1
|
Nazzal MA, Iter A, Dawabsheh AQ, Bsharat MA. Valsartan/Sacubitril induced isolated angioedema of uvula: A case report. Heliyon 2024; 10:e39423. [PMID: 39524712 PMCID: PMC11546446 DOI: 10.1016/j.heliyon.2024.e39423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Objective To report a case of drug-induced isolated angioedema secondary to the use of Entresto (Valsartan/Sacubitril). Case summary A 75-year-old White man presented with swelling of the uvula with a normal tongue shape and gradual onset of speech difficulty, shortness of breath, and difficulty swallowing after taking his chronic medication Entresto (sacubitril/valsartan). The main possibility considered was uvular angioedema, other potential causes were not identified. The angioedema subsequently resided after discontinuation of the medication and observation. The patient was diagnosed with Quincke's disease, specifically isolated angioedema of the uvula, which was attributed to the use of Entresto (specifically, the valsartan component). Discussion Angiotensin-converting enzyme inhibitors (ACEI) are frequently linked to drug-induced angioedema, which is likely attributable to their effects on bradykinin levels. If elevated bradykinin levels are the primary reason behind angioedema owing to ACE inhibitor use, ARBs are thought to cause very few, if any, occurrences of the condition. There have been numerous cases of angioedema that may have been reported by ARBs. The precise mechanism by which each of these classes of medications causes angioedema is uncertain. The expression and activation of AT2 receptors may be induced by rising angiotensin II levels. ARBs have been demonstrated to elevate bradykinin levels in animal models, an effect that is assumed to be attributable to elevated AT2 receptor stimulation. By inhibiting AT1 receptors and elevating angiotensin II levels, ARBs may exacerbate angioedema. Conclusion This is one of the first case reports in Palestine of Valsartan/Sacubitril-induced angioedema. This case and the relevant scientific literature are consistent with the hypothesis that ARB causes angioedema. Practitioners should be aware of this potential adverse effect of valsartan although the underlying cause is still not known.
Collapse
Affiliation(s)
- Maisa A. Nazzal
- Department of Infection Control and Prevention, Ibn Sina Specialized Hospital, Jenin, P200, Palestine
| | - Abbas Iter
- Department of Internal Medicine, Ibn Sina Specialized Hospital, Jenin, P200, Palestine
| | - Ameed Q. Dawabsheh
- Department of Internal Medicine, Ibn Sina Specialized Hospital, Jenin, P200, Palestine
| | - Majd A. Bsharat
- Department of Radiology, Ibn Sina Specialized Hospital, Jenin, P200, Palestine
| |
Collapse
|
2
|
Kaschina E, Lauer D, Lange C, Unger T. Angiotensin AT 2 receptors reduce inflammation and fibrosis in cardiovascular remodeling. Biochem Pharmacol 2024; 222:116062. [PMID: 38369211 DOI: 10.1016/j.bcp.2024.116062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/04/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The angiotensin AT2 receptor (AT2R), an important member of the "protective arm" of the renin-angiotensin system (RAS), has been recently defined as a therapeutic target in different pathological conditions. The AT2R activates complex signalling pathways linked to cellular proliferation, differentiation, anti-inflammation, antifibrosis, and induction or inhibition of apoptosis. The anti-inflammatory effect of AT2R activation is commonly associated with reduced fibrosis in different models. Current discoveries demonstrated a direct impact of AT2Rs on the regulation of cytokines, transforming growth factor beta1 (TGF-beta1), matrix metalloproteases (MMPs), and synthesis of the extracellular matrix components. This review article summarizes current knowledge on the AT2R in regard to immunity, inflammation and fibrosis in the heart and blood vessels. In particular, the differential influence of the AT2R on cardiovascular remodeling in preclinical models of myocardial infarction, heart failure and aneurysm formation are discussed. Overall, these studies demonstrate that AT2R stimulation represents a promising therapeutic approach to counteract myocardial and aortic damage in cardiovascular diseases.
Collapse
Affiliation(s)
- Elena Kaschina
- Charité - Universitätsmedizin Berlin, Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Berlin, Germany.
| | - Dilyara Lauer
- Charité - Universitätsmedizin Berlin, Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Berlin, Germany
| | - Christoph Lange
- Charité - Universitätsmedizin Berlin, Institute of Pharmacology, Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Berlin, Germany
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
3
|
Ermis N, Ulutas Z, Ozhan O, Yildiz A, Vardi N, Colak C, Parlakpinar H. Angiotensin II type 2 receptor agonist treatment of doxorubicin induced heart failure. Biotech Histochem 2023:1-10. [PMID: 36938690 DOI: 10.1080/10520295.2023.2187461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline derivative used for treatment of malignancies; however, its clinical use is limited by its cardiotoxicity. We investigated the effects of angiotensin II type 2 receptor agonist compound 21 (C21) on DOX induced heart failure in rat heart. We compared C21 with losartan (LOS), an AT 1 receptor antagonist used for treating heart failure. We allocated 40 rats into five groups of eight: saline treated control group, DOX group administered a single 20 mg/kg dose of DOX, DOX + C21 group administered 0.3 mg/kg C21 for 21 days following the 20 mg/kg dose of DOX, DOX + losartan (LOS) group administered a 21 day regimen of 20 mg/kg LOS following the single dose of DOX, and a DOX + LOS + C21 group administered 0.3 mg/kg C21 and 20 mg/kg LOS for 21 days following the single dose of DOX. We assessed histopathology and conducted echocardiograpic and hemodynamic measurements. Left ventricular ejection fraction (EF) was reduced only in the DOX treated group. C21, LOS and C21 + LOS therapy prevented decreased EF due to DOX. Less histopathology was observed in the DOX + LOS + C21 group than for the other treatment groups. Application of C21 decreased DOX induced cardiac injury similar to LOS. Combined use of C21 and LOS was most beneficial for DOX induced heart failure.
Collapse
Affiliation(s)
- Necip Ermis
- Department of Cardiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Zeynep Ulutas
- Department of Cardiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Onural Ozhan
- Department of Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Azibe Yildiz
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Nigar Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
4
|
Fredgart MH, Leurgans TM, Stenelo M, Nybo M, Bloksgaard M, Lindblad L, De Mey JGR, Steckelings UM. The angiotensin AT 2-receptor agonist compound 21 is an antagonist for the thromboxane TP-receptor - Implications for preclinical studies and future clinical use. Peptides 2023; 164:170990. [PMID: 36894067 DOI: 10.1016/j.peptides.2023.170990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Since the AT2-receptor (AT2R) agonist C21 has structural similarity to the AT1-receptor antagonists Irbesartan and Losartan, which are antagonists not only at the AT1R, but also at thromboxane TP-receptors, we tested the hypothesis that C21 has TP-receptor antagonistic properties as well. Isolated mouse mesenteric arteries from C57BL/6 J and AT2R-knockout mice (AT2R-/y) were mounted in wire myographs, contracted with either phenylephrine or the thromboxane A2 (TXA2) analogue U46619, and the relaxing effect of C21 (0.1 nM - 10 µM) was investigated. The effect of C21 on U46619-induced platelet aggregation was measured by an impedance aggregometer. Direct interaction of C21 with TP-receptors was determined by an β-arrestin biosensor assay. C21 caused significant, concentration-dependent relaxations in phenylephrine- and U46619-contracted mesenteric arteries from C57BL/6 J mice. The relaxing effect of C21 was absent in phenylephrine-contracted arteries from AT2R-/y mice, whereas it was unchanged in U46619-contracted arteries from AT2R-/y mice. C21 inhibited U46619-stimulated aggregation of human platelets, which was not inhibited by the AT2R-antagonist PD123319. C21 reduced U46619-induced recruitment of β-arrestin to human thromboxane TP-receptors with a calculated Ki of 3.74 µM. We conclude that in addition to AT2R-agonistic properties, C21 also acts as low-affinity TP-receptor antagonist, and that - depending on the constrictor - both mechanisms can be responsible for C21-induced vasorelaxation. Furthermore, by acting as a TP-receptor antagonist, C21 inhibits platelet aggregation. These findings are important for understanding potential off-target effects of C21 in the preclinical and clinical context and for the interpretation of C21-related myography data in assays with TXA2-analogues as constrictor.
Collapse
Affiliation(s)
- Maise H Fredgart
- Institute of Molecular Medicine - Dept. of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Thomas M Leurgans
- Institute of Molecular Medicine - Dept. of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Martin Stenelo
- Institute of Molecular Medicine - Dept. of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Mads Nybo
- Dept. of Clinical Biochemistry, Odense University Hospital, Odense, Denmark
| | - Maria Bloksgaard
- Institute of Molecular Medicine - Dept. of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | | | - Jo G R De Mey
- Institute of Molecular Medicine - Dept. of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - U Muscha Steckelings
- Institute of Molecular Medicine - Dept. of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
5
|
Restrepo Y, Noto N, Speth R. CGP42112: the full AT2 receptor agonist and its role in the renin-angiotensin-aldosterone system: no longer misunderstood. Clin Sci (Lond) 2022; 136:1513-1533. [PMID: 36326719 PMCID: PMC9638965 DOI: 10.1042/cs20220261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/14/2023]
Abstract
For years, the AT2R-selective ligand CGP42112 has been erroneously characterized as a partial agonist, partly due to its ability to also interact with the AT1R at high concentrations. As late as 2009, it was still being characterized as an antagonist as well. In this perspective/opinion piece, we try to resolve the ambiguity that surrounds the efficacy of this compound by extensively reviewing the literature, tracing its beginnings to 1989, showing that CGP42112 has never been convincingly shown to be a partial agonist or an antagonist at the AT2R. While CGP42112 is now routinely characterized as an AT2R agonist, regrettably, there is a paucity of studies that can validate its efficacy as a full agonist at the AT2R, leaving the door open for continuing speculation regarding the extent of its efficacy. Hopefully, the information presented in this perspective/opinion piece will firmly establish CGP42112 as a full agonist at the AT2R such that it can once again be used as a tool to study the AT2R.
Collapse
Affiliation(s)
- Yazmin M. Restrepo
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, U.S.A
| | - Natalia M. Noto
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, U.S.A
| | - Robert C. Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, U.S.A
- Department of Physiology and Pharmacology, School of Medicine, Georgetown University, Washington, DC 20007, U.S.A
| |
Collapse
|
6
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
7
|
Hillmeister P, Nagorka S, Gatzke N, Dülsner A, Li K, Dai M, Bondke Persson A, Lauxmann MA, Jaurigue J, Ritter O, Bramlage P, Buschmann E, Buschmann I. Angiotensin-converting enzyme inhibitors stimulate cerebral arteriogenesis. Acta Physiol (Oxf) 2022; 234:e13732. [PMID: 34555240 DOI: 10.1111/apha.13732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022]
Abstract
AIM Arteriogenesis constitutes the most efficient endogenous rescue mechanism in cases of cerebral ischaemia. The aim of this work was to investigate whether angiotensin-converting enzyme inhibitors (ACEi) stimulates, and angiotensin II receptor type 1 blockers (ARB) inhibits cerebral collateral growth by applying a three-vessel occlusion (3-VO) model in rat. METHODS Cerebral collateral growth was measured post 3-VO (1) by assessing blood flow using the cerebrovascular reserve capacity (CVRC) technique, and (2) by assessing vessel diameters in the posterior cerebral artery (PCA) via the evaluation of latex angiographies. A stimulatory effect on arteriogenesis was investigated for ACEi administration ± bradykinin receptor 1 (B1R) and 2 (B2R) blockers, and an inhibitory effect was analysed for ARB administration. Results were validated by immunohistochemical analysis and mechanistic data were collected by human umbilical vein endothelial cell (HUVEC) viability or scratch assay and monocyte (THP-1) migration assay. RESULTS An inhibitory effect of ARB on arteriogenesis could not be demonstrated. However, collateral growth measurements demonstrated a significantly increased CVRC and PCA diameters in the ACEi group. ACEi stimulates cell viability and migration, which could be partially reduced by additional administration of bradykinin receptor 1 inhibitor (B1Ri). ACEi inhibits the degradation of pro-arteriogenic bradykinin derivatives, but combined ACEi + B1Ri + B1Ri (BRB) treatment did not reverse the stimulatory effect. Yet, co-administration of ACEi + BRB enhances arteriogenesis and cell migration. CONCLUSION We demonstrate a potent stimulatory effect of ACEi on cerebral arteriogenesis in rats, presumable via B1R. However, results imply a pleiotropic and compensatory effect of ACEi on bradykinin receptor-stimulated arteriogenesis.
