1
|
Berber M, Penton D. Calcineurin inhibitors and the renin-angiotensin-aldosterone system. Acta Physiol (Oxf) 2024; 240:e14248. [PMID: 39460458 DOI: 10.1111/apha.14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
Calcineurin inhibitors (CnIs) are effective immunosuppressants with decades of accumulated experience in treating immune disorders and, most notably, solid organ transplantation. While CnIs have significantly increased graft survival and transformed the patient standard of care, their use has been overshadowed by a number of undesired side effects. For instance, CnI-associated nephrotoxicity has been reported since early studies and remains a major therapeutic concern. The occurrence of several ion imbalances alongside hypertension was also noted early on, indicating the involvement of the renin-angiotensin-aldosterone system (RAAS) in CnI-mediated toxicity. However, the literature in this field is crowded with conflicting reports from clinical trials as well as studies using animal and invitro models. With this review, we aim to provide a structured and updated overview of the physiological and pathophysiological evidence supporting the involvement of the classical RAAS in CnI-associated toxicity.
Collapse
Affiliation(s)
- Mesut Berber
- Department of Pediatrics, Harvard Medical School and Division of Endocrinology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David Penton
- Electrophysiology Facility, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Bonnitcha P, Rigdwell M, Ward P, Chesher D. Standard -20 °C freezer storage protocols may cause substantial plasma renin cryoactivation. Clin Chem Lab Med 2023; 61:1428-1435. [PMID: 36800985 DOI: 10.1515/cclm-2022-1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/21/2023]
Abstract
OBJECTIVES To assess the appropriate preanalytical process for storage of plasma for renin concentration analysis. This study was initiated due to the wide variation in preanalytical handling of samples observed within our network, particularly with respect to freezing for longer term storage. METHODS Pooled plasma from patient samples was analysed immediately post separation for renin concentration (n=30, concentration 4.0-204 mIU/L). Aliquots from these samples were frozen in a -20 °C freezer and then analysed, with the renin concentration compared to the respective baseline concentration. Comparisons were also made to: aliquots snap frozen using a dry ice/acetone bath, aliquots stored at room temperature, and aliquots stored at 4 °C. Subsequent experiments investigated the potential sources of cryoactivation observed in these initial studies. RESULTS Substantial and highly variable cryoactivation was observed in samples frozen using a -20 °C freezer, with renin concentration increasing over 300% from baseline in some samples (median 21.3%). This cryoactivation could be prevented by snap freezing samples. Subsequent experiments determined that long term storage in a -20 °C freezer could prevent cryoactivation provided samples were initially frozen rapidly in a -70 °C freezer. Rapid defrosting of samples was not required to prevent cryoactivation. CONCLUSIONS Standard -20 °C freezers may not be appropriate for freezing samples for renin analysis. Laboratories should consider snap freezing their samples using a -70 °C freezer or similar to avoid cryoactivation of renin.
Collapse
Affiliation(s)
- Paul Bonnitcha
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mark Rigdwell
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Peter Ward
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Douglas Chesher
- Chemical Pathology Department, NSW Health Pathology, Royal North Shore Hospital, St Leonards, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Waker CA, Hwang AE, Bowman-Gibson S, Chandiramani CH, Linkous B, Stone ML, Keoni CI, Kaufman MR, Brown TL. Mouse models of preeclampsia with preexisting comorbidities. Front Physiol 2023; 14:1137058. [PMID: 37089425 PMCID: PMC10117893 DOI: 10.3389/fphys.2023.1137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Preeclampsia is a pregnancy-specific condition and a leading cause of maternal and fetal morbidity and mortality. It is thought to occur due to abnormal placental development or dysfunction, because the only known cure is delivery of the placenta. Several clinical risk factors are associated with an increased incidence of preeclampsia including chronic hypertension, diabetes, autoimmune conditions, kidney disease, and obesity. How these comorbidities intersect with preeclamptic etiology, however, is not well understood. This may be due to the limited number of animal models as well as the paucity of studies investigating the impact of these comorbidities. This review examines the current mouse models of chronic hypertension, pregestational diabetes, and obesity that subsequently develop preeclampsia-like symptoms and discusses how closely these models recapitulate the human condition. Finally, we propose an avenue to expand the development of mouse models of preeclampsia superimposed on chronic comorbidities to provide a strong foundation needed for preclinical testing.
Collapse
Affiliation(s)
- Christopher A. Waker
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Amy E. Hwang
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Scout Bowman-Gibson
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chandni H. Chandiramani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Bryce Linkous
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Madison L. Stone
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Chanel I. Keoni
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R. Kaufman
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L. Brown
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- Department of Obstetrics and Gynecology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
- *Correspondence: Thomas L. Brown,
| |
Collapse
|
4
|
Controls of Central and Peripheral Blood Pressure and Hemorrhagic/Hypovolemic Shock. J Clin Med 2023; 12:jcm12031108. [PMID: 36769755 PMCID: PMC9917827 DOI: 10.3390/jcm12031108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
The pressure exerted on the heart and blood vessels because of blood flow is considered an essential parameter for cardiovascular function. It determines sufficient blood perfusion, and transportation of nutrition, oxygen, and other essential factors to every organ. Pressure in the primary arteries near the heart and the brain is known as central blood pressure (CBP), while that in the peripheral arteries is known as peripheral blood pressure (PBP). Usually, CBP and PBP are correlated; however, various types of shocks and cardiovascular disorders interfere with their regulation and differently affect the blood flow in vital and accessory organs. Therefore, understanding blood pressure in normal and disease conditions is essential for managing shock-related cardiovascular implications and improving treatment outcomes. In this review, we have described the control systems (neural, hormonal, osmotic, and cellular) of blood pressure and their regulation in hemorrhagic/hypovolemic shock using centhaquine (Lyfaquin®) as a resuscitative agent.
Collapse
|
5
|
Prorenin: What are its functions? Hypertens Res 2022; 45:2021-2023. [PMID: 36207531 DOI: 10.1038/s41440-022-01033-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022]
|
6
|
Renin-a in the Subfornical Organ Plays a Critical Role in the Maintenance of Salt-Sensitive Hypertension. Biomolecules 2022; 12:biom12091169. [PMID: 36139008 PMCID: PMC9496084 DOI: 10.3390/biom12091169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The brain renin-angiotensin system plays important roles in blood pressure and cardiovascular regulation. There are two isoforms of prorenin in the brain: the classic secreted form (prorenin/sREN) encoded by renin-a, and an intracellular form (icREN) encoded by renin-b. Emerging evidence indicates the importance of renin-b in cardiovascular and metabolic regulation. However, the role of endogenous brain prorenin in the development of salt-sensitive hypertension remains undefined. In this study, we test the hypothesis that renin-a produced locally in the brain contributes to the pathogenesis of hypertension. Using RNAscope, we report for the first time that renin mRNA is expressed in several regions of the brain, including the subfornical organ (SFO), the paraventricular nucleus of the hypothalamus (PVN), and the brainstem, where it is found in glutamatergic, GABAergic, cholinergic, and tyrosine hydroxylase-positive neurons. Notably, we found that renin mRNA was significantly elevated in the SFO and PVN in a mouse model of DOCA-salt–induced hypertension. To examine the functional importance of renin-a in the SFO, we selectively ablated renin-a in the SFO in renin-a–floxed mice using a Cre-lox strategy. Importantly, renin-a ablation in the SFO attenuated the maintenance of DOCA-salt–induced hypertension and improved autonomic function without affecting fluid or sodium intake. Molecularly, ablation of renin-a prevented the DOCA-salt–induced elevation in NADPH oxidase 2 (NOX2) in the SFO without affecting NOX4 or angiotensin II type 1 and 2 receptors. Collectively, our findings demonstrate that endogenous renin-a within the SFO is important for the pathogenesis of salt-sensitive hypertension.
