1
|
Dorn GW. Central Parkin: The evolving role of Parkin in the heart. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1307-1312. [PMID: 26992930 DOI: 10.1016/j.bbabio.2016.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/11/2016] [Accepted: 03/13/2016] [Indexed: 11/17/2022]
Abstract
Parkin is familiar to many because of its link to Parkinson's disease, and to others because of its well-characterized role as a central factor mediating selective mitophagy of damaged mitochondria for mitochondrial quality control. The genetic connection between Parkin and Parkinson's disease derives from clinical gene-association studies, whereas our mechanistic understanding of Parkin functioning in mitophagy is based almost entirely on work performed in cultured cells. Surprisingly, experimental evidence linking the disease and the presumed mechanism derives almost entirely from fruit flies; germline Parkin deficient mice do not develop Parkinson's disease phenotypes. Moreover, genetic manipulation of Parkin signaling in mouse hearts does not support a central role for Parkin in homeostatic mitochondrial quality control in this mitochondria-rich and -dependent organ. Here, I provide an overview of data suggesting that (in mouse hearts at least) Parkin functions more as a stress-induced and developmentally-programmed facilitator of cardiomyocyte mitochondrial turnover. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
2
|
Probing human cardiovascular congenital disease using transgenic mouse models. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:83-110. [PMID: 21377625 DOI: 10.1016/b978-0-12-384878-9.00003-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Congenital heart defects (CHDs) impact in utero embryonic viability, children, and surviving adults. Since the first transfer of genes into mice, transgenic mouse models have enabled researchers to experimentally study and genetically test the roles of genes in development, physiology, and disease progression. Transgenic mice have become a bona fide human CHD pathology model and their use has dramatically increased within the past two decades. Now that the entire mouse and human genomes are known, it is possible to knock out, mutate, misexpress, and/or replace every gene. Not only have transgenic mouse models changed our understanding of normal development, CHD processes, and the complex interactions of genes and pathways required during heart development, but they are also being used to identify new avenues for medical therapy.
Collapse
|
3
|
Liposome-mediated uptake of exogenous DNA by equine spermatozoa and applications in sperm-mediated gene transfer. Equine Vet J 2010; 40:76-82. [DOI: 10.2746/042516407x235786] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Borges GR, Salgado HC, Silva CAA, Rossi MA, Prado CM, Fazan R. Changes in hemodynamic and neurohumoral control cause cardiac damage in one-kidney, one-clip hypertensive mice. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1904-13. [PMID: 18832092 DOI: 10.1152/ajpregu.00107.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sympathovagal balance and baroreflex control of heart rate (HR) were evaluated during the development (1 and 4 wk) of one-kidney, one-clip (1K1C) hypertension in conscious mice. The development of cardiac hypertrophy and fibrosis was also examined. Overall variability of systolic arterial pressure (AP) and HR in the time domain and baroreflex sensitivity were calculated from basal recordings. Methyl atropine and propranolol allowed the evaluation of the sympathovagal balance to the heart and the intrinsic HR. Staining of renal ANG II in the kidney and plasma renin activity (PRA) were also evaluated. One and four weeks after clipping, the mice were hypertensive and tachycardic, and they exhibited elevated sympathetic and reduced vagal tone. The intrinsic HR was elevated only 1 wk after clipping. Systolic AP variability was elevated, while HR variability and baroreflex sensitivity were reduced 1 and 4 wk after clipping. Renal ANG II staining and PRA were elevated only 1 wk after clipping. Concentric cardiac hypertrophy was observed at 1 and 4 wk, while cardiac fibrosis was observed only at 4 wk after clipping. In conclusion, these data further support previous findings in the literature and provide new features of neurohumoral changes during the development of 1K1C hypertension in mice. In addition, the 1K1C hypertensive model in mice can be an important tool for studies evaluating the role of specific genes relating to dependent and nondependent ANG II hypertension in transgenic mice.
