1
|
Telle Å, Charwat V, Charrez B, Finsberg H, Healy KE, Wall ST. Estimation of Active Tension in Cardiac Microtissues by Solving a PDE-Constrained Optimization Problem. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2025; 41:e70034. [PMID: 40272179 PMCID: PMC12020455 DOI: 10.1002/cnm.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/06/2025] [Accepted: 03/28/2025] [Indexed: 04/25/2025]
Abstract
Microphysiological systems (MPS) provide a highly controlled environment for the development and testing of human-induced pluripotent stem cell-based cardiac microtissues, with promising applications in disease modeling and drug development. Through optical measurements in such systems, we can quantify mechanical features such as motion and velocity during contraction. While these are useful for evaluating relative changes in muscle twitch, it remains challenging to quantify and characterize the actual active tension driving the contraction. Here, we aimed to quantify the active tension over time and space by solving an inverse problem in cardiac mechanics expressed by partial differential equations (PDEs). We formulated this as a PDE-constrained optimization problem based on a mechanical model defined for two-dimensional representations of the microtissues. Our optimization predicts active tension generated by the tissue as well as the fiber direction angle distribution. We used synthetic as well as experimental data to investigate the performance of our inversion protocol. Next, we employed the procedure to evaluate active tension changes in drug escalation studies of the inotropes omecamtiv mecarbil and Bay K8644. For both drug compounds, we observed a comparable increase in displacement, strain, and model-predicted active strain values upon higher drug doses. The estimated active tension was observed to be highest in the middle part of the tissue, and the fiber direction was mostly aligned with the longitudinal direction of the tissue. The computational framework presented here allows for spatiotemporal estimation of active tension in cardiac microtissues based on optical measurements. In the future, such methodologies might develop into valuable tools in drug development protocols.
Collapse
Affiliation(s)
- Åshild Telle
- Department of Computational PhysiologySimula Research LaboratoryOsloNorway
| | | | - Bérénice Charrez
- Department of BioengineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Henrik Finsberg
- Department of Computational PhysiologySimula Research LaboratoryOsloNorway
- Organos, IncBerkeleyCaliforniaUSA
| | - Kevin E. Healy
- Department of BioengineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
- Department of Materials Science & EngineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Samuel T. Wall
- Department of Computational PhysiologySimula Research LaboratoryOsloNorway
- Organos, IncBerkeleyCaliforniaUSA
- Department of BioengineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
2
|
Dias P, Salam R, Pourová J, Vopršalová M, Konečný L, Jirkovský E, Duintjer Tebbens J, Mladěnka P. The quercetin metabolite 4-methylcatechol causes vasodilation via voltage-gated potassium (K V) channels. Food Funct 2024; 15:11047-11059. [PMID: 39422021 DOI: 10.1039/d3fo04672a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Dietary polyphenols have been associated with many beneficial cardiovascular effects. However, these effects are rather attributed to small phenolic metabolites formed by the gut microbiota, which reach sufficient concentrations in systemic circulation. 4-Methylcatechol (4-MC) is one such metabolite. As it is shown to possess considerable vasorelaxant effects, this study aimed to unravel its mechanism of action. To this end, experimental in vitro and in silico approaches were employed. In the first step, isometric tension recordings were performed on rat aortic rings. 4-MC potentiated the effect of cyclic nucleotides, but the effect was not mediated by either soluble guanylyl cyclase (sGC), modification of cyclic adenosine monophosphate levels, or protein kinase G. Hence, downstream targets such as calcium or potassium channels were considered. Inhibition of voltage-gated K+ channels (KV) markedly decreased the effect of 4-MC, and vasodilation was partly decreased by inhibition of the KV7 isoform. Contrarily, other types of K+ channels or L-type Ca2+ channels were not involved. In silico reverse docking confirmed that 4-MC binds to KV7.4 through hydrogen bonding and hydrophobic interactions. In particular, it interacts with two crucial residues for KV7.4 activation: Trp242 and Phe246. In summary, our findings suggested that 4-MC exerts vasorelaxation by opening KV channels with the involvement of KV7.4.
