertension is still suboptimal worldwide. More efforts are needed to implement the availability of anti-hypertensive drugs. The family of natriuretic peptides, including atrial and brain natriuretic peptides (ANP and BNP), play a key role on blood pressure regulation through the natriuretic, diuretic and vasorelaxant effects. A large number of experimental and human studies, ranging from pathophysiological to genetic investigations, supported ANP as the most relevant component of the family able to modulate blood pressure and to contribute to hypertension development. On this background, it is expected that ANP-based therapeutic approaches may give a significant contribution to the development of efficacious therapies against hypertension. Since native ANP cannot be administered due to its short half-life, several approaches were attempted over the years to overcome the difficulties inherent to the ANP instability. These approaches included ANP recombinant and fusion peptides, gene therapy, inhibition of ANP degradation by neprilysin inhibition, and designer peptides. The most relevant achievements in the field are discussed in this article. Based on the available evidence, therapies targeting ANP represent efficacious and clinically applicable anti-hypertensive agents.
Collapse
Affiliation(s)
- Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy. .,IRCCS Neuromed, Pozzilli, Isernia, Italy.
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Gumbel JH, Yang CB, Hubscher CH. Timeline of Changes in Biomarkers Associated with Spinal Cord Injury-Induced Polyuria. Neurotrauma Rep 2021; 2:462-475. [PMID: 34901942 PMCID: PMC8655813 DOI: 10.1089/neur.2021.0046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Deficits in upper and lower urinary tract function, which include detrusor overactivity, urinary incontinence, detrusor-sphincter dyssynergia, and polyuria, are among the leading issues that arise after spinal cord injury (SCI) affecting quality of life. Given that overproduction of urine (polyuria) has been shown to be associated with an imbalance in key regulators of body fluid homeostasis, the current study examined the timing of changes in levels of various relevant hormones, peptides, receptors, and channels post-contusion injury in adult male Wistar rats. The results show significant up- or downregulation at various time points, beginning at 7 days post-injury, in levels of urinary atrial natriuretic peptide, serum arginine vasopressin (AVP), kidney natriuretic peptide receptor-A, kidney vasopressin-2 receptor, kidney aquaporin-2 channels, and kidney epithelial sodium channels (β- and γ-, but not α-, subunits). The number of AVP-labeled neurons in the hypothalamus (supraoptic and -chiasmatic, but not paraventricular, nuclei) was also significantly altered at one or more time points. These data show significant fluctuations in key biomarkers involved in body fluid homeostasis during the post-SCI secondary injury phase, suggesting that therapeutic interventions (e.g., desmopressin, a synthetic analogue of AVP) should be considered early post-SCI.
Collapse
Affiliation(s)
- Jason H. Gumbel
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Cui Bo Yang
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Charles H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
8
|
Pandey KN. Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis. Front Physiol 2021; 12:693099. [PMID: 34489721 PMCID: PMC8416980 DOI: 10.3389/fphys.2021.693099] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
The discovery of atrial, brain, and C-type natriuretic peptides (ANP, BNP, and CNP) and their cognate receptors has greatly increased our knowledge of the control of hypertension and cardiovascular homeostasis. ANP and BNP are potent endogenous hypotensive hormones that elicit natriuretic, diuretic, vasorelaxant, antihypertrophic, antiproliferative, and antiinflammatory effects, largely directed toward the reduction of blood pressure (BP) and cardiovascular diseases (CVDs). The principal receptor involved in the regulatory actions of ANP and BNP is guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), which produces the intracellular second messenger cGMP. Cellular, biochemical, molecular, genetic, and clinical studies have facilitated understanding of the functional roles of natriuretic peptides (NPs), as well as the functions of their receptors, and signaling mechanisms in CVDs. Transgenic and gene-targeting (gene-knockout and gene-duplication) strategies have produced genetically altered novel mouse models and have advanced our knowledge of the importance of NPs and their receptors at physiological and pathophysiological levels in both normal and disease states. The current review describes the past and recent research on the cellular, molecular, genetic mechanisms and functional roles of the ANP-BNP/NPRA system in the physiology and pathophysiology of cardiovascular homeostasis as well as clinical and diagnostic markers of cardiac disorders and heart failure. However, the therapeutic potentials of NPs and their receptors for the diagnosis and treatment of cardiovascular diseases, including hypertension, heart failure, and stroke have just begun to be expanded. More in-depth investigations are needed in this field to extend the therapeutic use of NPs and their receptors to treat and prevent CVDs.
Collapse
Affiliation(s)
- Kailash N. Pandey
- Department of Physiology, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
9
|
Tang SY, Meng H, Anderson ST, Sarantopoulou D, Ghosh S, Lahens NF, Theken KN, Ricciotti E, Hennessy EJ, Tu V, Bittinger K, Weiljie AM, Grant GR, FitzGerald GA. Sex-dependent compensatory mechanisms preserve blood pressure homeostasis in prostacyclin receptor-deficient mice. J Clin Invest 2021; 131:e136310. [PMID: 34101620 DOI: 10.1172/jci136310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Inhibitors of microsomal prostaglandin E synthase 1 (mPGES-1) are in the early phase of clinical development. Deletion of mPges-1 in mice confers analgesia, restrains atherogenesis, and fails to accelerate thrombogenesis, while suppressing prostaglandin E2 (PGE2), but increasing the biosynthesis of prostacyclin (PGI2). In low-density lipoprotein receptor-deficient (Ldlr-/-) mice, this last effect represents the dominant mechanism by which mPges-1 deletion restrains thrombogenesis, while suppression of PGE2 accounts for its antiatherogenic effect. However, the effect of mPges-1 depletion on blood pressure (BP) in this setting remains unknown. Here, we show that mPges-1 depletion significantly increased the BP response to salt loading in male Ldlr-/- mice, whereas, despite the direct vasodilator properties of PGI2, deletion of the I prostanoid receptor (Ipr) suppressed this response. Furthermore, combined deletion of the Ipr abrogated the exaggerated BP response in male mPges-1-/- mice. Interestingly, these unexpected BP phenotypes were not observed in female mice fed a high-salt diet (HSD). This is attributable to the protective effect of estrogen in Ldlr-/- mice and in Ipr-/- Ldlr-/- mice. Thus, estrogen compensates for a deficiency in PGI2 to maintain BP homeostasis in response to high salt in hyperlipidemic female mice. In male mice, by contrast, the augmented formation of atrial natriuretic peptide (ANP) plays a similar compensatory role, restraining hypertension and oxidant stress in the setting of Ipr depletion. Hence, men with hyperlipidemia on a HSD might be at risk of a hypertensive response to mPGES-1 inhibitors.
Collapse
Affiliation(s)
- Soon Y Tang
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Seán T Anderson
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Soumita Ghosh
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine N Theken
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Emanuela Ricciotti
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elizabeth J Hennessy
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vincent Tu
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Aalim M Weiljie
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Plasma Kallikrein Contributes to Intracerebral Hemorrhage and Hypertension in Stroke-Prone Spontaneously Hypertensive Rats. Transl Stroke Res 2021; 13:287-299. [PMID: 34241810 DOI: 10.1007/s12975-021-00929-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Plasma kallikrein (PKa) has been implicated in contributing to hemorrhage following thrombolytic therapy; however, its role in spontaneous intracerebral hemorrhage is currently not available. This report investigates the role of PKa on hemorrhage and hypertension in stroke-prone spontaneously hypertensive rats (SHRSP). SHRSP were fed with a high salt-containing stroke-prone diet to increase blood pressure and induce intracerebral hemorrhage. The roles of PKa on blood pressure, hemorrhage, and survival in SHRSP were examined in rats receiving a PKa inhibitor or plasma prekallikrein antisense oligonucleotide (PK ASO) compared with rats receiving control ASO. Effects on PKa on the proteolytic cleavage of atrial natriuretic peptide (ANP) were analyzed by tandem mass spectrometry. We show that SHRSP on high-salt diet displayed increased levels of PKa activity compared with control rats. Cleaved kininogen was increased in plasma during stroke compared to SHRSP without stroke. Systemic administration of a PKa inhibitor or PK ASO to SHRSP reduced hemorrhage and blood pressure, and improved neurological function and survival compared with SHRSP receiving control ASO. Since PKa inhibition was associated with reduced blood pressure in hypertensive rats, we investigated the effects of PKa on the cleavage of ANP. Incubation of PKa with ANP resulted in the generation fragment ANP5-28, which displayed reduced effects on blood pressure lowering compared with full length ANP. PKa contributes to increased blood pressure in SHRSP, which is associated with hemorrhage and reduced survival. PKa-mediated cleavage of ANP reduces its blood pressure lowering effects and thereby may contribute to hypertension-induced intracerebral hemorrhage.