Collapse
Affiliation(s)
- Giulianna R Borges
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, 14049-900 - Ribeirão Preto, SP, Brazil
| | | | | | | | | | | |
Collapse
|
5
|
Fazan R, de Oliveira M, da Silva VJD, Joaquim LF, Montano N, Porta A, Chapleau MW, Salgado HC. Frequency-dependent baroreflex modulation of blood pressure and heart rate variability in conscious mice. Am J Physiol Heart Circ Physiol 2005; 289:H1968-75. [PMID: 15951338 DOI: 10.1152/ajpheart.01224.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goal of this study was to determine the baroreflex influence on systolic arterial pressure (SAP) and pulse interval (PI) variability in conscious mice. SAP and PI were measured in C57Bl/6J mice subjected to sinoaortic deafferentation (SAD, n = 21) or sham surgery ( n = 20). Average SAP and PI did not differ in SAD or control mice. In contrast, SAP variance was enhanced (21 ± 4 vs. 9.5 ± 1 mmHg2) and PI variance reduced (8.8 ± 2 vs. 26 ± 6 ms2) in SAD vs. control mice. High-frequency (HF: 1–5 Hz) SAP variability quantified by spectral analysis was greater in SAD (8.5 ± 2.0 mmHg2) compared with control (2.5 ± 0.2 mmHg2) mice, whereas low-frequency (LF: 0.1–1 Hz) SAP variability did not differ between the groups. Conversely, LF PI variability was markedly reduced in SAD mice (0.5 ± 0.1 vs. 10.8 ± 3.4 ms2). LF oscillations in SAP and PI were coherent in control mice (coherence = 0.68 ± 0.05), with changes in SAP leading changes in PI (phase = −1.41 ± 0.06 radians), but were not coherent in SAD mice (coherence = 0.08 ± 0.03). Blockade of parasympathetic drive with atropine decreased average PI, PI variance, and LF and HF PI variability in control ( n = 10) but had no effect in SAD ( n = 6) mice. In control mice, blockade of sympathetic cardiac receptors with propranolol increased average PI and decreased PI variance and LF PI variability ( n = 6). In SAD mice, propranolol increased average PI ( n = 6). In conclusion, baroreflex modulation of PI contributes to LF, but not HF PI variability, and is mediated by both sympathetic and parasympathetic drives in conscious mice.
Collapse
Affiliation(s)
- Rubens Fazan
- Dept. of Physiology, School of Medicine of Ribeirão Preto-USP, 14049-900 Ribeirão Preto, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hasegawa BH, Iwata K, Wong KH, Wu MC, Da Silva AJ, Tang HR, Barber WC, Hwang AH, Sakdinawat AE. Dual-modality imaging of function and physiology. Acad Radiol 2002; 9:1305-21. [PMID: 12449363 DOI: 10.1016/s1076-6332(03)80564-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Dual-modality imaging is a technique in which computed tomography (CT) or magnetic resonance imaging is combined with positron emission tomography or single-photon emission CT to acquire structural and functional images with an integated system. The data are acquired in a single procedure; the patient remains on the scanner table while undergoing both x-ray and radionuclide studies to facilitate correlation between the structural and functional images. The resulting data can aid in localization, enabling more specific diagnosis than can be obtained with a conventional imaging study. In addition, the anatomic information can be used to compensate the correlated radionuclide data for physical perturbations such as photon attenuation, scatter radiation, and partial volume errors. Thus, dual-modality imaging provides a priori information that can improve both the visual quality and the quantitative accuracy of the radionuclide images. Dual-modality imaging systems are also being developed for biologic research involving small animals. Small-animal dual-modality systems offer advantages for measurements that currently are performed invasively with autoradiography and tissue sampling. By acquiring data noninvasively, dual-modality imaging permits serial studies in a single animal, enables measurements to be performed with fewer animals, and improves the statistical quality of the data.
