1
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- RG/17/8/32924 British Heart Foundation
- Jewish Heritage Fund for Excellence
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- R01 HL159865 NHLBI NIH HHS
- Canadian Insitute's of Health Research Foundation Grant
- R01 HL169157 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- MC_UU_00014/4 Medical Research Council
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
2
|
Mallette JH, Crudup BF, Alexander BT. Growth Restriction in Preeclampsia: Lessons from Animal Models. CURRENT OPINION IN PHYSIOLOGY 2023; 32:100647. [PMID: 36968132 PMCID: PMC10035651 DOI: 10.1016/j.cophys.2023.100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Preeclampsia remains a major health concern for mother and child. Yet, treatment options remain limited to early delivery. Placental dysfunction in preeclampsia occurs in response to an increase in oxidative stress and inflammatory cytokines with vasoactive and anti-angiogenic factors contributing to impaired maternal and fetal health. Moreover, recent studies indicate a potential role for epigenetic mediators in the pathophysiology of placental ischemia. Numerous animal models are utilized to explore the pathogenesis of preeclampsia and fetal growth restriction. This review provides a brief overview of recent progress in preclinical studies regarding potential therapeutic targets for the treatment and prevention of preeclampsia with an emphasis on fetal growth restriction and the fetal programming of increased cardiovascular risk.
Collapse
Affiliation(s)
- Jordan H. Mallette
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Breland F. Crudup
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| | - Barbara T. Alexander
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS USA
| |
Collapse
|
3
|
Abstract
Circulating blood is filtered across the glomerular barrier to form an ultrafiltrate of plasma in the Bowman's space. The volume of glomerular filtration adjusted by time is defined as the glomerular filtration rate (GFR), and the total GFR is the sum of all single-nephron GFRs. Thus, when the single-nephron GFR is increased in the context of a normal number of functioning nephrons, single glomerular hyperfiltration results in 'absolute' hyperfiltration in the kidney. 'Absolute' hyperfiltration can occur in healthy people after high protein intake, during pregnancy and in patients with diabetes, obesity or autosomal-dominant polycystic kidney disease. When the number of functioning nephrons is reduced, single-nephron glomerular hyperfiltration can result in a GFR that is within or below the normal range. This 'relative' hyperfiltration can occur in patients with a congenitally reduced nephron number or with an acquired reduction in nephron mass consequent to surgery or kidney disease. Improved understanding of the mechanisms that underlie 'absolute' and 'relative' glomerular hyperfiltration in different clinical settings, and of whether and how the single-nephron haemodynamic and related biomechanical forces that underlie glomerular hyperfiltration promote glomerular injury, will pave the way toward the development of novel therapeutic interventions that attenuate glomerular hyperfiltration and potentially prevent or limit consequent progressive kidney injury and loss of function.
Collapse
|
4
|
Zelinka T, Petrák O, Rosa J, Holaj R, Štrauch B, Widimský J. Primary Aldosteronism and Pregnancy. Kidney Blood Press Res 2020; 45:275-285. [PMID: 32114578 DOI: 10.1159/000506287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 01/30/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Primary aldosteronism (PA) may present at younger age and may thus complicate pregnancy. Our aim was to identify female patients in whom PA was diagnosed after pregnancy complicated with hypertension and to analyze possible hypertension-related complications during pregnancy. METHODS We performed retrospective analysis of female patients with PA diagnosed and treated at our Department who were pregnant before the diagnosis of PA. RESULTS We found 14 patients with PA (age at diagnosis 32.2 ± 4.2 years, hypertension duration 5.4 ± 3.6 years) suffering from hypertension 3 (IQR 0, 4) years before pregnancy (6 patients had hypertension diagnosed during pregnancy). Three subjects were pregnant twice, and 1 patient had been pregnant three times before the final diagnosis of PA was made. Ten subjects delivered by Caesarean section (in 3 cases due to early-onset preeclampsia and 2 subjects due to significantly increased blood pressure), and 9 cases spontaneously (1 subject complicated twice due to late-onset preeclampsia). Preterm delivery occurred in 5 cases - the earliest one in the sixth month of gestation. Subsequent diagnosis of PA (sometimes with a long delay up to a maximum of 12 years) was made on the basis of significantly low potassium values (2.7 ± 0.4 mmol/L; 2 subjects even suffered from muscle cramps) and hypertension (mostly moderate), elevated plasma/serum aldosterone (54.1 ± 20.2 ng/dL) and suppressed plasma renin activity (0.4 ± 0.2 ng/mL/h) or plasma renin (1.9 ± 1.6 ng/L). Thirteen subjects underwent laparoscopic adrenalectomy (in all but 2 cases, diagnosis of a large cortical adenoma [16 ± 5.9 mm] was made), and 1 subject was classified with bilateral hyperplasia according to adrenal venous sampling. Operation normalized BP in 10 subjects and improved BP control in the remaining 3 subjects. Two patients became pregnant after adrenalectomy, and their pregnancies were uneventful. CONCLUSION PA is associated with a high rate of pregnancy-related complications. The most frequent complication is preeclampsia, in some cases leading to preterm delivery. The optimal prevention of these complications is early diagnosis of PA, and in these particular hypertensive cases, the awareness of hypokalemia.
Collapse
Affiliation(s)
- Tomáš Zelinka
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia,
| | - Ondřej Petrák
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Ján Rosa
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Robert Holaj
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Branislav Štrauch
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Jiří Widimský
- Center for Hypertension, 3rd Medical Department - Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
5
|
Marshall SA, Hannan NJ, Jelinic M, Nguyen TP, Girling JE, Parry LJ. Animal models of preeclampsia: translational failings and why. Am J Physiol Regul Integr Comp Physiol 2018; 314:R499-R508. [DOI: 10.1152/ajpregu.00355.2017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Preeclampsia affects up to 8% of pregnancies worldwide and is a leading cause of both maternal and fetal morbidity and mortality. Our current understanding of the cause(s) of preeclampsia is far from complete, and the lack of a single reliable animal model that recapitulates all aspects of the disease further confounds our understanding. This is partially due to the heterogeneous nature of the disease, coupled with our evolving understanding of its etiology. Nevertheless, animal models are still highly relevant and useful tools that help us better understand the pathophysiology of specific aspects of preeclampsia. This review summarizes the various types and characteristics of animal models used to study preeclampsia, highlighting particular features of these models relevant to clinical translation. This review points out the strengths and limitations of these models to illustrate the importance of using the appropriate model depending on the research question.
Collapse
Affiliation(s)
- Sarah A. Marshall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Natalie J. Hannan
- The Translational Obstetrics Group, Mercy Hospital for Women, Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia
| | - Maria Jelinic
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Thy P.H. Nguyen
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E. Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne and Royal Women’s Hospital, Parkville, Victoria, Australia
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
Marshall SA, Leo CH, Girling JE, Tare M, Beard S, Hannan NJ, Parry LJ. Relaxin treatment reduces angiotensin II-induced vasoconstriction in pregnancy and protects against endothelial dysfunction†. Biol Reprod 2018; 96:895-906. [PMID: 28379296 DOI: 10.1093/biolre/iox023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/31/2017] [Indexed: 01/31/2023] Open
Abstract
The peptide relaxin has gained considerable attention as a new vasoactive drug, largely through its beneficial therapeutic effects in cardiovascular disease. In this study, we tested the hypothesis that relaxin treatment alleviates systemic vascular dysfunction characteristic of hypertensive diseases of pregnancy. We investigated vascular effects and mechanisms of relaxin action in (i) pregnant relaxin-deficient (Rln-/-) mice with enhanced responses to angiotensin II (AngII) and (ii) arteries pre-incubated ex vivo in trophoblast conditioned media (TCM) to induce endothelial dysfunction. Pregnant Rln-/- mice received 0.5 μg/h recombinant human H2 relaxin (rhRLX: n = 5) or placebo (20 nM sodium acetate; n = 7) subcutaneously via osmotic minipumps for 5 days prior to gestational day 17.5. This treatment protocol significantly reduced AngII-mediated contraction of mesenteric arteries and increased plasma 6-keto prostaglandin F1α. These vascular effects were endothelium independent and likely involve smooth muscle-derived vasodilator prostanoids. In the second study, mesenteric arteries were incubated ex vivo for 24 h at 37°C in TCM, which contained high levels of soluble Flt-1 (>20 ng/ml) and soluble Eng (>1 ng/ml). TCM incubation caused significant reduction in endothelium-dependent relaxation and increased sensitivity to AngII. Co-incubation of arteries with rhRLX for 24 h (n = 6-16/treatment) prevented endothelial dysfunction but had no effect on AngII-mediated contraction. In conclusion, relaxin treatment prevents and/or reverses vascular dysfunction in mesenteric arteries, but acts through different vascular pathways depending on duration of relaxin treatment and type of vascular dysfunction. Overall, our data suggest that relaxin is a potential therapeutic to alleviate maternal systemic vascular dysfunction associated with hypertensive diseases in pregnant women.
