1
|
Liao Y, Xu WR, Li HX, Tang CS, Jin HF, Du JB. Plasma Neuropeptide Y Levels in Vasovagal Syncope in Children. Chin Med J (Engl) 2018; 130:2778-2784. [PMID: 29176136 PMCID: PMC5717855 DOI: 10.4103/0366-6999.219157] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Vasovagal syncope (VVS) is the most common cause of syncope in children. Neuropeptide Y (NPY) plays an important role in the regulation of blood pressure (BP), as well as myocardial contractility. This study aimed to explore the role of plasma NPY in VVS in children. Methods: Fifty-six children who were diagnosed with VVS (VVS group) using head-up tilt test (HUT) and 31 healthy children who were selected as controls (control group) were enrolled. Plasma NPY concentrations were detected. The independent t-test was used to compare the data of the VVS group with those of the control group. The changes in plasma NPY levels in the VVS group during the HUT, as well as hemodynamic parameters, such as heart rate (HR), BP, total peripheral vascular resistance (TPVR), and cardiac output (CO), were evaluated using the paired t-test. Furthermore, the correlations between plasma NPY levels and hemodynamic parameters were analyzed using bivariate correlation analysis. Results: The BP, HR, and plasma NPY (0.34 ± 0.12 pg/ml vs. 0.46 ± 0.13 pg/ml) levels in the supine position were statistically low in the VVS group compared to levels in the control group (all P < 0.05). Plasma NPY levels were positively correlated with the HR (Pearson, R = 0.395, P < 0.001) and diastolic BP (Pearson, R = 0.311, P = 0.003) when patients were in the supine position. When patients in the VVS group were in the supine position, elevated TPVR (4.6 ± 3.7 mmHg·min−1·L−1 vs. 2.5 ± 1.0 mmHg·min−1·L−1, respectively, P < 0.001; 1 mmHg = 0.133 kPa) and reduced CO (1.0 ± 0.7 L/min vs. 2.4 ± 1.3 L/min, respectively, P < 0.001) were observed in the positive-response period compared with baseline values. The plasma NPY levels were positively correlated with TPVR (Spearman, R = 0.294, P = 0.028) but negatively correlated with CO in the positive-response period during HUT (Spearman, R = −0.318, P = 0.017). Conclusions: Plasma NPY may contribute to the pathogenesis of VVS by increasing the TPVR and decreasing the CO during orthostatic regulation.
Collapse
Affiliation(s)
- Ying Liao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Wen-Rui Xu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Hong-Xia Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Chao-Shu Tang
- Department of Physiology and Pathophysiology, Health Sciences Centre, Peking University, Beijing 100083, China
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
2
|
Oue A, Sadamoto T. Compliance in the deep and superficial conduit veins of the nonexercising arm is unaffected by short-term exercise. Physiol Rep 2018; 6:e13724. [PMID: 29869409 PMCID: PMC5986706 DOI: 10.14814/phy2.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/09/2018] [Indexed: 11/24/2022] Open
Abstract
The effects of short-term dynamic and static exercise on compliance (CPL) in a single conduit vein in the nonexercising limb are not fully understood, although prolonged cycling exercise was found to produce a significant reduction of CPL in the veins. In this study, we investigated the cross-sectional area (CSA) and CPL in the brachial (deep) and basilic (superficial) veins of the nonexercising arm in 14 participants who performed a 5-min cycling exercise at 35% and 70% of peak oxygen uptake (study 1) and in 11 participants who performed a 2-min static handgrip exercise at 30% of maximal voluntary contraction (study 2). The CSA in the deep and superficial veins at rest and during the final minute of exercise was measured by high-resolution ultrasonography during a short-duration cuff deflation protocol. The CPL in each vein was calculated as the numerical derivative of the cuff pressure and CSA curve. During short-term dynamic and static exercise, there was no change in CPL in either vein, but there was a decrease in CSA in both veins. The simultaneous findings of unchanged CPL and decreased CSA suggest that CPL during short-term exercise are independently controlled by the mechanisms responsible for exercise-induced sympathoexcitation in both single veins. Thus, short-term exercise does not alter CPL in both conduit superficial and deep veins in nonexercising upper arm.