Collapse
|
7
|
Abstract
Genetically engineered animals have opened new frontiers in the study of physiology and disease processes. Mutant animals offer more accurate disease models and increased precision for pathogenesis and treatment studies. Their use offers hope for improved therapy to patients with conditions that currently have poor or ineffective treatments. These advantages have fostered an increase in studies using mice in recent years, a development viewed with alarm by those who oppose the use of animals in research. Scientists point out that the mice are replacing more sentient species, such as nonhuman primates, and are increasing the quality of research being conducted. They assert that study of genetically engineered animals will eventually permit decreases in numbers of animals used in research. Nevertheless, the increase in use of genetically altered animals presents many challenges in reviewing protocols and providing care. Identification and resolution of any welfare problems is a responsibility that is shared by institutional animal care and use committee, veterinary, animal care, and research staffs. To identify potential welfare concerns, a database such as TBASE (<http://tbase.jax.org>) can be searched to learn what has been reported for established mutant lines. In addition, newly created lines should be monitored by a surveillance system and have phenotype assessment to identify the effects of altering the genome. Methods of ensuring welfare can include treatment of conditions produced, restriction of gene expression to tissues of interest or to certain time periods, and establishment of endpoints for removing animals from a study before problems appear.
Collapse
Affiliation(s)
- Melvin B Dennis
- Department of Comparative Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
8
|
Just A, Faulhaber J, Ehmke H. Autonomic cardiovascular control in conscious mice. Am J Physiol Regul Integr Comp Physiol 2000; 279:R2214-21. [PMID: 11080088 DOI: 10.1152/ajpregu.2000.279.6.r2214] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autonomic cardiovascular control was characterized in conscious, chronically catheterized mice by spectral analysis of arterial pressure (AP) and heart rate (HR) during autonomic blockade or baroreflex modulation of autonomic tone. Both spectra were similar to those obtained in humans, but at approximately 10x higher frequencies. The 1/f relation of the AP spectrum changed to a more shallow slope below 0.1-0.2 Hz. Coherence between AP and HR reached 0.5 or higher below 0.3-0.4 Hz and also above 2.5 Hz. Muscarinic blockade (atropine) or beta-adrenergic blockade (atenolol) did not significantly affect the AP spectrum. Atropine reduced HR variability at all frequencies, but this effect waned above 1 Hz. beta-Adrenergic blockade (atenolol) slightly enhanced the HR variability only above 1 Hz. alpha-Adrenergic blockade (prazosin) reduced AP variability between 0.05 and 3 Hz, most prominently at 0. 15-0.7 Hz. A shift of the autonomic nervous tone by a hypertensive stimulus (phenylephrine) enhanced, whereas a hypotensive stimulus (nitroprusside) depressed AP variability at 1-3 Hz; other frequency ranges of the AP spectrum were not affected except for a reduction below 0.4 Hz after nitroprusside. Variability of HR was enhanced after phenylephrine at all frequencies and reduced after nitroprusside. As with atropine, the reduction with nitroprusside waned above 1 Hz. In conclusion, in mice HR variability is dominated by parasympathetic tone at all frequencies, during both blockade and physiological modulation of autonomic tone. There is a limitation for further reduction but not for augmentation of HR variability from the resting state above 1 Hz. The impact of HR on AP variability in mice is confined to frequencies higher than 1 Hz. Limits between frequency ranges are proposed as 0.15 Hz between VLF (very low frequency range) and LF (low frequency range) and 1.5 Hz between LF and HF (high frequency range).
Collapse
Affiliation(s)
- A Just
- Institut für Physiologie und Pathophysiologie, Universität Heidelberg, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
9
|
Abstract
Atherosclerosis is a complex, multifactorial disease with both genetic and environmental determinants. Experimental investigation of the effects of these determinants on the development and progression of atherosclerosis has been greatly facilitated by the use of targeted mouse models of the disease, particularly those resulting from the absence of functional genes for apolipoprotein E or the low density lipoprotein receptor (LDLR). This review focuses on the influence on atherosclerosis of combining apoE or LDLR deficiencies with factors affecting atherogenesis, including (1) inflammatory processes, (2) glucose metabolism, (3) blood pressure, and (4) coagulation and fibrinolysis. We also discuss the general problem of using the mouse to test the effects on atherogenesis of human polymorphic variations and future ways of enhancing the usefulness of these mouse models.