Collapse
Affiliation(s)
- Sarah A Marshall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Jane E Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne and Royal Women's Hospital, Parkville, Victoria, Australia
| | - Marianne Tare
- Department of Physiology, Monash University, Victoria, Australia.,Monash Rural Health, Monash University, Victoria, Australia
| | - Sally Beard
- The Translational Obstetrics Group, Mercy Hospital for Women, Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia
| | - Natalie J Hannan
- The Translational Obstetrics Group, Mercy Hospital for Women, Department of Obstetrics and Gynaecology, The University of Melbourne, Victoria, Australia
| | - Laura J Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Preeclampsia and the brain: neural control of cardiovascular changes during pregnancy and neurological outcomes of preeclampsia. Clin Sci (Lond) 2017; 130:1417-34. [PMID: 27389588 DOI: 10.1042/cs20160108] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/13/2016] [Indexed: 02/07/2023]
Abstract
Preeclampsia (PE) is a form of gestational hypertension that complicates ∼5% of pregnancies worldwide. Over 70% of the fatal cases of PE are attributed to cerebral oedema, intracranial haemorrhage and eclampsia. The aetiology of PE originates from abnormal remodelling of the maternal spiral arteries, creating an ischaemic placenta that releases factors that drive the pathophysiology. An initial neurological outcome of PE is the absence of the autonomically regulated cardiovascular adaptations to pregnancy. PE patients exhibit sympathetic overactivation, in comparison with both normotensive pregnant and hypertensive non-pregnant females. Moreover, PE diminishes baroreceptor reflex sensitivity (BRS) beyond that observed in healthy pregnancy. The absence of the cardiovascular adaptations to pregnancy, combined with sympathovagal imbalance and a blunted BRS leads to life-threatening neurological outcomes. Behaviourally, the increased incidences of maternal depression, anxiety and post-traumatic stress disorder (PTSD) in PE are correlated to low fetal birth weight, intrauterine growth restriction (IUGR) and premature birth. This review addresses these neurological consequences of PE that present in the gravid female both during and after the index pregnancy.
Collapse
|
8
|
Huang H, Chang HH, Xu Y, Reddy DS, Du J, Zhou Y, Dong Z, Falck JR, Wang MH. Epoxyeicosatrienoic Acid Inhibition Alters Renal Hemodynamics During Pregnancy. Exp Biol Med (Maywood) 2016; 231:1744-52. [PMID: 17138762 DOI: 10.1177/153537020623101112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study we examined the expression of cytochrome P450 (CYP) 2C and CYP2J Isoforms in renal proximal tubules and microvessels isolated from rats at different stages of pregnancy. We also selectively inhibited epoxyeicosatrienoic acid (EET) production by the administration of N-methanesulfonyl-6-(2-proparyloxyphenyl)hexanamide (MSPPOH 20 mg/kg/day iv) to rats during Days 14–17 of gestation and to age-matched virgin rats and determined the consequent effects on renal function. Western blot analysis showed that CYP2C11, CYP2C23, and CYP2J2 expression was significantly increased in the renal microvessels of pregnant rats on Day 12 of gestation. In the proximal tubules, CYP2C23 expression was significantly increased throughout pregnancy, while the expression of CYP2C11 was increased in early and late pregnancy and the expression of CYP2J2 was increased in middle and late pregnancy. MSPPOH treatment significantly Increased pregnant rats’ mean arterial pressure, renal vascular resistance, and sodium balance but significantly decreased renal blood flow, glomerular filtration rate, and urinary sodium excretion, as well as fetal pups’ body weight and length. In contrast, MSPPOH treatment had no effect on renal hemodynamics or urinary sodium excretion in age-matched virgin rats. In pregnant rats, MSPPOH treatment also caused selective inhibition of renal cortical EET production and significantly decreased the expression of CYP2C11, CYP2C23, and CYP2J2 in the renal cortex, renal microvessels, and proximal tubules. These results suggest that upregulation of renal vascular and tubular EETs contributes to the control of blood pressure and renal function during pregnancy.
Collapse
Affiliation(s)
- Hui Huang
- Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
West CA, Sasser JM, Baylis C. The enigma of continual plasma volume expansion in pregnancy: critical role of the renin-angiotensin-aldosterone system. Am J Physiol Renal Physiol 2016; 311:F1125-F1134. [PMID: 27707703 PMCID: PMC6189751 DOI: 10.1152/ajprenal.00129.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/29/2016] [Indexed: 12/27/2022] Open
Abstract
Pregnancy is characterized by avid renal sodium retention and plasma volume expansion in the presence of decreased blood pressure. Decreased maternal blood pressure is a consequence of reduced systemic vascular tone, which results from an increased production of vasodilators [nitric oxide (NO), prostaglandins, and relaxin] and decreased vascular responsiveness to the potent vasoconstrictor (angiotensin II). The kidneys participate in this vasodilatory response, resulting in marked increases in renal plasma flow and glomerular filtration rate (GFR) during pregnancy. In women, sodium retention drives plasma volume expansion (∼40%) and is necessary for perfusion of the growing uterus and fetus. For there to be avid sodium retention in the presence of the potent natriuretic influences of increased NO and elevated GFR, there must be modifications of the tubules to prevent salt wasting. The purpose of this review is to summarize these adaptations.
Collapse
Affiliation(s)
- Crystal A West
- Department of Medicine, Georgetown University, Washington, District of Columbia;
| | - Jennifer M Sasser
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Chris Baylis
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| |
Collapse
|
10
|
Cunningham MW, Williams JM, Amaral L, Usry N, Wallukat G, Dechend R, LaMarca B. Agonistic Autoantibodies to the Angiotensin II Type 1 Receptor Enhance Angiotensin II-Induced Renal Vascular Sensitivity and Reduce Renal Function During Pregnancy. Hypertension 2016; 68:1308-1313. [PMID: 27698062 DOI: 10.1161/hypertensionaha.116.07971] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/23/2016] [Indexed: 01/26/2023]
Abstract
Preeclamptic women produce agonistic autoantibodies to the angiotensin II type 1 receptor (AT1-AA) and exhibit increased blood pressure (mean arterial pressure), vascular sensitivity to angiotensin II (ANG II), and display a decrease in renal function. The objective of this study was to examine the renal hemodynamic changes during pregnancy in the presence of AT1-AAs with or without a slow pressor dose of ANG II. In this study, mean arterial pressure was elevated in all pregnant rats treated with ANG II with or without AT1-AA. Glomerular filtration rate was reduced from 1.90±0.16 mL/min in normal pregnant (NP) to 1.20±0.08 in ANG II+AT1-AA rats. Renal blood flow was decreased in ANG II+AT1-AA versus NP rats to 7.4±1.09 versus 15.4±1.75 mL/min. Renal vascular resistance was drastically increased between ANG II+AT1-AA versus NP rats (18.4±2.91 versus 6.4±0.77 mm Hg/mL per minute). Isoprostane excretion was increased by 3.5-fold in ANG II+AT1-AA versus NP (1160±321 versus 323±52 pg/mL). In conclusion, ANG II and AT1-AA together significantly decrease glomerular filtration rate by 37% and renal blood flow by 50% and caused a 3-fold increase in renal vascular resistance and isoprostane levels versus NP rats. These data indicate the importance of AT1-AAs to enhance ANG II-induced renal vasoconstriction and reduce renal function as mechanisms to cause hypertension as observed during preeclampsia.
