1
|
Fajar JK, Pikir BS, Sidarta EP, Saka PNB, Akbar RR, Tamara F, Mayasari ED, Gunawan A, Heriansyah T. The genes polymorphism of angiotensinogen (AGT) M235T and AGT T174M in patients with essential hypertension: A meta-analysis. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Mullick AE, Yeh ST, Graham MJ, Engelhardt JA, Prakash TP, Crooke RM. Blood Pressure Lowering and Safety Improvements With Liver Angiotensinogen Inhibition in Models of Hypertension and Kidney Injury. Hypertension 2017; 70:566-576. [PMID: 28716988 DOI: 10.1161/hypertensionaha.117.09755] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/04/2017] [Accepted: 06/07/2017] [Indexed: 01/16/2023]
Abstract
Uncontrolled hypertension is an important contributor to cardiovascular disease. Despite the armamentarium of antihypertensive treatments, there remains a need for novel agents effective in individuals who cannot reach acceptable blood pressure levels. Inhibitors targeting the renin-angiotensin-aldosterone system (RAAS) are widely used but may not optimally inhibit RAAS and demonstrate an acceptable safety profile. Experiments were conducted to characterize a series of AGT (angiotensinogen) antisense oligonucleotides (ASOs) and compare their efficacy and tolerability to traditional RAAS blockade. AGT ASOs which target multiple systemic sites of AGT versus an N-acetylgalactosamine-conjugated AGT ASO that targets the liver were compared with captopril and losartan. Spontaneously hypertensive rats fed an 8% NaCl diet, a model of malignant hypertension resistant to standard RAAS inhibitors, demonstrated robust and durable blood pressure reductions with AGT ASO treatments, which was not observed with standard RAAS blockade. Studies in rat models of acute kidney injury produced by salt deprivation revealed kidney injury with ASO treatment that reduced kidney-expressed AGT, but not in animals treated with the N-acetylgalactosamine AGT ASO despite comparable plasma AGT reductions. Administration of either captopril or losartan also produced acute kidney injury during salt deprivation. Thus, intrarenal RAAS derived from kidney AGT, and inhibited by the standard of care, contributes to the maintenance of renal function during severe RAAS challenge. Such improvements in efficacy and tolerability by a liver-selective AGT inhibitor could be desirable in individuals not at their blood pressure goal with existing RAAS blockade.
Collapse
Affiliation(s)
| | - Steve T Yeh
- From the Ionis Pharmaceuticals, Inc, Carlsbad, CA
| | | | | | | | | |
Collapse
|
3
|
Nehme A, Zibara K. Efficiency and specificity of RAAS inhibitors in cardiovascular diseases: how to achieve better end-organ protection? Hypertens Res 2017; 40:903-909. [DOI: 10.1038/hr.2017.65] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/26/2017] [Accepted: 03/28/2017] [Indexed: 11/09/2022]
|
4
|
Rana A, Jain S, Puri N, Kaw M, Sirianni N, Eren D, Mopidevi BR, Kumar A. The transcriptional regulation of the human angiotensinogen gene after high-fat diet is haplotype-dependent: Novel insights into the gene-regulatory networks and implications for human hypertension. PLoS One 2017; 12:e0176373. [PMID: 28467442 PMCID: PMC5415177 DOI: 10.1371/journal.pone.0176373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 04/09/2017] [Indexed: 11/18/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the human angiotensinogen (hAGT) gene may modulate its transcription and affect the regulation of blood pressure via activation of the renin-angiotensin aldosterone system (RAAS). In this regard, we have identified polymorphisms in the 2.5 Kb promoter of the hAGT gene that form two haplotype (Hap) blocks: -6A/G (-1670A/G, -1562C/T, -1561T/C) and -217A/G (-532T/C, -793A/G, -1074T/C & -1178G/A). hAGT gene with Hap -6A/-217A (Hap I) is associated with increased blood pressure whereas, Hap -6G/-217G (Hap II) is associated with normal blood pressure in human subjects. Since RAAS over activity contributes to hypertension in obesity, we have made transgenic mice (TG) containing either Hap I or Hap II of the hAGT gene to understand the role of obesity on its transcriptional regulation. Although, a high-fat diet (60% Kcal from fat, 12 weeks) elevates hAGT and mAGT regardless of haplotype, this effect is significantly (p<0.05) accentuated in Hap I mice, in both adipose and liver tissues. Chromatin Immuno- precipitation (ChIP) assay shows an increased binding of transcription factors including, GR, CEBPβ and STAT3 to the chromatin of the Hap I TG mice after high-fat diet as compared to Hap II TG mice (p<0.05). Differential plasma levels of hAGT in Hap II and I mice, after high-fat diet, further corroborate the variable transcriptional regulation of the hAGT, governed by gene-haplotypes. Taken together, our results show that SNPs in the Hap-I of the hAGT gene promote high-fat diet-induced binding of transcription factors GR, CEBP-β and STAT3, which lead to elevated expression of the hAGT gene in hepatic and adipose tissues.
Collapse
Affiliation(s)
- Anita Rana
- Department of Physiology and Pharmacology, University Of Toledo Medical Centre, Toledo, Ohio, United States of America
| | - Sudhir Jain
- Department of Physiology and Pharmacology, University Of Toledo Medical Centre, Toledo, Ohio, United States of America
| | - Nitin Puri
- Department of Physiology and Pharmacology, University Of Toledo Medical Centre, Toledo, Ohio, United States of America
| | - Meenakshi Kaw
- Department of Physiology and Pharmacology, University Of Toledo Medical Centre, Toledo, Ohio, United States of America
| | - Natalie Sirianni
- Department of Physiology and Pharmacology, University Of Toledo Medical Centre, Toledo, Ohio, United States of America
| | - Deniz Eren
- Department of Physiology and Pharmacology, University Of Toledo Medical Centre, Toledo, Ohio, United States of America
| | - Brahma Raju Mopidevi
- Department of Physiology and Pharmacology, University Of Toledo Medical Centre, Toledo, Ohio, United States of America
| | - Ashok Kumar
- Department of Physiology and Pharmacology, University Of Toledo Medical Centre, Toledo, Ohio, United States of America
- Department of Pathology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
5
|
Ackermann JA, Hofheinz K, Zaiss MM, Krönke G. The double-edged role of 12/15-lipoxygenase during inflammation and immunity. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:371-381. [PMID: 27480217 DOI: 10.1016/j.bbalip.2016.07.014] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/01/2016] [Accepted: 07/28/2016] [Indexed: 01/18/2023]
Abstract
12/15-Lipoxygenase (12/15-LOX) mediates the enzymatic oxidation of polyunsaturated fatty acids, thereby contributing to the generation of various bioactive lipid mediators. Although 12/15-LOX has been implicated in the pathogenesis of multiple chronic inflammatory diseases, its physiologic functions seem to include potent immune modulatory properties that physiologically contribute to the resolution of inflammation and the clearance of inflammation-associated tissue damage. This review aims to give a comprehensive overview about our current knowledge on the role of this enzyme during the regulation of inflammation and immunity. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- Jochen A Ackermann
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Katharina Hofheinz
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Mario M Zaiss
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany
| | - Gerhard Krönke
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University Hospital Erlangen, Erlangen, Germany; Nikolaus Fiebiger Center of Molecular Medicine, University Hospital Erlangen, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
6
|
Ferrario CM, VonCannon J, Jiao Y, Ahmad S, Bader M, Dell'Italia LJ, Groban L, Varagic J. Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene. Am J Physiol Heart Circ Physiol 2016; 310:H995-1002. [PMID: 26873967 DOI: 10.1152/ajpheart.00833.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Angiotensin-(1-12) [ANG-(1-12)] is processed into ANG II by chymase in rodent and human heart tissue. Differences in the amino acid sequence of rat and human ANG-(1-12) render the human angiotensinogen (hAGT) protein refractory to cleavage by renin. We used transgenic rats harboring the hAGT gene [TGR(hAGT)L1623] to assess the non-renin-dependent effects of increased hAGT expression on heart function and arterial pressure. Compared with Sprague-Dawley (SD) control rats (n= 11), male homozygous TGR(hAGT)L1623 (n= 9) demonstrated sustained daytime and nighttime hypertension associated with no changes in heart rate but increased heart rate lability. Increased heart weight/tibial length ratio and echocardiographic indexes of cardiac hypertrophy were associated with modest reduction of systolic function in hAGT rats. Robust human ANG-(1-12) immunofluorescence within myocytes of TGR(hAGT)L1623 rats was associated with a fourfold increase in cardiac ANG II content. Chymase enzymatic activity, using the rat or human ANG-(1-12) as a substrate, was not different in the cardiac tissue of SD and hAGT rats. Since both cardiac angiotensin-converting enzyme (ACE) and ACE2 activities were not different among the two strains, the changes in cardiac structure and function, blood pressure, and left ventricular ANG II content might be a product of an increased cardiac expression of ANG II generated through a non-renin-dependent mechanism. The data also underscore the existence in the rat of alternate enzymes capable of acting on hAGT protein. Homozygous transgenic rats expressing the hAGT gene represent a novel tool to investigate the contribution of human relevant renin-independent cardiac ANG II formation and function.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Departments of Medicine-Nephrology and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jessica VonCannon