Collapse
Affiliation(s)
- J W Knowles
- Department of Pathology and Laboratory Medicine and the Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | | |
Collapse
|
10
|
Abstract
An underpinning of basic physiology and clinical medicine is that specific protein complements underlie cell and organ function. In the heart, contractile protein changes correlating with functional alterations occur during both normal development and the development of numerous pathologies. What has been lacking for the majority of these observations is an extension of correlation to causative proof. More specifically, different congenital heart diseases are characterized by shifts in the motor proteins, and the genetic etiologies of a number of different dilated and hypertrophic cardiomyopathies have been established as residing at loci encoding the contractile proteins. To establish cause, or to understand development of the pathophysiology over an animal's life span, it is necessary to direct the heart to synthesize, in the absence of other pleiotropic changes, the candidate protein. Subsequently one can determine whether or how the protein's presence causes the effects either directly or indirectly. By affecting the heart's protein complement in a defined manner, the potential to establish the function of different proteins and protein isoforms exists. Transgenesis provides a means of stably modifying the mammalian genome. By directing expression of engineered proteins to the heart, cardiac contractile protein profiles can be effectively remodeled and the resultant animal used to study the consequences of a single, genetic manipulation at the molecular, biochemical, cytological, and physiological levels.
Collapse
Affiliation(s)
- J Robbins
- Department of Pediatrics, Children's Hospital Research Foundation, Cincinnati, Ohio 45229-3039, USA.
| |
Collapse
|
11
|
Abstract
In this review, we attempt to outline the age-dependent interactions of principal systems controlling the structure and function of the cardiovascular system in immature rats developing hypertension. We focus our attention on the cardiovascular effects of various pharmacological, nutritional, and behavioral interventions applied at different stages of ontogeny. Several distinct critical periods (developmental windows), in which particular stimuli affect the further development of the cardiovascular phenotype, are specified in the rat. It is evident that short-term transient treatment of genetically hypertensive rats with certain antihypertensive drugs in prepuberty and puberty (at the age of 4-10 wk) has long-term beneficial effects on further development of their cardiovascular apparatus. This juvenile critical period coincides with the period of high susceptibility to the hypertensive effects of increased salt intake. If the hypertensive process develops after this critical period (due to early antihypertensive treatment or late administration of certain hypertensive stimuli, e.g., high salt intake), blood pressure elevation, cardiovascular hypertrophy, connective tissue accumulation, and end-organ damage are considerably attenuated compared with rats developing hypertension during the juvenile critical period. As far as the role of various electrolytes in blood pressure modulation is concerned, prohypertensive effects of dietary Na+ and antihypertensive effects of dietary Ca2+ are enhanced in immature animals, whereas vascular protective and antihypertensive effects of dietary K+ are almost independent of age. At a given level of dietary electrolyte intake, the balance between dietary carbohydrate and fat intake can modify blood pressure even in rats with established hypertension, but dietary protein intake affects the blood pressure development in immature animals only. Dietary protein restriction during gestation, as well as altered mother-offspring interactions in the suckling period, might have important long-term hypertensive consequences. The critical periods (developmental windows) should be respected in the future pharmacological or gene therapy of human hypertension.