Collapse
Affiliation(s)
- Anna Oue
- Faculty of Food and Nutritional SciencesToyo UniversityGunmaJapan
| | - Tomoko Sadamoto
- Research Institute of Physical FitnessJapan Women's College of Physical EducationTokyoJapan
| |
Collapse
|
3
|
Hodges GJ, Sparks PA. Noradrenaline and neuropeptide Y contribute to initial, but not sustained, vasodilatation in response to local skin warming in humans. Exp Physiol 2013; 99:381-92. [PMID: 24213859 DOI: 10.1113/expphysiol.2013.075549] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
NEW FINDINGS What is the central question of this study? Previous work has produced the counterintuitive finding that the vasoconstrictor neurotransmitters noradrenaline and neuropeptide Y are involved in vasodilatation. We aimed to discover whether sympathetic neurotransmitters are required for the sustained vasodilatation in response to local skin warming, as has been previously suggested, and to determine whether noradrenaline and neuropeptide Y are 'mediating' the sustained vasodilator response directly or acting to 'prime' (or kick-start) it. What is the main finding and its importance? We have found that noradrenaline and neuropeptide Y are required at the initiation of vasodilatation in response to local skin warming, if a complete vasodilator response is to be achieved; however, they are not required once vasodilatation has begun. In a three-part study, we examined whether noradrenaline, neuropeptide Y (NPY) and endothelial nitric oxide synthase (eNOS) were involved in the sustained vasodilatation in response to local skin warming. Forearm skin sites were instrumented with intradermal microdialysis fibres, local skin heaters and laser-Doppler flow probes. Local skin temperature (T(loc)) was increased from 34 to 42°C at a rate of 0.5°C (10 s)(-1). Laser-Doppler flow was expressed as cutaneous vascular conductance (CVC; laser-Doppler flow/mean arterial pressure). In part 1, three skin sites were prepared; two were treated with the study vehicle (lactated Ringer solution), while the third site was treated with yohimbine and propranolol to antagonize α- and β-receptors, and 10 min of baseline data were record at a T(loc) of 34°C. Receptor antagonism was confirmed via infusion of clonidine. The T(loc) was increased to 42°C at all sites. Once CVC had stabilized, site 2 was treated with yohimbine and propranolol to examine the effect of adrenergic receptor blockade on sustained vasodilatation of the skin. Receptor antagonism was again confirmed via infusion of clonidine. All sites were treated with sodium nitroprusside, and T(loc) was increased to 43°C to elicit maximal vasodilatation. In parts 2 and 3, the general protocol was the same, except that BIBP-3226 was used to antagonize Y(1)-receptors, NPY to test the efficacy of the antagonism, N(G)-amino-l-arginine to inhibit eNOS and ACh to test the adequacy of inhibition. Compared with control conditions, antagonism of α- and β-receptors, Y(1)-receptors and eNOS before local skin warming reduced the initial and sustained vasodilatation in response to increased T(loc). However, treatment with yohimbine and propranolol or BIBP-3226 after local skin warming did not affect the sustained vasodilatation [CVC, 90 ± 3 versus 89 ± 3%max (control vs. yohimbine and propranolol) and 88 ± 5 versus 87 ± 4%max (control vs. BIBP-3226); P > 0.05]. N(G)-Amino-l-arginine perfusion caused a large reduction in CVC during this phase (89 ± 5 versus 35 ± 4%max; P < 0.05). These data indicate that if their actions are antagonized after local warming and cutaneous vasodilatation has occurred, noradrenaline and NPY play little, if any, role in the sustained vasodilatation in response to local skin warming. However, eNOS contributes markedly to the sustained vasodilatation regardless of when it is inhibited.