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Yan Jiao
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Sarfaraz Ahmad
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Louis J Dell'Italia
- Division of Cardiovascular Disease, University of Alabama at Birmingham and Department of Veterans Affairs, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Leanne Groban
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina; Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, North Carolina; and
| | - Jasmina Varagic
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, North Carolina; Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston Salem, North Carolina; Departments of Medicine-Nephrology and Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina
| |
Collapse
|
7
|
Local Angiotensin Pathways in Human Carotid Atheroma: Towards a Systems Biology Approach. ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/593086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We will summarize the data we have obtained in human carotid artery concerning the organization of an extended local renin angiotensin aldosterone system and its variations at different stages of atheroma. In a system view, we propose a model where concomitant increase in angiotensin and glucocorticoid signaling is induced and amplified in VSMC while vascular smooth muscle cells transdifferentiate toward a lipid storing phenotype.
Collapse
|
8
|
Kobori H, Kamiyama M, Harrison-Bernard LM, Navar LG. Cardinal role of the intrarenal renin-angiotensin system in the pathogenesis of diabetic nephropathy. J Investig Med 2013. [PMID: 23266706 DOI: 10.231/jim.0b013e31827c28bb] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes mellitus is one of the most prevalent diseases and is associated with increased incidence of structural and functional derangements in the kidneys, eventually leading to end-stage renal disease in a significant fraction of afflicted individuals. The renoprotective effects of renin-angiotensin system (RAS) blockade have been established; however, the mechanistic pathways have not been fully elucidated. In this review article, the cardinal role of an activated RAS in the pathogenesis of diabetic nephropathy (DN) is discussed with a focus on 4 themes: (1) introduction to RAS cascade, (2) intrarenal RAS in diabetes, (3) clinical outcomes of RAS blockade in DN, and (4) potential of urinary angiotensinogen as an early biomarker of intrarenal RAS status in DN. This review article provides a mechanistic rational supporting the hypothesis that an activated intrarenal RAS contributes to the pathogenesis of DN and that urinary angiotensinogen levels provide an index of intrarenal RAS activity.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA, USA.
| | | | | | | |
Collapse
|
9
|
Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Ryan RP, Cowley AW, Staruschenko A. Real-time electrochemical detection of ATP and H₂O₂ release in freshly isolated kidneys. Am J Physiol Renal Physiol 2013; 305:F134-41. [PMID: 23594827 DOI: 10.1152/ajprenal.00129.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Extracellular nucleotides such as adenosine-5'-triphosphate (ATP) and reactive oxygen species are essential local signaling molecules in the kidney. However, measurements of changes in the interstitial concentrations of these substances in response to various stimuli remain hindered due to limitations of existing experimental techniques. The goal of this study was to develop a novel approach suitable for real-time measurements of ATP and H₂O₂ levels in freshly isolated rat kidney. Rats were anesthetized and the kidneys were flushed to clear blood before isolation for consequent perfusion. The perfused kidneys were placed into a bath solution and dual simultaneous amperometric recordings were made with the enzymatic microelectrode biosensors detecting ATP and H₂O₂. It was found that basal levels of H₂O₂ were increased in Dahl salt-sensitive (SS) rats fed a high-salt diet compared with SS and Sprague-Dawley rats fed a low-salt diet and that medulla contained higher levels of H₂O₂ compared with cortex in both strains. In contrast, ATP levels did not change in SS rats when animals were fed a high-salt diet. Importantly, angiotensin II via AT₁ receptor induced rapid release of both ATP and H₂O₂ and this effect was enhanced in SS rats. These results demonstrate that ATP and H₂O₂ are critical in the development of salt-sensitive hypertension and that the current method represents a unique powerful approach for the real-time monitoring of the changes in endogenous substance levels in whole organs.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Kobori H, Kamiyama M, Harrison-Bernard LM, Navar LG. Cardinal Role of the Intrarenal Renin-Angiotensin System in the Pathogenesis of Diabetic Nephropathy. J Investig Med 2013; 61:256-264. [DOI: 10.2310/jim.0b013e31827c28bb] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Diabetes mellitus is one of the most prevalent diseases and is associated with increased incidence of structural and functional derangements in the kidneys, eventually leading to end-stage renal disease in a significant fraction of afflicted individuals. The renoprotective effects of renin-angiotensin system (RAS) blockade have been established; however, the mechanistic pathways have not been fully elucidated. In this review article, the cardinal role of an activated RAS in the pathogenesis of diabetic nephropathy (DN) is discussed with a focus on 4 themes: (1) introduction to RAS cascade, (2) intrarenal RAS in diabetes, (3) clinical outcomes of RAS blockade in DN, and (4) potential of urinary angiotensinogen as an early biomarker of intrarenal RAS status in DN. This review article provides a mechanistic rational supporting the hypothesis that an activated intrarenal RAS contributes to the pathogenesis of DN and that urinary angiotensinogen levels provide an index of intrarenal RAS activity.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- *Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center
| | - Masumi Kamiyama
- *Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center
| | | | - L. Gabriel Navar
- *Department of Physiology, and Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center
| |
Collapse
|
11
|
Yiannikouris F, Gupte M, Putnam K, Thatcher S, Charnigo R, Rateri DL, Daugherty A, Cassis LA. Adipocyte deficiency of angiotensinogen prevents obesity-induced hypertension in male mice. Hypertension 2012; 60:1524-30. [PMID: 23108647 DOI: 10.1161/hypertensionaha.112.192690] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies demonstrated that diet-induced obesity increased plasma angiotensin II concentrations and elevated systolic blood pressures in male mice. Adipocytes express angiotensinogen and secrete angiotensin peptides. We hypothesize that adipocyte-derived angiotensin II mediates obesity-induced increases in systolic blood pressure in male high fat-fed C57BL/6 mice. Systolic blood pressure was measured by radiotelemetry during week 16 of low-fat or high-fat feeding in Agt(fl/fl) and adipocyte angiotensinogen-deficient mice (Agt(aP2)). Adipocyte angiotensinogen deficiency had no effect on diet-induced obesity. Basal 24-hour systolic blood pressure was not different in low fat-fed Agt(fl/fl) compared with Agt(aP2) mice (124 ± 3 versus 128 ± 3 mm Hg, respectively). In Agt(fl/fl) mice, high-fat feeding significantly increased systolic blood pressure (24 hours; 134 ± 2 mm Hg; P<0.05). In contrast, high fat-fed Agt(aP2) mice did not exhibit an increase in systolic blood pressure (126 ± 2 mm Hg). Plasma angiotensin II concentrations were increased by high-fat feeding in Agt(fl/fl) mice (low fat, 32 ± 14; high fat, 219 ± 58 pg/mL; P<0.05). In contrast, high fat-fed Agt(aP2) mice did not exhibit elevated plasma angiotensin II concentrations (high fat, 18 ± 7 pg/mL). Similarly, adipose tissue concentrations of angiotensin II were significantly decreased in low fat- and high fat-fed Agt(aP2) mice compared with controls. In conclusion, adipocyte angiotensinogen deficiency prevented high fat-induced elevations in plasma angiotensin II concentrations and systolic blood pressure. These results suggest that adipose tissue serves as a major source of angiotensin II in the development of obesity hypertension.