Collapse
Affiliation(s)
- Philipp Hillmeister
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
- Faculty of Health Sciences (FGW) Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg the Brandenburg Medical School Theodor Fontane (MHB) University of Potsdam Brandenburg an der Havel Germany
| | | | - Nora Gatzke
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
| | | | - Kangbo Li
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
- Charité Universitätsmedizin Berlin Berlin Germany
| | - Mengjun Dai
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
- Charité Universitätsmedizin Berlin Berlin Germany
| | | | - Martin A. Lauxmann
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
- Brandenburg Medical School Theodor Fontane (MHB) Brandenburg Medical School (MHB) Theodor Fontane Institute for Biochemistry & Clinic for Nephrology Brandenburg an der Havel Germany
| | - Jonnel Jaurigue
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
| | - Oliver Ritter
- Brandenburg Medical School Theodor Fontane (MHB) Brandenburg Medical School (MHB) Theodor Fontane Institute for Biochemistry & Clinic for Nephrology Brandenburg an der Havel Germany
- Brandenburg Medical School Theodor Fontane (MHB) Department for Cardiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
| | - Peter Bramlage
- Institute for Pharmacology and Preventive Medicine Cloppenburg Germany
| | - Eva Buschmann
- Department of Cardiology University Clinic Graz Graz Austria
| | - Ivo Buschmann
- Brandenburg Medical School Theodor Fontane (MHB) Deutsche Angiologie Zentrum Brandenburg‐Berlin (DAZB) Department for Angiology Center for Internal Medicine I Campus University Clinic Brandenburg Brandenburg an der Havel Germany
- Faculty of Health Sciences (FGW) Joint Faculty of the Brandenburg University of Technology Cottbus – Senftenberg the Brandenburg Medical School Theodor Fontane (MHB) University of Potsdam Brandenburg an der Havel Germany
| |
Collapse
|
8
|
Altered vascular reactivity to circulating angiotensin II in familial hypercholesterolemia. J Cardiovasc Pharmacol 2021; 78:551-559. [PMID: 34269699 DOI: 10.1097/fjc.0000000000001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/29/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT We have previously shown increased vascular reactivity to angiotensin (Ang) II in familial combined hyperlipidemia. However, this has not been well studied in familial hypercholesterolemia (FH), a condition with incipient endothelial dysfunction. This study aimed to examine microvascular and macrovascular responses to Ang II in FH. Therefore, we investigated the effects of a 3h infusion of Ang II on blood pressure and forearm skin microvascular function in 16 otherwise healthy FH patients and matched healthy controls. Skin microvascular hyperaemia was studied by laser Doppler fluxmetry during local heating. Microvascular resistance was determined by the ratio mean arterial pressure/microvascular hyperaemia. Macrovascular reactivity was assessed by changes in brachial blood pressure. Compared to the controls, the FH group had increased baseline systolic blood pressure (127±14 vs 115±12 mmHg; P=0.02), while systolic blood pressure responses were similar (+24±9 vs +21±7 mmHg; P=0.26), after 3 h of Ang II infusion. At baseline, there were no group differences in microvascular hyperaemia or resistance. However, after 3 h of Ang II infusion, heat induced microvascular hyperaemia was less pronounced in FH (126±95 vs 184±102 arbitrary units; P=0.01), while microvascular resistance during heat induced hyperaemia was increased (1.9±0.9 vs 0.9±0.8, P=0.01), as compared to controls. Both these responses were further pronounced 1 h after stopping Ang II. In conclusion, despite similar blood pressure responses to Ang II in FH and controls, microvascular dilatation capacity was impaired in FH, indicating endothelial dysfunction. These findings and increased microvascular resistance may lead to hypertension and microvascular complications in FH.
Collapse
|
9
|
Ranjit A, Khajehpour S, Aghazadeh-Habashi A. Update on Angiotensin II Subtype 2 Receptor: Focus on Peptide and Nonpeptide Agonists. Mol Pharmacol 2021; 99:469-487. [PMID: 33795351 DOI: 10.1124/molpharm.121.000236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022] Open
Abstract
Angiotensin II (Ang II) is the most dominant effector component of the renin-angiotensin system (RAS) that generally acts through binding to two main classes of G protein-coupled receptors, namely Ang II subtype 1 receptor (AT1R) and angiotensin II subtype 2 receptor (AT2R). Despite some controversial reports, the activation of AT2R generally antagonizes the effects of Ang II binding on AT1R. Studying AT2R signaling, function, and its specific ligands in cell culture or animal studies has confirmed its beneficial effects throughout the body. These characteristics classify AT2R as part of the protective arm of the RAS that, along with functions of Ang (1-7) through Mas receptor signaling, modulates the harmful effects of Ang II on AT1R in the activated classic arm of the RAS. Although Ang II is the primary ligand for AT2R, we have summarized other natural or synthetic peptide and nonpeptide agonists with critical evaluation of their structure, mechanism of action, and biologic activity. SIGNIFICANCE STATEMENT: AT2R is one of the main components of the RAS and has a significant prospective for mediating the beneficial action of the RAS through its protective arm on the body's homeostasis. Targeting AT2R offers substantial clinical application possibilities for modulating various pathological conditions. This review provided concise information regarding the AT2R peptide and nonpeptide agonists and their potential clinical applications for various diseases.
Collapse
Affiliation(s)
- Arina Ranjit
- College of Pharmacy, Idaho State University, Pocatello, Idaho, USA
| | - Sana Khajehpour
- College of Pharmacy, Idaho State University, Pocatello, Idaho, USA
| | | |
Collapse
|
10
|
González-Blázquez R, Alcalá M, Fernández-Alfonso MS, Steckelings UM, Lorenzo MP, Viana M, Boisvert WA, Unger T, Gil-Ortega M, Somoza B. C21 preserves endothelial function in the thoracic aorta from DIO mice: role for AT2, Mas and B2 receptors. Clin Sci (Lond) 2021; 135:1145-1163. [PMID: 33899912 DOI: 10.1042/cs20210049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 04/16/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Compound 21 (C21), a selective agonist of angiotensin II type 2 receptor (AT2R), induces vasodilation through NO release. Since AT2R seems to be overexpressed in obesity, we hypothesize that C21 prevents the development of obesity-related vascular alterations. The main goal of the present study was to assess the effect of C21 on thoracic aorta endothelial function in a model of diet-induced obesity (DIO) and to elucidate the potential cross-talk among AT2R, Mas receptor (MasR) and/or bradykinin type 2 receptor (B2R) in this response. Five-week-old male C57BL6J mice were fed a standard (CHOW) or a high-fat diet (HF) for 6 weeks and treated daily with C21 (1 mg/kg p.o) or vehicle, generating four groups: CHOW-C, CHOW-C21, HF-C, HF-C21. Vascular reactivity experiments were performed in thoracic aorta rings. Human endothelial cells (HECs; EA.hy926) were used to elucidate the signaling pathways, both at receptor and intracellular levels. Arteries from HF mice exhibited increased contractions to Ang II than CHOW mice, effect that was prevented by C21. PD123177, A779 and HOE-140 (AT2R, Mas and B2R antagonists) significantly enhanced Ang II-induced contractions in CHOW but not in HF-C rings, suggesting a lack of functionality of those receptors in obesity. C21 prevented those alterations and favored the formation of AT2R/MasR and MasR/B2R heterodimers. HF mice also exhibited impaired relaxations to acetylcholine (ACh) due to a reduced NO availability. C21 preserved NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways. In conclusion, C21 favors the interaction among AT2R, MasR and B2R and prevents the development of obesity-induced endothelial dysfunction by stimulating NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/drug effects
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Diet, High-Fat
- Drug Evaluation, Preclinical
- Endothelium, Vascular/drug effects
- Human Umbilical Vein Endothelial Cells
- Humans
- Imidazoles/pharmacology
- Imidazoles/therapeutic use
- Male
- Mice, Inbred C57BL
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Obesity/complications
- Obesity/metabolism
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor Cross-Talk
- Receptor, Angiotensin, Type 2/agonists
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Bradykinin B2/metabolism
- Receptors, G-Protein-Coupled/metabolism
- Renin-Angiotensin System/drug effects
- Signal Transduction/drug effects
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Thiophenes/pharmacology
- Thiophenes/therapeutic use
- Vascular Diseases/etiology
- Vascular Diseases/metabolism
- Vascular Diseases/prevention & control
- Mice
Collapse
Affiliation(s)
- Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - María S Fernández-Alfonso
- Instituto Pluridisciplinar, Unidad de Cartografía Cerebral, Universidad Complutense de Madrid, Madrid 28040, Spain
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Ulrike Muscha Steckelings
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - M Paz Lorenzo
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad CEU-San Pablo, CEU Universities, Madrid 28925, Spain
| | - William A Boisvert
- Center for Cardiovascular Research, John A. Burns School of Medicine, University of Hawaii, 651 Ilalo Street, BSB311, Honolulu, HI 96813, U.S.A
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid 28925, Spain
| |
Collapse
|
11
|
Tripathi R, Sullivan RD, Fan THM, Mehta RM, Gladysheva IP, Reed GL. A Low-Sodium Diet Boosts Ang (1-7) Production and NO-cGMP Bioavailability to Reduce Edema and Enhance Survival in Experimental Heart Failure. Int J Mol Sci 2021; 22:4035. [PMID: 33919841 PMCID: PMC8070795 DOI: 10.3390/ijms22084035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Sodium restriction is often recommended in heart failure (HF) to block symptomatic edema, despite limited evidence for benefit. However, a low-sodium diet (LSD) activates the classical renin-angiotensin-aldosterone system (RAAS), which may adversely affect HF progression and mortality in patients with dilated cardiomyopathy (DCM). We performed a randomized, blinded pre-clinical trial to compare the effects of a normal (human-equivalent) sodium diet and a LSD on HF progression in a normotensive model of DCM in mice that has translational relevance to human HF. The LSD reduced HF progression by suppressing the development of pleural effusions (p < 0.01), blocking pathological increases in systemic extracellular water (p < 0.001) and prolonging median survival (15%, p < 0.01). The LSD activated the classical RAAS by increasing plasma renin activity, angiotensin II and aldosterone levels. However, the LSD also significantly up-elevated the counter-regulatory RAAS by boosting plasma angiotensin converting enzyme 2 (ACE2) and angiotensin (1-7) levels, promoting nitric oxide bioavailability and stimulating 3'-5'-cyclic guanosine monophosphate (cGMP) production. Plasma HF biomarkers associated with poor outcomes, such as B-type natriuretic peptide and neprilysin were decreased by a LSD. Cardiac systolic function, blood pressure and renal function were not affected. Although a LSD activates the classical RAAS system, we conclude that the LSD delayed HF progression and mortality in experimental DCM, in part through protective stimulation of the counter-regulatory RAAS to increase plasma ACE2 and angiotensin (1-7) levels, nitric oxide bioavailability and cGMP production.