Collapse
|
11
|
Takeuchi F, Liang YQ, Isono M, Tajima M, Cui ZH, Iizuka Y, Gotoda T, Nabika T, Kato N. Integrative genomic analysis of blood pressure and related phenotypes in rats. Dis Model Mech 2021; 14:dmm048090. [PMID: 34010951 PMCID: PMC8188887 DOI: 10.1242/dmm.048090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Despite remarkable progress made in human genome-wide association studies, there remains a substantial gap between statistical evidence for genetic associations and functional comprehension of the underlying mechanisms governing these associations. As a means of bridging this gap, we performed genomic analysis of blood pressure (BP) and related phenotypes in spontaneously hypertensive rats (SHR) and their substrain, stroke-prone SHR (SHRSP), both of which are unique genetic models of severe hypertension and cardiovascular complications. By integrating whole-genome sequencing, transcriptome profiling, genome-wide linkage scans (maximum n=1415), fine congenic mapping (maximum n=8704), pharmacological intervention and comparative analysis with transcriptome-wide association study (TWAS) datasets, we searched causal genes and causal pathways for the tested traits. The overall results validated the polygenic architecture of elevated BP compared with a non-hypertensive control strain, Wistar Kyoto rats (WKY); e.g. inter-strain BP differences between SHRSP and WKY could be largely explained by an aggregate of BP changes in seven SHRSP-derived consomic strains. We identified 26 potential target genes, including rat homologs of human TWAS loci, for the tested traits. In this study, we re-discovered 18 genes that had previously been determined to contribute to hypertension or cardiovascular phenotypes. Notably, five of these genes belong to the kallikrein-kinin/renin-angiotensin systems (KKS/RAS), in which the most prominent differential expression between hypertensive and non-hypertensive alleles could be detected in rat Klk1 paralogs. In combination with a pharmacological intervention, we provide in vivo experimental evidence supporting the presence of key disease pathways, such as KKS/RAS, in a rat polygenic hypertension model.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Yi-Qiang Liang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Michiko Tajima
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Zong Hu Cui
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo 693-0021, Japan
| | - Yoko Iizuka
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Takanari Gotoda
- Department of Metabolism and Biochemistry, Kyorin University Faculty of Medicine, Tokyo 181-8611, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo 693-0021, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| |
Collapse
|
12
|
Chang P, Zhang X, Chen W, Zhang J, Wang J, Wang X, Yu J, Zhu X. Vasonatrin peptide, a synthetic natriuretic peptide, attenuates myocardial injury and oxidative stress in isoprenaline-induced cardiomyocyte hypertrophy. Peptides 2021; 137:170474. [PMID: 33359394 DOI: 10.1016/j.peptides.2020.170474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
Isoprenaline-induced cardiac hypertrophy can deteriorate to heart failure, which is a leading cause of mortality. Endogenous vasonatrin peptide (VNP) has been reported to be cardioprotective against myocardial ischemia/reperfusion injury in diabetic rats. However, little is known about the effect of exogenous VNP on cardiac hypertrophy. We further explored whether VNP attenuated isoprenaline-induced cardiomyocyte hypertrophy by examining the levels and activities of cGMP and PKG. In this study, we found that VNP significantly attenuated isoprenaline-induced myocardial hypertrophy and cardiac fibroblast activation in vivo. Moreover, VNP effectively halted the activation of apoptosis and oxidative stress in the isoprenaline-treated myocardium. VNP promoted superoxide dismutase (SOD) activity. Further study revealed that the protective effects of VNP might be mediated by the activity of the cGMP-PKG signaling pathway in vivo or in vitro, while the use of agonists and antagonists confirmed these results. Therefore, we demonstrated that the antiapoptosis and antioxidative stress effects of VNP depends on elevated cGMP-PKG signaling activity both in vivo and in vitro. These results suggest that VNP may be used in the treatment of myocardial hypertrophy.
Collapse
Affiliation(s)
- Pan Chang
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Xiaomeng Zhang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Weiguo Chen
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Jing Zhang
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Jianbang Wang
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Xihui Wang
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China
| | - Jun Yu
- Department of Cardiology, the Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, China; Clinical Experimental Center, Xi'an International Medical Center Hospital, Xi'an, Shaanxi 710100, China.
| | - Xiaoling Zhu
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
13
|
Li J, Zhu J, Ren L, Ma S, Shen B, Yu J, Zhang R, Zhang M, He Y, Peng H. Association between NPPA promoter methylation and hypertension: results from Gusu cohort and replication in an independent sample. Clin Epigenetics 2020; 12:133. [PMID: 32883357 PMCID: PMC7469321 DOI: 10.1186/s13148-020-00927-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Background Atrial natriuretic peptide (ANP), one of the main members of the natriuretic peptides system, has been associated with hypertension and related complications, but the underlying molecular mechanisms are not very clear. Here, we aimed to examine whether DNA methylation, a molecular modification to the genome, of the natriuretic peptide A gene (NPPA), the coding gene of ANP, was associated with hypertension. Methods Peripheral blood DNA methylation of NPPA promoter was quantified by target bisulfite sequencing in 2498 community members (mean aged 53 years, 38% men) as a discovery sample and 1771 independent participants (mean aged 62 years, 54% men) as a replication sample. In both samples, we conducted a single CpG association analysis, followed by a gene-based association analysis, to examine the association between NPPA promoter methylation and hypertension, adjusting for age, sex, education level, cigarette smoking, alcohol consumption, obesity, fasting glucose, and lipids. Multiple testing was controlled by the false discovery rate approach. Results Of the 9 CpG loci assayed, hypermethylation at 5 CpGs (CpG1, CpG3, CpG6, CpG8, and CpG9) was significantly associated with a lower odds of prevalent hypertension in the discovery sample, and one CpG methylation (CpG1 located at Chr1:11908353) was successfully replicated in the replication sample (OR = 0.82, 95%CI 0.74–0.91, q = 0.002) after adjusting for covariates and multiple testing. The gene-based analysis found that DNA methylation of the 9 CpGs at NPPA promoter as a whole was significantly associated with blood pressure and prevalent hypertension in both samples (all P < 0.05). Conclusions DNA methylation levels at NPPA promoter were decreased in Chinese adults with hypertension. Aberrant DNA methylation of the NPPA gene may participate in the mechanisms of hypertension.
Collapse
Affiliation(s)
- Jing Li
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Jinhua Zhu
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Liyun Ren
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Shengqi Ma
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Bin Shen
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Jia Yu
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Rongyan Zhang
- Department of Chronic Disease Management, Center for Disease Prevention and Control of Wujiang District, Suzhou, China
| | - Mingzhi Zhang
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Yan He
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Hao Peng
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
14
|
Abstract
Transgenic mice expressing atrial natriuretic factor-SV40 T-antigen fusion genes (ANF-TAG) developed cardiac tumors asymmetrically in the right atrium. Features associated with cardiac failure, including increased plasma creatine kinase activity (MM and MB) and ventricular dysrhythmias, also were associated with atrial tumor growth. These atrial tumors were able to grow at histocompatible sites (subcutaneously in syngeneic animals) for protracted periods of time yielding a series of transplantable atrial tumor lineages. The transplantable tumors displayed several cardiac-specific characteristics, such as endogenous electrical activity and expression of cardiac-specific proteins. These transplantable atrial tumors constitute a novel experimental resource for developing cell lines which display an adult cardiac phenotype.
Collapse
Affiliation(s)
- Mark E. Steinhelper
- Cold Spring Harbor Laboratory, Cold Spring Harbor,
New York
- Indiana University School of
Medicine, Krannert Institute of Cardiology, 1001 West 10th Street, Indianapolis,
Indiana 46202–2859
| | - Loren J. Field
- Cold Spring Harbor Laboratory, Cold Spring Harbor,
New York
- Indiana University School of
Medicine, Krannert Institute of Cardiology, 1001 West 10th Street, Indianapolis,
Indiana 46202–2859
| |
Collapse
|
15
|
Pandey KN. Genetic Ablation and Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Impact on the Pathophysiology of Cardiovascular Dysfunction. Int J Mol Sci 2019; 20:ijms20163946. [PMID: 31416126 PMCID: PMC6721781 DOI: 10.3390/ijms20163946] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Mice bearing targeted gene mutations that affect the functions of natriuretic peptides (NPs) and natriuretic peptide receptors (NPRs) have contributed important information on the pathogenesis of hypertension, kidney disease, and cardiovascular dysfunction. Studies of mice having both complete gene disruption and tissue-specific gene ablation have contributed to our understanding of hypertension and cardiovascular disorders. These phenomena are consistent with an oligogenic inheritance in which interactions among a few alleles may account for genetic susceptibility to hypertension, renal insufficiency, and congestive heart failure. In addition to gene knockouts conferring increased risks of hypertension, kidney disorders, and cardiovascular dysfunction, studies of gene duplications have identified mutations that protect against high blood pressure and cardiovascular events, thus generating the notion that certain alleles can confer resistance to hypertension and heart disease. This review focuses on the intriguing phenotypes of Npr1 gene disruption and gene duplication in mice, with emphasis on hypertension and cardiovascular events using mouse models carrying Npr1 gene knockout and/or gene duplication. It also describes how Npr1 gene targeting in mice has contributed to our knowledge of the roles of NPs and NPRs in dose-dependently regulating hypertension and cardiovascular events.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
16
|
Zhang H, Mo X, Zhou Z, Zhu Z, HuangFu X, Xu T, Wang A, Guo Z, Zhang Y. Associations among NPPA gene polymorphisms, serum ANP levels, and hypertension in the Chinese Han population. J Hum Hypertens 2019; 33:641-647. [DOI: 10.1038/s41371-019-0219-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 05/07/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
|
17
|
Rubattu S, Forte M, Marchitti S, Volpe M. Molecular Implications of Natriuretic Peptides in the Protection from Hypertension and Target Organ Damage Development. Int J Mol Sci 2019; 20:E798. [PMID: 30781751 PMCID: PMC6412747 DOI: 10.3390/ijms20040798] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of hypertension, as a multifactorial trait, is complex. High blood pressure levels, in turn, concur with the development of cardiovascular damage. Abnormalities of several neurohormonal mechanisms controlling blood pressure homeostasis and cardiovascular remodeling can contribute to these pathological conditions. The natriuretic peptide (NP) family (including ANP (atrial natriuretic peptide), BNP (brain natriuretic peptide), and CNP (C-type natriuretic peptide)), the NP receptors (NPRA, NPRB, and NPRC), and the related protease convertases (furin, corin, and PCSK6) constitute the NP system and represent relevant protective mechanisms toward the development of hypertension and associated conditions, such as atherosclerosis, stroke, myocardial infarction, heart failure, and renal injury. Initially, several experimental studies performed in different animal models demonstrated a key role of the NP system in the development of hypertension. Importantly, these studies provided relevant insights for a better comprehension of the pathogenesis of hypertension and related cardiovascular phenotypes in humans. Thus, investigation of the role of NPs in hypertension offers an excellent example in translational medicine. In this review article, we will summarize the most compelling evidence regarding the molecular mechanisms underlying the physiological and pathological impact of NPs on blood pressure regulation and on hypertension development. We will also discuss the protective effect of NPs toward the increased susceptibility to hypertensive target organ damage.