Collapse
Affiliation(s)
- Gary J Hodges
- * Department of Kinesiology, 2007 Moore Hall, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | | |
Collapse
|
4
|
Hodges GJ, Sparks PA. Contributions of endothelial nitric oxide synthase, noradrenaline, and neuropeptide Y to local warming-induced cutaneous vasodilatation in men. Microvasc Res 2013; 90:128-34. [PMID: 24012636 DOI: 10.1016/j.mvr.2013.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/24/2013] [Accepted: 08/28/2013] [Indexed: 12/31/2022]
Abstract
We performed a two-part study to determine the roles of endothelial nitric oxide synthase (eNOS) and the vasoconstrictor nerves neurotransmitters noradrenaline (NA) and neuropeptide Y (NPY) in the cutaneous vasodilator response to local skin warming. Forearm skin sites were instrumented with intradermal microdialysis fibres, local heaters, and laser-Doppler flow (LDF) probes. Sites were locally heated from 34 to 42°C. LDF was expressed as cutaneous vascular conductance (CVC; LDF/mean arterial pressure). In Part I, we tested whether sympathetic noradrenergic nerves acted via eNOS. In 8 male participants, treatments were as follows: 1) untreated; 2) bretylium tosylate (BT), preventing sympathetic neurotransmitter release; 3) l-NAA to inhibit eNOS; and 4) combined BT+l-NAA. At treated sites, the initial peak response was markedly reduced, and the plateau phase response to 35min of local warming was also reduced (P<0.05), which was not different among those sites (P>0.05). In Part II, we tested whether NA and NPY were involved in the vasodilator response to local warming. In Part IIa, treatments were: 1) untreated; 2) propranolol and yohimbine to antagonize α- and β-receptors; 3) l-NAA; and 4) combined propranolol, yohimbine, and l-NAA. In Part IIb, conditions were: 1) untreated; 2) BIBP to antagonize Y1-receptors; 3) l-NAA; and 4) combined BIBP and l-NAA. All treatments caused a reduction in the initial peak and plateau responses to local skin warming (P<0.05). The results of Part II indicate that both NA and NPY play roles in the cutaneous vasodilator response and their actions are achieved via eNOS. These data indicate that NA and NPY are involved in the initial, rapid rise in skin blood flow at the onset of local skin warming. However, their vasodilator actions in response to local skin warming appears to be manifested through eNOS.
Collapse
Affiliation(s)
- Gary J Hodges
- Exercise Physiology Laboratory, Department of Kinesiology, The University of Alabama, Tuscaloosa, AL 35487, USA.
| | | |
Collapse
|
5
|
Reduced Defense of Central Blood Volume During Acute Lower Body Negative Pressure–Induced Hypovolemic Circulatory Stress in Aging Women. Shock 2012; 37:579-85. [DOI: 10.1097/shk.0b013e31824fbb3e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Hodges GJ, Jackson DN, Mattar L, Johnson JM, Shoemaker JK. Neuropeptide Y and neurovascular control in skeletal muscle and skin. Am J Physiol Regul Integr Comp Physiol 2009; 297:R546-55. [PMID: 19571208 DOI: 10.1152/ajpregu.00157.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y (NPY) is a ubiquitous peptide with multiple effects on energy metabolism, reproduction, neurogenesis, and emotion. In addition, NPY is an important sympathetic neurotransmitter involved in neurovascular regulation. Although early studies suggested that the vasoactive effects of NPY were limited to periods of high stress, there is growing evidence for the involvement of NPY on baseline vasomotor tone and sympathetically evoked vasoconstriction in vivo in both skeletal muscle and the cutaneous circulation. In Sprague-Dawley rat skeletal muscle, Y(1)-receptor activation appears to play an important role in the regulation of basal vascular conductance, and this effect is similar in magnitude to the alpha(1)-receptor contribution. Furthermore, under baseline conditions, agonist and receptor-based mechanisms for Y(1)-receptor-dependent control of vascular conductance in skeletal muscle are greater in male than female rats. In skin, there is Y(1)-receptor-mediated vasoconstriction during whole body, but not local, cooling. As with the NPY system in muscle, this neural effect in skin differs between males and females and in addition, declines with aging. Intriguingly, skin vasodilation to local heating also requires NPY and is currently thought to be acting via a nitric oxide pathway. These studies are establishing further interest in the role of NPY as an important vasoactive agent in muscle and skin, adding to the complexity of neurovascular regulation in these tissues. In this review, we focus on the role of NPY on baseline vasomotor tone in skeletal muscle and skin and how NPY modulates vasomotor tone in response to stress, with the aim of compiling what is currently known, while highlighting some of the more pertinent questions yet to be answered.