Collapse
Affiliation(s)
- Ranjana Tripathi
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Ryan D Sullivan
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Tai-Hwang M Fan
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Radhika M Mehta
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Inna P Gladysheva
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| | - Guy L Reed
- Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ 85004, USA
| |
Collapse
|
12
|
Mishra JS, Kumar S. Activation of angiotensin type 2 receptor attenuates testosterone-induced hypertension and uterine vascular resistance in pregnant rats†. Biol Reprod 2021; 105:192-203. [PMID: 33739377 DOI: 10.1093/biolre/ioab051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/23/2021] [Accepted: 03/16/2021] [Indexed: 11/13/2022] Open
Abstract
Preeclampsia is a pregnancy-related hypertensive disorder with unclear mechanisms. While hypersensitivity to angiotensin II via vasoconstrictive angiotensin type-1 receptor (AT1R) is observed in preeclampsia, the importance of vasodilatory angiotensin type-2 receptor (AT2R) in the control of vascular dysfunction is less clear. We assessed whether AT1R, AT2R, and endothelial nitric oxide synthase (eNOS) expression are altered in placental vessels of preeclamptic women and tested if ex vivo incubation with AT2R agonist Compound 21 (C21; 1 μM) could restore AT1R, AT2R, and eNOS balance. Further, using a rat model of gestational hypertension induced by elevated testosterone, we examined whether C21 (1 μg/kg/day, oral) could preserve AT1R and AT2R balance and improve blood pressure, uterine artery blood flow, and vascular function. Western blots revealed that AT1R protein level was higher while AT2R and eNOS protein were reduced in preeclamptic placental vessels, and AT2R agonist C21 decreased AT1R and increased AT2R and eNOS protein levels in preeclamptic vessels. In testosterone dams, blood pressure was higher, and uterine artery blood flow was reduced, and C21 treatment reversed these levels similar to those in controls dams. C21 attenuated the exaggerated Ang II contraction and improved endothelium-dependent vasorelaxation in uterine arteries of testosterone dams. These C21-mediated vascular effects were associated with decreased AT1R and increased AT2R and eNOS protein levels. C21 also increased serum nitrate/nitrite and bradykinin production in testosterone dams and attenuated the fetoplacental growth restriction. Thus, AT1R upregulation and AT2R downregulation are observed in preeclampsia and testosterone model, and increasing AT2R activity could help restore AT1R and AT2R balance and improve gestational vascular function.
Collapse
Affiliation(s)
- Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, USA.,Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI, USA.,Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
13
|
McFall A, Nicklin SA, Work LM. The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cell Signal 2020; 76:109809. [PMID: 33059037 PMCID: PMC7550360 DOI: 10.1016/j.cellsig.2020.109809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/01/2023]
Abstract
Stroke is the 2nd leading cause of death worldwide and the leading cause of physical disability and cognitive issues. Although we have made progress in certain aspects of stroke treatment, the consequences remain substantial and new treatments are needed. Hypertension has long been recognised as a major risk factor for stroke, both haemorrhagic and ischaemic. The renin angiotensin system (RAS) plays a key role in blood pressure regulation and this, plus local expression and signalling of RAS in the brain, both support the potential for targeting this axis therapeutically in the setting of stroke. While historically, focus has been on suppressing classical RAS signalling through the angiotensin type 1 receptor (AT1R), the identification of a counter-regulatory axis of the RAS signalling via the angiotensin type 2 receptor (AT2R) and Mas receptor has renewed interest in targeting the RAS. This review describes RAS signalling in the brain and the potential of targeting the Mas receptor and AT2R in preclinical models of ischaemic stroke. The animal and experimental models, and the route and timing of intervention, are considered from a translational perspective.
Collapse
Affiliation(s)
- Aisling McFall
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Lorraine M Work
- Institute of Cardiovascular & Medical Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Hamid S, Rhaleb IA, Kassem KM, Rhaleb NE. Role of Kinins in Hypertension and Heart Failure. Pharmaceuticals (Basel) 2020; 13:E347. [PMID: 33126450 PMCID: PMC7692223 DOI: 10.3390/ph13110347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
The kallikrein-kinin system (KKS) is proposed to act as a counter regulatory system against the vasopressor hormonal systems such as the renin-angiotensin system (RAS), aldosterone, and catecholamines. Evidence exists that supports the idea that the KKS is not only critical to blood pressure but may also oppose target organ damage. Kinins are generated from kininogens by tissue and plasma kallikreins. The putative role of kinins in the pathogenesis of hypertension is discussed based on human mutation cases on the KKS or rats with spontaneous mutation in the kininogen gene sequence and mouse models in which the gene expressing only one of the components of the KKS has been deleted or over-expressed. Some of the effects of kinins are mediated via activation of the B2 and/or B1 receptor and downstream signaling such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF) and/or tissue plasminogen activator (T-PA). The role of kinins in blood pressure regulation at normal or under hypertension conditions remains debatable due to contradictory reports from various laboratories. Nevertheless, published reports are consistent on the protective and mediating roles of kinins against ischemia and cardiac preconditioning; reports also demonstrate the roles of kinins in the cardiovascular protective effects of the angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARBs).
Collapse
Affiliation(s)
- Suhail Hamid
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Imane A. Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
| | - Kamal M. Kassem
- Division of Cardiology, Department of Internal Medicine, University of Louisville Medical Center, Louisville, KY 40202, USA;
| | - Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI 48202, USA; (S.H.); (I.A.R.)
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Gouda AS, Mégarbane B. Snake venom-derived bradykinin-potentiating peptides: A promising therapy for COVID-19? Drug Dev Res 2020; 82:38-48. [PMID: 32761647 PMCID: PMC7436322 DOI: 10.1002/ddr.21732] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/23/2022]
Abstract
The severe acute respiratory syndrome coronavirus‐2 (SARS‐COV‐2), a novel coronavirus responsible for the recent infectious pandemic, is known to downregulate angiotensin‐converting enzyme‐2 (ACE2). Most current investigations focused on SARS‐COV‐2‐related effects on the renin–angiotensin system and especially the resultant increase in angiotensin II, neglecting its effects on the kinin–kallikrein system. SARS‐COV‐2‐induced ACE2 inhibition leads to the augmentation of bradykinin 1‐receptor effects, as ACE2 inactivates des‐Arg9‐bradykinin, a bradykinin metabolite. SARS‐COV‐2 also decreases bradykinin 2‐receptor effects as it affects bradykinin synthesis by inhibiting cathepsin L, a kininogenase present at the site of infection and involved in bradykinin production. The physiologies of both the renin–angiotensin and kinin–kallikrein system are functionally related suggesting that any intervention aiming to treat SARS‐COV‐2‐infected patients by triggering one system but ignoring the other may not be adequately effective. Interestingly, the snake‐derived bradykinin‐potentiating peptide (BPP‐10c) acts on both systems. BPP‐10c strongly decreases angiotensin II by inhibiting ACE, increasing bradykinin‐related effects on the bradykinin 2‐receptor and increasing nitric oxide‐mediated effects. Based on a narrative review of the literature, we suggest that BPP‐10c could be an optimally effective option to consider when aiming at developing an anti‐SARS‐COV‐2 drug.
Collapse
Affiliation(s)
- Ahmed S Gouda
- National Egyptian Center for Toxicological Researches, Faculty of Medicine, University of Cairo, Cairo, Egypt
| | - Bruno Mégarbane
- Department of Medical and Toxicological Critical Care, Lariboisière Hospital, University of Paris, INSERM UMRS-1144, Paris, France
| |
Collapse
|
16
|
Genome-wide association study of angioedema induced by angiotensin-converting enzyme inhibitor and angiotensin receptor blocker treatment. THE PHARMACOGENOMICS JOURNAL 2020; 20:770-783. [PMID: 32080354 PMCID: PMC7674154 DOI: 10.1038/s41397-020-0165-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/26/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022]
Abstract
Angioedema in the mouth or upper airways is a feared adverse reaction to angiotensin-converting enzyme inhibitor (ACEi) and angiotensin receptor blocker (ARB) treatment, which is used for hypertension, heart failure and diabetes complications. This candidate gene and genome-wide association study aimed to identify genetic variants predisposing to angioedema induced by these drugs. The discovery cohort consisted of 173 cases and 4890 controls recruited in Sweden. In the candidate gene analysis, ETV6, BDKRB2, MME, and PRKCQ were nominally associated with angioedema (p < 0.05), but did not pass Bonferroni correction for multiple testing (p < 2.89 × 10−5). In the genome-wide analysis, intronic variants in the calcium-activated potassium channel subunit alpha-1 (KCNMA1) gene on chromosome 10 were significantly associated with angioedema (p < 5 × 10−8). Whilst the top KCNMA1 hit was not significant in the replication cohort (413 cases and 599 ACEi-exposed controls from the US and Northern Europe), a meta-analysis of the replication and discovery cohorts (in total 586 cases and 1944 ACEi-exposed controls) revealed that each variant allele increased the odds of experiencing angioedema 1.62 times (95% confidence interval 1.05–2.50, p = 0.030). Associated KCNMA1 variants are not known to be functional, but are in linkage disequilibrium with variants in transcription factor binding sites active in relevant tissues. In summary, our data suggest that common variation in KCNMA1 is associated with risk of angioedema induced by ACEi or ARB treatment. Future whole exome or genome sequencing studies will show whether rare variants in KCNMA1 or other genes contribute to the risk of ACEi- and ARB-induced angioedema.
Collapse
|
17
|
Abstract
The active hormone of the renin-angiotensin system (RAS), angiotensin II (Ang II), is involved in several human diseases, driving the development and clinical use of several therapeutic drugs, mostly angiotensin I converting enzyme (ACE) inhibitors and angiotensin receptor type I (AT1R) antagonists. However, angiotensin peptides can also bind to receptors different from AT1R, in particular, angiotensin receptor type II (AT2R), resulting in biological and physiological effects different, and sometimes antagonistic, of their binding to AT1R. In the present Perspective, the components of the RAS and the therapeutic tools developed to control it will be reviewed. In particular, the characteristics of AT2R and tools to modulate its functions will be discussed. Agonists or antagonists to AT2R are potential therapeutics in cardiovascular diseases, for agonists, and in the control of pain, for antagonists, respectively. However, controlling their binding properties and their targeting to the target tissues must be optimized.