Collapse
Affiliation(s)
- Speranza Rubattu
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| | | | | | - Massimo Volpe
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| |
Collapse
|
18
|
NAKAO K. Translational science: Newly emerging science in biology and medicine - Lessons from translational research on the natriuretic peptide family and leptin. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:538-567. [PMID: 31708497 PMCID: PMC6856003 DOI: 10.2183/pjab.95.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/30/2019] [Indexed: 06/10/2023]
Abstract
Translation is the process of turning observations in the laboratory, clinic, and community into interventions that improve the health of individuals and the public, ranging from diagnostics and therapeutics to medical procedures and behavioral changes. Translational research is defined as the effort to traverse a particular step of the translation process for a particular target or disease. Translational science is a newly emerging science, distinct from basic and clinical sciences in biology and medicine, and is a field of investigation focused on understanding the scientific and operational principles underlying each step of the translational process. Advances in translational science will increase the efficacy and safety of translational research in all diagnostic and therapeutic areas. This report examines translational research on novel hormones, the natriuretic peptide family and leptin, which have achieved clinical applications or for which studies are still ongoing, and also emphasizes the lessons that translational science has learned from more than 30 years' experience in translational research.
Collapse
Affiliation(s)
- Kazuwa NAKAO
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
19
|
Pandey KN. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function. Physiol Genomics 2018; 50:913-928. [PMID: 30169131 DOI: 10.1152/physiolgenomics.00083.2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Natriuretic peptides (NPs) exert diverse effects on several biological and physiological systems, such as kidney function, neural and endocrine signaling, energy metabolism, and cardiovascular function, playing pivotal roles in the regulation of blood pressure (BP) and cardiac and vascular homeostasis. NPs are collectively known as anti-hypertensive hormones and their main functions are directed toward eliciting natriuretic/diuretic, vasorelaxant, anti-proliferative, anti-inflammatory, and anti-hypertrophic effects, thereby, regulating the fluid volume, BP, and renal and cardiovascular conditions. Interactions of NPs with their cognate receptors display a central role in all aspects of cellular, biochemical, and molecular mechanisms that govern physiology and pathophysiology of BP and cardiovascular events. Among the NPs atrial and brain natriuretic peptides (ANP and BNP) activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and initiate intracellular signaling. The genetic disruption of Npr1 (encoding GC-A/NPRA) in mice exhibits high BP and hypertensive heart disease that is seen in untreated hypertensive subjects, including high BP and heart failure. There has been a surge of interest in the NPs and their receptors and a wealth of information have emerged in the last four decades, including molecular structure, signaling mechanisms, altered phenotypic characterization of transgenic and gene-targeted animal models, and genetic analyses in humans. The major goal of the present review is to emphasize and summarize the critical findings and recent discoveries regarding the molecular and genetic regulation of NPs, physiological metabolic functions, and the signaling of receptor GC-A/NPRA with emphasis on the BP regulation and renal and cardiovascular disorders.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center, School of Medicine , New Orleans, Louisiana
| |
Collapse
|
20
|
Abstract
Natriuretic peptides are structurally related, functionally diverse hormones. Circulating atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are delivered predominantly by the heart. Two C-type natriuretic peptides (CNPs) are paracrine messengers, notably in bone, brain, and vessels. Natriuretic peptides act by binding to the extracellular domains of three receptors, NPR-A, NPR-B, and NPR-C of which the first two are guanylate cyclases. NPR-C is coupled to inhibitory proteins. Atrial wall stress is the major regulator of ANP secretion; however, atrial pressure changes plasma ANP only modestly and transiently, and the relation between plasma ANP and atrial wall tension (or extracellular volume or sodium intake) is weak. Absence and overexpression of ANP-related genes are associated with modest blood pressure changes. ANP augments vascular permeability and reduces vascular contractility, renin and aldosterone secretion, sympathetic nerve activity, and renal tubular sodium transport. Within the physiological range of plasma ANP, the responses to step-up changes are unimpressive; in man, the systemic physiological effects include diminution of renin secretion, aldosterone secretion, and cardiac preload. For BNP, the available evidence does not show that cardiac release to the blood is related to sodium homeostasis or body fluid control. CNPs are not circulating hormones, but primarily paracrine messengers important to ossification, nervous system development, and endothelial function. Normally, natriuretic peptides are not powerful natriuretic/diuretic hormones; common conclusions are not consistently supported by hard data. ANP may provide fine-tuning of reno-cardiovascular relationships, but seems, together with BNP, primarily involved in the regulation of cardiac performance and remodeling. © 2017 American Physiological Society. Compr Physiol 8:1211-1249, 2018.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
21
|
Chen YL, Li TJ, Hao Y, Wu BG, Li H, Geng N, Sun ZQ, Zheng LQ, Sun YX. Association of rs2271037 and rs3749585 polymorphisms in CORIN with susceptibility to hypertension in a Chinese Han population: A case-control study. Gene 2018; 651:79-85. [PMID: 29391274 DOI: 10.1016/j.gene.2018.01.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 01/12/2018] [Accepted: 01/24/2018] [Indexed: 01/01/2023]
Abstract
Corins are membrane-bound protease that regulates blood pressure by activating the natriuretic peptides. These pro-atrial natriuretic peptide convertases are essential for sodium homeostasis and normal blood pressure. CORIN variants have been identified in humans and other animals, but no studies of CORIN polymorphisms have been conducted in northeastern China. This study aims to investigate the association of 2 single nucleotide polymorphisms (SNPs) in CORIN (rs2271037 and rs3749585) with hypertension, as well as their potential interactions with some risk factors of hypertension in a Han population of northeastern China. A case-control study, including 402 patients with hypertension and 406 participants with normal blood pressure, was conducted in Liaoning province. SNP genotyping was carried out by high resolution melting (HRM) after polymerase chain reaction amplifications. Since rs3749585 is located in 3' untranslated region (UTR) of CORIN, in silico analysis was used to predict target micro RNAs on TargetScan, miRanda, and DIANA-microT. As a result, mutant T allele in rs2271037 (odds ratio [OR], 1.693; 95% confidence [CI], 1.528-1.877; p < 0.001) and C allele in rs3749585 (OR, 1.114; 95% CI 1.011-1.227; p = 0.029) increased the risk of hypertension, comparing with wild G allele and T allele, respectively. Patients with genotype TT (OR, 10.209; 95% CI, 6.414-16.250; p < 0.001) and GT (OR, 1.730; 95% CI, 1.226-2.443; p = 0.002) have higher risk of hypertension than those with genotype GG. SNP rs2271037 was significantly associated with susceptibility to hypertension in all genetic models (dominant model: OR, 2.879; 95% CI, 2.080-3.986; p < 0.001; recessive model: OR, 7.159; 95% CI, 4.779-10.724; p < 0.001; additive model: OR, 1.535; 95% CI, 1.163-2.027; p = 0.002). SNP rs3749585 was significantly correlated with hypertension susceptibility only in dominant model (OR, 1.533; 95% CI, 1.073-2.189; p = 0.019), but not in recessive model (OR, 1.220; 95% CI, 0.906-1.644; p = 0.191) or additive model (OR, 0.915; 95% CI, 0.694-1.205; p = 0.527). After adjusting for age, gender, body mass index (BMI), smoking, low-density lipoprotein cholesterol, and serum sodium level in logistic models, the same statistical results were obtained. Interaction study showed the association between CORIN polymorphisms and hypertension could be changed by overweight (BMI ≥ 25 kg/m2). In silico analyses implicated hsa-miR-495 as a target miRNA that potentially interacts with the 3' UTR of CORIN. In conclusion, polymorphisms of rs2271037 and rs3749585 in CORIN were significantly associated with hypertension in a Han population of northeastern China. The mutant-type T allele of rs2271037 and C allele of rs3749585 might increase the susceptibility to hypertension in this population.