Collapse
Affiliation(s)
- Gary J Hodges
- School of Kinesiology, University of Western Ontario, London, Ontario.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Experimental models are a sine qua non condition for unraveling the specific components and mechanisms contributing to vascular dysfunction and arterial vasodilation in portal hypertension. Moreover, a careful selection of the type of animal model, vascular bed, and methodology is crucial for any investigation of this issue. In this review, some critical aspects related to experimental models in portal hypertension and the techniques applied are highlighted. In addition, a detailed summary of the mechanisms of arterial vasodilation in portal hypertension is presented. First, humoral and endothelial vasodilators, predominantly nitric oxide but also carbon monoxide and endothelium-derived hyperpolarizing factor, and others are discussed. Second, time course and potential stimuli triggering and/or perpetuating splanchnic vasodilation are delineated. Finally, a brief general overview of vascular smooth muscle signaling sets the stage for a discussion on cotransmission, receptor desensitization, and the observed impairment in vasoconstrictor-induced smooth muscle contraction in the splanchnic and systemic circulation during portal hypertension.
Collapse
|
8
|
Lindenberger M, Länne T. Sex-related effects on venous compliance and capillary filtration in the lower limb. Am J Physiol Regul Integr Comp Physiol 2007; 292:R852-9. [PMID: 17038441 DOI: 10.1152/ajpregu.00394.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent studies in humans have suggested sex differences in venous compliance of the lower limb, with lower compliance in women. Capillary fluid filtration could, however, be a confounder in the evaluation of venous compliance. The venous capacitance and capillary filtration response in the calves of 12 women (23.2 ± 0.5 years) and 16 men (22.9 ± 0.5 years) were studied during 8 min lower body negative pressure (LBNP) of 11, 22, and 44 mmHg. Calf venous compliance is dependent on pressure and was determined using the first derivative of a quadratic regression equation that described the capacitance-pressure relationship [compliance = β1 + (2·β2· transmural pressure)]. We found a lower venous compliance in women at low transmural pressures, and the venous capacitance in men was increased ( P < 0.05). However, the difference in compliance between sexes was reduced and not seen at higher transmural pressures. Net capillary fluid filtration and capillary filtration coefficient (CFC) were greater in women than in men during LBNP ( P < 0.05). Furthermore, calf volume increase (capacitance response + total capillary filtration) during LBNP was equivalent in both sexes. When total capillary filtration was not subtracted from the calf capacitance response in the calculation of venous compliance, the sex differences disappeared, emphasizing that venous compliance measurement should be corrected for the contribution of CFC.
Collapse
Affiliation(s)
- M Lindenberger
- Division of Physiology, Department of Medicine and Care, Linköping University, SE 58185 Linköping, Sweden
| | | |
Collapse
|
9
|
Freeman R. Assessment of cardiovascular autonomic function. Clin Neurophysiol 2006; 117:716-30. [PMID: 16464634 DOI: 10.1016/j.clinph.2005.09.027] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 09/15/2005] [Accepted: 09/23/2005] [Indexed: 12/20/2022]
Abstract
Autonomic assessment has played an important role in elucidating the role of the autonomic nervous system in diverse clinical and research settings. The techniques most widely used in the clinical setting entail the measurement of an end-organ response to a physiological provocation. The non-invasive measures of cardiovascular parasympathetic function involve the analysis of heart rate variability while the measures of cardiovascular sympathetic function assess the blood pressure response to physiological stimuli. Prolonged tilt-table testing, with or without pharmacological provocation, has become an important tool in the investigation of a predisposition to neurally mediated (vasovagal) syncope. Frequency domain analyses of heart rate and blood pressure variability, microneurography, occlusion plethysmography, laser Doppler imaging and flowmetry, and cardiac sympathetic imaging are currently research tools but may find a place in the clinical assessment of autonomic function in the future.