Collapse
Affiliation(s)
- Lucienne Juillerat-Jeanneret
- Transplantation Center, Department of Medicine, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Chemin des Boveresses 155, CH1011 Lausanne, Switzerland
| |
Collapse
|
18
|
Toedebusch R, Belenchia A, Pulakat L. Cell-Specific Protective Signaling Induced by the Novel AT2R-Agonist NP-6A4 on Human Endothelial and Smooth Muscle Cells. Front Pharmacol 2018; 9:928. [PMID: 30186168 PMCID: PMC6111462 DOI: 10.3389/fphar.2018.00928] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/30/2018] [Indexed: 01/06/2023] Open
Abstract
Cardiovascular disease incidence continues to rise and new treatment paradigms are warranted. We reported previously that activation of Angiotensin II receptor (encoded by the X-linked Agtr2 gene) by a new peptide agonist, NP-6A4, was more effective in protecting mouse cardiomyocyte HL-1 cells and human coronary artery vascular smooth muscle cells (hCAVSMCs) from acute nutrient deficiency than other drugs tested. To elucidate further the protective effects of NP-6A4 in human cells, we studied the effects of NP-6A4 treatment on functions of human coronary artery endothelial cells (hCAECs), and hCAVSMCs. In hCAVSMCs, NP-6A4 (1 μM) increased Agtr2 mRNA (sixfold, p < 0.05) after 12-h exposure, whereas in hCAECs, significant increase in Agtr2 mRNA (hCAECs: eightfold) was observed after prolonged exposure. Interestingly, NP-6A4 treatment (1 μM, 12 h) increased AT2R protein levels in all human cells tested. Pre-treatment with AT2R-antagonist PD123319 (20 μM) and anti-AT2R siRNA (1 μM) suppressed this effect. Thus, NP-6A4 activates a positive feedback loop for AT2R expression and signaling in hCAVSMCs and hCAECs. NP-6A4 (1–20 μM) increased cell index (CI) of hCAVSMCs as determined by real time cell analyzer (RTCA), indicating that high concentrations of NP-6A4 were not cytotoxic for hCAVSMCs, rather promoting better cell attachment and growth. Seahorse Extracellular Flux Assay revealed that NP-6A4 (1 μM) treatment for 7 days increased whole cell-based mitochondrial parameters of hCAVSMCs, specifically maximal respiration (p < 0.05), spare respiratory capacity (p < 0.05) and ATP production (p < 0.05). NP-6A4 (1 μM; 7 days) also suppressed Reactive Oxygen Species (ROS) in hCAVSMCs. Exposure to Doxorubicin (DOXO) (1 μM) increased ROS in hCAVSMCs and this effect was suppressed by NP-6A4 (1 μM). In hCAECs grown in complete medium, NP-6A4 (1 μM) and Ang II (1 μM) exerted similar changes in CI. Additionally, NP-6A4 (5 μM: 12 h) increased expression of eNOS (sixfold, p < 0.05) and generation of nitric oxide (1.3-fold, p < 0.05) in hCAECs and pre-treatment with PD123319 (20 μM) suppressed this effect partially (65%). Finally, NP-6A4 decreased phosphorylation of Jun-N-terminal kinase, implicated in apoptosis of ECs in atherosclerotic sites. Taken together, NP-6A4, through its ability to increase AT2R expression and signaling, exerts different cell-specific protective effects in human VSMCs and ECs.
Collapse
Affiliation(s)
- Ryan Toedebusch
- Department of Medicine, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Anthony Belenchia
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Lakshmi Pulakat
- Department of Medicine, University of Missouri, Columbia, MO, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| |
Collapse
|
19
|
Abstract
The bradykinin B2 receptor antagonist icatibant is effective in angiotensin-converting enzyme inhibitor-induced angioedema. The drug is not approved officially for this indication and has to be administered in an emergency situation off-label. Corticosteroids or antihistamines do not seem to work in this condition. The effectiveness of C1-esterase-inhibitor in angiotensin-converting enzyme-induced angioedema must be verified in a double-blind study.
Collapse
Affiliation(s)
- Murat Bas
- Clinic of Otorhinolaryngology, Klinikum rechts der Isar, Technische Universität München, Ismaninger St 22, 81675 Munich, Germany.
| |
Collapse
|
20
|
Effects of Nitric Oxide on Renal Proximal Tubular Na + Transport. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6871081. [PMID: 29181400 PMCID: PMC5664255 DOI: 10.1155/2017/6871081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/14/2017] [Indexed: 12/28/2022]
Abstract
Nitric oxide (NO) has a wide variety of physiological functions in the kidney. Besides the regulatory effects in intrarenal haemodynamics and glomerular microcirculation, in vivo studies reported the diuretic and natriuretic effects of NO. However, opposite results showing the stimulatory effect of NO on Na+ reabsorption in the proximal tubule led to an intense debate on its physiological roles. Animal studies have showed the biphasic effect of angiotensin II (Ang II) and the overall inhibitory effect of NO on the activity of proximal tubular Na+ transporters, the apical Na+/H+ exchanger isoform 3, basolateral Na+/K+ ATPase, and the Na+/HCO3− cotransporter. However, whether these effects could be reproduced in humans remained unclear. Notably, our recent functional analysis of isolated proximal tubules demonstrated that Ang II dose-dependently stimulated human proximal tubular Na+ transport through the NO/guanosine 3′,5′-cyclic monophosphate (cGMP) pathway, confirming the human-specific regulation of proximal tubular transport via NO and Ang II. Of particular importance for this newly identified pathway is its possibility of being a human-specific therapeutic target for hypertension. In this review, we focus on NO-mediated regulation of proximal tubular Na+ transport, with emphasis on the interaction with individual Na+ transporters and the crosstalk with Ang II signalling.
Collapse
|
21
|
Kaschina E, Namsolleck P, Unger T. AT2 receptors in cardiovascular and renal diseases. Pharmacol Res 2017; 125:39-47. [PMID: 28694144 DOI: 10.1016/j.phrs.2017.07.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/04/2017] [Accepted: 07/06/2017] [Indexed: 01/14/2023]
Abstract
The renin-angiotensin system (RAS) plays an important role in the initiation and progression of cardiovascular and renal diseases. These actions mediated by AT1 receptor (AT1R) are well established and led to development of selective AT1R blockers (ARBs). In contrast, there is scientific evidence that AT2 receptor (AT2R) mediates effects different from and often opposing those of the AT1R. Meagrely expressed in healthy tissue the AT2R is upregulated in injuries providing an endogenous protection to inflammatory, oxidative and apoptotic processes. Interestingly the beneficial effects mediated by AT2R can be further enhanced by pharmacological intervention using the recently developed AT2R agonists. This review article summarizes our current knowledge about regulation, signalling and effects mediated by AT2R in health and disease, with emphasis on cardiac and renal systems. At the end a novel concept of natural protective systems will be introduced and discussed as an attractive target in drug development.
Collapse
Affiliation(s)
- Elena Kaschina
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pharmacology, Center for Cardiovascular Research (CCR), Germany.
| | | | - Thomas Unger
- CARIM, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
22
|
Bas M. Evidence and evidence gaps of medical treatment of non-tumorous diseases of the head and neck. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2016; 15:Doc02. [PMID: 28025602 PMCID: PMC5169075 DOI: 10.3205/cto000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unfortunately, the treatment of numerous otolaryngological diseases often lacks of evidence base because appropriate studies are missing. Whereas sufficient high-quality trials exist for the specific immunotherapy of allergic rhinitis and in a limited measure also for the angiotensin-converting enzyme inhibitor induced angioedema, the evidence for Menière’s disease or for pharmacotherapy of postoperative laryngeal edema is rather poor. This contribution will discuss the trial situation and evidence of the respective diseases.
Collapse
Affiliation(s)
- Murat Bas
- Department of Otolaryngology, Technische Universität München, Germany
| |
Collapse
|
23
|
Talari G, Talari P, Sweigart J, Ahmed S. Rare case of losartan-induced cough complicated by rectus sheath haematoma: in a patient on rivaroxaban therapy. BMJ Case Rep 2016; 2016:bcr-2016-217801. [PMID: 28011889 DOI: 10.1136/bcr-2016-217801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Spontaneous rectus sheath haematomas and cough secondary to losartan are individually rare conditions. Abdominal wall haematomas present with abdominal pain and abdominal mass. Most patients are managed conservatively; Surgery or embolisation is indicated for shock, infection, rupture into the peritoneum or intractable pain. This is a man aged 65 years presented with dry cough and right-sided abdominal pain. He started losartan a few weeks prior to the onset of cough and had been on rivaroxaban for prior deep venous thrombosis. The right side of his abdomen was distended, bruised and tender. His haemoglobin dropped from 13.3to 9.5 g/dL. CT abdomen/pelvis showed a large 14.5×9.1×4.5 cm haematoma within the right lateral rectus muscle. His only risk factor for developing rectus sheath haematoma was cough in the setting of anticoagulation. Dry cough due to angiotensin receptor blockers is rare, but can have very serious consequences.
Collapse
Affiliation(s)
- Goutham Talari
- Department of Internal Medicine, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Preetham Talari
- Department of Internal Medicine, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Joseph Sweigart
- Department of Internal Medicine, University of Kentucky Medical Center, Lexington, Kentucky, USA
| | - Sadiq Ahmed
- Department of Internal Medicine-Nephrology, University of Kentucky Medical Center, Lexington, Kentucky, USA
| |
Collapse
|
24
|
Jugdutt BI, Yi Xu, Balghith M, Menon V. Cardioprotective effects of angiotensin II type 1 receptor blockade with candesartan after reperfused myocardial infarction: role of angiotensin II type 2 receptor. J Renin Angiotensin Aldosterone Syst 2016; 2:S162-S166. [DOI: 10.1177/14703203010020012801] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To determine whether angiotensin II (Ang II) type 2 (AT2)-receptor activation associated with cardioprotection induced by Ang II type 1 (AT1)-receptor blockade during ischaemia-reperfusion (IR) might be reflected in increased AT 2-receptor, IP3-(1,4,5- inositol trisphosphate type 2) receptor and PKC-ε (protein kinase C-ε) proteins and tissue cGMP (cyclic guanosine monophosphate), we measured in vivo left ventricular (LV) systolic and diastolic function and remodelling (echocardiogram/Doppler) and haemodynamics, and ex vivo infarct size, AT1-/AT 2receptor, IP3-receptor and PKC-ε proteins (immunoblots) and cGMP (enzyme immunoassay) in dogs with reperfused anterior acute myocardial infarction (MI) (90-minute ischaemia, 120-minute reperfusion). Compared with controls (C, n=6) in vivo, candesartan (1 mg/kg i.v. over 30-minute pre-ischaemia, n=6) effectively inhibited the Ang II pressor response (Δ%, -14±22% vs. -80±11, p<0.003) and decreased preload (122±35 vs. -2±16%, p<0.01), improved LV systolic ejection fraction (-29±4 vs. -11±5, p<0.03) and diastolic function (E/A ratio, -25±7 vs. 33±13, p<0.004), decreased the extent of LV asynergy (26±20 vs. -31±10% LV, p<0.05) and limited acute LV remodelling (expansion index 19±6 vs. -3±5, p<0.05; thinning ratio -22±2 vs. -4±2, p<0.0003). Ex vivo, candesartan decreased infarct size (55±2 vs. 27±2% risk, p<0.001) and increased infarct zone (IZ) AT2 -receptor protein by 8-fold (but not AT1-receptor protein), IP3-receptor protein by 12-fold, PKC-ε protein by 5-fold and cGMP by 40%. Cardioprotective effects of AT1-receptor blockade on acute IR injury, LV function, and remodelling may also involve AT 2-receptor activation and downstream signalling via IP3-receptor, PKC-ε and cGMP.