Collapse
|
7
|
Hepburn S, Munday C, Taylor K, Halsall DJ. Stability of direct renin concentration and plasma renin activity in EDTA whole blood and plasma at ambient and refrigerated temperatures from 0 to 72 hours. Clin Chem Lab Med 2022; 60:1384-1392. [PMID: 35785453 DOI: 10.1515/cclm-2022-0375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/22/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The aim of this study was to determine the appropriate transport and storage conditions for blood taken for direct renin concentration and plasma renin activity measurement, and whether cryoactivation of prorenin is seen at time points relevant to clinical practice. METHODS Blood was extracted from n=10 volunteers into K2-EDTA tubes. Stability of renin was assessed in whole blood stored at room temperature (15-25 °C) and in the refrigerator (2-8 °C) at 0 h, 8 h, and 24 h. The stability of renin in plasma was determined under the same conditions at 0 h, 24 h and 72 h. RESULTS Stability of plasma renin activity and direct renin concentration in whole blood stored at room temperature was found to be acceptable for up to 24 h. At refrigerated temperature, whole blood stability was acceptable for measurement of direct renin concentration up to 8 h and plasma renin activity up to 24 h. In contrast, plasma renin activity was not stable in plasma stored at either room or refrigerated temperatures up to 24 h; however, direct renin concentration had acceptable stability in plasma stored at room temperature for up to 24 h, but stability was unacceptable at refrigerated temperatures. CONCLUSIONS Samples collected for plasma renin activity and direct renin concentration should be transported as whole blood to optimise stability. After sample processing, plasma can be kept at room temperature for up to 24 h for direct renin concentration, however, for determination of plasma renin activity separated plasma should be analysed or frozen as soon as possible.
Collapse
Affiliation(s)
| | | | - Kevin Taylor
- Blood Sciences, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| | - David J Halsall
- Blood Sciences, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
8
|
Kawamura S, Fujimoto K, Hayashi A, Kamata Y, Moriguchi I, Kobayashi N, Shichiri M. Plasma and serum prorenin concentrations in diabetes, hypertension, and renal disease. Hypertens Res 2022; 45:1977-1985. [PMID: 35689092 DOI: 10.1038/s41440-022-00959-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 04/20/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022]
Abstract
Although the renin-angiotensin-aldosterone system plays a crucial role in fluid homeostasis and cardiovascular disease pathophysiology, measurements of plasma prorenin levels are still unavailable in clinical practice. We previously found that prorenin molecules in human blood underwent significant posttranslational modifications and were undetectable using immunological assays that utilized antibodies specifically recognizing unmodified recombinant prorenin. Using a sandwich enzyme-linked immunosorbent assay that captures posttranslationally modified prorenins with their prosegment antibodies, we measured plasma and serum prorenin concentrations in 219 patients with diabetes mellitus, hypertension and/or renal disease and compared them with those of 40 healthy controls. The measured values were not significantly different from those of the healthy controls and were 1,000- to 100,000-fold higher than previously reported levels determined using conventional assay kits. Multiple regression analyses showed that body weight, serum albumin levels, and serum creatinine levels negatively correlated with plasma prorenin levels, while the use of loop diuretics was associated with elevated plasma prorenin levels. Blood pressure, HbA1c, and plasma renin activity were not independent variables affecting plasma prorenin levels. In contrast, serum prorenin levels were unaffected by any of the above clinical parameters. The association of the plasma prorenin concentration with indices reflecting body fluid status suggests the need to scrutinize its role as a biomarker, while serum prorenins are less likely to have immediate diagnostic value.
Collapse
Affiliation(s)
- Sayuki Kawamura
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kazumi Fujimoto
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Akinori Hayashi
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yuji Kamata
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan
| | - Ibuki Moriguchi
- Sohbudai Nieren Clinic, 1-35-10, Sohbudai, Zama, Kanagawa, 252-0011, Japan
| | - Naoyuki Kobayashi
- Sohbudai Nieren Clinic, 1-35-10, Sohbudai, Zama, Kanagawa, 252-0011, Japan
| | - Masayoshi Shichiri
- Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan. .,Tokyo Kyosai Hospital, 2-3-8, Nakameguro, Meguro, Tokyo, 153-8934, Japan.
| |
Collapse
|
9
|
Oliveira LCG, Cruz NAN, Ricelli B, Tedesco-Silva H, Medina-Pestana JO, Casarini DE. Interactions amongst inflammation, renin-angiotensin-aldosterone and kallikrein-kinin systems: suggestive approaches for COVID-19 therapy. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200181. [PMID: 34925477 PMCID: PMC8651214 DOI: 10.1590/1678-9199-jvatitd-2020-0181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapid-spread infectious disease caused by the SARS-CoV-2 virus, which can culminate in the renin-angiotensin-aldosterone (RAAS) and kallikrein-kinin (KKS) systems imbalance, and in serious consequences for infected patients. This scoping review of published research exploring the RAAS and KKS was undertaken in order to trace the history of the discovery of both systems and their multiple interactions, discuss some aspects of the viral-cell interaction, including inflammation and the system imbalance triggered by SARS-CoV-2 infection, and their consequent disorders. Furthermore, we correlate the effects of continued use of the RAAS blockers in chronic diseases therapies with the virulence and physiopathology of COVID-19. We also approach the RAAS and KKS-related proposed potential therapies for treatment of COVID-19. In this way, we reinforce the importance of exploring both systems and the application of their components or their blockers in the treatment of coronavirus disease.
Collapse
Affiliation(s)
| | | | - Bruna Ricelli
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Helio Tedesco-Silva
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - José Osmar Medina-Pestana
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| | - Dulce Elena Casarini
- Nephrology Division, Department of Medicine, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, SP, Brazil
| |
Collapse
|
10
|
Cho ME, Sweeney C, Fino N, Greene T, Ramkumar N, Huang Y, Ricardo AC, Shafi T, Deo R, Anderson A, Mills KT, Cheung AK, CRIC Study Investigators. Longitudinal Changes in Prorenin and Renin in the Chronic Renal Insufficiency Cohort. Am J Nephrol 2021; 52:141-151. [PMID: 33735863 PMCID: PMC8049970 DOI: 10.1159/000514302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/08/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Prorenin, a precursor of renin, and renin play an important role in regulation of the renin-angiotensin system. More recently, receptor-bound prorenin has been shown to activate intracellular signaling pathways that mediate fibrosis, independent of angiotensin II. Prorenin and renin may thus be of physiologic significance in CKD, but their plasma concentrations have not been well characterized in CKD. METHODS We evaluated distribution and longitudinal changes of prorenin and renin concentrations in the plasma samples collected at follow-up years 1, 2, 3, and 5 of the Chronic Renal Insufficiency Cohort (CRIC) study, an ongoing longitudinal observational study of 3,939 adults with CKD. Descriptive statistics and multivariable regression of log-transformed values were used to describe cross-sectional and longitudinal variation and associations with participant characteristics. RESULTS A total of 3,361 CRIC participants had plasma available for analysis at year 1. The mean age (±standard deviation, SD) was 59 ± 11 years, and the mean estimated glomerular filtration rate (eGFR, ± SD) was 43 ± 17 mL/min per 1.73 m2. Median (interquartile range) values of plasma prorenin and renin at study entry were 4.4 (2.1, 8.8) ng/mL and 2.0 (0.8, 5.9) ng/dL, respectively. Prorenin and renin were positively correlated (Spearman correlation 0.51, p < 0.001) with each other. Women and non-Hispanic blacks had lower prorenin and renin values at year 1. Diabetes, lower eGFR, and use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, statins, and diuretics were associated with higher levels. Prorenin and renin decreased by a mean of 2 and 5% per year, respectively. Non-Hispanic black race and eGFR <30 mL/min/1.73 m2 at year 1 predicted a steeper decrease in prorenin and renin over time. In addition, each increase in urinary sodium excretion by 2 SDs at year 1 increased prorenin and renin levels by 4 and 5% per year, respectively. DISCUSSION/CONCLUSIONS The cross-sectional clinical factors associated with prorenin and renin values were similar. Overall, both plasma prorenin and renin concentrations decreased over the years, particularly in those with severe CKD at study entry.