Collapse
Affiliation(s)
- Yan-Li Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Tie-Jun Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ying Hao
- Department of Geriatrics, Jinqiu Hospital, Shenyang, Liaoning, PR China
| | - Bao-Gang Wu
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Hong Li
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ning Geng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Zhao-Qing Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Li-Qiang Zheng
- Department of Clinical Epidemiology, Library, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Ying-Xian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
22
|
Salo PP, Havulinna AS, Tukiainen T, Raitakari O, Lehtimäki T, Kähönen M, Kettunen J, Männikkö M, Eriksson JG, Jula A, Blankenberg S, Zeller T, Salomaa V, Kristiansson K, Perola M. Genome-Wide Association Study Implicates Atrial Natriuretic Peptide Rather Than B-Type Natriuretic Peptide in the Regulation of Blood Pressure in the General Population. CIRCULATION. CARDIOVASCULAR GENETICS 2017; 10:e001713. [PMID: 29237677 PMCID: PMC6072381 DOI: 10.1161/circgenetics.117.001713] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/03/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cardiomyocytes secrete atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) in response to mechanical stretching, making them useful clinical biomarkers of cardiac stress. Both human and animal studies indicate a role for ANP as a regulator of blood pressure with conflicting results for BNP. METHODS AND RESULTS We used genome-wide association analysis (n=6296) to study the effects of genetic variants on circulating natriuretic peptide concentrations and compared the impact of natriuretic peptide-associated genetic variants on blood pressure (n=27 059). Eight independent genetic variants in 2 known (NPPA-NPPB and POC1B-GALNT4) and 1 novel locus (PPP3CC) associated with midregional proANP (MR-proANP), BNP, aminoterminal proBNP (NT-proBNP), or BNP:NT-proBNP ratio. The NPPA-NPPB locus containing the adjacent genes encoding ANP and BNP harbored 4 independent cis variants with effects specific to either midregional proANP or BNP and a rare missense single nucleotide polymorphism in NT-proBNP seriously altering its measurement. Variants near the calcineurin catalytic subunit gamma gene PPP3CC and the polypeptide N-acetylgalactosaminyltransferase 4 gene GALNT4 associated with BNP:NT-proBNP ratio but not with BNP or midregional proANP, suggesting effects on the post-translational regulation of proBNP. Out of the 8 individual variants, only those correlated with midregional proANP had a statistically significant albeit weak impact on blood pressure. The combined effect of these 3 single nucleotide polymorphisms also associated with hypertension risk (P=8.2×10-4). CONCLUSIONS Common genetic differences affecting the circulating concentration of ANP associated with blood pressure, whereas those affecting BNP did not, highlighting the blood pressure-lowering effect of ANP in the general population.
Collapse
|
23
|
Manivasagam S, Velusamy T, Sowndharajan B, Chandrasekar N, Dhanusu S, Vellaichamy E. Valporic acid enhances the Atrial Natriuretic Peptide (ANP) mediated anti-hypertrophic activity by modulating the Npr1 gene transcription in H9c2 cells in vitro. Eur J Pharmacol 2017; 813:94-104. [PMID: 28743391 DOI: 10.1016/j.ejphar.2017.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
Abstract
The present study was aimed to determine whether stimulating Npr1 gene activity using Valporic acid (VA), a small short chain fatty acid molecule can enhance ANP mediated anti-hypertrophic activity in isoproterenol (ISO) - treated H9c2 cells in vitro. H9c2 cells were treated with ISO (10-5 M) and co-treated with VA (10-5 M) in the presence and absence of ANP (10-8M), for 48h. ATRA (10-5 M) was used as a positive inducer of Npr1 gene transcription. The mRNA expression of Npr1 and PKG-I genes, proto-oncogenes (c-fos, c-jun and c-myc) and hypertrophic markers (ANP, BNP, α-sk and β-MyHC), genes were determined by quantitative PCR (qPCR). The protein profiling of NPR-A, PKG-I and cGMP were evaluated by Western blot, immunofluorescence and ELISA respectively. A marked reduction in the level of expression of Npr1 (3- fold) and PKG-I (2.5-fold) genes and increased expression of proto-oncogenes (p< 0.001, respectively) and hypertrophic marker genes (p<0.001, respectively) were noticed in the ISO-treated H9c2 cells as compared with control cells. In contrast, the VA treated cells showed maximal Npr1 gene expression (3.5-fold) as compared with ATRA treated cells (2 fold), which is well correlated with the intracellular cGMP levels (80% vs 60%) and reduced (2.5-fold) HDAC -1&-2 mRNA expression. Furthermore, VA or ATRA treatment effectively reversed the ISO-induced altered expression of Npr1 and PKG-I genes, proto-oncogenes, and hypertrophic markers genes. Interestingly, the results of the present study suggest that ANP mediated anti-hypertrophic activity was enhanced with either VA (p<0.001) or ATRA (p<0.01) co-treatment. Together, we conclude that VA in combination with ANP can be a novel therapeutical approach for the treatment and management of left ventricular cardiac hypertrophy.
Collapse
Affiliation(s)
| | - Tamilselvi Velusamy
- Department of Biochemistry, University of Madras, Guindy Campus,Chennai 600025, India
| | - Boopathi Sowndharajan
- Department of Biochemistry, University of Madras, Guindy Campus,Chennai 600025, India
| | - Navvi Chandrasekar
- Department of Biochemistry, University of Madras, Guindy Campus,Chennai 600025, India
| | - Suresh Dhanusu
- Department of Biochemistry, University of Madras, Guindy Campus,Chennai 600025, India
| | - Elangovan Vellaichamy
- Department of Biochemistry, University of Madras, Guindy Campus,Chennai 600025, India.
| |
Collapse
|
24
|
Seidelmann SB, Vardeny O, Claggett B, Yu B, Shah AM, Ballantyne CM, Selvin E, MacRae CA, Boerwinkle E, Solomon SD. An NPPB Promoter Polymorphism Associated With Elevated N-Terminal pro-B-Type Natriuretic Peptide and Lower Blood Pressure, Hypertension, and Mortality. J Am Heart Assoc 2017; 6:JAHA.116.005257. [PMID: 28341776 PMCID: PMC5533018 DOI: 10.1161/jaha.116.005257] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background Elevated B‐type natriuretic peptide (BNP) levels are associated with heart failure and increased mortality in the general population. We investigated rs198389, a functional variant in the promoter region of the BNP gene (NPPB), in patients from the Atherosclerosis Risk in Communities Study to investigate associations with N‐terminal pro‐BNP (NT‐proBNP) levels and outcomes. Methods and Results A total of 11 361 black and white patients with rs198389 genotyping attended visit 1 (aged 45–64 years; 1987–1989), with follow‐up visits occurring every 3 years (visit 2–visit 4, 1990–1999), followed by visit 5 (2011–2013). NT‐proBNP levels were measured at visits 2, 4, and 5. At visit 2, the GG genotype (frequency 18%) was associated with a 41% higher mean plasma level of NT‐proBNP compared with the AA genotype (frequency 34%), with intermediate values observed in AGs (P=4.2×10−52). The GG genotype was associated with reduced systolic blood pressure (−1.6 mm Hg, P=0.006), diastolic blood pressure (−1 mm Hg, P=0.003), antihypertension medication use (odds ratio, 0.85; 95% CI, 0.74–0.97 [P=0.02]), and hypertension (odds ratio, 0.81; 95% CI, 0.72–0.92 [P=0.002]) compared with the AA genotype with intermediate values in AGs. These relationships persisted throughout subsequent visits. After a median follow‐up of 23 years, there were 4031 deaths. With and without covariate adjustment, the GG genotype was associated with modestly lower mortality (hazard ratio, 0.86; 95% CI, 0.78–0.95), primarily reflective of cardiovascular death (hazard ratio, 0.75; 95% CI, 0.61–0.92), and increased residual lifespan of 8 months from 50 years of age (P=0.02) versus AAs. Conclusions The rs198389 G allele in the NPPB promoter is associated with elevated levels of NT‐proBNP throughout adult life, reduced blood pressure, hypertension and cardiovascular mortality, and increased lifespan.
Collapse
Affiliation(s)
- Sara B Seidelmann
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA.,Division of Cardiovascular Imaging, Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Orly Vardeny
- Departments of Pharmacy and Medicine, University of Wisconsin-Madison, Madison, WI
| | - Brian Claggett
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA
| | - Bing Yu
- Epidemiology, Human Genetics & Environmental Sciences, UTHealth School of Public Health, Houston, TX
| | - Amil M Shah
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA
| | | | - Elizabeth Selvin
- The Johns Hopkins Institute for Clinical and Translational Research, Baltimore, MD
| | - Calum A MacRae
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA
| | - Eric Boerwinkle
- Epidemiology, Human Genetics & Environmental Sciences, UTHealth School of Public Health, Houston, TX.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Scott D Solomon
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
25
|
Serum atrial natriuretic peptide (ANP) as an objective indicator for the diagnosis of neurogenic shock: animal experiment and human case report. Int J Legal Med 2016; 131:473-478. [PMID: 27726028 DOI: 10.1007/s00414-016-1455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
Abstract
In forensic medicine, the diagnosis of death due to neurogenic shock is considered to be an aporia, as lacking objective indicators and presenting atypical symptoms in autopsy. Medico-legal disputes and complaints occasionally result from this ambiguity. To explore potential objective indicators of neurogenic shock, we set up a model of neurogenic shock by applying an external mechanical force on the carotid sinus baroreceptor in rabbits. The serum atrial natriuretic peptide (ANP) level was measured by radioimmunoassay in the control group (n = 8), survival group (n = 15) and death group (n = 5) both before and after the insult. The serum ANP level showed a significant increase after the insult in the death group compared with the serum obtained before the insult (P = 0.006), while the serum ANP level after the insult in the survival group and control group was not statistically significant compared with the serum obtained before the insult (P = 0.332 and P = 0.492, respectively). To verify the repeatability of the model and the postmortem behavior of serum ANP, five healthy adult rabbits underwent the same procedure as the experimental group. The mortality rate was consistent with the former experiment (20 %). There were no significant changes in serum ANP level in vitro and in vivo (within 48 and 24 h, respectively). But there was a significant decrease in serum ANP level at 48 h postmortem in vivo (P = 0.001). A female patient who expired due to neurogenic shock during a hysteroscopy was reported. Neither fatal primary disease nor evidence for mechanical injuries or intoxication was found according to the autopsy. The serum ANP level was assayed as a supplementary indicator and was found to be three-fold higher than the normal maximum limit. Combined with the animal experiment, this case highlights that serum ANP has the potential to be an objective indicator for the diagnosis of death due to neurogenic shock.