Collapse
Affiliation(s)
- Patrícia Dias
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
- Division of Outcomes & Translational Sciences, Pelotonia Research Center, The Ohio State University, 2255 Kenny Rd, Columbus, OH, USA
| | - Rudy Salam
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic
- Department of Pharmacy, Faculty of Medicine, Brawijaya University, Malang, Indonesia
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
| | - Lukáš Konečný
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
| | - Jurjen Duintjer Tebbens
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Hradec Kralove, 500 05, Czech Republic.
| |
Collapse
|
3
|
Albrakati A. Caveolar disruption with methyl-β-cyclodextrin causes endothelium-dependent contractions in Wistar rat carotid arteries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63071-63080. [PMID: 35445923 DOI: 10.1007/s11356-022-20226-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/09/2022] [Indexed: 06/14/2023]
Abstract
Caveolae are organizing centers for cellular signal transduction in endothelial cells (ED) and smooth muscle cells (SMCs) in the blood vessels. Myography was used to investigate the effects of a caveolar disruption using methyl-β-cyclodextrin (MBCD) on maxi-K channels in rat carotid arteries. Incubation of carotid segments with MBCD augmented contractions in response to BaK (chemical channel agonist) but not those induced by depolarizing high potassium physiological saline (KPSS). In contrast, incubation with cholesterol-saturated MBCD (Ch-MBCD) abolished the effects of MBCD. Mechanical removal of endothelial cells by MBCD triggered a small contraction in response to BaK. Incubation with nitroarginine methyl ester (L-NAME) inhibited nitric oxide (NO) release, causing increased contractions in response to BaK, and this effect was reversed by pretreatment with MBCD. These results suggest that MBCD inhibits endothelial NO release. Contrastingly, inhibition of maxi-K channels with iberiotoxin enhanced contractions in response to BaK. Likewise, L-NAME decreased the contractile effect of iberiotoxin, as in the ED-denuded arteries. Transmission electron microscopy (TEM) showed the presence and absence of caveolae in intact blood vessels before and after MBCD treatment, respectively, whereas histology confirmed ED removal after the treatment. Caveolar disruption using MBCD impairs ED-dependent relaxation by inhibiting the release of NO from the ED and altered the contractility of SMCs independent of the ED due to reduced contribution of maxi-K channels to the SMC membrane potential, causing depolarization and increasing carotid artery contraction. These findings might help to understand the physiological role of the maxi-K channels in rat carotid arteries.
Collapse
Affiliation(s)
- Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
4
|
Acharya A, Nemade H, Rajendra Prasad K, Khan K, Hescheler J, Blackburn N, Hemmersbach R, Papadopoulos S, Sachinidis A. Live-Cell Imaging of the Contractile Velocity and Transient Intracellular Ca 2+ Fluctuations in Human Stem Cell-Derived Cardiomyocytes. Cells 2022; 11:1280. [PMID: 35455960 PMCID: PMC9031802 DOI: 10.3390/cells11081280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Live-cell imaging techniques are essential for acquiring vital physiological and pathophysiological knowledge to understand and treat heart disease. For live-cell imaging of transient alterations of [Ca2+]i in human cardiomyocytes, we engineered human-induced pluripotent stem cells carrying a genetically-encoded Ca2+-indicator (GECI). To monitor sarcomere shortening and relaxation in cardiomyocytes in real-time, we generated a α-cardiac actinin (ACTN2)-copepod (cop) green fluorescent protein (GFP+)-human-induced pluripotent stem cell line by using the CRISPR-Cas9 and a homology directed recombination approach. The engineered human-induced pluripotent stem cells were differentiated in transgenic GECI-enhanced GFP+-cardiomyocytes and ACTN2-copGFP+-cardiomyocytes, allowing real-time imaging of [Ca2+]i transients and live recordings of the sarcomere shortening velocity of ACTN2-copGFP+-cardiomyocytes. We developed a video analysis software tool to quantify various parameters of sarcoplasmic Ca2+ fluctuations recorded during contraction of cardiomyocytes and to calculate the contraction velocity of cardiomyocytes in the presence and absence of different drugs affecting cardiac function. Our cellular and software tool not only proved the positive and negative inotropic and lusitropic effects of the tested cardioactive drugs but also quantified the expected effects precisely. Our platform will offer a human-relevant in vitro alternative for high-throughput drug screenings, as well as a model to explore the underlying mechanisms of cardiac diseases.