Collapse
Affiliation(s)
- Monique E. Cho
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT
| | - Carol Sweeney
- Division of Epidemiology, University of Utah, Salt Lake City, UT
| | - Nora Fino
- Division of Epidemiology, University of Utah, Salt Lake City, UT
| | - Tom Greene
- Division of Epidemiology, University of Utah, Salt Lake City, UT
| | - Nirupama Ramkumar
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT
| | - Yufeng Huang
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT
| | - Ana C. Ricardo
- Department of Medicine, University of Illinois, Chicago, IL
| | - Tariq Shafi
- Division of Nephrology, University of Mississippi, Jackson, MS
| | - Rajat Deo
- Division of Cardiovascular Medicine, University of Pennsylvania, Philadelphia, PA
| | - Amanda Anderson
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Katherine T. Mills
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA
| | - Alfred K. Cheung
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT
| | | |
Collapse
|
11
|
Burdman I, Burckhardt BB. Human prorenin determination by hybrid immunocapture liquid chromatography/mass spectrometry: A mixed-solvent-triggered digestion utilizing D-optimal design. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8932. [PMID: 32845569 DOI: 10.1002/rcm.8932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Human prorenin, representing the precursor of mature renin, has been discussed as a potential biomarker, e.g. in diagnosing primary hyperaldosteronism or diabetes-induced nephropathy. Currently, only immunoassays are available for prorenin quantification. As the similarity of prorenin to active renin impedes its accurate determination by immunoassay, mass spectrometry appears as an accurate alternative for differentiation of that protein. METHODS Immunoaffinity purification plus a mixed-solvent-triggered digestion was combined with liquid chromatography/mass spectrometry (LC/MS) to enable a fast, sensitive, and less laboratory-intensive approach to the quantification of prorenin. Statistical experimental planning, which is known as Design of Experiments (DOE), was used to identify the optimal conditions for the generation of the signature peptides within a manageable number of experiments. The efficiency of the mixed-solvent-triggered digestion by trypsin was investigated using four different organic solvents: acetonitrile, acetone, tetrahydrofuran and methanol. RESULTS By utilizing a D-optimal design, we found that the optimal mixed-solvent type for the generation of both signature peptides was acetonitrile at a concentration of 84% and an incubation temperature of 16°C. Using the mixed-solvent-triggered digestion, the procedure time allowed a fast analysis of active renin and prorenin with a short digestion time of 98 min. This optimized mixed-solvent-triggered digestion procedure was applied to detect renin and prorenin successfully in human plasma by the newly developed hybrid approach. CONCLUSIONS The identification of unique surrogates for human prorenin enabled the mass spectrometric differentiation between the two similar proteins. The novel hybrid approach successfully proved its ability to purify, detect and distinguish between prorenin and active renin in human plasma.
Collapse
Affiliation(s)
- Ilja Burdman
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Universitaetsstr. 1, Dusseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Universitaetsstr. 1, Dusseldorf, Germany
| |
Collapse
|
12
|
Dilliott AA, Wang J, Brown E, Singh G, Shkrum MJ, Clin M, Rupar CA, Hegele RA, Siu VM. A novel homozygous variant in REN in a family presenting with classic features of disorders involving the renin-angiotensin pathway, without renal tubular dysgenesis. Am J Med Genet A 2020; 182:2284-2290. [PMID: 33043632 DOI: 10.1002/ajmg.a.61780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 01/03/2023]
Abstract
Autosomal recessively inherited pathogenic variants in genes associated with the renin-angiotensin-aldosterone system (RAAS) result in early onset oligohydramnios and clinical features of the Potter sequence, typically in association with proximal renal tubules dysgenesis. We describe two siblings and a first cousin who had severe oligohydramnios in the second trimester, and presented at birth with loose skin, wide fontanelles and sutures, and pulmonary insufficiency. Two had refractory hypotension during their brief lives and one received palliative care after birth. All were found to have a homozygous nonsense variant, REN: c.891delG; p.Tyr287*, on exome sequencing. Autopsy limited to the genitourinary system in two of the children revealed normal renal tubular histology in both. Immunoblotting confirmed diminished expression of renin within cultured skin fibroblasts. To our knowledge, this is the first identification of an association between biallelic variants in REN and oligohydramnios in the absence of renal tubular dysgenesis. Due to its role in the RAAS, it has previously been proposed that the decreased expression of REN results in hypotension, ischemia, and decreased urine production. We suggest sequencing of genes in the RAAS, including REN, should be considered in cases of severe early onset oligohydramnios, even when renal morphology and histology are normal.
Collapse
Affiliation(s)
- Allison A Dilliott
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jian Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Emma Brown
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Gagandeep Singh
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Michael J Shkrum
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | | - Charles Anthony Rupar
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada
| | - Robert A Hegele
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Victoria Mok Siu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada.,Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.,Division of Medical Genetics, Department of Pediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
13
|
Hoffmann S, Mullins L, Buckley C, Rider S, Mullins J. Investigating the RAS can be a fishy business: interdisciplinary opportunities using Zebrafish. Clin Sci (Lond) 2018; 132:2469-2481. [PMID: 30518571 PMCID: PMC6279434 DOI: 10.1042/cs20180721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/02/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
The renin-angiotensin system (RAS) is highly conserved, and components of the RAS are present in all vertebrates to some degree. Although the RAS has been studied since the discovery of renin, its biological role continues to broaden with the identification and characterization of new peptides. The evolutionarily distant zebrafish is a remarkable model for studying the kidney due to its genetic tractability and accessibility for in vivo imaging. The zebrafish pronephros is an especially useful kidney model due to its structural simplicity yet complex functionality, including capacity for glomerular and tubular filtration. Both the pronephros and mesonephros contain renin-expressing perivascular cells, which respond to RAS inhibition, making the zebrafish an excellent model for studying the RAS. This review summarizes the physiological and genetic tools currently available for studying the zebrafish kidney with regards to functionality of the RAS, using novel imaging techniques such as SPIM microscopy coupled with targeted single cell ablation and synthesis of vasoactive RAS peptides.
Collapse
Affiliation(s)
- Scott Hoffmann
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Linda Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Charlotte Buckley
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - Sebastien Rider
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K
| | - John Mullins
- University of Edinburgh/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, 47, Little France Crescent, Edinburgh EH16 4TJ, U.K.
| |
Collapse
|
14
|
Li XC, Zhuo JL. Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension. Curr Hypertens Rep 2017; 18:63. [PMID: 27372447 DOI: 10.1007/s11906-016-0668-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well recognized that the renin-angiotensin system (RAS) exists not only as circulating, paracrine (cell to cell), but also intracrine (intracellular) system. In the kidney, however, it is difficult to dissect the respective contributions of circulating RAS versus intrarenal RAS to the physiological regulation of proximal tubular Na(+) reabsorption and hypertension. Here, we review recent studies to provide an update in this research field with a focus on the proximal tubular RAS in angiotensin II (ANG II)-induced hypertension. Careful analysis of available evidence supports the hypothesis that both local synthesis or formation and AT1 (AT1a) receptor- and/or megalin-mediated uptake of angiotensinogen (AGT), ANG I and ANG II contribute to high levels of ANG II in the proximal tubules of the kidney. Under physiological conditions, nearly all major components of the RAS including AGT, prorenin, renin, ANG I, and ANG II would be filtered by the glomerulus and taken up by the proximal tubules. In ANG II-dependent hypertension, the expression of AGT, prorenin, and (pro)renin receptors, and angiotensin-converting enzyme (ACE) is upregulated rather than downregulated in the kidney. Furthermore, hypertension damages the glomerular filtration barrier, which augments the filtration of circulating AGT, prorenin, renin, ANG I, and ANG II and their uptake in the proximal tubules. Together, increased local ANG II formation and augmented uptake of circulating ANG II in the proximal tubules, via activation of AT1 (AT1a) receptors and Na(+)/H(+) exchanger 3, may provide a powerful feedforward mechanism for promoting Na(+) retention and the development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
15
|
|
16
|
Xu Q, Jensen DD, Peng H, Feng Y. The critical role of the central nervous system (pro)renin receptor in regulating systemic blood pressure. Pharmacol Ther 2016; 164:126-134. [PMID: 27113409 PMCID: PMC4942374 DOI: 10.1016/j.pharmthera.2016.04.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 01/24/2023]
Abstract
The systemic renin-angiotensin system (RAS) has long been recognized as a critically important system in blood pressure (BP) regulation. However, extensive evidence has shown that a majority of RAS components are also present in many tissues and play indispensable roles in BP regulation. Here, we review evidence that RAS components, notably including the newly identified (pro)renin receptor (PRR), are present in the brain and are essential for the central regulation of BP. Binding of the PRR to its ligand, prorenin or renin, increases BP and promotes progression of cardiovascular diseases in an angiotensin II-dependent and -independent manner, establishing the PRR a promising antihypertensive drug target. We also review the existing PRR blockers, including handle region peptide and PRO20, and propose a rationale for blocking prorenin/PRR activation as a therapeutic approach that does not affect the actions of the PRR in vacuolar H(+)-ATPase and development. Finally, we summarize categories of currently available antihypertensive drugs and consider future perspectives.