Collapse
Affiliation(s)
- Frederique Yiannikouris
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY 40536-0200, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Xue B, Zhang Z, Roncari CF, Guo F, Johnson AK. Aldosterone acting through the central nervous system sensitizes angiotensin II-induced hypertension. Hypertension 2012; 60:1023-30. [PMID: 22949534 DOI: 10.1161/hypertensionaha.112.196576] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Previous studies have shown that preconditioning rats with a nonpressor dose of angiotensin II (Ang II) sensitizes the pressor response produced by later treatment with a higher dose of Ang II and that Ang II and aldosterone (Aldo) can modulate each other's pressor effects through actions involving the central nervous system. The current studies tested whether Aldo can cross-sensitize the pressor actions of Ang II to enhance hypertension by employing an induction-delay-expression experimental design. Male rats were implanted for telemetered blood pressure recording. During induction, subpressor doses of either subcutaneous or intracerebroventricular Aldo were delivered for 1 week. Rats were then rested for 1 week (delay) to assure that any exogenous Aldo was metabolized. After this, Ang II was given subcutaneously for 2 weeks (expression). During induction and delay, Aldo had no sustained effect on blood pressure. However, during expression, Ang II-induced hypertension was greater in the groups receiving subcutaneous or intracerebroventricular Aldo during induction in comparison with those groups receiving vehicle. Central administration of mineralocorticoid receptor antagonist blocked sensitization. Brain tissue collected at the end of delay and expression showed increased mRNA expression of several renin-angiotensin-aldosterone system components in cardiovascular-related forebrain regions of cross-sensitized rats. Cultured subfornical organ neurons preincubated with Aldo displayed greater increases in [Ca2+]i after Ang II treatment, and there was a greater Fra-like immunoreactivity present at the end of expression in cardiovascular-related forebrain structures. Taken together, these results indicate that Aldo pretreatment cross-sensitizes the development of Ang II-induced hypertension probably by mechanisms that involve the central nervous system.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychology, Cardiovascular Center, University of Iowa, 11 Seashore Hall E, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
13
|
Kobori H, Urushihara M. Augmented intrarenal and urinary angiotensinogen in hypertension and chronic kidney disease. Pflugers Arch 2012; 465:3-12. [PMID: 22918624 DOI: 10.1007/s00424-012-1143-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 12/22/2022]
Abstract
Activated intrarenal renin-angiotensin system plays a cardinal role in the pathogenesis of hypertension and chronic kidney disease. Angiotensinogen is the only known substrate for renin, which is the rate-limiting enzyme of the renin-angiotensin system. Because the levels of angiotensinogen are close to the Michaelis-Menten constant values for renin, angiotensinogen levels as well as renin levels can control the renin-angiotensin system activity, and thus, upregulation of angiotensinogen leads to an increase in the angiotensin II levels and ultimately increases blood pressure. Recent studies using experimental animal models have documented the involvement of angiotensinogen in the intrarenal renin-angiotensin system activation and development of hypertension. Enhanced intrarenal angiotensinogen mRNA and/or protein levels were observed in experimental models of hypertension and chronic kidney disease, supporting the important roles of angiotensinogen in the development and the progression of hypertension and chronic kidney disease. Urinary excretion rates of angiotensinogen provide a specific index of the intrarenal renin-angiotensin system status in angiotensin II-infused rats. Also, a direct quantitative method has been developed recently to measure urinary angiotensinogen using human angiotensinogen enzyme-linked immunosorbent assay. These data prompted us to measure urinary angiotensinogen in patients with hypertension and chronic kidney disease, and investigate correlations with clinical parameters. This short article will focus on the role of the augmented intrarenal angiotensinogen in the pathophysiology of hypertension and chronic kidney disease. In addition, the potential of urinary angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system status in hypertension and chronic kidney disease will be also discussed.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Physiology, Tulane University Health Sciences Center, 1430 Tulane Avenue, #SL39, New Orleans, LA 70112-2699, USA.
| | | |
Collapse
|
14
|
Gopi Chand M, Srinath J, Rao RS, Lakkakula BVKS, Kumar S, Rao VR. Association between the M268T polymorphism in the angiotensinogen gene and essential hypertension in a South Indian population. Biochem Genet 2011; 49:474-482. [PMID: 21312059 DOI: 10.1007/s10528-011-9423-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 10/04/2010] [Indexed: 11/26/2022]
Abstract
Essential hypertension is a complex multifactorial disease caused by interactions between genetic and environmental factors. It is an independent determinant of cardiovascular risk. The main aim of this study was to investigate the possible influence of angiotensinogen M268T polymorphisms on hypertension in two endogamous caste populations of South India. Systolic and diastolic blood pressure, anthropometric variables, and lipid profiles were assessed. Direct sequencing of PCR products was adopted for genotyping. This polymorphism was found to be in Hardy-Weinberg equilibrium in the patients and controls of both populations. Binary odds ratios showed significant association between the M268T polymorphism and hypertension in both populations. Multivariate analysis revealed significant differences in body mass index, chest girth, calf circumference, skinfold measurements, total cholesterol, and triglyceride levels between these genotypes in the Gavara and Vaishya populations. These data further support the hypothesis that hypertension is influenced by the AGT M268T polymorphism.
Collapse
Affiliation(s)
- M Gopi Chand
- Anthropological Survey of India, Government of India, Ministry of Culture, Kolkata
| | | | | | | | | | | |
Collapse
|
15
|
Acres OW, Satou R, Navar LG, Kobori H. Contribution of a nuclear factor-kappaB binding site to human angiotensinogen promoter activity in renal proximal tubular cells. Hypertension 2011; 57:608-13. [PMID: 21282554 PMCID: PMC3051182 DOI: 10.1161/hypertensionaha.110.165464] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 12/20/2010] [Indexed: 12/27/2022]
Abstract
Intrarenal angiotensinogen (AGT) is expressed highly in renal proximal tubular cells (RPTCs) and contributes to the regulation of intrarenal angiotensin II levels. Inhibition of nuclear factor (NF)-κB suppressed human (h)AGT expression in human RPTCs. However, the presence and localization of an NF-κB binding site in the hAGT promoter region have not been determined. Therefore, this study was performed to demonstrate that an NF-κB binding site in the hAGT promoter region contributes to hAGT promoter activity in human RPTCs. The hAGT promoter region was cloned from -4358 to +122 and deletion analysis was performed. A possible NF-κB binding site was removed from the hAGT promoter region (M1) and mutated (M2). Human RPTCs were transfected, and hAGT promoter activity was determined by luciferase assay. The identity of DNA binding proteins from binding assays were determined by Western blot. Progressive 5'-end deletions demonstrated removal of a distal promoter element in hAGT_-2414/+122 reduced promoter activity (0.61 ± 0.12, ratio to hAGT_-4358/+122). Inhibition of NF-κB suppressed promoter activity in hAGT_-4358/+122 (0.51 ± 0.14, ratio to control) and hAGT_-3681/+122 (0.48 ± 0.06, ratio to control) but not in the construct without the NF-κB binding site. Promoter activity was reduced in the domain mutants M1 (0.57 ± 0.08, ratio to hAGT_-4358/+122) and M2 (0.61 ± 0.16, ratio to hAGT_-4358/+122). DNA binding levels of NF-κB protein were reduced in M1. These data demonstrate the functional importance of an NF-κB binding site in the hAGT promoter region, which contributes to hAGT promoter activity in human RPTCs.