Collapse
Affiliation(s)
- Bodh I Jugdutt
- Division of Cardiology, Department of Medicine, University
of Alberta, Edmonton, Alberta, Canada,
| | - Yi Xu
- Division of Cardiology, Department of Medicine, University
of Alberta, Edmonton, Alberta, Canada
| | - Mohammed Balghith
- Division of Cardiology, Department of Medicine, University
of Alberta, Edmonton, Alberta, Canada
| | - Vijayan Menon
- Division of Cardiology, Department of Medicine, University
of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
25
|
Paulis L, Foulquier S, Namsolleck P, Recarti C, Steckelings UM, Unger T. Combined Angiotensin Receptor Modulation in the Management of Cardio-Metabolic Disorders. Drugs 2016; 76:1-12. [PMID: 26631237 PMCID: PMC4700059 DOI: 10.1007/s40265-015-0509-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular and metabolic disorders, such as hypertension, insulin resistance, dyslipidemia or obesity are linked with chronic low-grade inflammation and dysregulation of the renin–angiotensin system (RAS). Consequently, RAS inhibition by ACE inhibitors or angiotensin AT1 receptor (AT1R) blockers is the evidence-based standard for cardiovascular risk reduction in high-risk patients, including diabetics with albuminuria. In addition, RAS inhibition reduces the new onset of diabetes mellitus. Yet, the high and increasing prevalence of metabolic disorders, and the high residual risk even in properly treated patients, calls for additional means of pharmacological intervention. In the past decade, the stimulation of the angiotensin AT2 receptor (AT2R) has been shown to reduce inflammation, improve cardiac and vascular remodeling, enhance insulin sensitivity and increase adiponectin production. Therefore, a concept of dual AT1R/AT2R modulation emerges as a putative means for risk reduction in cardio-metabolic diseases. The approach employing simultaneous RAS blockade (AT1R) and RAS stimulation (AT2R) is distinct from previous attempts of double intervention in the RAS by dual blockade. Dual blockade abolishes the AT1R-linked RAS almost completely with subsequent risk of hypotension and hypotension-related events, i.e. syncope or renal dysfunction. Such complications might be especially prominent in patients with renal impairment or patients with isolated systolic hypertension and normal-to-low diastolic blood pressure values. In contrast to dual RAS blockade, the add-on of AT2R stimulation does not exert significant blood pressure effects, but it may complement and enhance the anti-inflammatory and antifibrotic/de-stiffening effects of the AT1R blockade and improve the metabolic profile. Further studies will have to investigate these putative effects in particular for settings in which blood pressure reduction is not primarily desired.
Collapse
Affiliation(s)
- Ludovit Paulis
- Faculty of Medicine, Institute of Pathological Physiology, Comenius University in Bratislava, Sasinkova 4, 81108, Bratislava, Slovak Republic.,Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 81371, Bratislava, Slovak Republic
| | - Sébastien Foulquier
- CARIM-School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Pawel Namsolleck
- CARIM-School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Chiara Recarti
- CARIM-School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Ulrike Muscha Steckelings
- Institute of Molecular Medicine-Department of Cardiovascular and Renal Research, University of Southern Denmark, 5000, Odense, Denmark
| | - Thomas Unger
- CARIM-School for Cardiovascular Diseases, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
26
|
Kai Chen, Merrill DC, Rose JC. The Importance of Angiotensin II Subtype Receptors for Blood Pressure Control During Mouse Pregnancy. Reprod Sci 2016; 14:694-704. [DOI: 10.1177/1933719107309060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kai Chen
- Department of Obstetrics and Gynecology Wake Forest University School of Medcine, Winston-salem North Carolina
| | - David C. Merrill
- Department of Obstetrics and Gynecology Wake Forest University School of Medcine, Winston-salem North Carolina
| | - James C. Rose
- Department of Obstetrics and Gynecology Wake Forest University School of Medcine, Winston-salem North Carolina, Department of Physiology and Pharmacology Wake Forest University School of Medicine, Winston-Salem, North Carolina,
| |
Collapse
|
27
|
Shariat-Madar Z, Schmaier AH. Review: The plasma kallikrein/kinin and renin angiotensin systems in blood pressure regulation in sepsis. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519040100010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The hemodynamics of septic shock after endotoxinemiai s influenced by the plasma kallikrein/kinin and the renin angiotensin systems. In recent years, new information has improved understanding of the protein/biologically active peptide interactions between these two systems. The plasma kallikrein/kinin system, more commonly known as the contact system, has undergone a re-evaluation as to how it assembles on cell membranes for physiological and pathophysiological activation and as to its role in Gram-negative sepsis. It has been proposed that it counterbalances the plasma renin angiotensin system. Furthermore, more knowledge about the renin angiotensin system has become available on how it either opposes the actions of the kallikrein/kinin system or, in some cases, summates with it. Understanding the interactions between these two systems may lead to development of better pharmacological treatments for endotoxin-induced shock.
Collapse
Affiliation(s)
- Zia Shariat-Madar
- Departments of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA
| | - Alvin H. Schmaier
- Departments of Internal Medicine, The University of Michigan, Ann Arbor, Michigan, USA, , Department of Pathology, Hematology/Oncology Division, The University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
28
|
Voors AA, van Geel PP, Oosterga M, Buikema H, van Veldhuisen DJ, van Gilst WH. Vascular effects of quinapril completely depend on ACE insertion/deletion polymorphism. J Renin Angiotensin Aldosterone Syst 2016; 5:130-4. [PMID: 15526248 DOI: 10.3317/jraas.2004.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Introduction The angiotensin-converting enzyme (ACE) DD-genotype is associated with increased plasma and myocardial ACE-activity. The influence of the ACE insertion/deletion (I/D) polymorphism on the effects of ACE-inhibition on vascular responses has not been previously described. Materials and methods In the randomised, double-blind QUinapril On Vascular ACE and Determinants of Ischemia Study (QUO VADIS), 149 patients undergoing coronary bypass surgery were randomised to receive either the ACE inhibitor, quinapril, or placebo. In 82 patients, we obtained ACE-genotype, and measured vascular responses to angiotensin II (Ang II) in left internal mammary arteries. Results In the placebo group, the mean maximal vasoconstriction to Ang II was significantly lower in patients with the DD-genotype than in those with the ID/II genotype (36.2±5.11% [n=13] vs. 55.6±4.57% [n=25]; p=0.01). In the quinapril group, the mean maximal vasoconstriction to Ang II was similar [n=8] vs. 57.7±4.07% [n=35]; p=0.85). between DD- and ID/II-genotype (59.6±9.19% Conclusions DD-genotype patients showed decreased vascular responses to Ang II but treatment with quinapril completely restored the decreased vascular response in DD-genotype patients to the same level as II/ID-genotype patients, while no effect of quinapril was demonstrated in the II/ID-genotype patients.
Collapse
Affiliation(s)
- Adriaan A Voors
- Department of Cardiology, Thoraxcenter, University Hospital of Groningen, Groningen 9700, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Jugdutt BI, Menon V. Upregulation of Angiotensin II Type 2 Receptor and Limitation of Myocardial Stunning by Angiotensin II Type 1 Receptor Blockers during Reperfused Myocardial Infarction in the Rat. J Cardiovasc Pharmacol Ther 2016; 8:217-26. [PMID: 14506547 DOI: 10.1177/107424840300800307] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: We have previously shown that angiotensin II type 1 receptor blockers induce cardioprotection and upregulate angiotensin II type 2 receptor during in vivo postischemicreperfusion in dogs. Whether angiotensin II type 1 receptor blockers upregulate angiotensin II type 2 receptors in rats is controversial, and whether surmountable and insurmountable angiotensin II type 1 receptor blockers exert similar protective effects during reperfused myocardial infarction is not known. Methods: We assessed the effects of the surmountable angiotensin receptor blocker valsartan, and the insurmountable angiotensin receptor blocker irbesartan, on hemodynamics and left ventricular systolic and diastolic function (echocardiography/Doppler) in vivo and infarct size (triphenyl tetrazolium chloride method), and regional angiotensin II type 1 receptor and angiotensin II type 2 receptor expression (immunoblots) ex vivo, after anterior reperfused myocardial infarction in rats. The rats were randomized to four groups: intravenous valsartan (10 mg/kg, n = 8), irbesartan (10 mg/kg, n = 8), or saline vehicle (controls, n = 14) over 30 minutes before reperfused myocardial infarction, and sham (n = 8). Angiotensin II type 1 receptor blockade was assessed by the inhibition of angiotensin II pressor responses. Results: Compared with the control group, both angiotensin receptor blockers significantly decreased infarct size, limited the increase in left atrial pressure, improved positive left ventricular dP/dtm,x and dP/dtm,,, improved left ventricular ejection fraction and diastolic function, and limited infarct expansion after reperfused myocardial infarction. Both angiotensin receptor blockers increased angiotensin II type 2 receptor protein in the postischemic-reperfused zone, with no change in angiotensin II type 1 receptor protein. There were no changes in the sham group. Conclusion: The overall results indicate that the angiotensin receptor blockers valsartan and irbesartan both induce cardioprotection, limit myocardial stunning, and upregulate angiotensin II type 2 receptor protein expression after reperfused myocardial infarction in the rat. Patients who are already receiving angiotensin receptor blockers and develop acute coronary syndromes might benefit from these cardioprotective effects during reperfusion therapy.
Collapse
Affiliation(s)
- Bodh I Jugdutt
- Division of Cardiology, Department of Medicine and the Cardiovascular Research Group, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | |
Collapse
|
30
|
Comparison of the effects of levocetirizine and losartan on diabetic nephropathy and vascular dysfunction in streptozotocin-induced diabetic rats. Eur J Pharmacol 2016; 780:82-92. [PMID: 27012991 DOI: 10.1016/j.ejphar.2016.03.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/27/2016] [Accepted: 03/18/2016] [Indexed: 01/30/2023]
Abstract
This work was designed to investigate the effects of levocetirizine, a histamine H1 receptor antagonist, on diabetes-induced nephropathy and vascular disorder, in comparison to an angiotensin II receptor antagonist, losartan. Diabetes was induced in male Sprague Dawley rats by a single intraperitoneal injection of streptozotocin (50mg/kg). Diabetic rats were divided into three groups; diabetic, diabetic-levocetirizine (0.5mg/kg/day) and diabetic-losartan (25mg/kg/day). Treatments were started two weeks following diabetes induction and continued for additional eight weeks. At the end of the experiment, urine was collected and serum was separated for biochemical measurements. Tissue homogenates of kidney and aorta were prepared for measuring oxidative stress, nitric oxide (NO), transforming growth factor-β1 (TGF-β1) and tumor necrosis factor-α (TNF-α). Moreover, histological analyses were conducted and aortic vascular reactivity was investigated. Levocetirizine improved renal function in diabetic rats (evidenced by mitigation of diabetes-induced changes in kidney to body weight ratio, serum albumin, urinary proteins and creatinine clearance). Moreover, levocetirizine attenuated the elevated renal levels of TNF-α and TGF-β1, ameliorated renal oxidative stress and restored NO bioavailability in diabetic kidney. These effects were comparable to or surpassed those produced by losartan. Moreover, levocetirizine, similar to losartan, reduced the enhanced responsiveness of diabetic aorta to phenylephrine. Histological evaluation of renal and aortic tissues further confirmed the beneficial effects of levocetirizine on diabetic nephropathy and revealed a greater attenuation of diabetes-induced vascular hypertrophy by levocetirizine than by losartan. In conclusion, levocetirizine may offer comparable renoprotective effect to, and possibly superior vasculoprotective effects than, losartan in streptozotocin-diabetic rats.