Collapse
Affiliation(s)
- Quanbin Xu
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA; Department of Physiology & Cell Biology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA
| | - Dane D Jensen
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA; Department of Physiology & Cell Biology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA
| | - Hua Peng
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huangzhong University of Sciences and Technology, Wuhan, China
| | - Yumei Feng
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA; Department of Physiology & Cell Biology, Center for Cardiovascular Research, University of Nevada School of Medicine, Reno, NV, USA.
| |
Collapse
|
17
|
Polymorphisms at the F12 and KLKB1 loci have significant trait association with activation of the renin-angiotensin system. BMC MEDICAL GENETICS 2016; 17:21. [PMID: 26969407 PMCID: PMC4788869 DOI: 10.1186/s12881-016-0283-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/01/2016] [Indexed: 12/30/2022]
Abstract
Background Plasma coagulation Factor XIIa (Hageman factor; encoded by F12) and kallikrein (KAL or Fletcher factor; encoded by KLKB1) are proteases of the kallikerin-kinin system involved in converting the inactive circulating prorenin to renin. Renin is a key enzyme in the formation of angiotensin II, which regulates blood pressure, fluid and electrolyte balance and is a biomarker for cardiovascular, metabolic and renal function. The renin-angiotensin system is implicated in extinction learning in posttraumatic stress disorder. Methods & Results Active plasma renin was measured from two independent cohorts- civilian twins and siblings, as well as U.S. Marines, for a total of 1,180 subjects. Genotyping these subjects revealed that the carriers of the minor alleles at the two loci- F12 and KLKB1 had a significant association with reduced levels of active plasma renin. Meta-analyses confirmed the association across cohorts. In vitro studies verified digestion of human recombinant pro-renin by kallikrein (KAL) to generate active renin. Subsequently, the active renin was able to digest the synthetic substrate angiotensinogen to angiotensin-I. Examination of mouse juxtaglomerular cell line and mouse kidney sections showed co-localization of KAL with renin. Expression of either REN or KLKB1 was regulated in cell line and rodent models of hypertension in response to oxidative stress, interleukin or arterial blood pressure changes. Conclusions The functional variants of KLKB1 (rs3733402) and F12 (rs1801020) disrupted the cascade of enzymatic events, resulting in diminished formation of active renin. Using genetic, cellular and molecular approaches we found that conversion of zymogen prorenin to renin was influenced by these polymorphisms. The study suggests that the variant version of protease factor XIIa due to the amino acid substitution had reduced ability to activate prekallikrein to KAL. As a result KAL has reduced efficacy in converting prorenin to renin and this step of the pathway leading to activation of renin affords a potential therapeutic target.
Collapse
|
18
|
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2015; 4:1201-28. [PMID: 24944035 DOI: 10.1002/cphy.c130040] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, cardiovascular system and the central nervous system. Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity. Here, we review the actions of the "classical" renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors. In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated. While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the "classical" renin-angiotensin system, with an emphasis on new developments and modern concepts.
Collapse
Affiliation(s)
- Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | |
Collapse
|
19
|
Kanbak G, Uzuner K, Kuşat Ol K, Oğlakçı A, Kartkaya K, Şentürk H. Effect of kefir and low-dose aspirin on arterial blood pressure measurements and renal apoptosis in unhypertensive rats with 4 weeks salt diet. Clin Exp Hypertens 2013; 36:1-8. [PMID: 23631764 DOI: 10.3109/10641963.2013.783046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract We aim to study the effect of low-dose aspirin and kefir on arterial blood pressure measurements and renal apoptosis in unhypertensive rats with 4 weeks salt diet. Forty adult male Sprague-Dawley rats were divided into five groups: control, high-salt (HS) (8.0% NaCl), HS+aspirin (10 mg/kg), HS+kefir (10.0%w/v), HS+aspirin +kefir. We measured sistolic blood pressure (SBP), mean arterial pressure (MAP), diastolic pressure, pulse pressure in the rats. Cathepsin B, L, DNA fragmentation and caspase-3 activities were determined from rat kidney tissues and rats clearance of creatinine calculated. Although HS diet increased significantly SBP, MAP, diastolic pressure, pulse pressure parameters compared the control values. They were not as high as accepted hypertension levels. When compared to HS groups, kefir groups significantly decrease Cathepsin B and DNA fragmentation levels. Caspase levels were elevated slightly in other groups according to control group. While, we also found that creatinine clearance was higher in HS+kefir and HS+low-dose aspirin than HS group. Thus, using low-dose aspirin had been approximately decreased of renal function damage. Kefir decreased renal function damage playing as Angiotensin-converting enzyme inhibitor. But, low-dose aspirin together with kefir worsened rat renal function damage. Cathepsin B might play role both apoptosis and prorenin-processing enzyme. But not caspase pathway may be involved in the present HS diet induced apoptosis. In conclusion, kefir and low-dose aspirin used independently protect renal function and renal damage induced by HS diet in rats.
Collapse
|
20
|
Nabi AHMN, Biswas KB, Haque KMN, Arai Y, Nakagawa T, Ebihara A, Ichihara A, Inagami T, Suzuki F. Acid-activated prorenin binds to (pro)renin receptor in vitro. Biochem Biophys Res Commun 2012; 428:506-511. [PMID: 23111329 DOI: 10.1016/j.bbrc.2012.10.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022]
Abstract
Binding properties of acid-activated prorenin to (pro)renin receptor [(P)RR] was investigated in vitro to discuss possible roles of such reversibly acid-activated prorenin in the renin angiotensin (RA) system. Prorenin was acidified at pH 3.3, 4.5, 5.5, 6.5, and its activation level was measured at 1, 2, 4, 8, 12, and 25 h. Prorenin, activated non-proteolytically in time- and pH-dependent manners, was verified by Western blot analyses. Acidification of prorenin for 25 h at pH 3.3, 4.5, 5.5, and 6.5 showed 78%, 54%, 34%, and 20% activities, respectively when compared with the renin activity of trypsinized prorenin as 100%. Additionally, the binding properties of acidified prorenin to (P)RR were elucidated both at the equilibrium state and in the kinetic state using BIAcore. BIAcore assay showed that acidified prorenin at pH 3.3, 4.5, 5.5, and 6.5 had apparent K(D) of 1.57 × 10(4), 14.1, 8.29, and 8.04 nM, respectively while native prorenin at pH 7.4 had a K(D) of 7.8 nM. At equilibrium state, K(D) of native prorenin was 1.42 nM whereas apparent K(D) varied from 1.25 to 5.0 nM for the prorenin acidified at pH 4.5, 5.5, and 6.5. The K(m) values of free forms of acidified prorenin at different pH (0.33-0.5 μM) was almost similar to those of (P)RR-bound forms of acidified prorenin (0.5-0.77 μM). These in vitro data indicate that prorenin acidified in vivo possibly modulate RA system in receptor-dependent and/or -independent manners which could ultimately lead to the pathogenesis of diseases.
Collapse
Affiliation(s)
- A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Morales R, Watier Y, Böcskei Z. Human prorenin structure sheds light on a novel mechanism of its autoinhibition and on its non-proteolytic activation by the (pro)renin receptor. J Mol Biol 2012; 421:100-11. [PMID: 22575890 DOI: 10.1016/j.jmb.2012.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/17/2012] [Accepted: 05/02/2012] [Indexed: 11/30/2022]
Abstract
Antibodies and prorenin mutants have long been used to structurally characterize prorenin, the inactive proenzyme form of renin. They were designed on the basis of homology models built using other aspartyl protease proenzyme structures since no structure was available for prorenin. Here, we present the first X-ray structure of a prorenin. The current structure of prorenin reveals that, in this zymogene, the active site of renin is blocked by the N-terminal residues of the mature version of the renin molecule, which are, in turn, covered by an Ω-shaped prosegment. This prevents access of substrates to the active site. The departure of the prosegment on activation induces an important global conformational change in the mature renin molecule with respect to prorenin: similar to other related enzymes such as pepsin or gastricsin, the segment that constitutes the N-terminal β-strand in renin is displaced from the renin active site by about 180° straight into the position that corresponds to the N-terminal β-strand of the prorenin prosegment. This way, the renin active site will become completely exposed and capable of carrying out its catalytic functions. A unique inactivation mechanism is also revealed, which does not make use of a lysine against the catalytic aspartates, probably in order to facilitate pH-independent activation [e.g., by the (pro)renin receptor].