Collapse
Affiliation(s)
- Aviseka Acharya
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Harshal Nemade
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Krishna Rajendra Prasad
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Khadija Khan
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Jürgen Hescheler
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Nick Blackburn
- Bioras Company, Kaarsbergsvej 2, 8400 Ebeltoft, Denmark;
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany;
| | - Symeon Papadopoulos
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Agapios Sachinidis
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
5
|
Jæger KH, Edwards AG, Giles WR, Tveito A. A computational method for identifying an optimal combination of existing drugs to repair the action potentials of SQT1 ventricular myocytes. PLoS Comput Biol 2021; 17:e1009233. [PMID: 34383746 PMCID: PMC8360568 DOI: 10.1371/journal.pcbi.1009233] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/01/2021] [Indexed: 01/26/2023] Open
Abstract
Mutations are known to cause perturbations in essential functional features of integral membrane proteins, including ion channels. Even restricted or point mutations can result in substantially changed properties of ion currents. The additive effect of these alterations for a specific ion channel can result in significantly changed properties of the action potential (AP). Both AP shortening and AP prolongation can result from known mutations, and the consequences can be life-threatening. Here, we present a computational method for identifying new drugs utilizing combinations of existing drugs. Based on the knowledge of theoretical effects of existing drugs on individual ion currents, our aim is to compute optimal combinations that can ‘repair’ the mutant AP waveforms so that the baseline AP-properties are restored. More specifically, we compute optimal, combined, drug concentrations such that the waveforms of the transmembrane potential and the cytosolic calcium concentration of the mutant cardiomyocytes (CMs) becomes as similar as possible to their wild type counterparts after the drug has been applied. In order to demonstrate the utility of this method, we address the question of computing an optimal drug for the short QT syndrome type 1 (SQT1). For the SQT1 mutation N588K, there are available data sets that describe the effect of various drugs on the mutated K+ channel. These published findings are the basis for our computational analysis which can identify optimal compounds in the sense that the AP of the mutant CMs resembles essential biomarkers of the wild type CMs. Using recently developed insights regarding electrophysiological properties among myocytes from different species, we compute optimal drug combinations for hiPSC-CMs, rabbit ventricular CMs and adult human ventricular CMs with the SQT1 mutation. Since the ‘composition’ of ion channels that form the AP is different for the three types of myocytes under consideration, so is the composition of the optimal drug. Poly-pharmacology (using multiple drugs to treat disease) has been proposed for improving cardiac anti-arrhythmic therapy for at least two decades. However, the specific arrhythmia contexts in which polytherapy is likely to be both safe and effective have remained elusive. Type 1 short QT syndrome (SQT1) is a rare form of cardiac arrhythmia that results from mutations to the human Ether-á-go-go Related Gene (hERG) potassium channel. Functionally, these mutations are remarkably consistent in that they permit the channel to open earlier during each heart beat. While hundreds of compounds are known to inhibit hERG channels, the specific effect of SQT1 mutations that allows for early channel opening also limits the ability of most of those compounds to correct SQT1 dysfunction. Here, we have applied a suite of ventricular cardiomyocyte computational models to ask whether polytherapy may offer a more effective therapeutic strategy in SQT1, and if so, what the likely characteristics of that strategy are. Our analyses suggest that simultaneous induction of late sodium current and partial hERG blockade offers a promising strategy. While no activators of late sodium current have been clinically approved, several experimental compounds are available and may provide a basis for interrogating this strategy. The method presented here can be used to compute optimal drug combinations provided that the effect of each drug on every relevant ion channel is known.