Collapse
Affiliation(s)
- Omar W Acres
- Department of Medicine and Physiology, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA
| | | | | | | |
Collapse
|
16
|
Navar LG, Kobori H, Prieto MC, Gonzalez-Villalobos RA. Intratubular renin-angiotensin system in hypertension. Hypertension 2011; 57:355-62. [PMID: 21282552 PMCID: PMC3073668 DOI: 10.1161/hypertensionaha.110.163519] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/05/2011] [Indexed: 01/12/2023]
Affiliation(s)
- L Gabriel Navar
- Department of Physiology, SL39, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
17
|
Urushihara M, Kobori H. Angiotensinogen Expression Is Enhanced in the Progression of Glomerular Disease. ACTA ACUST UNITED AC 2011; 2:378-387. [PMID: 22247811 DOI: 10.4236/ijcm.2011.24064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intrarenal renin-angiotensin system (RAS) activation plays a critical role in the development and progression of renal injury. In the kidney, all of the RAS components are present and intrarenal angiotensin II (Ang II) is formed by multiple independent mechanisms. Angiotensinogen (AGT) is the only known substrate for renin that is a rate-limiting enzyme of the RAS. Recently, enhanced intrarenal AGT levels have been shown to reflect the intrarenal RAS status in hypertension, chronic glomerular disease and diabetic nephropathy. In this review, we focus on AGT expression of the diseased glomeruli in the progression of glomerular disease. An anti-glomerular basement membrane nephritis rat model developed progressive proteinuria and glomerular crescent formation, accompanied by increased macrophage infiltration and glomerular expression of AGT and Ang II. The addition of Ang II type 1 receptor blocker to CC-chemokine recaptor 2 antagonist markedly attenuated the induction of macrophage infiltration, AGT and Ang II, and reduced glomerular crescent formation. Next, the levels of glomerular AGT expression and marker of reactive oxygen species in Zucker diabetic fatty (ZDF) obese rats were higher than those in ZDF lean rats. Hydrogen peroxide (H(2)O(2)) induced an increase in the AGT expression in primary rat mesangial cells. Furthermore, the H(2)O(2)-induced upregulation of AGT was inhibited by a mitogen-activated protein kinase kinase and a c-Jun N-terminal kinase inhibitor. These data suggest the potential contribution of enhanced AGT expression in glomeruli to the intrarenal RAS activation for the development of glomerular disease.
Collapse
Affiliation(s)
- Maki Urushihara
- Department of Physiology, and Hypertension and Renal Center of Excellence Tulane University Health Sciences Center, New Orleans, USA
| | | |
Collapse
|
18
|
Kobori H, Urushihara M, Xu JH, Berenson GS, Navar LG. Urinary angiotensinogen is correlated with blood pressure in men (Bogalusa Heart Study). J Hypertens 2010; 28:1422-8. [PMID: 20375906 PMCID: PMC2891987 DOI: 10.1097/hjh.0b013e3283392673] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The Bogalusa Heart Study is a long-term study on cardiovascular disease and has followed a biracial (black/white) population from childhood. Risk factor data pertaining to many patients have been collected over 35 years, and the time course of hypertension has been documented by repeated examinations and measurements. Considerable sex and racial differences have been found to be related to cardiovascular disease. Urinary angiotensinogen (UAGT) is a novel biomarker for the intrarenal activity of the renin-angiotensin system in hypertension and kidney disease. We aimed to determine the relationship of UAGT with traditional cardiovascular disease risk factors in asymptomatic young adults in this biracial population. METHOD We recruited 251 individuals and collected a single random spot urine sample from each one. Because UAGT is significantly increased in diabetic patients and the use of antihypertensive drugs affects UAGT levels, we excluded patients who had diabetes, who were receiving antihypertensive treatment, or both. Consequently, 190 participants were included for this analysis. RESULTS UAGT levels did not differ with race or sex, but were significantly correlated with SBP (r = +0.23, P = 0.0015) and DBP (r = +0.24, P = 0.0012). Moreover, high correlations were shown in men, especially in black men (SBP, r = +0.85, P = 0.0005 and DBP, r = +0.72, P = 0.0079). Thus, UAGT is correlated with blood pressure in men, even when they do not show overt proteinuria or albuminuria. CONCLUSION The biomarker, UAGT, may facilitate the identification of individuals that are at increased risk for the development of hypertension and early asymptomatic renal disease.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Hypertension and Renal Center of Excellence, Department of Medicine, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA.
| | | | | | | | | |
Collapse
|
19
|
Krop M, Ozünal ZG, Chai W, de Vries R, Fekkes D, Bouhuizen AM, Garrelds IM, Danser AHJ. Mast cell degranulation mediates bronchoconstriction via serotonin and not via renin release. Eur J Pharmacol 2010; 640:185-9. [PMID: 20462506 DOI: 10.1016/j.ejphar.2010.04.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/07/2010] [Accepted: 04/24/2010] [Indexed: 01/23/2023]
Abstract
To verify the recently proposed concept that mast cell-derived renin facilitates angiotensin II-induced bronchoconstriction bronchial rings from male Sprague-Dawley rats were mounted in Mulvany myographs, and exposed to the mast cell degranulator compound 48/80 (300 microg/ml), angiotensin I, angiotensin II, bradykinin or serotonin (5-hydroxytryptamine, 5-HT), in the absence or presence of the renin inhibitor aliskiren (10 micromol/l), the ACE inhibitor captopril (10 micromol/l), the angiotensin II type 1 (AT1) receptor blocker irbesartan (1 micromol/l), the mast cell stabilizer cromolyn (0.3 mmol/l), the 5-HT2A/2C receptor antagonist ketanserin (0.1 micromol/l) or the alpha1-adrenoceptor antagonist phentolamine (1 micromol/l). Bath fluid was collected to verify angiotensin generation. Bronchial tissue was homogenized to determine renin, angiotensinogen and serotonin content. Compound 48/80 contracted bronchi to 24+/-4% of the KCl-induced contraction. Ketanserin fully abolished this effect, while cromolyn reduced the contraction to 16+/-5%. Aliskiren, captopril, irbesartan and phentolamine did not affect this response, and the angiotensin I and II levels in the bath fluid after 48/80 exposure were below the detection limit. Angiotensin I and II equipotently contracted bronchi. Captopril shifted the angiotensin I curve approximately 10-fold to the right, whereas irbesartan fully blocked the effect of angiotensin II. Bradykinin-induced constriction was shifted approximately 100-fold to the left with captopril. Serotonin contracted bronchi, and ketanserin fully blocked this effect. Finally, bronchial tissue contained serotonin at micromolar levels, whereas renin and angiotensinogen were undetectable in this preparation. In conclusion, mast cell degranulation results in serotonin-induced bronchoconstriction, and is unlikely to involve renin-induced angiotensin generation.