Collapse
Affiliation(s)
- Renaud Morales
- Sanofi-Aventis R&D, LGCR Structure Design and Informatics, 16 Rue d'Ankara, 67000 Strasbourg, France
| | | | | |
Collapse
|
22
|
Abstract
The successful management of endocrine diseases is greatly helped by the complete understanding of the underlying pathology. The knowledge about the molecular genetics contributes immensely in the appropriate identification of the causative factors of the diseases and their subsequent management. The fields of nephrology and endocrinology are also interrelated to a large extent. Besides performing the secretory functions, the renal tissue also acts as target organ for many hormones such as antidiuretic hormone (ADH), atrial natriuretic peptides (ANP), and aldosterone. Understanding the molecular genetics of these hormones is important because the therapeutic interventions in many of these conditions is related to shared renal and endocrine functions, including the anemia of renal disease, chronic kidney disease, mineral bone disorders, and hypertension related to chronic kidney disease. Their understanding and in-depth knowledge is very essential in designing and formulating the therapeutic plans and innovating new management strategies. However, we still have to go a long way in order to completely understand the various confounding causative relationships between the pathology and disease of these reno-endocrinal manifestations.
Collapse
Affiliation(s)
- Sukhminder Jit Singh Bajwa
- Department of Anaesthesiology and Intensive Care, Gian Sagar Medical College and Hospital, Ram Nagar, Banur, Punjab, India
| | - Ishwardip Singh Kwatra
- Department of Nephrology, Gian Sagar Medical College and Hospital, Ram Nagar, Banur, Punjab, India
| |
Collapse
|
23
|
Abstract
MicroRNAs (miRNAs) are endogenous short (20-22 nucleotides) non-coding RNA molecules that mediate gene expression. This is an important regulatory mechanism to modulate fundamental cellular processes such as differentiation, proliferation, death, metabolism, and pathophysiology of many diseases. The miRNA expression profile of the kidney differs greatly from that of other organs, as well as between the different regions in the kidney. In kidneys, miRNAs are indispensable for development and homeostasis. In this review, we explore the involvement of miRNAs in the regulation of blood pressure, hormone, water, and ion balance pertaining to kidney homeostasis. We also highlight their importance in renal pathophysiology, such as in polycystic disease, diabetic nephropathy, nephrogenic diabetes insipidus, hypertension, renal cancer, and kidney fibrosis (epithelial-mesenchymal transition). In addition, we highlight the need for further investigations on miRNA-based studies in the development of diagnostic, prognostic, and therapeutic tools for renal diseases.
Collapse
|
24
|
Gómez-Fernández P, Nieto J, Robles NR. La pro-renina y su receptor. Papel de la inhibición directa de la renina. REVISTA ESPAÑOLA DE CARDIOLOGÍA SUPLEMENTOS 2011; 11:8-12. [DOI: 10.1016/s1131-3587(11)14003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
|
25
|
Alreja G, Joseph J. Renin and cardiovascular disease: Worn-out path, or new direction. World J Cardiol 2011; 3:72-83. [PMID: 21499495 PMCID: PMC3077814 DOI: 10.4330/wjc.v3.i3.72] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 03/02/2011] [Accepted: 03/09/2011] [Indexed: 02/06/2023] Open
Abstract
Inhibition of the renin angiotensin system has beneficial effects in cardiovascular prevention and treatment. The advent of orally active direct renin inhibitors adds a novel approach to antagonism of the renin-angiotensin system. Inhibition of the first and rate-limiting step of the renin angiotensin cascade offers theoretical advantages over downstream blockade. However, the recent discovery of the (pro)renin receptor which binds both renin and prorenin, and which can not only augment catalytic activity of both renin and prorenin in converting angiotensinogen to angiotensin I, but also signal intracellularly via various pathways to modulate gene expression, adds a significant level of complexity to the field. In this review, we will examine the basic and clinical data on renin and its inhibition in the context of cardiovascular pathophysiology.
Collapse
Affiliation(s)
- Gaurav Alreja
- Gaurav Alreja, Jacob Joseph, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, United States
| | | |
Collapse
|
26
|
Morishita Y, Hanawa S, Miki T, Sugase T, Sugaya Y, Chinda J, Iimura O, Tsunematsu S, Ishibashi K, Kusano E. The association of plasma prorenin level with an oxidative stress marker, 8-OHdG, in nondiabetic hemodialysis patients. Clin Exp Nephrol 2011; 15:398-404. [PMID: 21234784 DOI: 10.1007/s10157-010-0398-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/20/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND Circulating prorenin contributes to the pathogenesis of tissue damage leading to cardiovascular disease (CVD) in hypertension and diabetic mellitus (DM) by activating the tissue renin-angiotensin-aldosterone (RAS) system; however, little is known about its roles in hemodialysis (HD) patients. METHODS We evaluated plasma prorenin level and prorenin receptor [(P)RR] expression in peripheral blood mononuclear cells (PBMCs) in 49 nondiabetic HD (non-DM-HD) patients. Then we investigated the association between plasma prorenin level or (P)RR expression level in PBMCs and CVD-predictive biomarkers. RESULTS The plasma prorenin level increased in non-DM-HD patients [147.1 ± 118.9 pg/ml (standard value <100 pg/ml)]. The (P)RR mRNA expression level in PBMCs also increased 1.41 ± 0.39-fold in non-DM-HD patients compared with that in healthy control subjects (p < 0.001). Although plasma prorenin level did not correlate with plasma BNP level and plasma high-sensitivity C-reactive protein level, it significantly correlated with plasma 8-hydroxydeoxyguanosine (8-OHdG) level (r = 0.535, p < 0.001). The plasma prorenin level did not correlate with plasma renin activity (PRA), plasma angiotensin I (AT I) level, plasma angiotensin II (AT II) level and plasma aldosterone (Ald) level. PRA, plasma AT I level, plasma AT II level and plasma Ald level did not correlate with the level of any CVD predictive biomarker. (P)RR expression level in PBMCs did not correlate with the level of any CVD predictive biomarker. CONCLUSIONS The plasma prorenin level and (P)RR expression level in PBMCs increased, and the plasma prorenin level was associated with plasma 8-OHdG level independent of circulating RAS in non-DM-HD patients.
Collapse
Affiliation(s)
- Yoshiyuki Morishita
- Division of Nephrology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Shiho Hanawa
- Division of Nephrology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takuya Miki
- Division of Nephrology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Taro Sugase
- Division of Nephrology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | | | - Junko Chinda
- Division of Nephrology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | | | | | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Tokyo, Japan
| | - Eiji Kusano
- Division of Nephrology, Department of Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
27
|
Lopes de Faria JB, Silva KC, Lopes de Faria JM. The contribution of hypertension to diabetic nephropathy and retinopathy: the role of inflammation and oxidative stress. Hypertens Res 2011; 34:413-22. [PMID: 21228783 DOI: 10.1038/hr.2010.263] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetes and hypertension frequently coexist and constitute the most notorious combination for the pathogenesis of diabetic nephropathy and retinopathy. Large clinical trials have clearly demonstrated that tight control of glycemia and/or blood pressure significantly reduces the incidence and progression of diabetic retinopathy (DR) and nephropathy. However, the mechanism by which hypertension interacts with diabetes to induce and/or exacerbate nephropathy and retinopathy is very unclear. Substantial evidence implicates the involvement of chronic inflammation and oxidative stress in the pathogenesis of DR and nephropathy. In addition, hypertension causes oxidative stress and inflammation in the kidney and retina. In the present review, we summarized data obtained from our research along with those from other groups to better understand the role of hypertension in the pathogenesis of diabetic nephropathy and retinopathy. It is suggested that oxidative stress and inflammation may be common denominators of kidney and retinal damage in the concomitant presence of diabetes and hypertension.
Collapse
Affiliation(s)
- José Butori Lopes de Faria
- Department of Internal Medicine, Renal Pathophysiology Laboratory, Investigation in Diabetes Complications, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, São Paulo, Brazil.
| | | | | |
Collapse
|
28
|
Benavente D, Chue CD, Ferro CJ. The importance of renin-angiotensin blockade in patients with cardio-renal disease. J Ren Care 2010; 36 Suppl 1:97-105. [PMID: 20586905 DOI: 10.1111/j.1755-6686.2010.00166.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The existence of the renin-angiotensin-aldosterone system was first postulated over 100 years ago. Following the identification of all the major components, came the discovery of their potential pathogenicity in cardiovascular and renal disease. The introduction of drugs that inhibit the synthesis or actions of this system has prompted a number of trials that have largely shaped how cardiovascular and renal disease is managed today. The continued discovery of yet more components of this system promises to further our understanding of its influence on disease processes and herald the development of more highly selective drugs, ensuring that the renin-angiotensin-aldosterone system will continue to be a key area of interest for many years to come.