Collapse
Affiliation(s)
- J Zicha
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
12
|
Waldron GJ, Ding H, Lovren F, Kubes P, Triggle CR. Acetylcholine-induced relaxation of peripheral arteries isolated from mice lacking endothelial nitric oxide synthase. Br J Pharmacol 1999; 128:653-8. [PMID: 10516645 PMCID: PMC1571697 DOI: 10.1038/sj.bjp.0702858] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Acetycholine-mediated relaxations in phenylephrine-contracted aortas, femoral and mesenteric resistance arteries were studied in vessels from endothelial nitric oxide synthase knock-out (eNOS -/-) and the corresponding wild-type strain (eNOS +/+) C57BL6/SV19 mice. 2. Aortas from eNOS (+/+) mice relaxed to acetylcholine in an endothelium-dependent NG-nitro-L-arginine (L-NOARG) sensitive manner. Aortas from eNOS (-/-) mice did not relax to acetylcholine but demonstrated enhanced sensitivity to both authentic NO and sodium nitroprusside. 3. Relaxation to acetylcholine in femoral arteries was partially inhibited by L-NOARG in vessels from eNOS (+/+) mice, but relaxation in eNOS (-/-) mice was insensitive to a combination of L-NOARG and indomethacin and the guanylyl cyclase inhibitor 1H-[1,2, 4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). The L-NOARG/ODQ/indomethacin-insensitive relaxation to acetylcholine in femoral arteries was inhibited in the presence of elevated (30 mM) extracellular KCl. 4. In mesenteric resistance vessels from eNOS (+/+) mice, the acetylcholine-mediated relaxation response was completely inhibited by a combination of indomethacin and L-NOARG or by 30 mM KCl alone. In contrast, in mesenteric arteries from eNOS (-/-) mice, the acetylcholine-relaxation response was insensitive to a combination of L-NOARG and indomethacin, but was inhibited in the presence of 30 mM KCl. 5. These data indicate arteries from eNOS (-/-) mice demonstrate a supersensitivity to exogenous NO, and that acetylcholine-induced vasorelaxation of femoral and mesenteric vessels from eNOS (-/-) mice is mediated by an endothelium-derived factor that has properties of an EDHF but is neither NO nor prostacyclin. Furthermore, in mesenteric vessels, there is an upregulation of the role of EDHF in the absence of NO.
Collapse
Affiliation(s)
- G J Waldron
- Smooth Muscle Research Group and Department of Pharmacology and Therapeutics, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada, T2N 4N1
| | | | | | | | | |
Collapse
|
13
|
James J, Osinska H, Hewett TE, Kimball T, Klevitsky R, Witt S, Hall DG, Gulick J, Robbins J. Transgenic over-expression of a motor protein at high levels results in severe cardiac pathology. Transgenic Res 1999; 8:9-22. [PMID: 10399364 DOI: 10.1023/a:1008894507995] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transgenesis has become a useful tool in effecting a complete or partial remodeling of the cardiac contractile apparatus. Although gene dosage effects were initially a concern, recent data showed that the heart is able to accommodate varying levels of transgenic over-expression without detectable ill effects. The present study was designed to test the limits of the transgenic paradigm in terms of the production of a cardiac phenotype due simply to the over-expression of a contractile protein. To this end, eight lines of mice which express an isoform of the essential myosin light chain 1 that is normally found in the adult ventricle (ELC1v) were generated. Overt phenotype was correlated both with the level of expression/protein replacement and copy number of the transgene. Two of the lines showed essentially complete replacement of the atrial isoform (ELC1a) with ELC1v. However, the phenotypes of the two lines differed dramatically. The line with the lower copy number (37 copies), and moderate over-expression (16 fold) showed no overt pathology while a line with very high copy number (94 copies) and extremely high levels of over-expression (27-50 fold) developed a significant atrial hypertrophy, dilation and cardiomyopathy. These data indicate that very high expression levels of a contractile protein can cause a cardiac pathology that is unrelated to its degree of replacement in the sarcomere and the unique role(s) it may assume in motor protein function.