Collapse
Affiliation(s)
- Manne Krop
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Kobori H, Alper AB, Shenava R, Katsurada A, Saito T, Ohashi N, Urushihara M, Miyata K, Satou R, Hamm LL, Navar LG. Urinary angiotensinogen as a novel biomarker of the intrarenal renin-angiotensin system status in hypertensive patients. Hypertension 2009; 53:344-50. [PMID: 19075095 PMCID: PMC2658771 DOI: 10.1161/hypertensionaha.108.123802] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2008] [Accepted: 11/20/2008] [Indexed: 01/13/2023]
Abstract
We reported previously that urinary angiotensinogen (UAGT) levels provide a specific index of the intrarenal renin-angiotensin system (RAS) status in angiotensin II-dependent hypertensive rats. To study this system in humans, we recently developed a human angiotensinogen ELISA. To test the hypothesis that UAGT is increased in hypertensive patients, we recruited 110 adults. Four subjects with estimated glomerular filtration levels <30 mL/min per 1.73 m(2) were excluded because previous studies have already shown that UAGT is highly correlated with estimated glomerular filtration in this stage of chronic kidney disease. Consequently, 106 paired samples of urine and plasma were analyzed from 70 hypertensive patients (39 treated with RAS blockers [angiotensin-converting enzyme inhibitors or angiotensin II type 1 receptor blockers; systolic blood pressure: 139+/-3 mm Hg] and 31 not treated with RAS blockers [systolic blood pressure: 151+/-4 mm Hg]) and 36 normotensive subjects (systolic blood pressure: 122+/-2 mm Hg). UAGT, normalized by urinary concentrations of creatinine, were not correlated with race, gender, age, height, body weight, body mass index, fractional excretion of sodium, plasma angiotensinogen levels, or estimated glomerular filtration. However, UAGT/urinary concentration of creatinine was significantly positively correlated with systolic blood pressure, diastolic blood pressure, urinary albumin:creatinine ratio (r=0.5994), and urinary protein:creatinine ratio (r=0.4597). UAGT/urinary concentration of creatinine was significantly greater in hypertensive patients not treated with RAS blockers (25.00+/-4.96 microg/g) compared with normotensive subjects (13.70+/-2.33 microg/g). Importantly, patients treated with RAS blockers exhibited a marked attenuation of this augmentation (13.26+/-2.60 microg/g). These data indicate that UAGT is increased in hypertensive patients, and treatment with RAS blockers suppresses UAGT, suggesting that the efficacy of RAS blockade to reduce the intrarenal RAS activity can be assessed by measurements of UAGT.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Medicine, Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Ave, New Orleans, LA 70112-2699, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Response to genetic manipulations of liver angiotensinogen in the physiological range. J Hum Genet 2008; 53:775-788. [PMID: 18600297 DOI: 10.1007/s10038-008-0311-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 06/03/2008] [Indexed: 10/21/2022]
Abstract
Genetic variation in the human angiotensinogen gene (AGT) influences plasma AGT concentration and susceptibility to essential hypertension by a mechanism that remains to be clarified. When one or two additional copies of the gene were inserted by gene titration (by homologous recombination with gap-repair at the AGT locus), both plasma AGT and arterial pressure were elevated in the physiological range in the mouse. The causal dependency between plasma AGT and blood pressure and the relative contribution of the various tissues that express AGT to these two phenotypic parameters remained to be determined. To address these issues, we generated a transgenic mouse with overexpression of the mouse AGT gene restricted to the liver. The transgene was examined in two contrasted genetic backgrounds, the sodium-sensitive C57BL/6J and the sodium-resistant A/J. Transgenic and control male animals underwent continuous cardiovascular monitoring by telemetry for 14 days while under a standard sodium diet (0.2%). Moderate but significant increases in plasma AGT (40%, p = 0.01) and systolic blood pressure (4-6 mmHg, p ranging from 0.01 to <0.001) were observed in the sodium-sensitive background, but not in the sodium-resistant animals. Statistical analysis of a large number of consecutive, repeated measurements of blood pressure afforded power to detect small effects in the physiological range by use of advanced mixed models of analysis of variances and covariances. Although plasma renin activity was increased in the sodium-sensitive background, it did not reach statistical significance. These observations underline a potential contribution of systemic AGT to the mechanism of AGT-mediated hypertension, but the significance of sodium sensitivity in the genetic background suggests participation of the kidney in expression of the elevated blood pressure phenotype, a matter that will warrant further studies. They also highlight the challenge of identifying the contribution of individual genes in complex inheritance, as their effects are modulated by other genetic and environmental determinants.
Collapse
|
22
|
Renin-angiotensin system, natriuretic peptides, obesity, metabolic syndrome, and hypertension: an integrated view in humans. J Hypertens 2008; 26:831-43. [PMID: 18398321 DOI: 10.1097/hjh.0b013e3282f624a0] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The obesity pandemic is closely related to hypertension and metabolic syndrome. Visceral adipose tissue plays a key role in the metabolic and cardiovascular complications of being overweight. The pathophysiological link between visceral adiposity and cardiometabolic complications focuses on insulin sensitivity, sympathetic nervous system, renin-angiotensin-aldosterone system (RAAS) and, only recently, on cardiac natriuretic peptide system (CNPS). RAAS and CNPS are endogenous antagonistic systems on sodium balance, cardiovascular system, and metabolism. The circulating RAAS is dysregulated in obese patients, and adipose tissue has a full local renin-angiotensin system that is active at local and systemic level. Adipocyte biology and metabolism are influenced by local renin-angiotensin system, with angiotensin II acting as a 'growth factor' for adipocytes. CNPS induces natriuresis and diuresis, reduces blood pressure, and, moreover, has powerful lipolytic and lipomobilizing activity in humans but not in rodents. In obesity, lower plasmatic natriuretic peptides levels with increasing BMI, waist circumference, and metabolic syndrome have been documented. Thus, reduced CNPS effects coupled with increased RAAS activity have a central role in obesity and its deadly complications. We propose herein an integrated view of the dysregulation of these two antagonistic systems in human obesity complicated with hypertension, metabolic syndrome, and increased cardiovascular risk.
Collapse
|
23
|
Kobori H, Katsurada A, Miyata K, Ohashi N, Satou R, Saito T, Hagiwara Y, Miyashita K, Navar LG. Determination of plasma and urinary angiotensinogen levels in rodents by newly developed ELISA. Am J Physiol Renal Physiol 2008; 294:F1257-63. [PMID: 18353869 PMCID: PMC2610404 DOI: 10.1152/ajprenal.00588.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We recently reported that urinary excretion rates of angiotensinogen provide a specific index of the intrarenal renin-angiotensin system status in angiotensin II-dependent hypertensive rats. Angiotensinogen concentrations in mouse plasma are thought to be much lower than those in rat plasma; however, detailed information is deficient due to lack of direct quantitative measurements of rodent angiotensinogen. To elucidate this issue, we have developed a quantitative method for measurement of rodent angiotensinogen using a sandwich-type ELISA. The standard curve for mouse and rat angiotensinogen exhibited a high linearity at 0.16-10 and 0.08-5 ng/ml, respectively, with correlation coefficients >0.99. While plasma angiotensinogen concentrations of male high serum IgA (HIGA) mice (IgA nephritis model animals, 1,308 +/- 47 ng/ml; n = 10) were lower than those of control BALB/c mice (1,620 +/- 384; n = 12), urinary angiotensinogen concentrations of HIGA mice (14.6 +/- 1.5 ng/ml; n = 34) were higher than those of BALB/c mice (4.6 +/- 0.1; n = 2). In a similar manner, while plasma angiotensinogen concentrations of Zucker diabetic fatty (ZDF) obese rats (type 2 diabetic model animals, 1,789 +/- 50 ng/ml; n = 5) were lower than those of control ZDF lean rats (2,296 +/- 47; n = 5), urinary angiotensinogen concentrations of ZDF obese rats (88.2 +/- 11.4 ng/ml; n = 15) were higher than those of ZDF lean rats (31.3 +/- 1.9; n = 15). These data indicate that plasma and urinary angiotensinogen concentrations are less in mice than rats. However, these data suggest that urinary angiotensinogen levels are different from plasma angiotensinogen levels in rodents. The development of rodent angiotensinogen ELISA allows quantitative comparisons in mouse and rat angiotensinogen levels in models of hypertension and cardiovascular and kidney diseases.