Collapse
|
31
|
Jensen TW, Olsen NV. Angiotensin II during Experimentally Simulated Central Hypovolemia. Front Cardiovasc Med 2016; 3:6. [PMID: 26973842 PMCID: PMC4776081 DOI: 10.3389/fcvm.2016.00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/18/2016] [Indexed: 11/13/2022] Open
Abstract
Central hypovolemia, defined as diminished blood volume in the heart and pulmonary vascular bed, is still an unresolved problem from a therapeutic point of view. The development of pharmaceutical agents targeted at specific angiotensin II receptors, such as the non-peptidergic AT2-receptor agonist compound 21, is yielding many opportunities to uncover more knowledge about angiotensin II receptor profiles and possible therapeutic use. Cardiovascular, anti-inflammatory, and neuroprotective therapeutic use of compound 21 have been suggested. However, there has not yet been a focus on the use of these agents in a hypovolemic setting. We argue that the latest debates on the effect of angiotensin II during hypovolemia might guide for future studies, investigating the effect of such agents during experimentally simulated central hypovolemia. The purpose of this review is to examine the role of angiotensin II during episodes of central hypovolemia. To examine this, we reviewed results from studies with three experimental models of simulated hypovolemia: head up tilt table test, lower body negative pressure, and hemorrhage of animals. A systemic literature search was made with the use of PubMed/MEDLINE for studies that measured variables of the renin–angiotensin system or its effect during simulated hypovolemia. Twelve articles, using one of the three models, were included and showed a possible organ-protective effect and an effect on the sympathetic system of angiotensin II during hypovolemia. The results support the possible organ-protective vasodilatory role for the AT2-receptor during hypovolemia on both the kidney and the splanchnic tissue.
Collapse
Affiliation(s)
- Theo Walther Jensen
- Department of Neuroscience and Pharmacology, The Health Faculty, University of Copenhagen , Copenhagen , Denmark
| | - Niels Vidiendal Olsen
- Department of Neuroscience and Pharmacology, The Health Faculty, University of Copenhagen, Copenhagen, Denmark; Department of Neuroanaesthesia, The Neuroscience Centre, University Hospital of Copenhagen (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
32
|
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, Thomas WG. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected]. Pharmacol Rev 2015; 67:754-819. [PMID: 26315714 PMCID: PMC4630565 DOI: 10.1124/pr.114.010454] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The renin angiotensin system (RAS) produced hormone peptides regulate many vital body functions. Dysfunctional signaling by receptors for RAS peptides leads to pathologic states. Nearly half of humanity today would likely benefit from modern drugs targeting these receptors. The receptors for RAS peptides consist of three G-protein-coupled receptors—the angiotensin II type 1 receptor (AT1 receptor), the angiotensin II type 2 receptor (AT2 receptor), the MAS receptor—and a type II trans-membrane zinc protein—the candidate angiotensin IV receptor (AngIV binding site). The prorenin receptor is a relatively new contender for consideration, but is not included here because the role of prorenin receptor as an independent endocrine mediator is presently unclear. The full spectrum of biologic characteristics of these receptors is still evolving, but there is evidence establishing unique roles of each receptor in cardiovascular, hemodynamic, neurologic, renal, and endothelial functions, as well as in cell proliferation, survival, matrix-cell interaction, and inflammation. Therapeutic agents targeted to these receptors are either in active use in clinical intervention of major common diseases or under evaluation for repurposing in many other disorders. Broad-spectrum influence these receptors produce in complex pathophysiological context in our body highlights their role as precise interpreters of distinctive angiotensinergic peptide cues. This review article summarizes findings published in the last 15 years on the structure, pharmacology, signaling, physiology, and disease states related to angiotensin receptors. We also discuss the challenges the pharmacologist presently faces in formally accepting newer members as established angiotensin receptors and emphasize necessary future developments.
Collapse
Affiliation(s)
- Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Jacqueline R Kemp
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Kalyan C Tirupula
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Satoru Eguchi
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Patrick M L Vanderheyden
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| | - Walter G Thomas
- Department of Molecular Cardiology, Lerner Research Institute of Cleveland Clinic, Cleveland, Ohio (S.S.K., H.U., J.R.K., K.C.T.); Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania (S.E.); Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium (P.M.L.V.); and Department of General Physiology, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia (W.G.T.)
| |
Collapse
|
33
|
Abstract
The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striking similarities. Moreover, in some instances, antagonists for one receptor are able to inhibit the action of agonists for the respective other receptor. These observations suggest that there may be a functional or even physical interaction of both receptors. This article discusses potential mechanisms underlying the phenomenon of blockade of angiotensin-(1-7) [Ang-(1-7)] actions by AT2R antagonists and vice versa. Such mechanisms may comprise dimerization of the receptors or dimerization-independent mechanisms such as lack of specificity of the receptor ligands used in the experiments or involvement of the Ang-(1-7) metabolite alamandine and its receptor MrgD in the observed effects. We conclude that evidence for a functional interaction of both receptors is strong, but that such an interaction may be species- and/or tissue-specific and that elucidation of the precise nature of the interaction is only at the very beginning.
Collapse
|
34
|
β-Pro7Ang III is a novel highly selective angiotensin II type 2 receptor (AT2R) agonist, which acts as a vasodepressor agent via the AT2R in conscious spontaneously hypertensive rats. Clin Sci (Lond) 2015; 129:505-13. [DOI: 10.1042/cs20150077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022]
Abstract
We have synthesized a highly selective compound that is able to target a protein-binding site [called angiotensin (Ang) II type 2 receptor, AT2R] in the cardiovascular system. This research tool will enhance our ability to stimulate AT2R to produce protective effects against cardiovascular disease.
Collapse
|
35
|
Kramkowski K, Leszczynska A, Buczko W. Pharmacological modulation of fibrinolytic response - In vivo and in vitro studies. Pharmacol Rep 2015; 67:695-703. [PMID: 26321270 DOI: 10.1016/j.pharep.2015.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 11/19/2022]
Abstract
Fibrinolysis is an action of converting plasminogen by its activators, like tissue- or urokinase-type plasminogen activators (t-PA, u-PA), to plasmin, which in turn cleaves fibrin, thereby causing clot dissolution and restoration of blood flow. Endothelial cells release t-PA, prostacyclin (PGI2) and nitric oxide (NO), the potent factors playing a crucial role in regulation of the fibrinolytic system. Since blood platelets can release not only prothrombotic, but also antifibrinolytic factors, like plasminogen activator inhibitor type-1 (PAI-1), they are involved in fibrynolysis regulation. Therefore agents enhancing fibrinolysis can be preferred pharmacologicals in many cardiovascular diseases. This review describes mechanisms by which major cardiovascular drugs (renin-angiotensin-aldosterone system inhibitors, statins, adrenergic receptors and calcium channel blockers, aspirin and 1-methylnicotinamide) influence fibrinolysis. The presented data indicate, that the influence of these drugs on endothelium-blood platelets interactions via NO/PGI2 pathway is fundamental for its antithrombotic and profibrinolytic action. We also described new approaches for intravital confocal real-time imaging as a tool useful to investigate mechanisms of thrombus formation and the effects of drugs affecting haemostasis and mechanisms of their action in the circulation.
Collapse
Affiliation(s)
- Karol Kramkowski
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland.
| | | | - Wlodzimierz Buczko
- Department of Pharmacodynamics, Medical University of Białystok, Białystok, Poland; Higher Vocational School, Suwałki, Poland
| |
Collapse
|
36
|
Paulis L, Rajkovicova R, Simko F. New developments in the pharmacological treatment of hypertension: dead-end or a glimmer at the horizon? Curr Hypertens Rep 2015; 17:557. [PMID: 25893478 PMCID: PMC4412646 DOI: 10.1007/s11906-015-0557-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Arterial hypertension is the most prevalent controllable disease world-wide. Yet, we still need to further improve blood pressure control, deal with resistant hypertension, and we hope to reduce risk "beyond blood pressure." The number of candidate molecules aspiring for these aims is constantly declining. The new possible approaches to combat high blood pressure include neprilysin/neutral endopeptidase (NEP) inhibition, particularly when combined with an angiotensin receptor blockade (such as the ARNI, LCZ696), phosphodiesterase 5 (PDE5) inhibition (KD027/Slx-2101), natriuretic agents (PL3994), or a long-lasting vasointestinal peptide (VIP) analogue (PB1046). Other options exploit the protective arm of the renin-angiotensin-aldosterone system by stimulating the angiotensin AT2 receptor (compound 21), the Mas receptor (AVE-0991), or the angiotensin converting enzyme 2. Finally, we review the possibilities how to optimize the use of the available treatment options by using drug combinations or by tailoring therapy to each patient's angiotensin peptide profile.
Collapse
Affiliation(s)
- Ludovit Paulis
- />Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovak Republic
- />Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, Sienkiewiczova 1, 81371 Bratislava, Slovak Republic
| | - Romana Rajkovicova
- />Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovak Republic
| | - Fedor Simko
- />Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 81108 Bratislava, Slovak Republic
- />Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlárska 3, 83306 Bratislava, Slovak Republic
| |
Collapse
|
37
|
Carroll MA, Kang Y, Chander PN, Stier CT. Azilsartan is associated with increased circulating angiotensin-(1-7) levels and reduced renovascular 20-HETE levels. Am J Hypertens 2015; 28:664-71. [PMID: 25384409 DOI: 10.1093/ajh/hpu201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/25/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Activation of angiotensin (ANG) II type 1 receptors (AT1R) promotes vasoconstriction, inflammation, and renal dysfunction. In this study, we addressed the ability of azilsartan (AZL), a new AT1R antagonist, to modulate levels of plasma ANG-(1-7) and renal epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE). METHODS Sprague-Dawley rats were infused with ANG II (125 ng/min) or vehicle (VEH). AZL (3 mg/kg/day) or VEH was administered starting 1 day prior to ANG II or VEH infusion. On day 10, plasma was obtained for measurement of ANG-(1-7) and kidneys for isolation of microvessels for EET and 20-HETE determination and histological evaluation. RESULTS Mean 24-hour blood pressure (BP) was not different between VEH and AZL treatment groups, whereas the BP elevation with ANG II infusion (121 ± 5 mm Hg) was completely normalized with AZL cotreatment (86 ± 3 mm Hg). The ANG II-induced renal damage was attenuated and cardiac hypertrophy prevented with AZL cotreatment. Plasma ANG-(1-7) levels (pg/ml) were increased with AZL treatment (219 ± 22) and AZL + ANG II infusion (264 ± 93) compared to VEH controls (74.62 ± 8). AZL treatment increased the ratio of EETs to their dihydroxyeicosatrienoic acid (DHET) metabolites and reduced 20-HETE levels. CONCLUSIONS Treatment with AZL completely antagonized the elevation of BP induced by ANG II, prevented cardiac hypertrophy, attenuated renal damage, and increased ANG-(1-7) and EET/DHET ratio while diminishing 20-HETE levels. Increased ANG-(1-7) and EETs levels may emerge as novel therapeutic mechanisms contributing to the antihypertensive and antihypertrophic actions of AZL treatment and their relative role compared to AT1R blockade may depend on the etiology of the hypertension.