Collapse
MESH Headings
- Action Potentials/drug effects
- Amino Acid Substitution
- Animals
- Anti-Arrhythmia Agents/administration & dosage
- Arrhythmias, Cardiac/drug therapy
- Arrhythmias, Cardiac/genetics
- Arrhythmias, Cardiac/physiopathology
- Computational Biology
- Drug Combinations
- Drug Design
- Drug Therapy, Combination/methods
- ERG1 Potassium Channel/drug effects
- ERG1 Potassium Channel/genetics
- ERG1 Potassium Channel/physiology
- Heart Conduction System/abnormalities
- Heart Conduction System/physiopathology
- Heart Defects, Congenital/drug therapy
- Heart Defects, Congenital/genetics
- Heart Defects, Congenital/physiopathology
- Humans
- Induced Pluripotent Stem Cells/drug effects
- Induced Pluripotent Stem Cells/physiology
- Models, Cardiovascular
- Mutation, Missense
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/physiology
- Rabbits
Collapse
Affiliation(s)
| | - Andrew G. Edwards
- Simula Research Laboratory, Oslo, Norway
- Department of Pharmacology, University of California, Davis, California United States of America
| | - Wayne R. Giles
- Simula Research Laboratory, Oslo, Norway
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Calgary, Calgary, Canada
| | | |
Collapse
|
6
|
Different voltage dependence of I CaL blockade in nonselective I Kr blockers causes their opposite effects on early afterdepolarization in drug-induced arrhythmia. J Pharmacol Sci 2021; 147:95-103. [PMID: 34294379 DOI: 10.1016/j.jphs.2021.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
Several false-positive results in the human ether-à-gogo-related gene test suggest that blockers of the rapid component of delayed rectifier K+ current (IKr) do not necessarily produce drug-induced arrhythmias. Specifically, the occurrence of early afterdepolarization (EAD) differs among IKr blockers, even if the prolonged action potential duration is in the same range. To predict EAD in drug-induced arrhythmias, we proposed a prediction method based on the mechanisms underlying the difference in frequency of EAD among nonselective IKr blockers. The mechanisms were elucidated by examining how different blockade kinetics of L-type Ca2+ current (ICaL) affect the frequency of EAD, using mathematical models of human ventricular myocytes. Addition of voltage-independent ICaL blockade resulted in the suppression of EAD. However, when voltage-dependent ICaL blockade kinetics of amiodarone, bepridil, and terfenadine were incorporated into ICaL in the model, bepridil and terfenadine induced EAD more than the voltage-independent ICaL blockade, while amiodarone suppressed EAD more effectively. Opposite effects were accounted for by the difference in ICaL blockade at negatively polarized potential. EAD occurrence was found to be associated with ICaL blockade measured at -20 mV. These results suggest that voltage dependence of ICaL blockade may be useful in predicting the different risks of nonselective IKr blockers.