Collapse
|
26
|
Novel MicroRNA Regulators of Atrial Natriuretic Peptide Production. Mol Cell Biol 2016; 36:1977-87. [PMID: 27185878 DOI: 10.1128/mcb.01114-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Accepted: 05/06/2016] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide (ANP) has a central role in regulating blood pressure in humans. Recently, microRNA 425 (miR-425) was found to regulate ANP production by binding to the mRNA of NPPA, the gene encoding ANP. mRNAs typically contain multiple predicted microRNA (miRNA)-binding sites, and binding of different miRNAs may independently or coordinately regulate the expression of any given mRNA. We used a multifaceted screening strategy that integrates bioinformatics, next-generation sequencing data, human genetic association data, and cellular models to identify additional functional NPPA-targeting miRNAs. Two novel miRNAs, miR-155 and miR-105, were found to modulate ANP production in human cardiomyocytes and target genetic variants whose minor alleles are associated with higher human plasma ANP levels. Both miR-155 and miR-105 repressed NPPA mRNA in an allele-specific manner, with the minor allele of each respective variant conferring resistance to the miRNA either by disruption of miRNA base pairing or by creation of wobble base pairing. Moreover, miR-155 enhanced the repressive effects of miR-425 on ANP production in human cardiomyocytes. Our study combines computational, genomic, and cellular tools to identify novel miRNA regulators of ANP production that could be targeted to raise ANP levels, which may have applications for the treatment of hypertension or heart failure.
Collapse
|
27
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Chen S, Huang J, Zhao Q, Chen J, Jaquish CE, He J, Lu X, Yang X, Gu CC, Hixson JE, Liu F, Rice TK, Cao J, Chen J, Gu D. Associations Between Genetic Variants of the Natriuretic Peptide System and Blood Pressure Response to Dietary Sodium Intervention: The GenSalt Study. Am J Hypertens 2016. [PMID: 26224401 DOI: 10.1093/ajh/hpv129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The aim of this study was to comprehensively test the association of genetic variants in the natriuretic peptide (NP) system with blood pressure (BP) response to dietary sodium intervention in a Chinese population. METHODS We conducted a 7-day low-sodium intervention followed by a 7-day high-sodium intervention among 1,906 participants in rural China. BP measurements were obtained at baseline and each dietary intervention using a random-zero sphygmomanometer. Linear mixed-effect models were used to assess the associations of 48 single-nucleotide polymorphisms (SNPs) in 6 genes of NP system with BP response to dietary sodium intervention. RESULTS SNP rs5063 in the NPPA gene and SNP rs2077386 in the NPPC gene exhibited significant associations with BP response to low-sodium dietary intervention under recessive genetic model. For rs5063, absolute mean arterial pressure responses (95% confidence interval) to the low-sodium intervention were 1.31 (-1.08, 3.70) mm Hg for TT genotype and -3.74 (-4.01, -3.46) mm Hg for CC or TC genotype, respectively (P = 4.1 × 10(-5)). Individuals with at least one copy of the C allele of rs2077386 had significantly reduction in systolic BP during the low-sodium intervention compared to those with genotype GG with responses of -5.48 (-5.83, -5.14) vs. -2.76 (-3.52, -2.00) mm Hg, respectively (P = 1.9 × 10(-13)). CONCLUSIONS These novel findings suggested that genetic variants of NP system may contribute to the variation of BP response to sodium intervention in Chinese population. Certainly, replication of these results in other populations and further functional studies are warranted to clarify their role in the regulation of BP and hypertension.
Collapse
Affiliation(s)
- Shufeng Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China;
| | - Jianfeng Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Jing Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Cashell E Jaquish
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Jiang He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Xiangfeng Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueli Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Charles C Gu
- School of Medicine, Washington University, St. Louis, Missouri, USA
| | - James E Hixson
- School of Public Health, University of Texas, Houston, Texas, USA
| | - Fangchao Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Treva K Rice
- School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jie Cao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jichun Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongfeng Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Emani S, Meyer M, Palm D, Holzmeister J, Haas GJ. Ularitide: a natriuretic peptide candidate for the treatment of acutely decompensated heart failure. Future Cardiol 2015; 11:531-46. [PMID: 26278236 DOI: 10.2217/fca.15.53] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Treatment for acutely decompensated heart failure (ADHF) has not changed much in the last two decades. Currently available therapies have variable efficacy and can be associated with adverse outcomes. Natriuretic peptides properties include diuresis, natriuresis, vasorelaxation, inhibition of renin-angiotensin-aldosterone system, and are thus chosen in the treatment of ADHF. Two forms of natriuretic peptides are currently available for the treatment of ADHF. Urodilatin (INN: ularitide) represents another member of the natriuretic peptide family with a unique molecular structure that may provide distinct benefits in the treatment of ADHF. Early clinical exploratory and Phase II studies have demonstrated that ularitide has potential cardiovascular and renal benefits. Ularitide is currently being tested in the Phase III TRUE-AHF clinical study. TRUE-AHF has features that may be different when compared with other recent outcome studies in ADHF. These distinct differences aim to maximize clinical effects and minimize potential adverse events of ularitide. However, whether this rationale translates into a better outcome needs to be awaited.
Collapse
Affiliation(s)
- Sitaramesh Emani
- Division of Cardiology, The Ohio State University, 473 W 12th Ave, Suite 200 DHLRI, Columbus, OH 43210, USA
| | - Markus Meyer
- Cardiorentis Ltd, Steinhauserstrasse 74, Zug 6300, Switzerland
| | - Denada Palm
- Department of Internal Medicine, University of Cincinnati, Medical Sciences Building, 231 Albert Sabin Way #6065, Cincinnati, OH 45267, USA
| | | | - Garrie J Haas
- Division of Cardiology, The Ohio State University, 473 W 12th Ave, Suite 200 DHLRI, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Abstract
Natriuretic peptides are cardiac-derived hormones with a range of protective functions, including natriuresis, diuresis, vasodilation, lusitropy, lipolysis, weight loss, and improved insulin sensitivity. Their actions are mediated through membrane-bound guanylyl cyclases that lead to production of the intracellular second-messenger cyclic guanosine monophosphate. A growing body of evidence demonstrates that genetic and acquired deficiencies of the natriuretic peptide system can promote hypertension, cardiac hypertrophy, obesity, diabetes mellitus, the metabolic syndrome, and heart failure. Clinically, natriuretic peptides are robust diagnostic and prognostic markers, and augmenting natriuretic peptides is a target for therapeutic strategies in cardiometabolic disease. This review will summarize current understanding and highlight novel aspects of natriuretic peptide biology.
Collapse
Affiliation(s)
- Deepak K Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research Center, Division of Cardiovascular Medicine, Vanderbilt University School of Medicine
| | | |
Collapse
|
31
|
|
32
|
Demerath T, Staffel J, Schreiber A, Valletta D, Schweda F. Natriuretic peptides buffer renin-dependent hypertension. Am J Physiol Renal Physiol 2014; 306:F1489-98. [DOI: 10.1152/ajprenal.00668.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system and cardiac natriuretic peptides [atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP)] are opposing control mechanisms for arterial blood pressure. Accordingly, an inverse relationship between plasma renin concentration (PRC) and ANP exists in most circumstances. However, PRC and ANP levels are both elevated in renovascular hypertension. Because ANP can directly suppress renin release, we used ANP knockout (ANP−/−) mice to investigate whether high ANP levels attenuate the increase in PRC in response to renal hypoperfusion, thus buffering renovascular hypertension. ANP−/− mice were hypertensive and had reduced PRC compared with that in wild-type ANP+/+ mice under control conditions. Unilateral renal artery stenosis (2-kidney, 1-clip) for 1 wk induced similar increases in blood pressure and PRC in both genotypes. Unexpectedly, plasma BNP concentrations in ANP−/− mice significantly increased in response to two-kidney, one-clip treatment, potentially compensating for the lack of ANP. In fact, in mice lacking guanylyl cyclase A (GC-A−/− mice), which is the common receptor for both ANP and BNP, renovascular hypertension was markedly augmented compared with that in wild-type GC-A+/+ mice. However, the higher blood pressure in GC-A−/− mice was not caused by disinhibition of the renin system because PRC and renal renin synthesis were significantly lower in GC-A−/− mice than in GC-A+/+ mice. Thus, natriuretic peptides buffer renal vascular hypertension via renin-independent effects, such as vasorelaxation. The latter possibility is supported by experiments in isolated perfused mouse kidneys, in which physiological concentrations of ANP and BNP elicited renal vasodilatation and attenuated renal vasoconstriction in response to angiotensin II.