Collapse
MESH Headings
- Angiotensinogen/blood
- Angiotensinogen/urine
- Animals
- Antibody Specificity
- Blotting, Western
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/chemically induced
- Diabetes Mellitus, Type 2/urine
- Enzyme-Linked Immunosorbent Assay/methods
- Genetic Vectors
- Glomerulonephritis, IGA/blood
- Glomerulonephritis, IGA/urine
- Immunohistochemistry
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Obesity/metabolism
- Rats
- Rats, Wistar
- Rats, Zucker
- Recombinant Proteins/blood
- Recombinant Proteins/urine
- Renin/blood
- Reproducibility of Results
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Raizada V, Skipper B, Luo W, Griffith J. Intracardiac and intrarenal renin-angiotensin systems: mechanisms of cardiovascular and renal effects. J Investig Med 2008; 55:341-59. [PMID: 18062896 DOI: 10.2310/6650.2007.00020] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The renin-angiotensin system (RAS) is a hormonal system that controls body fluid volume, blood pressure, and cardiovascular function in both health and disease. Various tissues, including the heart and kidneys, possess individual locally regulated RASs. In each RAS, the substrate protein angiotensinogen is cleaved by the peptidases renin and angiotensin-converting enzyme to form the biologically active product angiotensin II, which acts as an intracrine cardiac and renal hormone. The components of each RAS, including aldosterone (ALDO), may be produced locally and/or may be delivered by or sequestered from the circulation. Overactivity of the cardiac RAS has been associated with cardiac diseases, including cardiac hypertrophy due to volume and/or pressure overload, heart failure, coronary artery disease with myocardial infarction, and hypertension. Overactivity of the renal RAS has been associated with various kidney diseases, including nephropathies and renal artery stenosis. The principal effects of an overactive RAS include the generation of reactive oxygen species, which leads to "oxidative stress," activation of the nuclear transcription factor kappaB, and stimulation of pathways and genes that promote vasoconstriction, endothelial dysfunction, cell hypertrophy, fibroblast proliferation, inflammation, excess extracellular matrix deposition, atherosclerosis, and thrombosis. It has been suggested that oxidative stress is the central mechanism underlying the pathogenesis of RAS-related and ALDO-related chronic cardiovascular and renal tissue injury and of cardiac arrhythmias and conduction disturbances.
Collapse
Affiliation(s)
- Veena Raizada
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | | | | | | |
Collapse
|
25
|
Jones GT, Thompson AR, van Bockxmeer FM, Hafez H, Cooper JA, Golledge J, Humphries SE, Norman PE, van Rij AM. Angiotensin II type 1 receptor 1166C polymorphism is associated with abdominal aortic aneurysm in three independent cohorts. Arterioscler Thromb Vasc Biol 2008; 28:764-70. [PMID: 18239157 PMCID: PMC2775049 DOI: 10.1161/atvbaha.107.155564] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Although polymorphic variations in genes of the RAS system have previously been associated with susceptibility to AAA, such studies have been significantly limited by small sample sizes. This study was undertaken, using the largest case series yet reported, to determine whether common genetic variants of the RAS are associated with either susceptibility or severity of AAA. METHODS AND RESULTS The frequencies of 4 common genetic variants of genes related to the renin-angiotensin system were investigated in 3 geographically distinct, but ethnically similar, case-control cohorts, resulting in comparison of 1226 AAA cases with 1723 controls. In all 3 the AGTR1 1166C allele was significantly more common in AAA patients than controls (overall adjusted OR 1.60, 95% CI 1.32 to 1.93, P=1.1x10(-6)). Overall, the ACE ID genotype was associated with AAA (OR 1.33, 95% CI 1.06 to 1.67, P<0.02). The AGT 268T allele appeared to have an epistatic effect on large aneurysm size. CONCLUSIONS This study has identified a strong and repeated association between the AGTR1 1166C allele and susceptibility to AAA, and a weaker effect associated with the ACE deletion allele, in 3 geographically distinct, but ethnically similar, case-control cohorts. This study highlights the key role of the RAS in AAA and emphasizes the need for replication and validation of results in suitable independent cohorts.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Alleles
- Amino Acid Substitution
- Angiotensinogen/genetics
- Aortic Aneurysm, Abdominal/etiology
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/physiopathology
- Australia
- Base Sequence
- Cohort Studies
- Female
- Gene Frequency
- Genotype
- Humans
- Male
- Middle Aged
- Mutagenesis, Insertional
- New Zealand
- Peptidyl-Dipeptidase A/genetics
- Polymorphism, Genetic
- Polymorphism, Single Nucleotide
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Bradykinin B2/genetics
- Renin-Angiotensin System/genetics
- Renin-Angiotensin System/physiology
- Sequence Deletion
- United Kingdom
Collapse
|
26
|
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007; 59:251-87. [PMID: 17878513 DOI: 10.1124/pr.59.3.3] [Citation(s) in RCA: 889] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, the focus of interest on the role of the renin-angiotensin system (RAS) in the pathophysiology of hypertension and organ injury has changed to a major emphasis on the role of the local RAS in specific tissues. In the kidney, all of the RAS components are present and intrarenal angiotensin II (Ang II) is formed by independent multiple mechanisms. Proximal tubular angiotensinogen, collecting duct renin, and tubular angiotensin II type 1 (AT1) receptors are positively augmented by intrarenal Ang II. In addition to the classic RAS pathways, prorenin receptors and chymase are also involved in local Ang II formation in the kidney. Moreover, circulating Ang II is actively internalized into proximal tubular cells by AT1 receptor-dependent mechanisms. Consequently, Ang II is compartmentalized in the renal interstitial fluid and the proximal tubular compartments with much higher concentrations than those existing in the circulation. Recent evidence has also revealed that inappropriate activation of the intrarenal RAS is an important contributor to the pathogenesis of hypertension and renal injury. Thus, it is necessary to understand the mechanisms responsible for independent regulation of the intrarenal RAS. In this review, we will briefly summarize our current understanding of independent regulation of the intrarenal RAS and discuss how inappropriate activation of this system contributes to the development and maintenance of hypertension and renal injury. We will also discuss the impact of antihypertensive agents in preventing the progressive increases in the intrarenal RAS during the development of hypertension and renal injury.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Medicine, Director of the Molecular Core in Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112-2699, USA.