Collapse
Affiliation(s)
- David Benavente
- Department of Nephrology, Queen Elizabeth Hospital Birmingham, Birmingham B15 2TH, UK
| | | | | |
Collapse
|
29
|
Benavente D, Mrcp CDC, Ferro CJ. Principales componentes del sistema renina-angiotensina-aldosterona: historia, modulación farmacológica e impacto clínico. REVISTA MÉDICA CLÍNICA LAS CONDES 2010. [DOI: 10.1016/s0716-8640(10)70567-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
30
|
Mercure C, Lacombe MJ, Khazaie K, Reudelhuber TL. Cathepsin B is not the processing enzyme for mouse prorenin. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1212-6. [DOI: 10.1152/ajpregu.00830.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Renin, an aspartyl protease that catalyzes the rate-limiting step in the renin-angiotensin system (RAS), is proteolytically activated by a second protease [referred to as the prorenin processing enzyme (PPE)] before its secretion from the juxtaglomerular cells of the kidney. Although several enzymes are capable of activating renin in vitro, the leading candidate for the PPE in the kidney is cathepsin B (CTSB) due to is colocalization with the renin precursor (prorenin) in juxtaglomerular cell granules and because of its site-selective activation of human prorenin both in vitro and in transfected tissue culture cell models. To verify the role of CTSB in prorenin processing in vivo, we tested the ability of CTSB-deficient (CTSB−/−) mice to generate active renin. CTSB−/− mice do not exhibit any overt symptoms (renal malformation, preweaning mortality) typical of an RAS deficiency and have normal levels of circulating active renin, which, like those in control animals, rise more than 15-fold in response to pharmacologic inhibition of the RAS. The mature renin enzyme detected in kidney lysates of CTSB−/− mice migrates at the same apparent molecular weight as that in control mice, and the processing to active renin is not affected by chloroquine treatment of the animals. Finally, the distribution and morphology of renin-producing cells in the kidney is normal in CTSB−/− mice. In conclusion, CTSB-deficient mice exhibit no differences compared with controls in their ability to generate active renin, and our results do not support CTSB as the PPE in mice.
Collapse
Affiliation(s)
- Chantal Mercure
- Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, and
| | - Marie-Josée Lacombe
- Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, and
| | - Khashayarsha Khazaie
- Division of Gastroenterology and Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Timothy L. Reudelhuber
- Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, and
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada; and
| |
Collapse
|
31
|
Gross KW, Gomez RA, Sigmund CD. Twists and turns in the search for the elusive renin processing enzyme: focus on "Cathepsin B is not the processing enzyme for mouse prorenin". Am J Physiol Regul Integr Comp Physiol 2010; 298:R1209-11. [PMID: 20237305 DOI: 10.1152/ajpregu.00188.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
32
|
Nakano D, Ichihara A. Anti-inflammatory effects of prorenin/(pro)renin receptor blockade: potential mechanisms of action. Clin Exp Pharmacol Physiol 2009; 37:275-6. [PMID: 19930421 DOI: 10.1111/j.1440-1681.2009.05340.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
|
34
|
Mercure C, Prescott G, Lacombe MJ, Silversides DW, Reudelhuber TL. Chronic increases in circulating prorenin are not associated with renal or cardiac pathologies. Hypertension 2009; 53:1062-9. [PMID: 19364992 DOI: 10.1161/hypertensionaha.108.115444] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated levels of circulating prorenin, the precursor of renin, have been reported to precede the appearance of microvascular complications in diabetes mellitus. Although several studies using animal models have attempted to address the link between elevated prorenin and the tissue remodeling and damage associated with both hypertension and diabetes mellitus, the results have been contradictory, and the mechanism whereby prorenin might contribute to these pathologies remains a subject of debate. To directly test the role of prorenin in these pathologies, we generated transgenic mice with selective increases (13- to 66-fold) in circulating native or active site-mutated prorenin. Systolic blood pressure was either unchanged or increased (+25 mm Hg) in native prorenin-expressing mice, whereas the mice expressing active site-mutated prorenin showed no significant differences in systolic blood pressure compared with control animals. There was no increase in cardiac fibrosis or renal glomerular sclerosis in any of the transgenic animals tested, even at an advanced age (18 months). Captopril (an angiotensin-converting enzyme inhibitor) rapidly normalized blood pressure of hyperproreninemic mice, whereas infusion of the putative antagonist of the prorenin receptor (handle region peptide) had no effect. These results suggest that the primary consequence of chronic elevations in circulating prorenin is an increase in blood pressure and do not support a role for prorenin as the primary causative agent in cardiac fibrosis or renal glomerular injury. The lack of effect seen with active site-mutated prorenin and the efficacy of angiotensin-converting enzyme inhibition are also consistent with prorenin acting through the generation of angiotensin II to raise blood pressure.
Collapse
Affiliation(s)
- Chantal Mercure
- Department of Medicine, Laboratory of Molecular Biochemistry of Hypertension, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
35
|
Hirose T, Hashimoto M, Totsune K, Metoki H, Asayama K, Kikuya M, Sugimoto K, Katsuya T, Ohkubo T, Hashimoto J, Rakugi H, Takahashi K, Imai Y. Association of (pro)renin receptor gene polymorphism with blood pressure in Japanese men: the Ohasama study. Am J Hypertens 2009; 22:294-9. [PMID: 19131936 DOI: 10.1038/ajh.2008.357] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent studies have revealed that (pro)renin receptor ((P)RR), a newly identified member of the renin-angiotensin system (RAS), is associated with blood pressure regulation in animals. However, there is no information on (P)RR in humans. We investigated the association of (P)RR gene polymorphisms with blood pressure in a Japanese population. METHODS Subjects (n = 1,112) were recruited from participants in the Ohasama study, a Japanese cohort study. For the association study, we selected three polymorphisms: -782A>G (rs2968915), intervening sequence (IVS)5+169C>T (rs5918007), and +1513A>G (rs6609080). Because the (P)RR gene is on the X chromosome, men (n = 357) and women (n = 755) were analyzed separately. RESULTS In men, 24-h systolic blood pressure (SBP) and diastolic blood pressure (DBP) values, daytime SBP and DBP values, and nighttime SBP and DBP values were significantly higher in IVS5+169T allele carriers than C allele carriers. Multiple regression analysis showed that IVS5+169C>T was significantly and independently related to ambulatory blood pressure (ABP). IVS5+169C>T was not associated with casual blood pressure (CBP) in men. In women, there were no significant differences in blood pressure values among the three genotypes of IVS5+169C>T. This polymorphism had no significant association with any other clinical characteristic. -782A>G was weakly associated with ABP in men. +1513A>G was not associated with blood pressure values in either men or women. CONCLUSIONS We demonstrated for the first time that polymorphism of the (P)RR gene IVS5+169C>T is associated with ABP in Japanese men. This association suggests that (P)RR has a role in blood pressure regulation.
Collapse
|
36
|
|
37
|
Zhang J, Noble NA, Border WA, Owens RT, Huang Y. Receptor-dependent prorenin activation and induction of PAI-1 expression in vascular smooth muscle cells. Am J Physiol Endocrinol Metab 2008; 295:E810-9. [PMID: 18664599 PMCID: PMC2575903 DOI: 10.1152/ajpendo.90264.2008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although elevated plasma prorenin levels are commonly found in diabetic patients and correlate with microvascular complications, the pathological role of these increases, if any, remains unclear. Prorenin/renin binding to the prorenin/renin receptor [(p)RR] enhances the efficiency of angiotensinogen cleavage by renin and unmasks prorenin catalytic activity. We asked whether plasma prorenin could be activated in local vascular tissue through receptor binding. Immunohistochemical staining showing localization of the (p)RR in the aorta to vascular smooth muscle cells (VSMCs). After cultured rat VSMCs were incubated with 10(-7) M inactive prorenin, cultured supernatant acquired the ability to generate ANG I from angiotensinogen, indicating that prorenin had been activated. Activated prorenin facilitated angiotensin generation in cultured VSMCs when exogenous angiotensinogen was added. Small interfering RNA (siRNA) against the (p)RR blocked this activation and subsequent angiotensin generation. Prorenin alone induced dose- and time-dependent increases in mRNA and protein for the profibrotic molecule plasminogen activator inhibitor (PAI)-1, effects that were blocked by siRNA, but not by the ANG II receptor antagonist saralasin. When inactive prorenin and angiotensinogen were incubated with cells, PAI-1 mRNA increased a striking 54-fold, 8-fold higher than the increase seen with prorenin alone. PAI-1 protein increased 2.75-fold. These effects were blocked by treatment with siRNA + saralasin. We conclude that prorenin at high concentration binds the (p)RR on VSMCs and is activated. This activation leads to increased expression of PAI-1 via ANG II-independent and -dependent mechanisms. These data provide a mechanism by which elevated prorenin levels in diabetes may contribute to the progression of fibrotic disease.