Collapse
Affiliation(s)
- Mark W Cunningham
- From the Departments of Pharmacology and Toxicology (M.W.C., J.M.W., L.A., N.U., B.L.M.) and Obstetrics and Gynecology (B.L.M.), University of Mississippi Medical Center, Jackson; Experimental and Clinical Research Center, Charité Campus Buch, Max-Delbrück Center for Molecular Medicine, Berlin, Germany (G.W.); and Experimental and Clinical Research Center, HELIOS Clinic, Berlin, Germany (R.D.)
| | - Jan M Williams
- From the Departments of Pharmacology and Toxicology (M.W.C., J.M.W., L.A., N.U., B.L.M.) and Obstetrics and Gynecology (B.L.M.), University of Mississippi Medical Center, Jackson; Experimental and Clinical Research Center, Charité Campus Buch, Max-Delbrück Center for Molecular Medicine, Berlin, Germany (G.W.); and Experimental and Clinical Research Center, HELIOS Clinic, Berlin, Germany (R.D.)
| | - Lorena Amaral
- From the Departments of Pharmacology and Toxicology (M.W.C., J.M.W., L.A., N.U., B.L.M.) and Obstetrics and Gynecology (B.L.M.), University of Mississippi Medical Center, Jackson; Experimental and Clinical Research Center, Charité Campus Buch, Max-Delbrück Center for Molecular Medicine, Berlin, Germany (G.W.); and Experimental and Clinical Research Center, HELIOS Clinic, Berlin, Germany (R.D.)
| | - Nathan Usry
- From the Departments of Pharmacology and Toxicology (M.W.C., J.M.W., L.A., N.U., B.L.M.) and Obstetrics and Gynecology (B.L.M.), University of Mississippi Medical Center, Jackson; Experimental and Clinical Research Center, Charité Campus Buch, Max-Delbrück Center for Molecular Medicine, Berlin, Germany (G.W.); and Experimental and Clinical Research Center, HELIOS Clinic, Berlin, Germany (R.D.)
| | - Gerd Wallukat
- From the Departments of Pharmacology and Toxicology (M.W.C., J.M.W., L.A., N.U., B.L.M.) and Obstetrics and Gynecology (B.L.M.), University of Mississippi Medical Center, Jackson; Experimental and Clinical Research Center, Charité Campus Buch, Max-Delbrück Center for Molecular Medicine, Berlin, Germany (G.W.); and Experimental and Clinical Research Center, HELIOS Clinic, Berlin, Germany (R.D.)
| | - Ralf Dechend
- From the Departments of Pharmacology and Toxicology (M.W.C., J.M.W., L.A., N.U., B.L.M.) and Obstetrics and Gynecology (B.L.M.), University of Mississippi Medical Center, Jackson; Experimental and Clinical Research Center, Charité Campus Buch, Max-Delbrück Center for Molecular Medicine, Berlin, Germany (G.W.); and Experimental and Clinical Research Center, HELIOS Clinic, Berlin, Germany (R.D.)
| | - Babbette LaMarca
- From the Departments of Pharmacology and Toxicology (M.W.C., J.M.W., L.A., N.U., B.L.M.) and Obstetrics and Gynecology (B.L.M.), University of Mississippi Medical Center, Jackson; Experimental and Clinical Research Center, Charité Campus Buch, Max-Delbrück Center for Molecular Medicine, Berlin, Germany (G.W.); and Experimental and Clinical Research Center, HELIOS Clinic, Berlin, Germany (R.D.).
| |
Collapse
|
11
|
Leo CH, Jelinic M, Ng HH, Marshall SA, Novak J, Tare M, Conrad KP, Parry LJ. Vascular actions of relaxin: nitric oxide and beyond. Br J Pharmacol 2016; 174:1002-1014. [PMID: 27590257 DOI: 10.1111/bph.13614] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 12/28/2022] Open
Abstract
The peptide hormone relaxin regulates the essential maternal haemodynamic adaptations in early pregnancy through direct actions on the renal and systemic vasculature. These vascular actions of relaxin occur mainly through endothelium-derived NO-mediated vasodilator pathways and improvements in arterial compliance in small resistance-size arteries. This work catalysed a plethora of studies which revealed quite heterogeneous responses across the different regions of the vasculature, and also uncovered NO-independent mechanisms of relaxin action. In this review, we first describe the role of endogenous relaxin in maintaining normal vascular function, largely referring to work in pregnant and male relaxin-deficient animals. We then discuss the diversity of mechanisms mediating relaxin action in different vascular beds, including the involvement of prostanoids, VEGF, endothelium-derived hyperpolarisation and antioxidant activity in addition to the classic NO-mediated vasodilatory pathway. We conclude the review with current perspectives on the vascular remodelling capabilities of relaxin. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- C H Leo
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - M Jelinic
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - H H Ng
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - S A Marshall
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - J Novak
- Division of Mathematics and Science, Walsh University, North Canton, OH, USA
| | - M Tare
- Department of Physiology, Monash University, Clayton, VIC, Australia.,School of Rural Health, Monash University, Clayton, VIC, Australia
| | - K P Conrad
- Department of Physiology and Functional Genomics, Department of Obstetrics and Gynaecology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - L J Parry
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Marshall SA, Senadheera SN, Parry LJ, Girling JE. The Role of Relaxin in Normal and Abnormal Uterine Function During the Menstrual Cycle and Early Pregnancy. Reprod Sci 2016; 24:342-354. [DOI: 10.1177/1933719116657189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sarah A. Marshall
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Laura J. Parry
- School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Jane E. Girling
- Department of Obstetrics and Gynaecology, Gynaecology Research Centre, The University of Melbourne and Royal Women’s Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Abstract
Glomerular filtration rate (GFR) and renal plasma flow (RPF) increase by 40-65% and 50-85%, respectively, during normal pregnancy in women. Studies using the gravid rat as a model have greatly enhanced our understanding of mechanisms underlying these remarkable changes in the renal circulation during gestation. Hyperfiltration appears to be almost completely due to the increase in RPF, the latter attributable to profound reductions in both the renal afferent and efferent arteriolar resistances. The major pregnancy hormone involved is relaxin. The mediators downstream from relaxin include endothelin (ET) and nitric oxide (NO). New evidence indicates that relaxin increases vascular gelatinase activity during pregnancy, thereby converting big ET to ET(1-32), which leads to renal vasodilation, hyperfiltration, and reduced myogenic reactivity of small renal arteries via the endothelial ET(B) receptor and NO. Whether the chronic volume expansion characteristic of pregnancy contributes to the maintenance of gestational renal changes requires further investigation. Additional studies are also needed to further delineate the molecular basis of these mechanisms and, importantly, to investigate whether they apply to women.
Collapse
Affiliation(s)
- Kirk P Conrad
- Departments of Obstetrics, Gynecology and Reproductive Sciences, and Cell Biology and Physiology, University of Pittsburgh School of Medicine and Magee-Women's Research Institute, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
14
|
Marshall SA, Leo CH, Senadheera SN, Girling JE, Tare M, Parry LJ. Relaxin deficiency attenuates pregnancy-induced adaptation of the mesenteric artery to angiotensin II in mice. Am J Physiol Regul Integr Comp Physiol 2016; 310:R847-57. [DOI: 10.1152/ajpregu.00506.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Abstract
Pregnancy is associated with reduced peripheral vascular resistance, underpinned by changes in endothelial and smooth muscle function. Failure of the maternal vasculature to adapt correctly leads to serious pregnancy complications, such as preeclampsia. The peptide hormone relaxin regulates the maternal renal vasculature during pregnancy; however, little is known about its effects in other vascular beds. This study tested the hypothesis that functional adaptation of the mesenteric and uterine arteries during pregnancy will be compromised in relaxin-deficient ( Rln−/−) mice. Smooth muscle and endothelial reactivity were examined in small mesenteric and uterine arteries of nonpregnant (estrus) and late-pregnant ( day 17.5) wild-type ( Rln+/+) and Rln−/− mice using wire myography. Pregnancy per se was associated with significant reductions in contraction to phenylephrine, endothelin-1, and ANG II in small mesenteric arteries, while sensitivity to endothelin-1 was reduced in uterine arteries of Rln+/+ mice. The normal pregnancy-associated attenuation of ANG II-mediated vasoconstriction in mesenteric arteries did not occur in Rln−/− mice. This adaptive failure was endothelium-independent and did not result from altered expression of ANG II receptors or regulator of G protein signaling 5 ( Rgs5) or increases in reactive oxygen species generation. Inhibition of nitric oxide synthase with l-NAME enhanced ANG II-mediated contraction in mesenteric arteries of both genotypes, whereas blockade of prostanoid production with indomethacin only increased ANG II-induced contraction in arteries of pregnant Rln+/+ mice. In conclusion, relaxin deficiency prevents the normal pregnancy-induced attenuation of ANG II-mediated vasoconstriction in small mesenteric arteries. This is associated with reduced smooth muscle-derived vasodilator prostanoids.