Collapse
Affiliation(s)
- J James
- Children's Hospital Research Foundation, Department of Pediatrics, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li L, Chu G, Kranias EG, Bers DM. Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:H1335-47. [PMID: 9575939 DOI: 10.1152/ajpheart.1998.274.4.h1335] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increases in heart rate are accompanied by acceleration of relaxation. This effect is apparent at the single myocyte level and depends on sarcoplasmic reticulum (SR) Ca transport and Ca/calmodulin dependent protein kinase [CaMKII; see R. A. Bassani, A. Mattiazzi, and D. M. Bers. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H703-H712, 1995]. Because phosphorylation of phospholamban (PLB) by CaMKII can stimulate SR Ca transport, it is a plausible candidate mechanism. We examined this issue using ventricular myocytes isolated from wild-type (WT) mice and those in which the PLB gene was ablated by gene targeting (PLB-KO). During steady-state (SS) stimulation, twitch relaxation and intracellular Ca concentration ([Ca]i) decline were significantly faster than after a rest in both WT and PLB-KO myocytes. Furthermore, the CaMKII inhibitor KN-93 (1 microM) abolished the stimulation-dependent acceleration of twitch [Ca]i decline in PLB-KO. This indicates that neither PLB nor its phosphorylation are required for the CaMKII-dependent acceleration of the SS twitch [Ca]i decline and relaxation. Other quantitative aspects of Ca transport in WT and PLB-KO myocytes were also examined. As expected, the time constant (tau) of [Ca]i decline during the SS twitch is much faster in PLB-KO than in WT myocytes (112 +/- 6 vs. 188 +/- 14 ms, P < 0.0001). There was also an increase in SS SR Ca load, based on the change of [Ca]i during rapid caffeine-induced contractures (CafC) with Na/Ca exchange blocked (565 +/- 74 nM for WT, 1118 +/- 133 nM for PLB-KO, P < 0.01). Accounting for cytosolic Ca buffering, this implies a 37% increase in SR Ca content. The tau for [Ca]i decline of the cafC with Na present indicated slower extrusion by Na/Ca exchange in the PLB-KO mouse (2.2 +/- 0.2 s in WT vs. 3.2 +/- 0.2 in PLB-KO, P < 0.01), although exchanger protein expression was unchanged. Integrated Ca flux analysis in WT and PLB-KO myocytes, respectively, shows that 90 and 96% of Ca during twitch relaxation is removed by the SR Ca-ATPase, 9 and 3.4% by Na/Ca exchange, and 0.5 and 0.1% by slow mechanisms (mitochondria Ca uniporter and sarcolemmal Ca-ATPase). We conclude that the PLB-KO myocytes retain a CaMKII-dependent acceleration of SS twitch [Ca]i decline. The PLB-KO (vs. WT) myocytes also have higher SR Ca pump activity, higher SR Ca load, and reduced Na/Ca exchange activity.
Collapse
Affiliation(s)
- L Li
- Department of Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
15
|
Mattson DL. Long-term measurement of arterial blood pressure in conscious mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:R564-70. [PMID: 9486319 DOI: 10.1152/ajpregu.1998.274.2.r564] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study describes a technique for the direct daily measurement of arterial blood pressure, sampling of arterial blood, and continuous intravenous infusion in free-moving, conscious, Swiss-Webster mice. Catheters were chronically implanted in the femoral artery and vein, tunneled subcutaneously, exteriorized at the back of the neck in a lightweight tethering spring, and attached to a swivel device at the top of the cage. Time-control experiments (n = 8) demonstrated stable values of mean arterial pressure (MAP, 116 +/- 1 mmHg) and heart rate (HR, 627 +/- 21 beats/min) for up to 35 days after catheter implantation. It was further observed that restraining mice (n = 7) increased MAP by 10 +/- 3 mmHg and HR by 78 +/- 8 beats/min from the values observed under free-moving conditions. To demonstrate the chronic use of the venous catheter, intravenous infusion of NG-nitro-L-arginine methyl ester (L-NAME, 8.6 mg.kg-1.day-1, n = 6) for 5 days significantly increased MAP from 117 +/- 4 to 131 +/- 4 mmHg without altering HR. In a final group of mice (n = 5), oral L-arginine (2% in drinking water) increased plasma arginine concentration from 90 +/- 7 to 131 +/- 17 microM and prevented L-NAME hypertension. These experiments illustrate the feasibility of long-term intravenous infusion, direct arterial blood pressure measurements, and arterial blood sampling in conscious mice.