Collapse
Affiliation(s)
- Jiandong Zhang
- Fibrosis Research Laboratory, Division of Nephrology, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah 84103, USA
| | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Duncan J Campbell
- St Vincent's Institute of Medical Research and Department of Medicine, University of Melbourne, St Vincent's Hospital, Fitzroy, Victoria, Australia.
| |
Collapse
|
39
|
The aspartic protease napsin A suppresses tumor growth independent of its catalytic activity. J Transl Med 2008; 88:256-63. [PMID: 18195689 DOI: 10.1038/labinvest.3700718] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Members of the aspartic protease family have been implicated in cancer progression. The aspartic protease napsin A is expressed in type II cells of the lung, where it is involved in the processing of surfactant protein B (SP-B). Napsin A is also expressed in kidney, where its function is unknown. Here, we examined napsin A mRNA expression in human kidney tissues using in situ hybridization. Whereas strong napsin A mRNA expression was observed in kidney proximal tubules, expression was detected in only one of 29 renal cell carcinomas. This result is consistent with previous observations of loss of napsin A expression in high-grade lung adenocarcinomas. We re-expressed napsin A in the tumorigenic HEK293 kidney cell line and examined the phenotype of stably transfected cells. Napsin A-expressing HEK293 cells showed an altered phenotype characterized by formation of cyst-like structures in three-dimensional collagen cultures. Napsin A-expressing cells also showed reduced capacity for anchorage-independent growth and formed tumors in SCID mice with a lower efficiency and slower onset compared to vector-transfected control cells. Mutation of one of the aspartic acid residues in the napsin A catalytic site inactivated enzymatic activity, but did not influence the ability to suppress colony formation in soft agar and tumor formation. The mutation of the catalytic site did not affect processing, glycosylation or intracellular localization of napsin A. These data show that napsin A inhibits tumor growth of HEK293 cells by a mechanism independent of its catalytic activity.
Collapse
|
40
|
Carey RM. Pathophysiology of Primary Hypertension. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Laurent-Matha V, Derocq D, Prébois C, Katunuma N, Liaudet-Coopman E. Processing of human cathepsin D is independent of its catalytic function and auto-activation: involvement of cathepsins L and B. J Biochem 2007; 139:363-71. [PMID: 16567401 PMCID: PMC2376303 DOI: 10.1093/jb/mvj037] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The current mechanism proposed for the processing and activation of the 52 kDa lysosomal aspartic protease cathepsin D (cath-D) is a combination of partial auto-activation generating a 51 kDa pseudo-cath-D, followed by enzyme-assisted maturation involving cysteine and/or aspartic proteases and yielding successively a 48 kDa intermediate and then 34 + 14 kDa cath-D mature species. Here we have investigated the in vivo processing of human cath-D in a cath-D-deficient fibroblast cell line in order to determine whether its maturation occurs through already active cath-D and/or other proteases. We demonstrate that cellular cath-D is processed in a manner independent of its catalytic function and that auto-activation is not a required step. Moreover, the cysteine protease inhibitor E-64 partially blocks processing, leading to accumulation of 52-48 kDa cath-D intermediates. Furthermore, two inhibitors, CLICK148 and CA-074Met, specific for the lysosomal cath-L and cath-B cysteine proteases induce accumulation of 48 kDa intermediate cath-D. Finally, maturation of endocytosed pro-cath-D is also independent of its catalytic function and requires cysteine proteases. We therefore conclude that the mechanism of cath-D maturation involves a fully-assisted processing similar to that of pro-renin.
Collapse
Affiliation(s)
- Valérie Laurent-Matha
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
| | - Danielle Derocq
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
| | - Christine Prébois
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
| | - Nobuhiko Katunuma
- Institute of Health Sciences
Tokushima Bunri UniversityYamshiro-chi, Tokushima-city,770-8514,JP
| | - Emmanuelle Liaudet-Coopman
- Endocrinologie moléculaire et cellulaire des cancers
INSERM : U540Université Montpellier I60 rue de Navacelles
34090 Montpellier,FR
- * Correspondence should be adressed to: Emmanuelle Liaudet-Coopman
| |
Collapse
|
42
|
Abstract
Activation of the renin-angiotensin system (RAS) and generation of angiotensin II (Ang II) play a crucial role in fibrotic renal disease beyond this system's hemodynamic actions. Ang II blockade was a great therapeutic breakthrough for renal and cardiovascular diseases; however, this slows, but does not stop, disease progression. These limitations leave other molecules unopposed to sustain disease progression. One is renin, which is markedly elevated by Ang II blockade. Recently, a new renin receptor was cloned in renal mesangial cells. This receptor acts as a renin/prorenin cofactor on the cell surface, enhancing efficiency of angiotensinogen cleavage by renin and unmasking prorenin catalytic activity. Unexpectedly, the receptor induces angiotensin-independent cellular effects in renal mesangial cells, suggesting that renin has novel receptor-mediated actions that could play a role in renal fibrosis. Proof of this could lead to a pharmacological compound blocking renin/prorenin binding and activity as an alternative or adjunct to classical inhibitors of the RAS.
Collapse
Affiliation(s)
- Yufeng Huang
- Fibrosis Research Laboratory, Salt Lake City, UT 84108, USA
| | | | | |
Collapse
|
43
|
Liaudet-Coopman E, Beaujouin M, Derocq D, Garcia M, Glondu-Lassis M, Laurent-Matha V, Prébois C, Rochefort H, Vignon F. Cathepsin D: newly discovered functions of a long-standing aspartic protease in cancer and apoptosis. Cancer Lett 2005; 237:167-79. [PMID: 16046058 DOI: 10.1016/j.canlet.2005.06.007] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/07/2005] [Indexed: 10/25/2022]
Abstract
The lysosomal aspartic protease cathepsin D (cath-D) is over-expressed and hyper-secreted by epithelial breast cancer cells. This protease is an independent marker of poor prognosis in breast cancer being correlated with the incidence of clinical metastasis. Cath-D over-expression stimulates tumorigenicity and metastasis. Indeed it plays an essential role in the multiple steps of tumor progression, in stimulating cancer cell proliferation, fibroblast outgrowth and angiogenesis, as well as in inhibiting tumor apoptosis. A mutated cath-D devoid of catalytic activity still proved mitogenic for cancer, endothelial and fibroblastic cells, suggesting an extra-cellular mode of action of cath-D involving a triggering, either directly or indirectly, of an as yet unidentified cell surface receptor. Cath-D is also a key mediator of induced-apoptosis and its proteolytic activity has been involved generally in this event. During apoptosis, mature lysosomal cath-D is translocated to the cytosol. Since cath-D is one of the lysosomal enzymes which requires a more acidic pH to be proteolytically-active relative to the cysteine lysosomal enzymes, such as cath-B and -L, it is open to question whether cytosolic cath-D might be able to cleave substrate(s) implicated in the apoptotic cascade. This review summarises our current knowledge on cath-D action in cancer progression and metastasis, as well as its dual function in apoptosis.
Collapse
Affiliation(s)
- Emmanuelle Liaudet-Coopman
- INSERM U540 'Endocrinologie Moléculaire et Cellulaire des Cancers', Université de Montpellier 1, 60 rue de Navacelles, 34090 Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
There is compelling physiological evidence of binding and uptake of renin and prorenin in tissues. A number of molecules with the ability to bind renin and prorenin have been identified and have been characterized to varying degrees. It remains unclear, however, just how many renin/prorenin binding proteins and receptors exist and what their physiological functions may be. The possible functions of renin/prorenin binding and uptake are manifold, and include clearance of renin and prorenin from the circulation, local generation of angiotensins, activation of prorenin on the cell surface, trafficking of prorenin between cellular and extracellular compartments as part of a complex processing machinery, and signal transduction both via direct receptor mediated signaling, and via modulation of O-linkage of N-acetyl-glucosamine to cellular proteins. Some of these functions may involve single renin/prorenin binding sites or receptors, while others may require multiple binding sites and receptors. This review describes the physiological studies that have provided evidence of renin/prorenin uptake from the circulation, summarizes our knowledge of renin/prorenin binding proteins and receptors, and postulates new roles for renin/prorenin binding and uptake in tissues.