| | | | | | | |
Collapse
|
27
|
Kobori H, Ozawa Y, Suzaki Y, Prieto-Carrasquero MC, Nishiyama A, Shoji T, Cohen EP, Navar LG. Young Scholars Award Lecture: Intratubular angiotensinogen in hypertension and kidney diseases. Am J Hypertens 2006; 19:541-50. [PMID: 16647630 PMCID: PMC2063567 DOI: 10.1016/j.amjhyper.2005.11.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2005] [Revised: 10/18/2005] [Accepted: 11/09/2005] [Indexed: 12/21/2022] Open
Abstract
Recent findings related to the renin-angiotensin system have provided a more elaborated understanding of the pathophysiology of hypertension and kidney diseases. These findings have led to unique concepts and issues regarding the intrarenal renin-angiotensin system. Angiotensinogen is the only known substrate for renin that is the rate-limiting enzyme of the renin-angiotensin system. Because the level of angiotensinogen in human beings is close to the Michaelis-Menten constant value for renin, changes in angiotensinogen levels can control the activity of the renin-angiotensin system, and its upregulation may lead to elevated angiotensin peptide levels and increases in blood pressure. Enhanced intrarenal angiotensinogen mRNA or protein levels or both have been observed in multiple models of hypertension including angiotensin II-dependent hypertensive rats, Dahl salt-sensitive hypertensive rats, and spontaneously hypertensive rats, as well as in kidney diseases including diabetic nephropathy, immunoglobulin A (IgA) nephropathy, and radiation nephropathy. Renal angiotensinogen is formed primarily in proximal tubular cells and is secreted into the tubular fluid. Urinary angiotensinogen excretion rates show a clear relationship to kidney angiotensin II contents and kidney angiotensinogen levels, suggesting that urinary angiotensinogen may serve as an index of the intrarenal renin-angiotensin system status. Establishment of concise and accurate methods to measure human angiotensinogen may allow clinical studies that would provide important information regarding the roles of intrarenal angiotensinogen in the development and progression of hypertension and kidney diseases.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Physiology, Tulane University Health Sciences Center, New Orleans, Louisiana, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
O'Regan D, Kenyon CJ, Seckl JR, Holmes MC. Glucocorticoid exposure in late gestation in the rat permanently programs gender-specific differences in adult cardiovascular and metabolic physiology. Am J Physiol Endocrinol Metab 2004; 287:E863-70. [PMID: 15238353 DOI: 10.1152/ajpendo.00137.2004] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid overexposure in utero may underlie the association between low birth weight and subsequent development of common cardiovascular and metabolic pathologies. Previously, we have shown that prenatal dexamethasone (DEX) exposure in rat reduces birth weight and programs the hypothalamic-pituitary axis and fasting and postprandial hyperglycemia in adult males and hypertension in adult males and females. This study aimed to determine 1) whether there were gender differences in prenatal DEX-programmed offspring, and 2) whether the renin-angiotensin system (RAS) plays a role in the programming of hypertension. Rats exposed to DEX in utero (100 microg.kg(-1).day(-1) from embryonic days 14-21) were of lower birth weight (by 12%, P < 0.01) and displayed full catch-up growth within the first month of postnatal life. DEX-treated male offspring in adulthood selectively displayed elevated plasma adrenocorticotropic hormone (by 221%) and corticosterone (by 188%, P < 0.05), postprandial insulin-glucose ratios (by 100%, P < 0.05), and hepatic expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (by 38%, P < 0.05). Conversely, DEX-programmed females were hypertensive (by 11%, P < 0.05), with elevated hepatic angiotensinogen mRNA expression (by 9%, P < 0.05), plasma angiotensinogen (by 61%, P < 0.05), and renin activity (by 88%, P < 0.05). These findings demonstrate that prenatal glucocorticoids program adulthood cardiovascular and metabolic physiology in a gender-specific pattern, and that an activated RAS may in part underlie the hypertension associated with prenatal DEX programming.
Collapse
Affiliation(s)
- D O'Regan
- Endocrinology Unit, Molecular Medicine Centre, School of Molecular and Clinical Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, UK
| | | | | | | |
Collapse
|
29
|
Ferrario CM, Smith RD, Brosnihan B, Chappell MC, Campese VM, Vesterqvist O, Liao WC, Ruddy MC, Grim CE. Effects of omapatrilat on the renin-angiotensin system in salt-sensitive hypertension. Am J Hypertens 2002; 15:557-64. [PMID: 12074359 DOI: 10.1016/s0895-7061(02)02268-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The contribution of angiotensin-(1-7) [Ang-(1-7)] to the antihypertensive actions of omapatrilat, a novel vasopeptidase inhibitor, was evaluated in 22 salt-sensitive, low renin, hypertensive subjects as a substudy of a multicenter randomized, double-blind, parallel study of 4 weeks duration. A total of 25 other subjects received lisinopril as the active control. Omapatrilat (40 mg) produced sustained control of blood pressure (BP) (as assessed by 24-h ambulatory BP measurements) that was significantly greater than that produced by 20 mg daily of lisinopril. The antihypertensive response to either drug was accompanied by similar sustained inhibition of angiotensin converting enzyme activity. Plasma levels of angiotensin I (Ang I), angiotensin II (Ang II) and Ang-(1-7) were not altered by treatment with either omapatrilat or lisinopril, even though both regimens produced a modest rise in plasma renin activity. In contrast, urinary excretion rates of Ang I and Ang-(1-7) but not Ang II increased significantly throughout the dosing period of subjects who were given omapatrilat, whereas the smaller antihypertensive response produced by lisinopril had a smaller and transient effect on increasing urinary excretion rates of Ang-(1-7). Omapatrilat, being a single molecule inhibiting neutral endopeptidase and converting enzyme simultaneously, controlled salt-sensitive hypertension by a mechanism that was associated with sustained increases in urinary Ang-(1-7) excretion. We suggest that Ang-(1-7) may be a component of the mechanisms by which omapatrilat induces an antihypertensive response in salt sensitive hypertension.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kobori H, Harrison-Bernard LM, Navar LG. Enhancement of angiotensinogen expression in angiotensin II-dependent hypertension. Hypertension 2001; 37:1329-35. [PMID: 11358949 PMCID: PMC2575649 DOI: 10.1161/01.hyp.37.5.1329] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic infusion of angiotensin (Ang) II leads to the development of hypertension and enhances intrarenal Ang II content to levels greater than can be explained from the circulating concentrations of the peptide. We previously reported that renal angiotensinogen (Ao) mRNA is enhanced in Ang II-dependent hypertension and may contribute to augmented intrarenal Ang II levels, but the Ao protein levels were not significantly increased. Because a high-salt diet (H/S) has been shown to suppress renal expression of Ao mRNA, we examined the effects of chronic Ang II infusion on kidney and liver Ao mRNA and protein levels in male Sprague-Dawley rats (n=12) maintained on an 8% salt diet. Ang II was administered via osmotic minipumps (40 ng/min) to 1 group (n=6) while the remaining rats were sham-operated. A H/S diet alone did not alter systolic blood pressure in sham animals (109+/-6 mm Hg at day 12); however, Ang II infusions to the H/S rats significantly increased systolic blood pressure (167+/-7 at day 12) and intrarenal Ang II content (459+/-107 fmol/g versus 270+/-42) despite a marked suppression of plasma renin activity (0.9+/-0.2 ng Ang I. mL(-1). h(-1) versus 2.8+/-1.3). Ang II infusions significantly increased kidney Ao mRNA compared with the H/S diet alone by 1.9+/-0.1-fold. Western blot analysis of kidney protein extracts showed that the Ang II-infused rats had increased kidney Ao protein levels compared with the H/S diet alone (1.9+/-0.1-fold). Liver Ao mRNA and protein and plasma Ao protein were also significantly increased by Ang II infusions. These data demonstrate the effects of Ang II infusion to stimulate Ao mRNA and protein. Thus, the augmented intrarenal Ang II in Ang II-dependent hypertension may result, in part, by a positive amplification mechanism to activate renal expression of AO:
Collapse
Affiliation(s)
- H Kobori
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112-2699, USA.