Collapse
Affiliation(s)
- Theo Demerath
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Janina Staffel
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Andrea Schreiber
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Daniela Valletta
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Abstract
In the 30 years since the identification of the natriuretic peptides, their involvement in regulating fluid and blood pressure has become firmly established. Data indicating a role for these hormones in lifestyle-related metabolic and cardiovascular disorders have also accumulated over the past decade. Dysregulation of the natriuretic peptide system has been associated with obesity, glucose intolerance, type 2 diabetes mellitus, and essential hypertension. Moreover, the natriuretic peptides have been implicated in the protection against atherosclerosis, thrombosis, and myocardial ischaemia. All these conditions can coexist and potentially lead to heart failure, a syndrome associated with a functional natriuretic peptide deficiency despite high circulating concentrations of immunoreactive peptides. Therefore, dysregulation of the natriuretic peptide system, a 'natriuretic handicap', might be an important factor in the initiation and progression of metabolic dysfunction and its accompanying cardiovascular complications. This Review provides a summary of the natriuretic peptide system and its involvement in these cardiometabolic conditions. We propose that these peptides might have an integrating role in lifestyle-related metabolic and cardiovascular disorders.
Collapse
|
34
|
Freeman K, Tao W, Sun H, Soonpaa MH, Rubart M. In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging. J Neurosci Methods 2014; 221:48-61. [PMID: 24056230 PMCID: PMC3858460 DOI: 10.1016/j.jneumeth.2013.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/06/2013] [Accepted: 09/08/2013] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sympathetic nerve wiring in the mammalian heart has remained largely unexplored. Resolving the wiring diagram of the cardiac sympathetic network would help establish the structural underpinnings of neurocardiac coupling. NEW METHOD We used two-photon excitation fluorescence microscopy, combined with a computer-assisted 3-D tracking algorithm, to map the local sympathetic circuits in living hearts from adult transgenic mice expressing enhanced green fluorescent protein (EGFP) in peripheral adrenergic neurons. RESULTS Quantitative co-localization analyses confirmed that the intramyocardial EGFP distribution recapitulated the anatomy of the sympathetic arbor. In the left ventricular subepicardium of the uninjured heart, the sympathetic network was composed of multiple subarbors, exhibiting variable branching and looping topology. Axonal branches did not overlap with each other within their respective parental subarbor nor with neurites of annexed subarbors. The sympathetic network in the border zone of a 2-week-old myocardial infarction was characterized by substantive rewiring, which included spatially heterogeneous loss and gain of sympathetic fibers and formation of multiple, predominately nested, axon loops of widely variable circumference and geometry. COMPARISON WITH EXISTING METHODS In contrast to mechanical tissue sectioning methods that may involve deformation of tissue and uncertainty in registration across sections, our approach preserves continuity of structure, which allows tracing of neurites over distances, and thus enables derivation of the three-dimensional and topological morphology of cardiac sympathetic nerves. CONCLUSIONS Our assay should be of general utility to unravel the mechanisms governing sympathetic axon spacing during development and disease.
Collapse
Affiliation(s)
- Kim Freeman
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202
| | - Wen Tao
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202
| | - Hongli Sun
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202
| | - Mark H. Soonpaa
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202
| | - Michael Rubart
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, 1044 West Walnut Street, Indianapolis, IN 46202
| |
Collapse
|
35
|
Hu BC, Li Y, Liu M, Li LH, Sheng CS, Zhang Y, Wang JG. Blood pressure and urinary sodium excretion in relation to 16 genetic polymorphisms in the natriuretic peptide system in Chinese. Endocr J 2014; 61:861-74. [PMID: 24954621 DOI: 10.1507/endocrj.ej14-0104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We systematically investigated the association between single nucleotide polymorphisms (SNPs) in the natriuretic peptide system (NPPA, NPPB, NPPC, NPRA, NPRC, and Corin genes) and blood pressure in a Chinese population. The study population was recruited from a mountainous area 500 km south of Shanghai from 2003 to 2009. Using the ABI SNapShot method, we first genotyped 951 subjects enrolled in 2005 for 16 SNPs and then the remaining 1355 subjects as validation for 5 SNPs selected from the primary study. Overall, the association of the studied genetic polymorphisms with blood pressure and urinary excretion of cations was weak or non-significant. However, in the primary study, there was significant (Pint = 0.003) interaction between the rs198358 polymorphism and age in relation to diastolic blood pressure. After adjustment for covariates, diastolic blood pressure was significantly higher in the G allele carriers than AA homozygotes in 176 subjects aged 60 years or older (77.8 ± 1.72 vs 73.9 ± 1.54 mmHg, P = 0.001). In the primary combined with validation studies, this interaction remained statistically significant (Pint = 0.02). The odds ratio of hypertension for carrying the G allele versus AA homozygotes was 1.25 (95% CI: 1.03-1.52; P = 0.03) in all subjects, and 0.85 (0.51-1.41; P = 0.53), 1.30 (0.98-1.73; P = 0.06), and 1.45 (0.95-2.22; P = 0.08) in the subjects younger than 40 years, 40-59 years, and 60 years or older, respectively. Some of the genetic polymorphisms in the natriuretic peptide system might be associated with blood pressure. However, not only the size, but also the direction of the association may change with age.
Collapse
Affiliation(s)
- Bang-Chuan Hu
- Centre for Epidemiological Studies and Clinical Trials, The Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Karlafti EF, Hatzitolios AI, Karlaftis AF, Baltatzi MS, Koliakos GG, Savopoulos CG. Effects of moxonidine on sympathetic nervous system activity: An update on metabolism, cardio, and other target-organ protection. J Pharm Bioallied Sci 2013; 5:253-6. [PMID: 24302832 PMCID: PMC3831737 DOI: 10.4103/0975-7406.120067] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/23/2012] [Accepted: 06/10/2013] [Indexed: 01/08/2023] Open
Abstract
Moxonidine is the newest, second-generation, centrally acting antihypertensive agent. It has selective agonist activity at imidazoline I1 receptors and less adverse effects than the other centrally acting drugs. This fact authorizes the frequent use of moxonidine in clinical practice, as monotherapy or in combination with other antihypertensive agents. Also, moxonidine has beneficial effects in obese and metabolic syndrome and in target-organs, such as heart and kidneys.
Collapse
Affiliation(s)
- Eleni F Karlafti
- Department of Internal Medicine, AHEPA Hospital, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
37
|
Pandey KN. Emerging Roles of Natriuretic Peptides and their Receptors in Pathophysiology of Hypertension and Cardiovascular Regulation. ACTA ACUST UNITED AC 2012; 2:210-26. [PMID: 19746200 DOI: 10.1016/j.jash.2008.02.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Thus far, three related natriuretic peptides (NPs) and three distinct receptors have been identified, which have advanced our knowledge towards understanding the control of high blood pressure, hypertension, and cardiovascular disorders to a great extent. Biochemical and molecular studies have been advanced to examine receptor function and signaling mechanisms and the role of second messenger cGMP in pathophysiology of hypertension, renal hemodynamics, and cardiovascular functions. The development of gene-knockout and gene-duplication mouse models along with transgenic mice have provided a framework for understanding the importance of the antagonistic actions of natriuretic peptides receptor in cardiovascular events at the molecular level. Now, NPs are considered as circulating markers of congestive heart failure, however, their therapeutic potential for the treatment of cardiovascular diseases such as hypertension, renal insufficiency, cardiac hypertrophy, congestive heart failure, and stroke has just begun to unfold. Indeed, the alternative avenues of investigations in this important are need to be undertaken, as we are at the initial stage of the molecular therapeutic and pharmacogenomic implications.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
38
|
Effects of buyang huanwu decoction on ventricular remodeling and differential protein profile in a rat model of myocardial infarction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:385247. [PMID: 23049607 PMCID: PMC3459299 DOI: 10.1155/2012/385247] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/05/2012] [Accepted: 07/25/2012] [Indexed: 11/18/2022]
Abstract
Buyang Huanwu decoction (BYHWD) is a well-known and canonical Chinese medicine formula from “Correction on Errors in Medical Classics” in Qing dynasty. Here, we show that BYHWD could alleviate the ventricular remodeling induced by left anterior descending (LAD) artery ligation in rats. BYHWD treatment (18 g/kg/day) decreased heart weight/body weight (HW/BW), left ventricle (LV) dimension at end diastole (LVDd) and increased LV ejection fraction (LVEF) and LV fractional shortening (LVFS) significantly compared to model group at the end of 12 weeks. The collagen volume of BYHWD group was more significantly decreased than that of model group. Proteomic analysis showed that atrial natriuretic factor (ANF) was downregulated; heat shock protein beta-6 (HSPB6) and peroxiredoxin-6 (PRDX6) were upregulated in BYHWD-treated group among successfully identified proteins. The apoptotic index (AI) was reduced by BYHWD accompanied by decreased expression of Bax and caspase 3 activity, increased Bcl-2/Bax ratio, and phosphorylation of HSPB6 compared to that of model group. Taken together, these results suggest that BYHWD can alleviate ventricular remodeling induced by LAD artery ligation. The antiremodeling effects of BYHWD are conferred by decreasing AI through affecting multiple targets including increased Bcl-2/Bax ratio and decreased caspase 3 activity that might be via upregulated PRDX6, phosphorylation of HSPB6 and subsequently reduction of ANF.