Collapse
Affiliation(s)
- Daniel F Catanzaro
- Department of Cardiothoracic Surgery, Weill Medical College, Cornell University, New York, USA.
| |
Collapse
|
45
|
|
46
|
Suzuki F, Hayakawa M, Nakagawa T, Nasir UM, Ebihara A, Iwasawa A, Ishida Y, Nakamura Y, Murakami K. Human prorenin has "gate and handle" regions for its non-proteolytic activation. J Biol Chem 2003; 278:22217-22. [PMID: 12684512 DOI: 10.1074/jbc.m302579200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We investigated the mechanism for non-proteolytic activation of human prorenin using five kinds of antibodies. Each of the antigens, L1PPTDTTTFKRI11P, T7PFKRIFLKRMP17P, I11PFLKRMPSIRESLKER26P, M16PPSIRESLKER26P, and G27PVDMARLGPEWSQPM41P, was designed from the tertiary structure of predicted prorenin. These antibodies were labeled anti-01/06, anti-07/10, anti-11/26, anti-16/26, and anti-27/41, respectively, for their binding specificities. Inactive recombinant human prorenin (0.1 nM) bound to various concentrations of anti-01/06, anti-11/26, and anti-27/41 antibodies at 4 degrees C with equilibrium dissociation constants of 138, 41, and 22 nM, respectively. However, intact prorenin (0.1 nM) did not show significant binding to 200 nM anti-07/10 and anti-16/26 antibodies for 20 h. Ninety percent of prorenin (0.1 nM) was found to be non-proteolytically activated by incubation with anti-11/26 antibodies (200 nM) at 4 degrees C for 20 h. Prorenin was not active even under complex with either anti-01/06 or anti-27/41 antibodies. Prorenin was also reversibly activated at pH 3.3 and 4 degrees C for 25 h. The acid-activated prorenin bound to anti-07/10 and anti-16/26 antibodies as well as to anti-01/06, anti-11/15, and anti-27/41 antibodies at neutral pH and 4 degrees C in 2 h. Their dissociation constants were 13, 40, 8.6, 3.6, and 14 nM, respectively. The acid-activated prorenin was re-inactivated by incubation at pH 7.4 and 4 degrees C in 50 h. Anti-07/10 and anti-11/26 antibodies inhibited such re-inactivation at 25 degrees C by more than 90% and 50%, respectively, whereas other kinds of antibodies did not prevent the re-inactivation at 25 degrees C. These results indicate that prorenin has "gate" (T7PFKR10P) and "handle" (I11PFLKR15P) regions critical for its non-proteolytic activation.
Collapse
Affiliation(s)
- Fumiaki Suzuki
- Molecular Genetics Research Center, Gifu University, Yanagido, Gifu 501-1193, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Carey RM, Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev 2003; 24:261-71. [PMID: 12788798 DOI: 10.1210/er.2003-0001] [Citation(s) in RCA: 380] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The renin-angiotensin system (RAS) is a coordinated hormonal cascade in the control of cardiovascular, renal, and adrenal function that governs body fluid and electrolyte balance, as well as arterial pressure. The classical RAS consists of a circulating endocrine system in which the principal effector hormone is angiotensin (ANG) II. ANG is produced by the action of renin on angiotensinogen to form ANG I and its subsequent conversion to the biologically active octapeptide by ANG-converting enzyme. ANG II actions are mediated via the ANG type 1 receptor. Here, we discuss recent advances in our understanding of the components and actions of the RAS, including local tissue RASs, a renin receptor, ANG-converting enzyme-2, ANG (1-7), the function of the ANG type 2 receptor, and ANG receptor heterodimerization. The role of the RAS in the regulation of cardiovascular and renal function is reviewed and discussed in light of these newly recognized components.
Collapse
Affiliation(s)
- Robert M Carey
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
48
|
de León RG, de Melián EM, Coviello A, De Vito E. Prorenin concentration in the hypertensive disorders in pregnancy. Hypertens Pregnancy 2002; 20:157-68. [PMID: 12044326 DOI: 10.1081/prg-100106965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To evaluate the plasma prorenin levels during the three trimesters of normal pregnancy, their prognostic value, and their correlation with hypertensive disorders of pregnancy. DESIGN A prospective study in which plasma prorenin and renin levels were measured in 55 healthy pregnant women and 66 who developed gestational hypertension or preeclampsia. The patients were classified as mild preeclampsia (mild PE), severe preeclampsia (severe PE), chronic hypertension and superimposed preeclampsia upon chronic hypertension (superimposed PE). METHOD Venous blood samples were collected in the first, second and third trimesters and during delivery or cesarean. Plasma renin concentration (PRC) was measured by radioinmmunoassay before and after incubation with trypsin solution. The difference gave plasma prorenin concentration (PProRC). RESULTS PRC and PProRC were significantly higher in pregnant women compared with healthy non-pregnant. PRC was significantly increased in the first trimester in the chronic hypertension group and a lower value was found in the first trimester in the superimposed PE compared with those in healthy pregnant women. No differences in other groups were found. PProRC showed a significant lower value in the first and third trimesters in the severe PE group. In the superimposed PE a low value of PProRC similar to those of non-pregnant women was found. CONCLUSIONS The results show that the different types of hypertension in pregnancy have different profiles of PProRC and PRC in relation to development of preeclampsia. The absence of increase of PProRC in the first trimester of superimposed PE may have a prognostic value.
Collapse
Affiliation(s)
- R G de León
- Universidad Nacional de Tucumán (UNT), Argentina.
| | | | | | | |
Collapse
|
49
|
Peters J, Farrenkopf R, Clausmeyer S, Zimmer J, Kantachuvesiri S, Sharp MGF, Mullins JJ. Functional significance of prorenin internalization in the rat heart. Circ Res 2002; 90:1135-41. [PMID: 12039805 DOI: 10.1161/01.res.0000019242.51541.99] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intracardiac renin is considered to be involved in the pathogenesis of cardiac hypertrophy, fibrosis, and myocardial infarction. Cardiac renin is predominantly derived from the circulation, because preprorenin is not expressed locally and uptake of renin has been demonstrated. One mechanism of internalization recently described involves the mannose-6-phosphate receptor and requires glycosylation of renin. Based on previous observations, we considered the existence of another pathway of uptake, not requiring glycosylation and predominantly involving prorenin. This hypothesis and its functional consequences were investigated in vitro and in vivo. We demonstrate that isolated adult cardiomyocytes internalize unglycosylated prorenin, which is followed by the generation of angiotensins. We further show that transgenic rats, expressing the ren-2(d) renin gene in an inducible manner, exhibit markedly enhanced levels of unglycosylated renin within intracellular compartments in the heart as a consequence of the induction of hepatic transgene expression and the rise of circulating unglycosylated prorenin levels. Because in this model severe cardiac damage occurs as a consequence of the rise of circulating prorenin levels, internalization of prorenin into cardiac cells is likely to play a key role in this process.
Collapse
Affiliation(s)
- Jörg Peters
- Pharmakologisches Institut der Universität Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
50
|
Andrade AQ, Casarini DE, Schor N, Boim MA. Characterization of renin mRNA expression and enzyme activity in rat and mouse mesangial cells. Braz J Med Biol Res 2002; 35:17-24. [PMID: 11743610 DOI: 10.1590/s0100-879x2002000100003] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Renin is an enzyme involved in the stepwise generation of angiotensin II. Juxtaglomerular cells are the main source of plasma renin, but renin activity has been detected in other cell types. In the present study we evaluated the presence of renin mRNA in adult male Wistar rat and mouse (C-57 Black/6) mesangial cells (MC) and their ability to process, store and release both the active and inactive forms of the enzyme. Active renin and total renin content obtained after trypsin treatment were estimated by angiotensinogen consumption analyzed by SDS-PAGE electrophoresis and quantified by angiotensin I generation by HPLC. Renin mRNA, detected by RT-PCR, was present in both rat and mouse MC under basal conditions. Active renin was significantly higher (P<0.05) in the cell lysate (43.5 +/- 5.7 ng h-1 10(6) cells) than in the culture medium (12.5 +/- 2.5 ng h-1 10(6) cells). Inactive prorenin content was similar for the intra- and extracellular compartments (9.7 +/- 3.1 and 3.9 +/- 0.9 ng h-1 10(6) cells). Free active renin was the predominant form found in both cell compartments. These results indicate that MC in culture are able to synthesize and translate renin mRNA probably as inactive prorenin which is mostly processed to active renin inside the cell. MC secrete both forms of the enzyme but at a lower level compared with intracellular content, suggesting that the main role of renin synthesized by MC may be the intracellular generation of angiotensin II.
Collapse
Affiliation(s)
- A Q Andrade
- Disciplina de Nefrologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | |
Collapse
|