Collapse
Affiliation(s)
- Sarah A. Marshall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Jane E. Girling
- Gynaecology Research Centre, Department of Obstetrics and Gynaecology, The University of Melbourne and Royal Women's Hospital, Parkville, Victoria, Australia; and
| | - Marianne Tare
- Department of Physiology, Monash University, Victoria, Australia; and
- School of Rural Health, Monash University, Victoria, Australia
| | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
15
|
van Drongelen J, de Vries R, Lotgering FK, Smits P, Spaanderman MEA. Functional vascular changes of the kidney during pregnancy in animals: a systematic review and meta-analysis. PLoS One 2014; 9:e112084. [PMID: 25386682 PMCID: PMC4227845 DOI: 10.1371/journal.pone.0112084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 10/12/2014] [Indexed: 11/18/2022] Open
Abstract
Renal vascular responses to pregnancy have frequently been studied, by investigating renal vascular resistance (RVR), renal flow, glomerular filtration rate (GFR), and renal artery responses to stimuli. Nonetheless, several questions remain: 1. Which vasodilator pathways are activated and to what extent do they affect RVR, renal flow and GFR across species, strains and gestational ages, 2. Are these changes dependent on renal artery adaptation, 3. At which cellular level does pregnancy affect the involved pathways? In an attempt to answer the questions raised, we performed a systematic review and meta-analysis on animal data. We included 37 studies (116 responses). At mid-gestation, RVR and GFR change to a similar degree across species and strains, accompanied by variable change in renal flow. At least in rats, changes depend on NO activation. At late gestation, changes in RVR, renal flow and GFR vary between species and strains. In rats, these changes are effectuated by sympathetic stimulation. Overall, renal artery responsiveness to stimuli is unaffected by pregnancy, except for Sprague Dawley rats in which pregnancy enhances renal artery vascular compliance and reduces renal artery myogenic reactivity. Our meta-analysis shows that: 1. Pregnancy changes RVR, renal flow and GFR dependent on NO-activation and sympathetic de-activation, but adjustments are different among species, strains and gestational ages; 2. These changes do not depend on adaptation of renal artery responsiveness; 3. It remains unknown at which cellular level pregnancy affects the pathways. Our meta-analysis suggests that renal changes during pregnancy in animals are qualitatively similar, even in comparison to humans, but quantitatively different.
Collapse
Affiliation(s)
- Joris van Drongelen
- Department of Obstetrics and Gynecology, Radboudumc, the Netherlands
- * E-mail:
| | - Rob de Vries
- Systematic Review Centre for Laboratory animal Experimentation, Radboudumc, the Netherlands
| | | | - Paul Smits
- Department of Pharmacology and Toxicology, Radboudumc, the Netherlands
| | - Marc E. A. Spaanderman
- Department of Obstetrics and Gynecology, Radboudumc, the Netherlands
- Department of Obstetrics and Gynecology, Research School GROW, Maastricht University Medical Centre, Maastricht, the Netherlands
| |
Collapse
|
16
|
Conrad KP, Davison JM. The renal circulation in normal pregnancy and preeclampsia: is there a place for relaxin? Am J Physiol Renal Physiol 2014; 306:F1121-35. [PMID: 24647709 DOI: 10.1152/ajprenal.00042.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
During the first trimester of human pregnancy, the maternal systemic circulation undergoes remarkable vasodilation. The kidneys participate in this vasodilatory response resulting in marked increases in renal plasma flow (RPF) and glomerular filtration rate (GFR). Comparable circulatory adaptations are observed in conscious gravid rats. Administration of the corpus luteal hormone relaxin (RLN) to nonpregnant rats and humans elicits vasodilatory changes like those of pregnancy. Systemic and renal vasodilation are compromised in midterm pregnant rats by neutralization or elimination of circulating RLN and in women conceiving with donor eggs who lack a corpus luteum and circulating RLN. Although RLN exerts both rapid (minutes) and sustained (hours to days) vasodilatory actions through different molecular mechanisms, a final common pathway is endothelial nitric oxide. In preeclampsia (PE), maternal systemic and renal vasoconstriction leads to hypertension and modest reduction in GFR exceeding that of RPF. Elevated level of circulating soluble vascular endothelial growth factor receptor-1 arising from the placenta is implicated in the hypertension and disruption of glomerular fenestrae and barrier function, the former causing reduced Kf and the latter proteinuria. Additional pathogenic factors are discussed. Last, potential clinical ramifications include RLN replacement in women conceiving with donor eggs and its therapeutic use in PE. Another goal has been to apply knowledge gained from investigating circulatory adaptations in pregnancy toward identifying and developing novel therapeutic strategies for renal and cardiovascular disease in the nonpregnant population. So far, one candidate to emerge is RLN and its potential therapeutic use in heart failure.
Collapse
Affiliation(s)
- Kirk P Conrad
- Departments of Physiology and Functional Genomics and Obstetrics and Gynecology, D. H. Barron Reproductive and Perinatal Biology Research Program, University of Florida College of Medicine, Gainesville, Florida; and
| | - John M Davison
- Institute of Cellular Medicine and Royal Victoria Infirmary, Newcastle University and Newcastle Hospitals National Health Service Foundation Trust, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
17
|
West CA, Shaw S, Sasser JM, Fekete A, Alexander T, Cunningham MW, Masilamani SME, Baylis C. Chronic vasodilation increases renal medullary PDE5A and α-ENaC through independent renin-angiotensin-aldosterone system pathways. Am J Physiol Regul Integr Comp Physiol 2013; 305:R1133-40. [PMID: 24068049 PMCID: PMC3841800 DOI: 10.1152/ajpregu.00003.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 09/19/2013] [Indexed: 02/05/2023]
Abstract
We have previously observed that many of the renal and hemodynamic adaptations seen in normal pregnancy can be induced in virgin female rats by chronic systemic vasodilation. Fourteen-day vasodilation with sodium nitrite or nifedipine (NIF) produced plasma volume expansion (PVE), hemodilution, and increased renal medullary phosphodiesterase 5A (PDE5A) protein. The present study examined the role of the renin-angiotensin-aldosterone system (RAAS) in this mechanism. Virgin females were treated for 14 days with NIF (10 mg·kg(-1)·day(-1) via diet), NIF with spironolactone [SPR; mineralocorticoid receptor (MR) blocker, 200-300 mg·kg(-1)·day(-1) via diet], NIF with losartan [LOS; angiotensin type 1 (AT1) receptor blocker, 20 mg·kg(-1)·day(-1) via diet], enalapril (ENAL; angiotensin-converting enzyme inhibitor, 62.5 mg/l via water), or vehicle (CON). Mean arterial pressure (MAP) was reduced 7.4 ± 0.5% with NIF, 6.33 ± 0.5% with NIF + SPR, 13.3 ± 0.9% with NIF + LOS, and 12.0 ± 0.4% with ENAL vs. baseline MAP. Compared with CON (3.6 ± 0.3%), plasma volume factored for body weight was increased by NIF (5.2 ± 0.4%) treatment but not by NIF + SPR (4.3 ± 0.3%), NIF + LOS (3.6 ± 0.1%), or ENAL (4.0 ± 0.3%). NIF increased PDE5A protein abundance in the renal inner medulla, and SPR did not prevent this increase (188 ± 16 and 204 ± 22% of CON, respectively). NIF increased the α-subunit of the epithelial sodium channel (α-ENaC) protein in renal outer (365 ± 44%) and inner (526 ± 83%) medulla, and SPR prevented these changes. There was no change in either PDE5A or α-ENaC abundance vs. CON in rats treated with NIF + LOS or ENAL. These data indicate that the PVE and renal medullary adaptations in response to chronic vasodilation result from RAAS signaling, with increases in PDE5A mediated through AT1 receptor and α-ENaC through the MR.