Collapse
|
7
|
Graves JM, Vallejo JA, Hamill CS, Wang D, Ahuja R, Patel S, Faul C, Wacker MJ. Fibroblast growth factor 23 (FGF23) induces ventricular arrhythmias and prolongs QTc interval in mice in an FGF receptor 4-dependent manner. Am J Physiol Heart Circ Physiol 2021; 320:H2283-H2294. [PMID: 33929896 DOI: 10.1152/ajpheart.00798.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fibroblast growth factor 23 (FGF23) is a phosphate regulating protein hormone released by osteocytes. FGF23 becomes markedly elevated in chronic kidney disease (CKD), for which the leading cause of death is cardiovascular disease, particularly sudden cardiac death. Previously, we found that FGF23 increases intracellular Ca2+ in cardiomyocytes and alters contractility in mouse ventricles ex vivo via FGF receptor 4 (FGFR4). In the present study, we demonstrate that FGF23 induces cardiac arrhythmias and prolongs QTc interval in mice, and we tested whether these effects are mediated through FGFR4. In isolated Langendorff perfused hearts, FGF23 perfusion increased mechanical arrhythmias in the form of premature ventricular beats (PVBs), and induced runs of ventricular tachycardia in 6 of 11 animals, which were attenuated with pretreatment of an anti-FGFR4 blocking antibody. Ex vivo ECG analysis of isolated intact hearts showed increased ventricular arrhythmias and QTc prolongation after FGF23 infusion compared with vehicle. In vivo, injection of FGF23 into the jugular vein led to the emergence of premature ventricular contractions (PVCs) in 5 out of 11 experiments. FGF23 also produced a significant lengthening effect upon QTc interval in vivo. In vivo FGFR4 blockade ameliorated the arrhythmogenic and QTc prolonging effects of FGF23. Finally, FGF23 increased cardiomyocyte Ca2+ levels in intact left ventricular muscle which was inhibited by FGR4 blockade. We conclude that FGF23/FGFR4 signaling in the heart may contribute to ventricular arrhythmogenesis and repolarization disturbances commonly observed in patients with CKD via Ca2+ overload and may be an important therapeutic target to reduce cardiac mortality in CKD.NEW & NOTEWORTHY Here we provide direct evidence that fibroblast growth factor 23 (FGF23), a phosphaturic hormone elevated in chronic kidney disease, is proarrhythmic. FGF23 acutely triggered ventricular arrhythmias and prolonged corrected QT interval (QTc) in isolated mouse hearts and in vivo. FGF23 also increased Ca2+ levels in ventricular muscle tissue. Blockade of the FGF receptor 4 signaling pathway using a monoclonal antibody ameliorated ventricular arrhythmias, QTc prolongation, and elevated ventricular Ca2+ induced by FGF23, and may represent a potential therapeutic target in chronic kidney disease.
Collapse
Affiliation(s)
- Jonah M Graves
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Julian A Vallejo
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Chelsea S Hamill
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Derek Wang
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Rohan Ahuja
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Shaan Patel
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael J Wacker
- Department of Biomedical Sciences, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| |
Collapse
|
8
|
Verkerk AO, Wilders R. Dynamic Clamp in Electrophysiological Studies on Stem Cell-Derived Cardiomyocytes-Why and How? J Cardiovasc Pharmacol 2021; 77:267-279. [PMID: 33229908 DOI: 10.1097/fjc.0000000000000955] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) are supposed to be a good human-based model, with virtually unlimited cell source, for studies on mechanisms underlying cardiac development and cardiac diseases, and for identification of drug targets. However, a major drawback of hPSC-CMs as a model system, especially for electrophysiological studies, is their depolarized state and associated spontaneous electrical activity. Various approaches are used to overcome this drawback, including the injection of "synthetic" inward rectifier potassium current (IK1), which is computed in real time, based on the recorded membrane potential ("dynamic clamp"). Such injection of an IK1-like current results in quiescent hPSC-CMs with a nondepolarized resting potential that show "adult-like" action potentials on stimulation, with functional availability of the most important ion channels involved in cardiac electrophysiology. These days, dynamic clamp has become a widely appreciated electrophysiological tool. However, setting up a dynamic clamp system can still be laborious and difficult, both because of the required hardware and the implementation of the dedicated software. In the present review, we first summarize the potential mechanisms underlying the depolarized state of hPSC-CMs and the functional consequences of this depolarized state. Next, we explain how an existing manual patch clamp setup can be extended with dynamic clamp. Finally, we shortly validate the extended setup with atrial-like and ventricular-like hPSC-CMs. We feel that dynamic clamp is a highly valuable tool in the field of cellular electrophysiological studies on hPSC-CMs and hope that our directions for setting up such dynamic clamp system may prove helpful.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