Collapse
Affiliation(s)
- Roy Freeman
- Anatomic and Peripheral Neerve Laboratory, Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| |
Collapse
|
10
|
Monahan KD, Ray CA. Gender affects calf venous compliance at rest and during baroreceptor unloading in humans. Am J Physiol Heart Circ Physiol 2003; 286:H895-901. [PMID: 14604855 DOI: 10.1152/ajpheart.00719.2003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Leg venous compliance is a determinant of peripheral venous pooling during orthostatic stress such that high venous compliance could contribute to reduced orthostatic tolerance. We tested the hypotheses that 1) calf venous compliance is reduced during baroreceptor unloading, and 2) calf venous compliance is greater in women than men. Twelve men (27 +/- 2 yr) and 12 women (25 +/- 2 yr) were studied in the supine posture. Calf venous compliance was determined by inflating a thigh venous collecting cuff to 60 mmHg for 8 min and then decreasing cuff pressure at a rate of 1 mmHg/s to 0 mmHg. The slope of the pressure-compliance relation (compliance = beta(1) + 2.beta(2).cuff pressure), which is the first derivative of the quadratic pressure-volume relation [(Deltalimb volume) = beta(0) + beta(1).(cuff pressure) + beta(2).(cuff pressure)(2)] during the reduction in collecting cuff pressure, was used to assess venous compliance at baseline and during one-legged lower body negative pressure (LBNP; -50 mmHg). At baseline, calf venous compliance was 48% lower (P < 0.001) in women than men and decreased in men (Delta-25 +/- 8%; P < 0.05) but not women (Delta1 +/- 11%) during LBNP. Rhythmic ischemic handgrip (Delta6 +/- 9%) and cold pressor testing (Delta-9 +/- 7%) did not alter calf venous compliance in a subgroup of men (n = 6). These data indicate gender-dependent effects on calf venous compliance under conditions associated with low sympathetic outflow (i.e., rest) and high sympathetic outflow (i.e., LBNP). However, they cannot explain gender-associated differences in orthostatic tolerance.
Collapse
Affiliation(s)
- Kevin D Monahan
- Penn State College of Medicine, Div. of Cardiology H047, The Milton S. Hershey Medical Center, 500 University Dr., Hershey, PA 17033-2390, USA.
| | | |
Collapse
|
11
|
Freeman R, Lirofonis V, Farquhar WB, Risk M. Limb venous compliance in patients with idiopathic orthostatic intolerance and postural tachycardia. J Appl Physiol (1985) 2002; 93:636-44. [PMID: 12133874 DOI: 10.1152/japplphysiol.00817.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Venous denervation and increased venous pooling may contribute to symptoms of orthostatic intolerance. We examined venous compliance in the calf and forearm in 11 orthostatic-intolerant patients and 15 age-matched controls over a range of pressures, during basal conditions and sympathetic excitation. Occlusion cuffs placed around the upper arm and thigh were inflated to 60 mmHg and deflated to 10 mmHg over 1 min. Limb volume was measured continuously with a mercury-in-Silastic strain gauge. Compliance was calculated as the numerical derivative of the pressure-volume curve. The pressure-volume relationship in the upper and lower extremities in the basal and sympathetically activated state was significantly lower in the orthostatic-intolerant patients (all P < 0.05). Sympathoexcitation lowered the pressure-volume relationship in the lower extremity in patients (P < 0.001) and controls (P < 0.01). Venous compliance was significantly less in patients in the lower extremity in the basal state over a range of pressures (P < 0.05). Venous compliance was less in patients compared with controls in the upper (P < 0.005) and lower extremities (P < 0.01) in the sympathetically activated state, but there were no differences at individual pressure levels. Sympathetic activation did not change venous compliance in the upper and lower extremity in patients and controls. Patients with orthostatic intolerance have reduced venous compliance in the lower extremity. Reduced compliance may limit the dynamic response to orthostatic change and thereby contribute to symptoms of orthostatic intolerance in this population group.