Collapse
Affiliation(s)
- D L Mattson
- Department of Physiology, Medical College of Wisconsin, Milwaukee 53226, USA
| |
Collapse
|
16
|
Fiset C, Clark RB, Larsen TS, Giles WR. A rapidly activating sustained K+ current modulates repolarization and excitation-contraction coupling in adult mouse ventricle. J Physiol 1997; 504 ( Pt 3):557-63. [PMID: 9401964 PMCID: PMC1159960 DOI: 10.1111/j.1469-7793.1997.557bd.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The K+ currents which control repolarization in adult mouse ventricle, and the effects of changes in action potential duration on excitation-contraction coupling in this tissue, have been studied with electrophysiological methods using single cell preparations and by recording mechanical parameters from an in vitro working heart preparation. 2. Under conditions where Ca(2+)-dependent currents were eliminated by buffering intracellular Ca2+ with EGTA, depolarizing voltage steps elicited two rapidly activating outward K+ currents: (i) a transient outward current, and (ii) a slowly inactivating or 'sustained' delayed rectifier. 3. These two currents were separated pharmacologically by the K+ channel blocker 4-amino-pyridine (4-AP). 4-AP at concentrations between 3 and 200 microM resulted in (i) a marked increase in action potential duration and a large decrease in the sustained K+ current at plateau potentials, as well as (ii) a significant increase in left ventricular systolic pressure in the working heart preparation. 4. The current-voltage (I-V) relation, kinetics, and block by low concentrations of 4-AP strongly suggest that the rapid delayed rectifier in adult mouse ventricles is the same K+ current (Kv1.5) that has been characterized in detail in human and canine atria. 5. These results show that the 4-AP-sensitive rapid delayed rectifier is a very important repolarizing current in mouse ventricle. The enhanced contractility produced by 4-AP (50 microM) in the working heart preparation demonstrates that modulation of the action potential duration, by blocking a K+ current, is a very significant inotropic variable.
Collapse
Affiliation(s)
- C Fiset
- Department of Physiology & Biophysics, University of Calgary, Faculty of Medicine, Alberta, Canada
| | | | | | | |
Collapse
|
17
|
James J, Robbins J. Molecular remodeling of cardiac contractile function. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:H2105-18. [PMID: 9374742 DOI: 10.1152/ajpheart.1997.273.5.h2105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A number of techniques are now available that allow the contractile apparatus of the heart to be altered in a defined manner. This review focuses on those approaches that result in germ-line transmission of the remodeling event(s). Thus the desired modifications can be propagated stably throughout multiple generations and result in the creation of stable, new animal models. Necessarily, such stable changes need to be performed at the level of the genome, and two distinct but complementary approaches have been developed: transgenesis and gene targeting. Each results in the stable modification of the mammalian genome. Via gene targeting or gene ablation of sequences encoding various components of the sarcomere, the contractile apparatus of the heart can be altered dramatically. Ablating a gene may lead to a loss in function, which can help establish a function of the candidate sequence. Gene targeting can also be used to effect changes in the sequences encoding a functional domain of the contractile protein or at a single-amino acid residue, resulting in the establishment of precise structure-function relationships. With the use of transgenesis, the contractile apparatus of the heart can also be significantly remodeled. These approaches are rapidly creating a group of animals in which altered contractile protein complements will lead to a fundamental understanding of the structure-function relationships that underlie the function of the heart at the molecular, biochemical, whole organ, and whole animal levels.
Collapse
Affiliation(s)
- J James
- Children's Hospital Research Foundation, Department of Pediatrics, Cincinnati, Ohio 45229-3039, USA
| | | |
Collapse
|
18
|
|
19
|
Gottshall KR, David Becker K, Hunter JJ, Chien KR. A genetic based model of cardiac hypertrophy inMLC-Ras mice. J Card Fail 1996. [DOI: 10.1016/s1071-9164(96)80056-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|