Collapse
|
39
|
Kim JH, Jang BH, Go HY, Park S, Shin YC, Kim SH, Ko SG. Potential association between frequent nonsynonymous variant of NPPA and cardioembolic stroke. DNA Cell Biol 2012; 31:993-1000. [PMID: 22400494 DOI: 10.1089/dna.2011.1463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Atrial natriuretic peptide (ANP, also known as NPPA) and brain natriuretic peptide (BNP, also known as NPPB) have been determined as genetic factors for several diseases, including stroke and myocardial infarction, in human and rat models. To investigate the potential association between polymorphisms of the NPPA gene and stroke in a Korean population, nine single-nucleotide polymorphisms (SNPs) of NPPA and NPPB genes were genotyped in a total of 941 Korean subjects, including 674 stroke patients (109 hemorrhagic and 565 ischemic) and 267 unaffected controls. Genotype comparisons of the targeted alleles revealed that there were no significant associations between stroke patients and control subjects, or among hemorrhagic, ischemic, and control groups. However, in logistic analysis for Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification of ischemic stroke, nonsynonymous rs5065 (STOP152Arg) and rs5067 in 3'UTR of NPPA, which were in complete linkage disequilibrium, showed significant associations with cardioembolic stroke. These two SNPs showed higher frequencies in cardioembolic stroke patients than those in controls and ischemic patients with small-vessel occlusion (p=0.002, adjusted p=0.02). It was also found that NPPA rs5065C allele in all of the Korean subjects existed as heterozygous compared with Caucasian and African populations. Although further replications in larger cardioembolic stroke subjects are required, our preliminary findings suggest that the nonsynonymous rs5065C of the NPPA gene, which could produce a new or dysfunctional transcript, is possibly associated with cardioembolism.
Collapse
Affiliation(s)
- Jeong-Hyun Kim
- Center for Clinical Research & Genomics, College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Pandey KN. Guanylyl cyclase / atrial natriuretic peptide receptor-A: role in the pathophysiology of cardiovascular regulation. Can J Physiol Pharmacol 2011; 89:557-73. [PMID: 21815745 DOI: 10.1139/y11-054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atrial natriuretic factor (ANF), also known as atrial natriuretic peptide (ANP), is an endogenous and potent hypotensive hormone that elicits natriuretic, diuretic, vasorelaxant, and anti-proliferative effects, which are important in the control of blood pressure and cardiovascular events. One principal locus involved in the regulatory action of ANP and brain natriuretic peptide (BNP) is guanylyl cyclase / natriuretic peptide receptor-A (GC-A/NPRA). Studies on ANP, BNP, and their receptor, GC-A/NPRA, have greatly increased our knowledge of the control of hypertension and cardiovascular disorders. Cellular, biochemical, and molecular studies have helped to delineate the receptor function and signaling mechanisms of NPRA. Gene-targeted and transgenic mouse models have advanced our understanding of the importance of ANP, BNP, and GC-A/NPRA in disease states at the molecular level. Importantly, ANP and BNP are used as critical markers of cardiac events; however, their therapeutic potentials for the diagnosis and treatment of hypertension, heart failure, and stroke have just begun to be realized. We are now just at the initial stage of molecular therapeutics and pharmacogenomic advancement of the natriuretic peptides. More investigations should be undertaken and ongoing ones be extended in this important field.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, SL-39 Tulane University Health Sciences Center, School of Medicine, 1430 Tulane Avenue, LA 70112, New Orleans, USA.
| |
Collapse
|
41
|
Abstract
The cardiac hormones atrial natriuretic peptide and B-type natriuretic peptide (brain natriuretic peptide) activate guanylyl cyclase (GC)-A/natriuretic peptide receptor-A (NPRA) and produce the second messenger cGMP. GC-A/NPRA is a member of the growing family of GC receptors. The recent biochemical, molecular and genomic studies on GC-A/NPRA have provided important insights into the regulation and functional activity of this receptor protein, with a particular emphasis on cardiac and renal protective roles in hypertension and cardiovascular disease states. The progress in this field of research has significantly strengthened and advanced our knowledge about the critical roles of Npr1 (coding for GC-A/NPRA) in the control of fluid volume, blood pressure, cardiac remodeling, and other physiological functions and pathological states. Overall, this review attempts to provide insights and to delineate the current concepts in the field of functional genomics and signaling of GC-A/NPRA in hypertension and cardiovascular disease states at the molecular level.
Collapse
Affiliation(s)
- Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
42
|
Bae EH, Ma SK, Lee J, Kim SW. Altered regulation of renal nitric oxide and atrial natriuretic peptide systems in angiotensin II-induced hypertension. ACTA ACUST UNITED AC 2011; 170:31-7. [PMID: 21616096 DOI: 10.1016/j.regpep.2011.05.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 11/25/2022]
Abstract
The present study was aimed to determine whether there is an altered role of local nitric oxide (NO) and atrial natriuretic peptide (ANP) systems in the kidney in association with the angiotensin (Ang) II-induced hypertension. Male Sprague-Dawley rats were used. Ang II (100 ng·min⁻¹·kg⁻¹) was infused through entire time course. Thirteenth day after beginning the regimen, kidneys were taken. The protein expression of NO synthase (NOS) and nitrotyrosine was determined by semiquantitative immunoblotting. The mRNA expression of components of ANP system was determined by real-time polymerase chain reaction. The activities of soluble and particulate guanylyl cyclases were determined by the amount of cGMP generated in responses to sodium nitroprusside and ANP, respectively. There developed hypertension and decreased creatinine clearance in the experimental group. The protein expression of eNOS, nNOS and nitrotyrosine was increased in the cortex, while that of iNOS remained unaltered. The urinary excretion of NO increased in Ang II-induced hypertensive rats. The catalytic activity of soluble guanylyl cyclase was blunted in the glomerulus in Ang II-induced hypertensive rats. The mRNA expression of ANP was increased in Ang II-induced hypertensive rats. Neither the expression of NPR-A nor that of NPR-C was changed. The protein expression of neutral endopeptidase was decreased and the activity of particulate guanylyl cyclase was blunted in the glomerulus and papilla in Ang II-induced hypertensive rats. In conclusion, the synthesis of NO and ANP was increased in the kidney of Ang II-induced hypertension, while stimulated cGMP response was blunted. These results suggest desensitization of guanylyl cyclase in the kidney of Ang II-induced hypertensive rats, which may contribute to the associated renal vasoconstriction and hypertension.
Collapse
Affiliation(s)
- Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | | | | | | |
Collapse
|
43
|
Kishimoto I, Tokudome T, Nakao K, Kangawa K. Natriuretic peptide system: an overview of studies using genetically engineered animal models. FEBS J 2011; 278:1830-41. [PMID: 21477073 DOI: 10.1111/j.1742-4658.2011.08116.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mammalian natriuretic peptide system, consisting of at least three ligands and three receptors, plays critical roles in health and disease. Examination of genetically engineered animal models has suggested the significance of the natriuretic peptide system in cardiovascular, renal and skeletal homeostasis. The present review focuses on the in vivo roles of the natriuretic peptide system as demonstrated in transgenic and knockout animal models.
Collapse
Affiliation(s)
- Ichiro Kishimoto
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| | | | | | | |
Collapse
|
44
|
Abstract
Self-renewal and pluripotency of embryonic stem (ES) cells are maintained by several signaling cascades and by expression of intrinsic factors, such as Oct4, Nanog and Sox2. The mechanism regulating these signaling cascades in ES cells is of great interest. Recently, we have demonstrated that natriuretic peptide receptor A (NPR-A), a specific receptor for atrial and brain natriuretic peptides (ANP and BNP, respectively), is expressed in pre-implantation embryos and in ES cells. Here, we examined whether NPR-A is involved in the maintenance of ES cell pluripotency. RNA interference-mediated knockdown of NPR-A resulted in phenotypic changes, indicative of differentiation, downregulation of pluripotency factors (such as Oct4, Nanog and Sox2) and upregulation of differentiation genes. NPR-A knockdown also resulted in a marked downregulation of phosphorylated Akt. Furthermore, NPR-A knockdown induced accumulation of ES cells in the G1 phase of the cell cycle. Interestingly, we found that ANP was expressed in self-renewing ES cells, whereas its level was reduced after ES cell differentiation. Treatment of ES cells with ANP upregulated the expression of Oct4, Nanog and phosphorylated Akt, and this upregulation depended on NPR-A signaling, because it was completely reversed by pretreatment with either an NPR-A antagonist or a cGMP-dependent protein kinase inhibitor. These findings provide a novel role for NPR-A in the maintenance of self-renewal and pluripotency of ES cells.