Collapse
Affiliation(s)
- Crystal A West
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Administering relaxin to conscious rats and humans elicits systemic and renal vasodilation. The molecular mechanisms vary according to the duration of relaxin exposure-so-called "rapid" (within minutes) or "sustained" (hours to days) vasodilatory responses-both being endothelium-dependent. Rapid responses are mediated by G(αi/o) protein coupling to phosphoinositol-3 kinase/Akt (protein kinase B)-dependent phosphorylation and activation of nitric oxide synthase. Sustained responses are mediated by vascular endothelial and placental growth factors, as well as increases in arterial gelatinase activity. Thus, after hours or days of relaxin treatment, respectively, arterial MMP-9 or MMP-2 hydrolyze "big" endothelin (ET) at a gly-leu bond to form ET(1-32), which in turn activates the endothelial ET(B) receptor/nitric oxide vasodilatory pathway. Administration of relaxin to conscious rats also increases global systemic arterial compliance and passive compliance of select isolated blood vessels such as small renal arteries (SRA). The increase in SRA passive compliance is mediated by both geometric remodeling (outward) and compositional remodeling (decreased collagen). Relaxin-induced geometric remodeling has also been observed in brain parenchymal arteries, and this remodeling appears to be via the activation of peroxisome proliferator-activated receptor-γ. Given the vasodilatory and arterial remodeling properties of relaxin, the hormone may have therapeutic potential in the settings of abnormal pregnancies, heart failure, and pathologies associated with stiffening of arteries.
Collapse
|
19
|
van Drongelen J, van Koppen A, Pertijs J, Gooi JH, Parry LJ, Sweep FCGJ, Lotgering FK, Smits P, Spaanderman MEA. Impaired vascular responses to relaxin in diet-induced overweight female rats. J Appl Physiol (1985) 2011; 112:962-9. [PMID: 22174401 DOI: 10.1152/japplphysiol.00470.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Relaxin mediates renal and mesenteric vascular adaptations to pregnancy by increasing endothelium-dependent vasodilation and compliance and decreasing myogenic reactivity. Diet-induced overweight and obesity are associated with impaired endothelial dysfunction and vascular remodeling leading to a reduction in arterial diameter. In this study, we tested the hypothesis that local vascular responses to relaxin are impaired in diet-induced overweight female rats on a high-fat cafeteria-style diet for 9 wk. Rats were chronically infused with either relaxin or placebo for 5 days, and vascular responses were measured in isolated mesenteric arteries and the perfused kidney. Diet-induced overweight significantly increased sensitivity to phenylephrine (by 17%) and vessel wall thickness, and reduced renal perfusion flow (RPFF; by 16%), but did not affect flow-mediated vasodilation, myogenic reactivity, and vascular compliance. In the normal weight rats, relaxin treatment significantly enhanced flow-mediated vasodilation (2.67-fold), decreased myogenic reactivity, and reduced sensitivity to phenylephrine (by 28%), but had no effect on compliance or RPFF. NO blockade by l-NAME diminished most relaxin-mediated effects. In diet-induced overweight rats, the vasodilator effects of relaxin were markedly reduced for flow-mediated vasodilation, sensitivity to phenylephrine, and myogenic response compared with the normal diet rats, mostly persistent under l-NAME. Our data demonstrate that some of the vasodilator responses to in vivo relaxin administration are impaired in isolated mesenteric arteries and the perfused kidney in diet-induced overweight female rats. This does not result from a decrease in Rxfp1 (relaxin family peptide receptor) expression but is likely to result from downstream disruption to endothelial-dependent mechanisms in diet-induced overweight animals.
Collapse
Affiliation(s)
- Joris van Drongelen
- Dept. of Obstetrics and Gynecology, 791, Radboud Univ. Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Complicating up to 8% of pregnancies, preeclampsia is, in fact, the most common glomerular disease worldwide. In this article, we review the effect of normal pregnancy on the kidney as well as the role of the kidney in preeclampsia. We discuss blood pressure in pregnancy and preeclampsia, followed by the physiology of hyperfiltration in normal pregnancy as well as the pathophysiology of hypofiltration and proteinuria in preeclampsia. Recent studies have suggested that the clinical syndrome of preeclampsia, which recovers rapidly after delivery of the placenta, is caused by impaired vascular endothelial growth factor signaling that disturbs the status of vascular dilatation as well as the symbiosis between the glomerular endothelium and the podocytes. Finally, we discuss the intriguing association between chronic kidney disease (CKD) and preeclampsia. We hypothesize that the imbalance between angiogenic and anti-angiogenic factors, which may be common to both preeclampsia and CKD, might explain why CKD predisposes pregnant women to develop preeclampsia.
Collapse
|
21
|
Conrad KP. Maternal vasodilation in pregnancy: the emerging role of relaxin. Am J Physiol Regul Integr Comp Physiol 2011; 301:R267-75. [PMID: 21613576 DOI: 10.1152/ajpregu.00156.2011] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pregnancy is a unique physiological condition of profound maternal renal and systemic vasodilation. Our goal has been to unveil the reproductive hormones mediating this remarkable vasodilatory state and the underlying molecular mechanisms. In addition to advancing our knowledge of pregnancy physiology, reaching this goal may translate into therapeutics for pregnancy pathologies such as preeclampsia and for diseases associated with vasoconstriction and arterial stiffness in nonpregnant women and men. An emerging player is the 6 kDa corpus luteal hormone relaxin, which circulates during pregnancy. Relaxin administration to rats and humans induces systemic and renal vasodilation regardless of sex, thus mimicking the pregnant condition. Immunoneutralization or elimination of the source of circulating relaxin prevents renal and systemic vasodilation in midterm pregnant rats. Infertile women who become pregnant by donor eggs (IVF with embryo transfer) lack a corpus luteum and circulating relaxin, and they show a markedly subdued gestational increase in glomerular filtration rate. These data implicate relaxin as one of the vasodilatory reproductive hormones of pregnancy. There are different molecular mechanisms underlying the so-called rapid and sustained vasodilatory actions of relaxin. The former is mediated by Gα(i/o) protein coupling to phosphatidylinositol-3 kinase/Akt (protein kinase B)-dependent phosphorylation and activation of endothelial nitric oxide synthase, the latter by vascular endothelial and placental growth factors, and increases in arterial gelatinase(s) activity. The gelatinases, in turn, hydrolyze big endothelin (ET) at a gly-leu bond to form ET(1-32), which activates the endothelial ET(B) receptor/nitric oxide vasodilatory pathway.
Collapse
Affiliation(s)
- Kirk P Conrad
- Department of Physiology and Functional Genomics, Department of Obstetrics and Gynecology, University of Florida College of Medicine, Gainesville, Florida 32610, USA.
| |
Collapse
|
22
|
Abstract
Relaxin is an approximately 6-kilodalton peptide hormone secreted by the corpus luteum, and circulates in the maternal blood during pregnancy. Relaxin administration to awake, chronically instrumented, nonpregnant rats mimics the vasodilatory phenomena of pregnancy. Furthermore, immunoneutralization of relaxin or its elimination from the circulation during midterm pregnancy in awake rats prevents maternal systemic and renal vasodilation, and the increase in global arterial compliance. Human investigation, albeit limited through 2010, also reveals vasodilatory effects of relaxin in the nonpregnant condition and observations consistent with a role for relaxin in gestational renal hyperfiltration. Evidence suggests that the vasodilatory responses of relaxin are mediated by its major receptor, the relaxin/insulin-like family peptide 1 receptor, RFXP1. The molecular mechanisms of relaxin vasodilation depend on the duration of hormone exposure (ie, there are rapid and sustained vasodilatory responses). Newly emerging data support the role of Gα(i/o) protein coupling to phosphatidylinositol-3 kinase/Akt (protein kinase B)-dependent phosphorylation and activation of endothelial nitric oxide synthase in the rapid vasodilatory responses of relaxin. Sustained vasodilatory responses critically depend on vascular endothelial and placental growth factors, and increases in arterial gelatinase(s) activity. Gelatinases hydrolyze big endothelin (ET) at a gly-leu bond to form ET(1-32), which activates the endothelial ET(B)/nitric oxide vasodilatory pathway. Although the relevance of relaxin biology to preeclampsia is largely speculative at this time, there are potential tantalizing links that are discussed in the context of our current understanding of the etiology and pathophysiology of the disease.