Collapse
Affiliation(s)
- Roy Freeman
- Center for Autonomic and Peripheral Nerve Disorders, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
12
|
Pellieux C, Sauthier T, Domenighetti A, Marsh DJ, Palmiter RD, Brunner HR, Pedrazzini T. Neuropeptide Y (NPY) potentiates phenylephrine-induced mitogen-activated protein kinase activation in primary cardiomyocytes via NPY Y5 receptors. Proc Natl Acad Sci U S A 2000; 97:1595-600. [PMID: 10660688 PMCID: PMC26480 DOI: 10.1073/pnas.030533197] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Neuropeptide Y (NPY) has been shown to participate in the cardiovascular response mediated by the sympathetic system. In this report, we investigate the growth factor properties of NPY on cardiac myocytes. Mitogen-activated protein kinases (MAPK) are key signaling molecules in the transduction of trophic signals. Therefore, the role of NPY in inducing MAPK activation was studied in mouse neonatal cardiomyocytes. Exposure of neonatal cardiomyocytes to either NPY, phenylephrine, or angiotensin II induces a rapid phosphorylation of the extracellular responsive kinase, the c-jun N-terminal kinase, and the p38 kinase as well as an activation of protein kinase C (PKC). Moreover, NPY potentiates phenylephrine-induced MAPK and PKC stimulation. In contrast, NPY has no synergistic effect on angiotensin II-stimulated MAPK phosphorylation or PKC activity. NPY effects are pertussis toxin-sensitive and calcium-independent and are mediated by NPY Y5 receptors. Taken together, these results suggest that NPY, via G(i) protein-coupled NPY Y5 receptors, could participate in the development of cardiac hypertrophy during chronic sympathetic stimulation by potentiating alpha-adrenergic signals.
Collapse
Affiliation(s)
- C Pellieux
- Division of Hypertension, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
13
|
Olsen H, Vernersson E, Länne T. Cardiovascular response to acute hypovolemia in relation to age. Implications for orthostasis and hemorrhage. Am J Physiol Heart Circ Physiol 2000; 278:H222-32. [PMID: 10644602 DOI: 10.1152/ajpheart.2000.278.1.h222] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Venous compliance in the legs of aging man has been found to be reduced with decreased blood pooling (capacitance response) in dependent regions, and this might lead to misinterpretations of age-related changes in baroreceptor function during orthostasis. The hemodynamic response to hypovolemic circulatory stress was studied with the aid of lower-body negative pressure (LBNP) of 60 cmH(2)O in 33 healthy men [18 young (mean age 22 yr) and 15 old (mean age 65 yr)]. Volumetric technique was used in the study of capacitance responses in the calf and arm as well as transcapillary fluid absorption in the arm. LBNP led to smaller increase in heart rate (P < 0.001) and peripheral resistance (P < 0.01) and reduced transcapillary fluid absorption in the arm (P < 0.05) in old subjects. However, blood pooling in the calf was reduced in old subjects (1.66 +/- 0.10 vs. 2.17 +/- 0.13 ml/100 ml tissue; P < 0. 01). Accordingly, during similar blood pooling in the calf (LBNP 80 cmH(2)O in old subjects), no changes in cardiovascular reflex responses with age were found. The capacitance response in the arm (mobilization of peripheral blood to the central circulation) was still reduced, however (0.67 +/- 0.10 vs. 1.37 +/- 0.11 ml/100 ml tissue; P < 0.01). Thus the reduced cardiovascular reflex response found in the elderly during orthostatic stress seems to be caused by a reduced capacitance response in the legs with age and a concomitant smaller central hypovolemic stimulus rather than a reduced efficiency of the reflex response. With similar hypovolemic circulatory stress, no changes in cardiovascular reflex responses are seen with age. The capacitance response in the arm (mobilization of peripheral blood toward the central circulation) is reduced, however, by approximately 50% in the elderly. This might seriously impede the possibility of survival of an acute blood loss.