| | | | | |
Collapse
|
31
|
Olivieri O, Stranieri C, Girelli D, Pizzolo F, Grazioli S, Russo C, Pignatti PF, Corrocher R. Homozygosity for angiotensinogen 235T variant increases the risk of myocardial infarction in patients with multi-vessel coronary artery disease. J Hypertens 2001; 19:879-84. [PMID: 11393670 DOI: 10.1097/00004872-200105000-00007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVE Molecular variants of the angiotensinogen (AGT) and the angiotensin II type 1 receptor (ATR) genes have been associated with the risk of coronary artery disease (CAD) and myocardial infarction (MI), but data so far available are conflicting. The primary object of the paper is to verify this possible association by a rigorous, angiographically controlled study in a large sample of patients with or without multi-vessel CAD. DESIGN We designed a large case-control study in Italian patients candidates for coronary artery bypass grafting, with angiographically documented multi-vessel CAD, compared to subjects with angiographically documented normal coronary arteries. METHODS AND RESULTS AGT M235T and ATR A1166C gene polymorphisms were analysed in 699 subjects; 454 patients were candidates for coronary artery bypass grafting, having angiographically documented (mainly multi-vessel) CAD. An appropriate documentation of previous MI was obtained from 404/454 (89%, 247 with and 157 without MI). Subjects (n = 245) with angiographically documented normal coronary arteries, were included as control group (CAD-free group). CAD patients had a substantial burden of conventional risk factors as compared with controls free of coronary atherosclerosis. Age, gender, smoking habit and number of stenosed vessels were the only differences between patients with or without previous myocardial infarction, who were similarly exposed to the other conventional risk factors (including hypertension). AGT M235T and ATR A1166C allele and genotype frequencies were similar between CAD and CAD-free patients. In the CAD group, AGT 235T allele was found more frequently in subjects with a previous myocardial infarction (0.494 versus 0.414; P < or = 0.05). By logistic regression, homozygosity for AGT 235T variant appeared to confer 1.9-fold increased risk for MI in both the univariate and the multivariate (adjusted for age, gender, smoking habit and number of stenosed vessels) model. CONCLUSIONS AGT 235 T homozygous patients with multivessel CAD have an increased risk of myocardial infarction as compared with subjects with clinically similar phenotype but different genotype.
Collapse
Affiliation(s)
- O Olivieri
- Department of Clinical and Experimental Medicine, Chair of Internal Medicine, University of Verona, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lalouel JM, Rohrwasser A, Terreros D, Morgan T, Ward K. Angiotensinogen in essential hypertension: from genetics to nephrology. J Am Soc Nephrol 2001; 12:606-615. [PMID: 11181811 DOI: 10.1681/asn.v123606] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
There is general consensus that genetic variation accounts in part for individual susceptibilities to essential hypertension. In marked contrast to classic mendelian disorders, in which genetic alterations produce a gain or loss of function, genetic determinants of essential hypertension, high blood pressure of unknown cause, are expected to be small, achieving significance through the cumulative effects of environmental exposure over the course of a lifetime. Whether and how genetic factors that contribute to common diseases can be identified remain unclear. Research on a link between angiotensinogen and essential hypertension illustrates a path that began in genetics and is now leading toward nephrology. Various challenges encountered along the way may prove to be characteristic features of genetic investigations of the pathogenesis of common diseases. The implication of a gene by statistical analysis is only the beginning of a protracted process of functional analysis at increasing levels of biologic integration. The ultimate goal is to develop an understanding of the manner in which genetic variation at a locus can affect a physiologic parameter and to extract from this inference new knowledge of significance for the prevention or treatment of disease.
Collapse
Affiliation(s)
- Jean-Marc Lalouel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andreas Rohrwasser
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Daniel Terreros
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
- Department of Veterans Affairs, Salt Lake City, Utah
| | - Terry Morgan
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Kenneth Ward
- Department of Obstetrics and Gynecology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
33
|
Kobori H, Harrison-Bernard LM, Navar LG. Expression of angiotensinogen mRNA and protein in angiotensin II-dependent hypertension. J Am Soc Nephrol 2001; 12:431-439. [PMID: 11181790 PMCID: PMC2573050 DOI: 10.1681/asn.v123431] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Chronic elevations in circulating angiotensin II (AngII) levels produce sustained hypertension and increased intrarenal AngII contents through multiple mechanisms, which may include sustained or increased local production of AngII. This study was designed to test the hypothesis that chronic AngII infusion increases renal angiotensinogen mRNA and protein levels, thus contributing to the increase in intrarenal AngII levels. AngII (80 ng/min) was infused subcutaneously for 13 d into Sprague-Dawley rats, using osmotic minipumps. Control rats underwent sham operations. By day 12, systolic arterial BP increased to 184 +/- 3 mmHg in AngII-treated rats, whereas values for sham-treated rats remained at control levels (125 +/- 1 mmHg). Plasma renin activity was markedly suppressed (0.2 +/- 0.1 versus 5.3 +/- 1.2 ng AngI/ml per h); however, renal AngII contents were significantly increased in AngII-treated rats (273 +/- 29 versus 99 +/- 18 fmol/g). Western blot analyses of plasma and liver protein using a polyclonal anti-angiotensinogen antibody demonstrated two specific immunoreactive bands, at 52 and 64 kD, whereas kidney tissue exhibited one band, at 52 kD. Densitometric analyses demonstrated that AngII infusion did not alter plasma (52- or 64-kD), renal (52-kD), or hepatic (52-kD) angiotensinogen protein levels; however, there was a significant increase in hepatic expression of the highly glycosylated 64-kD angiotensinogen protein, of almost fourfold (densitometric value/control value ratios of 3.79 +/- 1.16 versus 1.00 +/- 0.35). Renal and hepatic expression of angiotensinogen mRNA, which was examined by semiquantitative reverse transcription-PCR, was significantly increased in AngII-treated rats, compared with shamtreated rats (kidney, densitometric value/glyceraldehyde-3-phosphate dehydrogenase mRNA value ratios of 0.82 +/- 0.11 versus 0.58 +/- 0.04; liver, densitometric value/glyceraldehyde-3-phosphate dehydrogenase mRNA value ratios of 2.34 +/- 0.07 versus 1.32 +/- 0.15). These results indicate that increases in circulating AngII levels increase intrarenal angiotensinogen mRNA levels, which may contribute to the sustained renal AngII-generating capacity that paradoxically occurs in AngII-treated hypertensive rats.
Collapse
Affiliation(s)
- Hiroyuki Kobori
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | | | - L Gabriel Navar
- Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| |
Collapse
|
34
|
Bohlender J, Ganten D, Luft FC. Rats transgenic for human renin and human angiotensinogen as a model for gestational hypertension. J Am Soc Nephrol 2000; 11:2056-2061. [PMID: 11053481 DOI: 10.1681/asn.v11112056] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Animal models of gestational hypertension are problematic. A novel mouse model was described earlier. The dams in that study were transgenic for human angiotensinogen and the sires for human renin; human renin was expressed in and produced by the placenta. This model was adapted to the rat, which has greater utility in terms of chronic instrumentation and physiologic measurements. Female rats transgenic for human angiotensinogen were mated with rats transgenic for human renin. Telemetry BP increased on day 5 of pregnancy from 110/80 mmHg to as high as 180/140 mmHg, while heart rate increased slightly. The renin transgene was expressed in the placenta, which resulted in increased human plasma renin concentration from 0 to 937 +/- 800 ng angiotensin I ml/h; the values returned to 0 after delivery. Female rats transgenic for human renin that were mated with male rats transgenic for human angiotensinogen in contrast exhibited a decrease in BP. In these rats, human angiotensinogen in plasma remained undetectable. Double transgenic offspring of these transgenic rats developed hypertension and end-organ damage, regardless of the source of the transgenes. The conclusion is that transgenic rats that bear human renin and angiotensinogen genes make an attractive model for gestational hypertension. The rat model will have greater utility than the mouse model.
Collapse
Affiliation(s)
- Jürgen Bohlender
- Franz Volhard Clinic, Berlin, Germany
- Max Delbrück Center, Medical Faculty of the Charié, Humboldt University of Berlin, Berlin, Germany
| | - Detlev Ganten
- Max Delbrück Center, Medical Faculty of the Charié, Humboldt University of Berlin, Berlin, Germany
- Department of Clinical Pharmacology, Klinikum Benjamin Franklin, Free University of Berlin, Berlin, Germany
| | - Friedrich C Luft
- Franz Volhard Clinic, Berlin, Germany
- Max Delbrück Center, Medical Faculty of the Charié, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|