Collapse
Affiliation(s)
- Kirk P Conrad
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Road, Gainesville, FL 32610, USA.
| |
Collapse
|
23
|
Conrad KP. Unveiling the vasodilatory actions and mechanisms of relaxin. Hypertension 2010; 56:2-9. [PMID: 20497994 PMCID: PMC3392655 DOI: 10.1161/hypertensionaha.109.133926] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 04/16/2010] [Indexed: 11/16/2022]
Affiliation(s)
- Kirk P Conrad
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, 1600 SW Archer Rd, M552, PO Box 100274, Gainesville, FL 32610, USA.
| |
Collapse
|
24
|
Kopkan L, Khan MAH, Lis A, Awayda MS, Majid DSA. Cholesterol induces renal vasoconstriction and anti-natriuresis by inhibiting nitric oxide production in anesthetized rats. Am J Physiol Renal Physiol 2009; 297:F1606-13. [PMID: 19776170 DOI: 10.1152/ajprenal.90743.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although hypercholesterolemia is implicated in the pathophysiology of many renal disorders as well as hypertension, its direct actions in the kidney are not yet clearly understood. In the present study, we evaluated renal responses to administration of cholesterol (8 microg x min(-1).100 g body wt(-1); bound by polyethylene glycol) into the renal artery of anesthetized male Sprague-Dawley rats. Total renal blood flow (RBF) was measured by a Transonic flow probe, and glomerular filtration rate (GFR) was determined by Inulin clearance. In control rats (n = 8), cholesterol induced reductions of 10 +/- 2% in RBF [baseline (b) 7.6 +/- 0.3 microg x min(-1).100 g(-1)], 17 +/- 3% in urine flow (b, 10.6 +/- 0.9 microg x min(-1).100 g(-1)), 29 +/- 3% in sodium excretion (b, 0.96 +/- 0.05 mumol.min(-1).100 g(-1)) and 24 +/- 2% in nitrite/nitrate excretion (b, 0.22 +/- 0.01 nmol.min(-1).100 g(-1)) without an appreciable change in GFR (b, 0.87 +/- 0.03 ml.min(-1).100 g(-1)). These renal vasoconstrictor and anti-natriuretic responses to cholesterol were absent in rats pretreated with nitric oxide (NO) synthase inhibitor, nitro-l-arginine methylester (0.5 microg x min(-1).100 g(-1); n = 6). In rats pretreated with superoxide (O(2)(-)) scavenger tempol (50 microg x min(-1).100 g(-1); n = 6), the cholesterol-induced renal responses remained mostly unchanged, although there was a slight attenuation in anti-natriuretic response. This anti-natriuretic response to cholesterol was abolished in furosemide-pretreated rats (0.3 microg x min(-1).100 g(-1); n = 6) but remained unchanged in amiloride-pretreated rats (0.2 microg x min(-1).100 g(-1); n = 5), indicating that Na(+)/K(+)/2Cl(-) cotransport is the dominant mediator of this effect. These data demonstrate that cholesterol-induced acute renal vasoconstrictor and antinatriuretic responses are mediated by a decrease in NO production. These data also indicate that tubular effect of cholesterol on sodium reabsorption is mediated by the furosemide sensitive Na(+)/K(+)/2Cl(-) cotransporter.
Collapse
Affiliation(s)
- Libor Kopkan
- Physiology, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | | | |
Collapse
|
25
|
McGuane JT, Debrah JE, Debrah DO, Rubin JP, Segal M, Shroff SG, Conrad KP. Role of Relaxin in Maternal Systemic and Renal Vascular Adaptations during Gestation. Ann N Y Acad Sci 2009; 1160:304-12. [DOI: 10.1111/j.1749-6632.2009.03829.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Jeyabalan A, Shroff SG, Novak J, Conrad KP. The Vascular Actions of Relaxin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 612:65-87. [DOI: 10.1007/978-0-387-74672-2_6] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
27
|
Affiliation(s)
- Cary Ward
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | | | | |
Collapse
|
28
|
Hladunewich M, Karumanchi SA, Lafayette R. Pathophysiology of the clinical manifestations of preeclampsia. Clin J Am Soc Nephrol 2007; 2:543-9. [PMID: 17699462 DOI: 10.2215/cjn.03761106] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Du J, Sours-Brothers S, Coleman R, Ding M, Graham S, Kong DH, Ma R. Canonical transient receptor potential 1 channel is involved in contractile function of glomerular mesangial cells. J Am Soc Nephrol 2007; 18:1437-45. [PMID: 17389736 DOI: 10.1681/asn.2006091067] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Contractility of mesangial cells (MC) is tightly controlled by [Ca(2+)](i). Ca(2+) influx across the plasma membrane constitutes a major component of mesangial responses to vasoconstrictors. Canonical transient receptor potential 1 (TRPC1) is a Ca(2+)-permeable cation channel in a variety of cell types. This study was performed to investigate whether TRPC1 takes part in vasoconstrictor-induced mesangial contraction by mediating Ca(2+) entry. It was found that angiotensin II (AngII) evoked remarkable contraction of the cultured MC. Downregulation of TRPC1 using RNA interference significantly attenuated the contractile response. Infusion of AngII or endothelin-1 in rats caused a decrease in GFR. The GFR decline was significantly reduced by infusion of TRPC1 antibody that targets an extracellular domain in the pore region of TRPC1 channel. However, the treatment of TRPC1 antibody did not affect the AngII-induced vasopressing effect. Electrophysiologic experiments revealed that functional or biologic inhibition of TRPC1 significantly depressed AngII-induced channel activation. Fura-2 fluorescence-indicated that Ca(2+) entry in response to AngII stimulation was also dramatically inhibited by TRPC1 antibody and TRPC1-specific RNA interference. These results suggest that TRPC1 plays an important role in controlling contractile function of MC. Mediation of Ca(2+) entry might be the underlying mechanism for the TRPC1-associated MC contraction.
Collapse
Affiliation(s)
- Juan Du
- Department of Integrative Physiology, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas 76107, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Toda N, Ayajiki K, Okamura T. Interaction of endothelial nitric oxide and angiotensin in the circulation. Pharmacol Rev 2007; 59:54-87. [PMID: 17329548 DOI: 10.1124/pr.59.1.2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Discovery of the unexpected intercellular messenger and transmitter nitric oxide (NO) was the highlight of highly competitive investigations to identify the nature of endothelium-derived relaxing factor. This labile, gaseous molecule plays obligatory roles as one of the most promising physiological regulators in cardiovascular function. Its biological effects include vasodilatation, increased regional blood perfusion, lowering of systemic blood pressure, and antithrombosis and anti-atherosclerosis effects, which counteract the vascular actions of endogenous angiotensin (ANG) II. Interactions of these vasodilator and vasoconstrictor substances in the circulation have been a topic that has drawn the special interest of both cardiovascular researchers and clinicians. Therapeutic agents that inhibit the synthesis and action of ANG II are widely accepted to be essential in treating circulatory and metabolic dysfunctions, including hypertension and diabetes mellitus, and increased availability of NO is one of the most important pharmacological mechanisms underlying their beneficial actions. ANG II provokes vascular actions through various receptor subtypes (AT1, AT2, and AT4), which are differently involved in NO synthesis and actions. ANG II and its derivatives, ANG III, ANG IV, and ANG-(1-7), alter vascular contractility with different mechanisms of action in relation to NO. This review article summarizes information concerning advances in research on interactions between NO and ANG in reference to ANG receptor subtypes, radical oxygen species, particularly superoxide anions, ANG-converting enzyme inhibitors, and ANG receptor blockers in patients with cardiovascular disease, healthy individuals, and experimental animals. Interactions of ANG and endothelium-derived relaxing factor other than NO, such as prostaglandin I2 and endothelium-derived hyperpolarizing factor, are also described.
Collapse
Affiliation(s)
- Noboru Toda
- Department of Pharmacology, Shiga University of Medical Science, Seta, Otsu, Japan.
| | | | | |
Collapse
|
31
|
Conrad KP, Jeyabalan A, Danielson LA, Kerchner LJ, Novak J. Role of relaxin in maternal renal vasodilation of pregnancy. Ann N Y Acad Sci 2005; 1041:147-54. [PMID: 15956700 DOI: 10.1196/annals.1282.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The remarkable hemodynamic changes of normal pregnancy are briefly reviewed. In addition, new findings and current concepts related to the underlying hormonal and molecular mechanisms are presented. Finally, work that is in progress as well as future directions is briefly discussed.