Collapse
Affiliation(s)
- H Olsen
- Department of Endocrinology, Lund University, Malmö University Hospital, S-205 02 Malmö, Sweden
| | | | | |
Collapse
|
14
|
Schuerch LV, Linder LM, Grouzmann E, Haefeli WE. Human neuropeptide Y potentiates alpha1-adrenergic blood pressure responses in vivo. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H760-6. [PMID: 9724277 DOI: 10.1152/ajpheart.1998.275.3.h760] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human neuropeptide Y (hNPY) potentiates the postjunctional vasoconstrictor effects of alpha1-adrenoceptor agonists in animals and in human hand veins in vivo. We therefore hypothesized that such an interaction might also occur in the human arterial bed. With the present single-blind cross-over study in 12 healthy volunteers, the effect of subpressor doses of hNPY on the blood pressure response to alpha1-adrenoceptor stimulation was evaluated. Dose-response curves were constructed to intravenously infuse phenylephrine with and without coinfusion with two different doses of hNPY (1.4 and 14.3 pmol . kg-1 . min-1). Blood pressure, heart rate, and forearm blood flow were recorded, and plasma hNPY was determined. During infusion of the higher hNPY dose, which increased hNPY from 24.0 +/- 12.0 to 495.1 +/- 12.6 pmol/l, blood pressure curves were 2.4-fold shifted toward lower phenylephrine dose rates (P < 0.001). Forearm vascular resistance showed a similar trend, whereas the counterregulatory decrease of heart rate was similar in both groups. In contrast, the lower hNPY dose rate producing a fourfold increase in hNPY concentrations did not modify the response to phenylephrine. This in vivo study in humans demonstrates that hNPY induced potentiating effects on alpha1-adrenergic constriction also in the systemic arterial circulation and suggests that circulating hNPY may participate in the control of vascular tone.
Collapse
Affiliation(s)
- L V Schuerch
- Division of Clinical Pharmacology, University Hospital, CH-4031 Basel, Switzerland
| | | | | | | |
Collapse
|
15
|
Olsen H, Länne T. Reduced venous compliance in lower limbs of aging humans and its importance for capacitance function. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H878-86. [PMID: 9724292 DOI: 10.1152/ajpheart.1998.275.3.h878] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Venous compliance in the calf of humans and its importance for capacitance function in relation to age were studied with the aid of 22, 44, and 59 mmHg lower body negative pressure (LBNP). Negative pressure transmission to the calf as well as changes in calf volume were studied, and venous compliance was calculated [change in volume with pressure change (dV/dP)]. The change in capacitance response of the calf with age (20-70 yr) was evaluated during LBNP 44 mmHg. Transmission of negative pressure to the subcutaneous tissue was almost full without any changes with age (92%). However, it was reduced to 80% in the underlying muscle tissue, irrespective of depth. Venous compliance in the young was 0.051 ml . 100 ml-1 . mmHg-1 and was reduced by 45% to 0.029 ml . 100 ml-1 . mmHg-1 in the old (P < 0.05). Accordingly, the capacitance response was reduced by 0.015 ml . 100 ml-1 . yr-1 (P < 0.005). Furthermore, the hemodynamic response to hypovolemic circulatory stress was attenuated with age. The reduced pressure transmission in muscle tissue is probably due to restriction of the muscle fascia envelope. The reduced venous compliance with age and the concomitant reduction in capacitance response during LBNP have implications for both the sympathetic reflex responses as well as the capacitance response during acute hypovolemic circulatory stress, which might be defected in aging humans.
Collapse
Affiliation(s)
- H Olsen
- Departments of Endocrinology, Lund University, Malmö University Hospital, S-205 02 Malmö, Sweden
| | | |
Collapse
|
16
|
Abstract
The existence of neurogenic mediator candidates apart from noradrenaline and acetylcholine involved in the control of vascular tone has attracted enormous attention during the past few decades. One such mediator is neuropeptide Y (NPY), which is co-localized with noradrenaline in sympathetic perivascular nerves. Stimulation of sympathetic nerves in vitro and in vivo causes non-adrenergic vasoconstriction which can be blocked by experimental manipulations that inhibit NPY mechanisms. Thus, the vasopressor response to stimulation of sympathetic nerves can be attenuated by chemical or surgical sympathectomy, treatment with reserpine or other pharmacological agents, and tachyphylaxis to NPY or by NPY antagonists. The NPY field was long plagued by a lack of specific antagonists, but with the recently developed, selective, non-peptide and stable NPY antagonists it has now become possible to study subtypes of this receptor family. For instance, it has become clear that the NPY Y1 receptor mediates most of the direct peripheral effects of NPY on vascular tone. These antagonists promise to stimulate NPY research and will likely unravel the true significance of NPY in cardiovascular control under physiological conditions as well as in pathophysiological states.
Collapse
Affiliation(s)
- A Franco-Cereceda
- Department of Thoracic Surgery, Karolinska Hospital, Stockholm, Sweden.
| | | |
Collapse
|