- Department of Experimental Cardiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands ; and
| |
Collapse
|
9
|
Verma C, Ankush KR, Anang V, Tiwari BK, Singh A, Surender Kumar Saraswati S, Shariff M, Natarajan K. Calcium Dynamics Regulate Protective Responses and Growth of Staphylococcus aureus in Macrophages. Biomol Concepts 2020; 11:230-239. [PMID: 33726488 DOI: 10.1515/bmc-2020-0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a gram-positive bacteria, which causes various fatal respiratory infections including pneumonia. The emergence of Methicillin-Resistance Staphylococcus aureus (MRSA) demands a thorough understanding of host-pathogen interactions. Here we report the role of calcium in regulating defence responses of S. aureus in macrophages. Regulating calcium fluxes in cells by different routes differentially governs the expression of T cell costimulatory molecule CD80 and Th1 promoting IL-12 receptor. Inhibiting calcium influx from extracellular medium increased expression of IFN-γ and IL-10 while blocking calcium release from the intracellular stores inhibited TGF-β levels. Blocking voltage-gated calcium channels (VGCC) inhibited the expression of multiple cytokines. While VGCC regulated the expression of apoptosis protein Bax, extracellular calcium-regulated the expression of Cytochrome-C. Similarly, VGCC regulated the expression of autophagy initiator Beclin-1. Blocking VGCC or calcium release from intracellular stores promoted phagosome-lysosome fusion, while activating VGCC inhibited phagosomelysosome fusion. Finally, calcium homeostasis regulated intracellular growth of Staphylococcus, although using different mechanisms. While blocking extracellular calcium influx seems to rely on IFN-γ and IL-12Rβ receptor mediated reduction in bacterial survival, blocking either intracellular calcium release or via VGCC route seem to rely on enhanced autophagy mediated reduction of intracellular bacterial survival. These results point to fine-tuning of defence responses by routes of calcium homeostasis.
Collapse
Affiliation(s)
- Chaitenya Verma
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.,Department of Pathology, Wexner Medical Center,The Ohio State University, OH-43210, USA
| | - Kumar Rana Ankush
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Vandana Anang
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Brijendra K Tiwari
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Aayushi Singh
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | | | - Malini Shariff
- Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| |
Collapse
|
10
|
Singh A, Anang V, Kumar Rana A, Verma C, Surender Kumar Saraswati S, Kumari P, Singh A, Natarajan K. Deciphering the role of calcium homeostasis in T cells functions during mycobacterial infection. Cell Immunol 2020; 357:104198. [DOI: 10.1016/j.cellimm.2020.104198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023]
|
11
|
Goßmann M, Linder P, Thomas U, Juhasz K, Lemme M, George M, Fertig N, Dragicevic E, Stoelzle-Feix S. Integration of mechanical conditioning into a high throughput contractility assay for cardiac safety assessment. J Pharmacol Toxicol Methods 2020; 105:106892. [PMID: 32629160 DOI: 10.1016/j.vascn.2020.106892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/29/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Abstract
INDUCTION Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. With the presented study, we aimed at validating the newly developed FLEXcyte96 technology with respect to physiological responses of hiPSC-CMs to pharmacological compounds with known inotropic and/or cardiotoxic effects. METHODS hiPSC-CMs were cultured in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment. Cardiomyocyte contractility was measured contact-free by application of capacitive displacement sensing of the cell-membrane biohybrids. Acute effects of positive inotropic compounds with distinct mechanisms of action were examined. Additionally, cardiotoxic effects of tyrosine kinase inhibitors and anthracyclines were repetitively examined during repeated exposure to drug concentrations for up to 5 days. RESULTS hiPSC-CMs grown on biomimetic membranes displayed increased contractility responses to isoproterenol, S-Bay K8644 and omecamtiv mecarbil without the need for additional stimulation. Tyrosine kinase inhibitor erlotinib, vandetanib, nilotinib, gefitinib, A-674563 as well as anthracycline idarubicin showed the expected cardiotoxic effects, including negative inotropy and induction of proarrhythmic events. DISCUSSION We conclude that the FLEXcyte 96 system is a reliable high throughput tool for invitro cardiac contractility research, providing the user with data obtained under physiological conditions which resemble the native environment of human heart tissue. We showed that the results obtained for both acute and sub-chronic compound administration are consistent with the respective physiological responses in humans.