Collapse
Affiliation(s)
- Kirk P Conrad
- Department of Ob/Gyn and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
32
|
Conrad KP, Novak J, Danielson LA, Kerchner LJ, Jeyabalan A. Mechanisms of renal vasodilation and hyperfiltration during pregnancy: current perspectives and potential implications for preeclampsia. ACTA ACUST UNITED AC 2005; 12:57-62. [PMID: 16036316 DOI: 10.1080/10623320590933789] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A thorough understanding of the renal and cardiovascular adaptations to normal gestation is essential for proper diagnosis and management of hypertensive disorders and renal diseases during pregnancy. Here, we briefly review the renal hemodynamic changes of normal pregnancy. In addition, we present new findings and current concepts related to the underlying hormonal and molecular mechanisms. Finally, we speculate on the potential contribution of these insights from normal pregnancy to the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- K P Conrad
- Department of Obstetrics/Gynecology, University of Pittsburgh School of Medicine and Magee-Women's Research Institute, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|
33
|
Fernández Celadilla L, Carbajo Rueda M, Muñoz Rodríguez M. Prolonged inhibition of nitric oxide synthesis in pregnant rats: effects on blood pressure, fetal growth and litter size. Arch Gynecol Obstet 2004; 271:243-8. [PMID: 15791477 DOI: 10.1007/s00404-004-0633-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Accepted: 03/07/2004] [Indexed: 10/26/2022]
Abstract
METHODS In order to investigate the effect of chronic inhibition of nitric oxide synthesis along pregnancy, pregnant rats were given drinking water alone (control group) or drinking water containing nonselective nitric oxide synthase inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 15 mg/day/rat equivalent to 50 mg/kg/day; treated group), from postmating days 1 to 18 of pregnancy. On days 1 to 17 of pregnancy, urinary volume, urinary sodium and potassium excretion, and urine protein concentration were measured. Systolic blood pressure (SBP) was recorded daily. On days 6, 11 and 18 of pregnancy the number of sites of implantation, number of embryos, litter size, fetal and placenta weight were determined. RESULTS Systolic blood pressure (mmHg) increased (p<0.001) on the 2nd day of administration of L-NAME and remained high throughout the experiment. This treatment increased urinary protein excretion and urine volume (p<0.01), with changes in the sodium and potassium excretion rate along the study. On day 6 of gestation in treated group, the number of implantation sites (0.14+/-0.10) significantly decreased (p<0.05) compared with the control group (1.45+/-0.58), but on day 11 of pregnancy the number of embryos was similar in both groups. By day 18 of pregnancy, L-NAME caused a substantial decrease (p<0.001) in litter weight (6.30+/-0.77 to 12.00+/-0.92 g), weight of placenta (3.17+/-0.22 to 4.74+/-0.21 g) (p<0.001) and litter size (7.95+/-0.59 to 11.95+/-0.45 fetus/litter; p<0.001). Also, treatment with L-NAME caused an important number of fetal resorptions (2.93+/-0.42 No./litter to 0 in control group). CONCLUSION Thus, treatment of pregnant rats with L-NAME, has an important effect on systolic blood pressure and on the physiology of reproduction, mainly in the third stage of pregnancy.
Collapse
Affiliation(s)
- Lina Fernández Celadilla
- Departamento de Sanidad Animal, Unidad de Reproducción, Facultad de Veterinaria, Universidad de León, Campus de Vegazana, 24007 León, Spain.
| | | | | |
Collapse
|
34
|
Bobadilla RA, Anguiano L, Pérez-Alvarez V, López Sanchez P. Pregnancy influence on the vascular interactions between nitric oxide and other endothelium-derived mediators in rat kidney. Can J Physiol Pharmacol 2003; 81:1-8. [PMID: 12665251 DOI: 10.1139/y02-168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Peripheral vascular resistance and sensitivity to circulating pressor and vasoconstrictor agents are blunted during pregnancy. This has been mainly attributed to an increased production of endothelium-derived mediators. The objective of this work was to evaluate if pregnancy changes the relative participation of nitric oxide (NO) and prostaglandins (PG) in respect to the modulation of the increases in renal perfusion pressure induced by phenylephrine (Phe). Dose-response curves were made with gradually increasing doses of Phe using an isolated kidney preparation in the presence of a NO synthase (NOS) inhibitor (L-NAME, 1 microM), a PG-synthesis inhibitor (indomethacin, 1 microM), both, or neither. Also, renal cyclooxygenase (COX-1 and COX-2) and endothelial NOS (eNOS) expression was determined using PCR. The experiments were done in kidneys from nonpregnant and pregnant rats. Our results showed that the relative participation of renal vasoactive mediators seems to change during pregnancy. We found the presence of a COX-1-dependent vasoconstrictor in the middle of pregnancy that was not found in nonpregnant rats. Our results also suggest that there is increased participation of another renal vasodilator substance, the effect of which is observed when NO or PG synthesis is inhibited during late pregnancy. In addition, an apparent interaction between renal eNOS and COX-1 expression was observed: eNOS expression was diminished, while COX-1 was increased during the 2nd week of pregnancy. In contrast, in kidneys from the 3rd week of pregnancy, the expression of these two enzymes was similar.
Collapse
Affiliation(s)
- Rosa A Bobadilla
- Departamento de Fisiología y Farmacología, Escuela Superior de Medicina del IPN, Plan de San Luis y Díaz Mirón, Casco de Santo Tomás, 11340 México D.F.
| | | | | | | |
Collapse
|
35
|
Butler DG, Pak SH, Midgely A, Nemati B. AT(1) receptor blockade with losartan during gestation in Wistar rats leads to an increase in thirst and sodium appetite in their adult female offspring. REGULATORY PEPTIDES 2002; 105:47-57. [PMID: 11853871 DOI: 10.1016/s0167-0115(01)00380-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We studied the effects of angiotensin II receptor blockade with losartan on thirst and sodium appetite in pregnant Wistar rats and on their adult female offspring. During maternal adaptation to pregnancy, average daily total water intake increased by 63% (P<0.01); NaCl intake by 214% (P<0.001). These changes were not blocked by daily s.c. injections of losartan (50 mg/kg bw i.p.) from gestation day (GD) 2 until GD 19 which implied that maternal AT(1) receptors were not involved in the up regulation of thirst and sodium appetite during pregnancy. Losartan blockade during gestation led to a significant and continued increase in thirst and sodium appetite in the adult female offspring. Daily water intakes were greater in the losartan (LO) group than in the vehicle-injected control group (CO), leading to a total water intake of 1114 +/- 80.6 ml/kg bw compared with 738 +/- 56.7 ml/kg bw (P<0.05) during the 8-day period of observation. Daily sodium intakes were usually 2-3 times greater in the LO group compared with the CO group, amounting to a final cumulative intake of 232 +/- 33 mmol/kg bw compared with 93.8 +/- 16.5 mmol/kg bw (P<0.05) in 8 days. These elevated sodium and water intakes were nearly counterbalanced by the increased renal excretion of water and sodium by fully functional kidneys that were not injured by the drug. Body weights were 10% lower in the LO group at the start but remained unchanged relative to the CO group during the entire 8-day period of observation. Plasma electrolytes, blood hematocrit and carotid MABP in the LO group did not differ from the CO group.
Collapse
Affiliation(s)
- D G Butler
- Department of Zoology, 25 Harbord Street, University of Toronto, Toronto, ON, Canada M5S 3G5.
| | | | | | | |
Collapse
|
36
|
Klett CP, Granger JP. Physiological elevation in plasma angiotensinogen increases blood pressure. Am J Physiol Regul Integr Comp Physiol 2001; 281:R1437-41. [PMID: 11641113 DOI: 10.1152/ajpregu.2001.281.5.r1437] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatic angiotensinogen secretion is controlled by a complex pattern of physiological or pathophysiological mediators. Because plasma concentrations of angiotensinogen are close to the Michaelis-Menten constant, it was hypothesized that changes in circulating angiotensinogen affect the formation rate of ANG I and ANG II and, therefore, blood pressure. To further test this hypothesis, we injected purified rat angiotensinogen intravenously in Sprague-Dawley rats via the femoral vein and measured mean arterial blood pressure after arterial catheterization. In controls, mean arterial pressure was 131 +/- 2 mmHg before and after the injection of vehicle (sterile saline). The injection of 0.8, 1.2, and 2.9 mg/kg angiotensinogen caused a dose-dependent increase in mean arterial blood pressure of 8 +/- 0.4, 19.3 +/- 2.1, and 32 +/- 2.4 mmHg, respectively. In contrast, the injection of a purified rabbit anti-rat angiotensinogen antibody (1.4 mg/kg) resulted in a significant decrease in mean arterial pressure (-33 +/- 3.2 mmHg). Plasma angiotensinogen increased to 769 +/- 32, 953 +/- 42, and 1,289 +/- 79 pmol/ml, respectively, after substrate and decreased by 361 +/- 28 pmol/ml after antibody administration. Alterations in plasma angiotensinogen correlated well with changes in plasma renin activity. In summary, variations in circulating angiotensinogen can result in changes in blood pressure. In contrast to renin, which is known as a tonic regulator for the generation of ANG I, angiotensinogen may be a factor rather important for long-term control of the basal activity of the renin-angiotensin system.