Collapse
Affiliation(s)
- Mairéad A Carroll
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA;
| | - YounJung Kang
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| | - Praveen N Chander
- Department of Pathology, New York Medical College, Valhalla, New York 10595, USA
| | - Charles T Stier
- Department of Pharmacology, New York Medical College, Valhalla, New York 10595, USA
| |
Collapse
|
38
|
Des-aspartate angiotensin I (DAA-I) reduces endothelial dysfunction in the aorta of the spontaneously hypertensive rat through inhibition of angiotensin II-induced oxidative stress. Vascul Pharmacol 2015; 71:151-8. [PMID: 25869508 DOI: 10.1016/j.vph.2015.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/17/2015] [Accepted: 03/21/2015] [Indexed: 11/23/2022]
Abstract
Des-aspartate angiotensin I (DAA-I), an endogenous nonapeptide, counteracts several effects of angiotensin II on vascular tone. The aim of this study was to investigate the acute protective effect of DAA-I on endothelial function in the spontaneously hypertensive rat (SHR) as well as its effect on angiotensin II-induced contractions and oxidative stress. Aortic rings were incubated with DAA-I (0.1μM) for 30min prior to the assessment of angiotensin II-induced contractions (0.1nM-10μM) in WKY and SHR aortas. Total nitrate and nitrite levels were assessed using a colorimetric method and reactive oxygen species (ROS) were measured by dihydroethidium (DHE) fluorescence and lucigenin-enhanced chemiluminescence. The effect of DAA-I was also assessed against endothelium-dependent and -independent relaxations to acetylcholine and sodium nitroprusside, respectively. Angiotensin II-induced contractions were significantly reduced by DAA-I, losartan and tempol. Incubation with ODQ (soluble guanylyl cyclase inhibitor) and removal of the endothelium prevented the reduction of angiotensin II-induced contractions by DAA-I. Total nitrate and nitrite levels were increased in DAA-I, losartan and tempol treated-SHR tissues while ROS level was reduced by DAA-I and the latter inhibitors. In addition, DAA-I significantly improved the impaired acetylcholine-induced relaxation in SHR aortas whilst sodium nitroprusside-induced endothelium-independent relaxation remained unaffected. The present findings indicate that improvement of endothelial function by DAA-I in the SHR aorta is mediated through endothelium-dependent release of nitric oxide and inhibition of angiotensin II-induced oxidative stress.
Collapse
|
39
|
López RM, Castillo MC, López JS, Guevara G, López P, Castillo EF. Activation of upregulated angiotensin II type 2 receptors decreases carotid pulse pressure in rats with suprarenal abdominal aortic coarctation. Clin Exp Hypertens 2014; 37:271-9. [PMID: 25271908 DOI: 10.3109/10641963.2014.954714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our aim was to determine whether angiotensin type 2 receptors (AT2R) are involved in the depression of carotid pulse pressure (PP) in rats with suprarenal aortic coarctation (SrC). We tested the effects of losartan, PD123319, and CGP42112 on PP in SrC and Sham-operated anesthetized rats. PP increased in SrC rats. Neither losartan nor PD123319 affected PP in SrC and Sham-operated rats. CGP42112 reduced PP, in SrC rats, combined with losartan. Moreover, PD123319 blocked this effect. AT2R protein increased in the thoracic aortas of SrC rats. Thus, upregulated AT2R stimulation by CGP42112 mediates depression of PP in rats under pressure overloading.
Collapse
Affiliation(s)
- Ruth M López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional , México, D.F. , México and
| | | | | | | | | | | |
Collapse
|
40
|
Namsolleck P, Recarti C, Foulquier S, Steckelings UM, Unger T. AT(2) receptor and tissue injury: therapeutic implications. Curr Hypertens Rep 2014; 16:416. [PMID: 24414230 PMCID: PMC3906548 DOI: 10.1007/s11906-013-0416-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The renin-angiotensin system (RAS) plays an important role in the initiation and progression of tissue injuries in the cardiovascular and nervous systems. The detrimental actions of the AT1 receptor (AT1R) in hypertension and vascular injury, myocardial infarction and brain ischemia are well established. In the past twenty years, protective actions of the RAS, not only in the cardiovascular, but also in the nervous system, have been demonstrated. The so-called protective arm of the RAS includes AT2-receptors and Mas receptors (AT2R and MasR) and is characterized by effects different from and often opposing those of the AT1R. These include anti-inflammation, anti-fibrosis, anti-apoptosis and neuroregeneration that can counterbalance pathological processes and enable recovery from disease. The recent development of novel, small-molecule AT2R agonists offers a therapeutic potential in humans with a variety of clinical indications.
Collapse
Affiliation(s)
- Pawel Namsolleck
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Yang HC, Fogo AB. Mechanisms of disease reversal in focal and segmental glomerulosclerosis. Adv Chronic Kidney Dis 2014; 21:442-7. [PMID: 25168834 DOI: 10.1053/j.ackd.2014.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/25/2014] [Accepted: 04/30/2014] [Indexed: 01/13/2023]
Abstract
It is well known that progression of chronic kidney disease can be ameliorated or stabilized by different interventions, but more studies indicate that it can even be reversed. Most data suggest that current therapy, especially renin-angiotensin system inhibition alone, is not sufficient to initiate and maintain long-term regression of glomerular structural injury. In this article, we review the potential reversal of glomerulosclerosis and evidence from both human and animal studies. We discuss mechanisms that involve matrix remodeling, capillary reorganization, and podocyte reconstitution. In the future, a multipronged strategy including novel anti-inflammatory and antifibrotic molecules should be considered to potentiate regression of glomerulosclerosis.
Collapse
|
42
|
Bradykinin antagonist counteracts the acute effect of both angiotensin-converting enzyme inhibition and of angiotensin receptor blockade on the lower limit of autoregulation of cerebral blood flow. J Cereb Blood Flow Metab 2014; 34:467-71. [PMID: 24326391 PMCID: PMC3948123 DOI: 10.1038/jcbfm.2013.219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/19/2013] [Accepted: 11/13/2013] [Indexed: 01/13/2023]
Abstract
The lower limit of autoregulation of cerebral blood flow (CBF) can be modulated with both angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARB). The influence of bradykinin antagonism on ARB-induced changes was the subject of this study. CBF was measured in Sprague-Dawley rats with laser Doppler technique. The blood pressure was lowered by controlled bleeding. Six groups of rats were studied: a control group and five groups given drugs intravenously: an ACE inhibitor (enalaprilat), an ARB (candesartan), a bradykinin-2 receptor antagonist (Hoe 140), a combination of enalaprilat and Hoe 140, and a combination of candesartan and Hoe 140. In the control group, the lower limit of CBF autoregulation was 54±9 mm Hg (mean±s.d.), with enalaprilat it was 46±6, with candesartan 39±8, with Hoe 140 53±6, with enalaprilat/Hoe 140 52±6, and with candesartan/Hoe 140 50±7. Both enalaprilat and candesartan lowered the lower limit of autoregulation of CBF significantly. The bradykinin antagonist abolished not only the effect of the ACE inhibitor but surprisingly also the effect of the ARB on the lower limit of CBF autoregulation, the latter suggesting an effect on intravascular bradykinin.
Collapse
|
43
|
Nasser M, Clere N, Botelle L, Javellaud J, Oudart N, Faure S, Achard JM. Opposite effects of angiotensins receptors type 2 and type 4 on streptozotocin induced diabetes vascular alterations in mice. Cardiovasc Diabetol 2014; 13:40. [PMID: 24511993 PMCID: PMC3931492 DOI: 10.1186/1475-2840-13-40] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/05/2014] [Indexed: 12/11/2022] Open
Abstract
Background We examined the effect of chronic administration of angiotensin IV (AngIV) on the vascular alterations induced by type 1 diabetes in mice. Methods Diabetes was induced in adult Swiss mice with a single injection of streptozotocin (STZ). Mice were treated subcutaneously with AngIV (1.4 mg/kg/day) either immediately following diabetes induction (preventive treatment), or treated with AngIV (0.01 to 1.4 mg/kg), alone or with the AT4 receptor antagonist Divalinal or the AT2 receptor antagonist PD123319, for two weeks after 4 weeks of diabetes duration (rescue treatment). Acetylcholine-induced, endothelium-dependent relaxation (EDR) was measured in isolated aortic rings preparations. Histomorphometric measurements of the media thickness were obtained, and nitric oxide (NO) and superoxide anion production were measured by electron paramagnetic resonance in aorta and mesenteric arteries. The effect of diabetes on mesenteric vascular alterations was also examined in genetically modified mice lacking the AT2 receptor. Results Induction of diabetes with STZ was associated with a progressive decrease of EDR and an increase of the aortic and mesenteric media thickness already significant after 4 weeks and peaking at week 6. Immediate treatment with AngIV fully prevented the diabetes-induced endothelial dysfunction. Rescue treatment with AngIV implemented after 4 weeks of diabetes dose-dependently restored a normal endothelial function at week 6. AngIV blunted the thickening of the aortic and mesenteric media, and reversed the diabetes-induced changes in NO and O2•– production by the vessels. The protective effect of AngIV on endothelial function was completely blunted by cotreatment with Divalinal, but not with PD123319. In contrast, both the pharmacological blockade and genetic deletion of the AT2 receptor reversed the diabetes-induced morphologic and endothelial alteration caused by diabetes. Conclusions The results suggest an opposite contribution of AT2 and AT4 receptors to the vascular alterations caused by streptozotocin-induced diabetes in mice, since chronic stimulation of AT4 by AngIV and inhibition of AT2 similarly reverse diabetes-induced endothelial dysfunction and hypertrophic remodeling, and increase NO bioavailability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jean-Michel Achard
- INSERM, UMR-S850, Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges Cedex, France.
| |
Collapse
|
44
|
Koid SS, Ziogas J, Campbell DJ. Aliskiren reduces myocardial ischemia-reperfusion injury by a bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanism. Hypertension 2014; 63:768-73. [PMID: 24420538 DOI: 10.1161/hypertensionaha.113.02902] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Angiotensin-converting enzyme inhibitors and angiotensin AT1 receptor blockers reduce myocardial ischemia-reperfusion injury via bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanisms. The renin inhibitor aliskiren increases cardiac tissue kallikrein and bradykinin levels. In the present study, we investigated the effect of aliskiren on myocardial ischemia-reperfusion injury and the roles of B2 and AT2 receptors in this effect. Female Sprague-Dawley rats were treated with aliskiren (10 mg/kg per day) and valsartan (30 mg/kg per day), alone or in combination, together with the B2 receptor antagonist icatibant (0.5 mg/kg per day) or the AT2 receptor antagonist PD123319 (30 mg/kg per day), for 4 weeks before myocardial ischemia-reperfusion injury. Aliskiren increased cardiac bradykinin levels and attenuated valsartan-induced increases in plasma angiotensin II levels. In vehicle-treated rats, myocardial infarct size (% area at risk, mean±SEM, n=7-13) was 43±3%. This was reduced to a similar extent by aliskiren, valsartan, and their combination to 24±3%, 25±3%, and 22±2%, respectively. Icatibant reversed the cardioprotective effects of aliskiren and the combination of aliskiren plus valsartan, but not valsartan alone, indicating that valsartan-induced cardioprotection was not mediated by the B2 receptor. PD123319 reversed the cardioprotective effects of aliskiren, valsartan, and the combination of aliskiren plus valsartan. Aliskiren protects the heart from myocardial ischemia-reperfusion injury via a B2 receptor- and AT2 receptor-mediated mechanism, whereas cardioprotection by valsartan is mediated via the AT2 receptor. In addition, aliskiren attenuates valsartan-induced increases in angiotensin II levels, thus preventing AT2 receptor-mediated cardioprotection by valsartan.