Collapse
Affiliation(s)
- E M Abdelalim
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan.
| | | |
Collapse
|
45
|
YAMANE T, TAKEMURA N, INOUE H, SOETA S, OISHI M, AMASAKI H. Preliminary Immunohistochemical Study of Natriuretic Peptide Receptor Localization in Canine and Feline Heart. J Vet Med Sci 2011; 73:375-8. [DOI: 10.1292/jvms.10-0114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tetsuya YAMANE
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University
- Pet Medical Center
| | - Naoyuki TAKEMURA
- Laboratory of Veterinary Integrate Medicine, Nippon Veterinary and Life Science University
| | - Hajime INOUE
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University
| | - Satoshi SOETA
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University
| | - Motoharu OISHI
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University
| | - Hajime AMASAKI
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University
| |
Collapse
|
46
|
Ferlito M, Fulton WB, Zauher MA, Marbán E, Steenbergen C, Lowenstein CJ. VAMP-1, VAMP-2, and syntaxin-4 regulate ANP release from cardiac myocytes. J Mol Cell Cardiol 2010; 49:791-800. [PMID: 20801128 DOI: 10.1016/j.yjmcc.2010.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 08/19/2010] [Accepted: 08/20/2010] [Indexed: 01/24/2023]
Abstract
ANP is a peptide released by cardiac myocytes that regulates blood pressure and natriuresis. However, the molecular mechanisms controlling ANP release from cardiac myocytes are not defined. We now identify three components of the exocytic machinery that regulate ANP release from atrial myocytes. We found that cardiac myocytes express N-ethylmaleimide sensitive factor (NSF), soluble NSF attachment protein (α-SNAP), and SNAP receptors (SNAREs). Additionally we found that specific SNARE molecules, VAMP-1 and VAMP-2, both co-sediment and co-localize with ANP. Also, one SNARE molecule, syntaxin-4, partially co-sediments and partially co-localizes with ANP. Furthermore, these three SNAREs, syntaxin-4 and VAMP-1 and VAMP-2, form a SNARE complex inside cardiac myocytes. Finally, knockdown of VAMP-1, VAMP-2, or syntaxin-4 blocks regulated release of ANP. In contrast, silencing of VAMP-3 did not have an effect on ANP release. Our data suggest that three specific SNAREs regulate cardiac myocyte exocytosis of ANP. Pathways that modify the exocytic machinery may influence natriuresis and blood pressure.
Collapse
Affiliation(s)
- Marcella Ferlito
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Elis S, Courtland HW, Wu Y, Rosen CJ, Sun H, Jepsen KJ, Majeska RJ, Yakar S. Elevated serum levels of IGF-1 are sufficient to establish normal body size and skeletal properties even in the absence of tissue IGF-1. J Bone Miner Res 2010; 25:1257-66. [PMID: 20200935 PMCID: PMC3153133 DOI: 10.1002/jbmr.20] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Use of recombinant insulin-like growth factor 1 (IGF-1) as a treatment for primary IGF-1 deficiency in children has become increasingly common. When untreated, primary IGF-1 deficiency may lead to a range of metabolic disorders, including lipid abnormalities, insulin resistance, and decreased bone density. To date, results of this therapy are considered encouraging; however, our understanding of the role played by IGF-1 during development remains limited. Studies on long-term treatment with recombinant IGF-1 in both children and animals are few. Here, we used two novel transgenic mouse strains to test the long-term effects of elevated circulating IGF-1 on body size and skeletal development. Overexpression of the rat igf1 transgene in livers of mice with otherwise normal IGF-1 expression (HIT mice) resulted in approximately threefold increases in serum IGF-1 levels throughout growth, as well as greater body mass and enhanced skeletal size, architecture, and mechanical properties. When the igf1 transgene was overexpressed in livers of igf1 null mice (KO-HIT), the comparably elevated serum IGF-1 failed to overcome growth and skeletal deficiencies during neonatal and early postnatal growth. However, between 4 and 16 weeks of age, increased serum IGF-1 fully compensated for the absence of locally produced IGF-1 because body weights and lengths of KO-HIT mice became comparable with controls. Furthermore, micro-computed tomography (microCT) analysis revealed that early deficits in skeletal structure of KO-HIT mice were restored to control levels by adulthood. Our data indicate that in the absence of tissue igf1 gene expression, maintaining long-term elevations in serum IGF-1 is sufficient to establish normal body size, body composition, and both skeletal architecture and mechanical function.
Collapse
Affiliation(s)
- Sebastien Elis
- Division of Endocrinology, Diabetes and Bone Disease, Mount Sinai School of Medicine, New York, NY 10029-6574, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kake T, Kitamura H, Adachi Y, Yoshioka T, Watanabe T, Matsushita H, Fujii T, Kondo E, Tachibe T, Kawase Y, Jishage KI, Yasoda A, Mukoyama M, Nakao K. Chronically elevated plasma C-type natriuretic peptide level stimulates skeletal growth in transgenic mice. Am J Physiol Endocrinol Metab 2009; 297:E1339-48. [PMID: 19808910 DOI: 10.1152/ajpendo.00272.2009] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
C-type natriuretic peptide (CNP) plays a critical role in endochondral ossification through guanylyl cyclase-B (GC-B), a natriuretic peptide receptor subtype. Cartilage-specific overexpression of CNP enhances skeletal growth and rescues the dwarfism in a transgenic achondroplasia model with constitutive active mutation of fibroblast growth factor receptor-3. For future clinical application, the efficacy of CNP administration on skeletal growth must be evaluated. Due to the high clearance of CNP, maintaining a high concentration is technically difficult. However, to model high blood CNP concentration, we established a liver-targeted CNP-overexpressing transgenic mouse (SAP-CNP tgm). SAP-CNP tgm exhibited skeletal overgrowth in proportion to the blood CNP concentration and revealed phenotypes of systemic stimulation of cartilage bones, including limbs, paws, costal bones, spine, and skull. Furthermore, in SAP-CNP tgm, the size of the foramen magnum, the insufficient formation of which results in cervico-medullary compression in achondroplasia, also showed significant increase. CNP primarily activates GC-B, but under high concentrations it cross-reacts with guanylyl cyclase-A (GC-A), a natriuretic peptide receptor subtype of atrial natriuretic peptides (ANP) and brain natriuretic peptides (BNP). Although activation of GC-A could alter cardiovascular homeostasis, leading to hypotension and heart weight reduction, the skeletal overgrowth phenotype in the line of SAP-CNP tgm with mild overexpression of CNP did not accompany decrease of systolic blood pressure or heart weight. These results suggest that CNP administration stimulates skeletal growth without adverse cardiovascular effect, and thus CNP could be a promising remedy targeting achondroplasia.
Collapse
Affiliation(s)
- Takei Kake
- Pharmaceutical Research Department I, Research Division, Chugai Pharmaceutical Company, Shizuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Martel G, Hamet P, Tremblay J. Central role of guanylyl cyclase in natriuretic peptide signaling in hypertension and metabolic syndrome. Mol Cell Biochem 2009; 334:53-65. [PMID: 19937369 DOI: 10.1007/s11010-009-0326-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 11/04/2009] [Indexed: 01/05/2023]
Abstract
Studied for nearly 30 years for its ability to control many parameters, such as vascular smooth muscle cell relaxation, heart fibrosis, and kidney function, the natriuretic peptide (NP) system is now considered to be a key element in several other major metabolic pathways. After stimulation by NPs, natriuretic peptide receptors (NPR) convert GTP to the second messenger cGMP. In addition to its vasodilatory effects and natriuretic and diuretic functions, cGMP has been positively associated with fat cell function, apoptosis, and NPR expression/activity modulation. The NP system is also closely linked to metabolic syndrome (MetS) progression and obesity control. A new era is now on its way targeting the NP system to not only treat high blood pressure, but to also assist in the fight against the obesity pandemic. Here, we summarize recent data on the role of NPs in hypertension and MetS.
Collapse
Affiliation(s)
- G Martel
- Laboratory of Cellular Biology of Hypertension, Centre for Ecogenomic Models of Human Diseases, Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Technopôle Angus, 2901 rue Rachel est, bureau 314, Montreal, QC H1W 4A4, Canada
| | | | | |
Collapse
|
50
|
Natriuretic peptides and cardiovascular damage in the metabolic syndrome: molecular mechanisms and clinical implications. Clin Sci (Lond) 2009; 118:231-40. [PMID: 19886866 DOI: 10.1042/cs20090204] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Natriuretic peptides are endogenous antagonists of vasoconstrictor and salt- and water-retaining systems in the body's defence against blood pressure elevation and plasma volume expansion, through direct vasodilator, diuretic and natriuretic properties. In addition, natriuretic peptides may play a role in the modulation of the molecular mechanisms involved in metabolic regulation and cardiovascular remodelling. The metabolic syndrome is characterized by visceral obesity, hyperlipidaemia, vascular inflammation and hypertension, which are linked by peripheral insulin resistance. Increased visceral adiposity may contribute to the reduction in the circulating levels of natriuretic peptides. The dysregulation of neurohormonal systems, including the renin-angiotensin and the natriuretic peptide systems, may in turn contribute to the development of insulin resistance in dysmetabolic patients. In obese subjects with the metabolic syndrome, reduced levels of natriuretic peptides may be involved in the development of hypertension, vascular inflammation and cardio vascular remodelling, and this may predispose to the development of cardiovascular disease. The present review summarizes the regulation and function of the natriuretic peptide system in obese patients with the metabolic syndrome and the involvement of altered bioactive levels of natriuretic peptides in the pathophysiology of cardiovascular disease in patients with metabolic abnormalities.
Collapse
|