Collapse
Affiliation(s)
- C P Klett
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA.
| | | |
Collapse
|
37
|
Alexander BT, Cockrell KL, Rinewalt AN, Herrington JN, Granger JP. Enhanced renal expression of preproendothelin mRNA during chronic angiotensin II hypertension. Am J Physiol Regul Integr Comp Physiol 2001; 280:R1388-92. [PMID: 11294758 DOI: 10.1152/ajpregu.2001.280.5.r1388] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the role of endothelin in mediating the renal hemodynamic and arterial pressure changes observed during chronic ANG II-induced hypertension. ANG II (50 ng x kg(-1) x min(-1)) was chronically infused into the jugular vein by miniosmotic pump for 2 wk in male Sprague-Dawley rats with and without endothelin type A (ET(A))-receptor antagonist ABT-627 (5 mg x kg(-1) x day(-1)) pretreatment. Arterial pressure increased in ANG II rats compared with control rats (149 +/- 5 vs. 121 +/- 6 mmHg, P < 0.05, respectively). Renal expression of preproendothelin mRNA was increased by approximately 50% in both the medulla and cortex of ANG II rats. The hypertensive effect of ANG II was completely abolished in rats pretreated with the ET(A)-receptor antagonist (114 +/- 5 mmHg, P < 0.05). Glomerular filtration rate was decreased by 33% in ANG II rats, and this response was attenuated in rats pretreated with ET(A)-receptor antagonist. These data indicate that activation of the renal endothelin system by ANG II may play an important role in mediating chronic renal and hypertensive actions of ANG II.
Collapse
Affiliation(s)
- B T Alexander
- Department of Physiology and Biophysics, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | | | | | |
Collapse
|
38
|
Carbillon L, Uzan M, Uzan S. Pregnancy, vascular tone, and maternal hemodynamics: a crucial adaptation. Obstet Gynecol Surv 2000; 55:574-81. [PMID: 10975484 DOI: 10.1097/00006254-200009000-00023] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED The adaptation of vascular tone in early pregnancy precedes and probably triggers blood volume and cardiac output increase. Because the endothelium is known to regulate vascular smooth muscle action, the role of nitric oxide (NO) in the setting up of adequate uteroplacental and renal blood flow during normal pregnancy was investigated. The persistence of abnormally high uteroplacental resistance is a strong predisposing factor for intrauterine growth retardation and preeclampsia and can be screened by second trimester Doppler assessment of the uterine arteries. Current hypotheses suggested by experimental and clinical data concerning preeclampsia confirm the crucial role played by the endothelium and vascular tone adaptation. The analysis of these data leads to consider apart early-onset preeclampsia affecting pregnancies with growth retarded fetuses and associated with high vascular resistance. Lastly, NO donors seem to significantly decrease the impedance in the uteroplacental circulation and to improve fetoplacental hemodynamics assessed by Doppler measurements, and their therapeutic use in some forms of preeclampsia might be promising. TARGET AUDIENCE Obstetricians & Gynecologists, Family Physicians LEARNING OBJECTIVES After completion of this article, the reader will be able to summarize the events that regulate vascular tone in pregnancy, specifically the role of nitric oxide and other vasoactive prostaglandins in the regulation of vascular tone and to describe the various hypotheses concerning the mechanism and the mediators responsible for initiating endothelial damage in the various disorders of vascular tone in pregnancy.
Collapse
Affiliation(s)
- L Carbillon
- Department of Obstetrics and Gynecology, Assistance Publique--Hôpitaux de Paris, Hôpital Jean Verdier, Bondy, France.
| | | | | |
Collapse
|
39
|
Bennett WA, Terrone DA, Rinehart BK, Kassab S, Martin JN, Granger JP. Intrauterine endotoxin infusion in rat pregnancy induces preterm delivery and increases placental prostaglandin F2alpha metabolite levels. Am J Obstet Gynecol 2000; 182:1496-501. [PMID: 10871471 DOI: 10.1067/mob.2000.106848] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE This study was designed to examine the effects of intrauterine endotoxin (lipopolysaccharide) on rat pregnancy. STUDY DESIGN Pregnant Sprague-Dawley rats (N = 26) were implanted with uterine catheters on day 15 or 16 of a 22-day gestation. Animals were randomly assigned to receive either lipopolysaccharide (25 or 50 microg) or sodium chloride solution (1 mL) on day 17 and then were either sacrificed on day 19 or observed until delivery. Placentas were harvested at the time of death, homogenates were prepared, and prostaglandin F(2)(alpha) metabolite levels were determined by means of radioimmunoassay. Data were analyzed by analysis of variance, Student-Newman-Keuls, and Mann-Whitney tests. RESULTS Lipopolysaccharide-treated groups (25 and 50 microg) displayed a shorter interval to delivery (mean +/- SE, 82 +/- 13 and 63 +/- 8 hours, respectively) than control animals (117 +/- 3 hours). Pups of lipopolysaccharide-treated (25 and 50 microg) female animals had lower live birth weights (4.92 +/- 0.01 and 5.12 +/- 0. 24 g, respectively) compared with control animals (6.04 +/- 0.07 g). Placental homogenates from lipopolysaccharide-treated female animals contained higher levels of prostaglandin F(2)(alpha) metabolite (1567 +/- 64 and 1475 +/- 59 pg/mL) than those from sodium chloride solution-infused control animals (804 +/- 68 pg/mL). CONCLUSION Bacterial products induce the preterm delivery of low-birth-weight pups in rats, possibly by increasing local prostaglandin biosynthesis.
Collapse
Affiliation(s)
- W A Bennett
- Departments of Obstetrics and Gynecology and Physiology, University of Mississippi Medical Center, Jackson, USA
| | | | | | | | | | | |
Collapse
|
40
|
Zlatnik MG, Buhimschi I, Chwalisz K, Liao QP, Saade GR, Garfield RE. The effect of indomethacin and prostacyclin agonists on blood pressure in a rat model of preeclampsia. Am J Obstet Gynecol 1999; 180:1191-5. [PMID: 10329876 DOI: 10.1016/s0002-9378(99)70615-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE This study was designed to determine the effects of cyclooxygenase inhibition and prostacyclin agonists on the hypertension induced by nitric oxide synthase blockade in a previously characterized rat model of preeclampsia. STUDY DESIGN A condition similar to preeclampsia was induced by infusing pregnant rats with the nitric oxide synthase inhibitor N G -nitro- L -arginine methyl ester through subcutaneously implanted osmotic minipumps. Blood pressure was measured with the tail cuff method. In the first experiment the rats received either vehicle alone (control group), N G -nitro- L -arginine methyl ester (50 mg/d), indomethacin (0.1 mg/d), or N G -nitro- L -arginine methyl ester plus indomethacin beginning on day 17 of pregnancy. In the second experiment the rats received vehicle alone (control group), N G -nitro- L -arginine methyl ester (50 mg/d), or N G -nitro- L -arginine methyl ester plus iloprost (31 microgram/d). In a third experiment cicaprost (15 microgram/d) was substituted for iloprost. RESULTS Except for an increase on the day after insertion of the pump indomethacin had no significant effect on the hypertension induced by N G -nitro- L -arginine methyl ester. Both prostacyclin agonists (iloprost and cicaprost), however, attenuated the rise in blood pressure usually seen after N G -nitro- L -arginine methyl ester administration. CONCLUSIONS Nonselective inhibition of the cyclooxygenase enzymatic system does not influence the hypertension seen in the rat preeclampsia model induced by chronic nitric oxide deficiency. The hypertension in this model can be partially reversed with prostacyclin analogs.
Collapse
Affiliation(s)
- M G Zlatnik
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, Galveston, USA
| | | | | | | | | | | |
Collapse
|