Collapse
Affiliation(s)
- Suang Suang Koid
- St Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065, Australia.
| | | | | |
Collapse
|
45
|
Rhaleb NE, Yang XP, Carretero OA. The kallikrein-kinin system as a regulator of cardiovascular and renal function. Compr Physiol 2013; 1:971-93. [PMID: 23737209 DOI: 10.1002/cphy.c100053] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Autocrine, paracrine, endocrine, and neuroendocrine hormonal systems help regulate cardio-vascular and renal function. Any change in the balance among these systems may result in hypertension and target organ damage, whether the cause is genetic, environmental or a combination of the two. Endocrine and neuroendocrine vasopressor hormones such as the renin-angiotensin system (RAS), aldosterone, and catecholamines are important for regulation of blood pressure and pathogenesis of hypertension and target organ damage. While the role of vasodepressor autacoids such as kinins is not as well defined, there is increasing evidence that they are not only critical to blood pressure and renal function but may also oppose remodeling of the cardiovascular system. Here we will primarily be concerned with kinins, which are oligopeptides containing the aminoacid sequence of bradykinin. They are generated from precursors known as kininogens by enzymes such as tissue (glandular) and plasma kallikrein. Some of the effects of kinins are mediated via autacoids such as eicosanoids, nitric oxide (NO), endothelium-derived hyperpolarizing factor (EDHF), and/or tissue plasminogen activator (tPA). Kinins help protect against cardiac ischemia and play an important part in preconditioning as well as the cardiovascular and renal protective effects of angiotensin-converting enzyme (ACE) and angiotensin type 1 receptor blockers (ARB). But the role of kinins in the pathogenesis of hypertension remains controversial. A study of Utah families revealed that a dominant kallikrein gene expressed as high urinary kallikrein excretion was associated with a decreased risk of essential hypertension. Moreover, researchers have identified a restriction fragment length polymorphism (RFLP) that distinguishes the kallikrein gene family found in one strain of spontaneously hypertensive rats (SHR) from a homologous gene in normotensive Brown Norway rats, and in recombinant inbred substrains derived from these SHR and Brown Norway rats this RFLP cosegregated with an increase in blood pressure. However, humans, rats and mice with a deficiency in one or more components of the kallikrein-kinin-system (KKS) or chronic KKS blockade do not have hypertension. In the kidney, kinins are essential for proper regulation of papillary blood flow and water and sodium excretion. B2-KO mice appear to be more sensitive to the hypertensinogenic effect of salt. Kinins are involved in the acute antihypertensive effects of ACE inhibitors but not their chronic effects (save for mineralocorticoid-salt-induced hypertension). Kinins appear to play a role in the pathogenesis of inflammatory diseases such as arthritis and skin inflammation; they act on innate immunity as mediators of inflammation by promoting maturation of dendritic cells, which activate the body's adaptive immune system and thereby stimulate mechanisms that promote inflammation. On the other hand, kinins acting via NO contribute to the vascular protective effect of ACE inhibitors during neointima formation. In myocardial infarction produced by ischemia/reperfusion, kinins help reduce infarct size following preconditioning or treatment with ACE inhibitors. In heart failure secondary to infarction, the therapeutic effects of ACE inhibitors are partially mediated by kinins via release of NO, while drugs that activate the angiotensin type 2 receptor act in part via kinins and NO. Thus kinins play an important role in regulation of cardiovascular and renal function as well as many of the beneficial effects of ACE inhibitors and ARBs on target organ damage in hypertension.
Collapse
Affiliation(s)
- Nour-Eddine Rhaleb
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, USA.
| | | | | |
Collapse
|
46
|
Muniyappa R, Yavuz S. Metabolic actions of angiotensin II and insulin: a microvascular endothelial balancing act. Mol Cell Endocrinol 2013; 378:59-69. [PMID: 22684034 PMCID: PMC3478427 DOI: 10.1016/j.mce.2012.05.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/29/2012] [Indexed: 01/01/2023]
Abstract
Metabolic actions of insulin to promote glucose disposal are augmented by nitric oxide (NO)-dependent increases in microvascular blood flow to skeletal muscle. The balance between NO-dependent vasodilator actions and endothelin-1-dependent vasoconstrictor actions of insulin is regulated by phosphatidylinositol 3-kinase-dependent (PI3K)--and mitogen-activated protein kinase (MAPK)-dependent signaling in vascular endothelium, respectively. Angiotensin II acting on AT₂ receptor increases capillary blood flow to increase insulin-mediated glucose disposal. In contrast, AT₁ receptor activation leads to reduced NO bioavailability, impaired insulin signaling, vasoconstriction, and insulin resistance. Insulin-resistant states are characterized by dysregulated local renin-angiotensin-aldosterone system (RAAS). Under insulin-resistant conditions, pathway-specific impairment in PI3K-dependent signaling may cause imbalance between production of NO and secretion of endothelin-1, leading to decreased blood flow, which worsens insulin resistance. Similarly, excess AT₁ receptor activity in the microvasculature may selectively impair vasodilation while simultaneously potentiating the vasoconstrictor actions of insulin. Therapeutic interventions that target pathway-selective impairment in insulin signaling and the imbalance in AT₁ and AT₂ receptor signaling in microvascular endothelium may simultaneously ameliorate endothelial dysfunction and insulin resistance. In the present review, we discuss molecular mechanisms in the endothelium underlying microvascular and metabolic actions of insulin and Angiotensin II, the mechanistic basis for microvascular endothelial dysfunction and insulin resistance in RAAS dysregulated clinical states, and the rationale for therapeutic strategies that restore the balance in vasodilator and constrictor actions of insulin and Angiotensin II in the microvasculature.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Blood Flow Velocity
- Capillaries/metabolism
- Capillaries/pathology
- Capillaries/physiopathology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Humans
- Insulin/metabolism
- Insulin Resistance
- MAP Kinase Signaling System
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Nitric Oxide/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System
- Vasoconstriction
- Vasodilation
Collapse
Affiliation(s)
- Ranganath Muniyappa
- Clinical Endocrine Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, United States.
| | | |
Collapse
|
47
|
Tavares FM, da Silva IB, Gomes DA, Barreto-Chaves MLM. Angiotensin II Type 2 Receptor (AT2R) is Associated with Increased Tolerance of the Hyperthyroid Heart to Ischemia-Reperfusion. Cardiovasc Drugs Ther 2013; 27:393-402. [DOI: 10.1007/s10557-013-6473-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Carrillo-Sepúlveda MA, Ceravolo GS, Furstenau CR, Monteiro PDS, Bruno-Fortes Z, Carvalho MH, Laurindo FR, Tostes RC, Webb RC, Barreto-Chaves MLM. Emerging role of angiotensin type 2 receptor (AT2R)/Akt/NO pathway in vascular smooth muscle cell in the hyperthyroidism. PLoS One 2013; 8:e61982. [PMID: 23637941 PMCID: PMC3634851 DOI: 10.1371/journal.pone.0061982] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/15/2013] [Indexed: 12/14/2022] Open
Abstract
Hyperthyroidism is characterized by increased vascular relaxation and decreased vascular contraction and is associated with augmented levels of triiodothyronine (T3) that contribute to the diminished systemic vascular resistance found in this condition. T3 leads to augmented NO production via PI3K/Akt signaling pathway, which in turn causes vascular smooth muscle cell (VSMC) relaxation; however, the underlying mechanisms involved remain largely unknown. Evidence from human and animal studies demonstrates that the renin-angiotensin system (RAS) plays a crucial role in vascular function and also mediates some of cardiovascular effects found during hyperthyroidism. Thus, in this study, we hypothesized that type 2 angiotensin II receptor (AT2R), a key component of RAS vasodilatory actions, mediates T3 induced-decreased vascular contraction. Marked induction of AT2R expression was observed in aortas from T3-induced hyperthyroid rats (Hyper). These vessels showed decreased protein levels of the contractile apparatus: α-actin, calponin and phosphorylated myosin light chain (p-MLC). Vascular reactivity studies showed that denuded aortic rings from Hyper rats exhibited decreased maximal contractile response to angiotensin II (AngII), which was attenuated in aortic rings pre-incubated with an AT2R blocker. Further study showed that cultured VSMC stimulated with T3 (0.1 µmol/L) for 24 hours had increased AT2R gene and protein expression. Augmented NO levels and decreased p-MLC levels were found in VSMC stimulated with T3, both of which were reversed by a PI3K/Akt inhibitor and AT2R blocker. These findings indicate for the first time that the AT2R/Akt/NO pathway contributes to decreased contractile responses in rat aorta, promoted by T3, and this mechanism is independent from the endothelium.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Disease Models, Animal
- Gene Expression Regulation/drug effects
- Hyperthyroidism/genetics
- Hyperthyroidism/metabolism
- Male
- Models, Biological
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nitric Oxide/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Signal Transduction/drug effects
- Triiodothyronine/pharmacology
- Vasoconstriction/drug effects
Collapse
Affiliation(s)
- Maria Alícia Carrillo-Sepúlveda
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Graziela S. Ceravolo
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina R. Furstenau
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Priscilla de Souza Monteiro
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Zuleica Bruno-Fortes
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Helena Carvalho
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Francisco R. Laurindo
- Vascular Biology Laboratory of Heart Institute, University of Sao Paulo, Sao Paulo, Brazil
| | - Rita C. Tostes
- Laboratory of Hypertension, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Physiology, Georgia Health Science University, Augusta, Georgia, United States of America
| | - R. Clinton Webb
- Department of Physiology, Georgia Health Science University, Augusta, Georgia, United States of America
| | - Maria Luiza M. Barreto-Chaves
- Laboratory of Cell Biology and Functional Anatomy, Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
49
|
Su JB. Different cross-talk sites between the renin-angiotensin and the kallikrein-kinin systems. J Renin Angiotensin Aldosterone Syst 2013; 15:319-28. [PMID: 23386283 DOI: 10.1177/1470320312474854] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Targeting the renin-angiotensin system (RAS) constitutes a major advance in the treatment of cardiovascular diseases. Evidence indicates that angiotensin-converting enzyme inhibitors and angiotensin AT1 receptor blockers act on both the RAS and the kallikrein-kinin system (KKS). In addition to the interaction between the RAS and KKS at the level of angiotensin-converting enzyme catalyzing both angiotensin II generation and bradykinin degradation, the RAS and KKS also interact at other levels: 1) prolylcarboxypeptidase, an angiotensin II inactivating enzyme and a prekallikrein activator; 2) kallikrein, a kinin-generating and prorenin-activating enzyme; 3) angiotensin-(1-7) exerts kininlike effects and potentiates the effects of bradykinin; and 4) the angiotensin AT1 receptor forms heterodimers with the bradykinin B2 receptor. Moreover, angiotensin II enhances B1 and B2 receptor expression via transcriptional mechanisms. These cross-talks explain why both the RAS and KKS are up-regulated in some circumstances, whereas in other circumstances both systems change in the opposite manner, expressed as an activated RAS and a depressed KKS. As the cross-talks between the RAS and the KKS play an important role in response to different stimuli, taking these cross-talks between the two systems into account may help in the development of drugs targeting the two systems.
Collapse
Affiliation(s)
- Jin Bo Su
- Inserm U955, Maisons-Alfort, France, and Faculté de Médecine de Créteil, Université Paris-Est, France
| |
Collapse
|
50
|
Foulquier S, Steckelings UM, Unger T. Impact of the AT(2) receptor agonist C21 on blood pressure and beyond. Curr Hypertens Rep 2013; 14:403-9. [PMID: 22836386 DOI: 10.1007/s11906-012-0291-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is now widely accepted that the angiotensin AT(2) receptor (AT(2)R) plays an important protective role during pathophysiologic conditions, acting as a repair system. The development of the first selective nonpeptide AT(2)R agonist C21 accelerated our understanding of AT(2)R-mediated protective signaling and actions. This article reviews the impact of C21 on blood pressure in normotensive and hypertensive animal models. Although C21 does not act as a classical antihypertensive drug, it could be useful in preventing hypertension-induced vascular and other end organ damages via anti-apoptotic, anti-fibrotic and anti-inflammatory actions. In particular, a strong body of evidence started to emerge around its anti-inflammatory feature. This property should be further investigated for potential clinical indications in cardiovascular diseases and beyond.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| | | | | |
Collapse
|