Collapse
Affiliation(s)
| | - Peter Linder
- innoVitro GmbH, Artilleriestr 2, 52428 Jülich, Germany
| | - Ulrich Thomas
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Krisztina Juhasz
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany; Institute for Nanoelectronics, Technische Universität München, Arcisstrasse 21, 80333 Munich, Germany
| | - Marta Lemme
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Michael George
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Niels Fertig
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | - Elena Dragicevic
- Nanion Technologies GmbH, Ganghoferstr 70A, 80339 Munich, Germany
| | | |
Collapse
|
12
|
Kitagawa A, Kizub I, Jacob C, Michael K, D'Alessandro A, Reisz JA, Grzybowski M, Geurts AM, Rocic P, Gupte R, Miano JM, Gupte SA. CRISPR-Mediated Single Nucleotide Polymorphism Modeling in Rats Reveals Insight Into Reduced Cardiovascular Risk Associated With Mediterranean G6PD Variant. Hypertension 2020; 76:523-532. [PMID: 32507041 DOI: 10.1161/hypertensionaha.120.14772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Epidemiological studies suggest that individuals in the Mediterranean region with a loss-of-function, nonsynonymous single nucleotide polymorphism (S188F), in glucose-6-phosphate dehydrogenase (G6pd) are less susceptible to vascular diseases. However, this association has not yet been experimentally proven. Here, we set out to determine whether the Mediterranean mutation confers protection from vascular diseases and to discover the underlying protective mechanism. We generated a rat model with the Mediterranean single nucleotide polymorphism (G6PDS188F) using CRISPR-Cas9 genome editing. In rats carrying the mutation, G6PD activity, but not expression, was reduced to 20% of wild-type (WT) littermates. Additionally, unbiased metabolomics analysis revealed that the pentose phosphate pathway and other ancillary metabolic pathways connected to the pentose phosphate pathway were reduced (P<0.05) in the arteries of G6PDS188F versus WT rats. Intriguingly, G6PDS188F mutants, as compared with WT rats, developed less large arterial stiffness and hypertension evoked by high-fat diet and nitric oxide synthase inhibition with L-NG-nitroarginine methyl ester. Intravenous injection of a voltage-gated L-type Ca2+ channel agonist (methyl 2,6-dimethyl-5-nitro-4-[2-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3-carboxylate; Bay K8644) acutely increased blood pressure in WT but not in G6PDS188F rats. Finally, our results suggested that (1) lower resting membrane potential of smooth muscle caused by increased expression of K+ channel proteins and (2) decreased voltage-gated Ca2+ channel activity in smooth muscle contributed to reduced hypertension and arterial stiffness evoked by L-NG-nitroarginine methyl ester and high-fat diet to G6PDS188F mutants as compared with WT rats. In summary, a mutation resulting in the replacement of a single amino acid (S188F) in G6PD, the rate-limiting enzyme in the pentose phosphate pathway, ascribed properties to the vascular smooth muscle that shields the organism from risk factors associated with vascular diseases.
Collapse
Affiliation(s)
- Atsushi Kitagawa
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Igor Kizub
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Christina Jacob
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Kevin Michael
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado, Anschutz Medical Campus, Aurora (A.D., J.A.R.)
| | - Michael Grzybowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee (M.G., A.M.G.)
| | - Petra Rocic
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| | | | - Joseph M Miano
- Department of Medicine, Vascular Biology Center, Medical College of Georgia at Augusta University (J.M.M.)
| | - Sachin A Gupte
- From the Department of Pharmacology, New York Medical College, Valhalla (A.K., I.K., C.J., K.M., P.R., S.A.G.)
| |
Collapse
|
13
|
Zhao Y, Huang G, Wu J, Wu Q, Gao S, Yan Z, Lei J, Yan N. Molecular Basis for Ligand Modulation of a Mammalian Voltage-Gated Ca 2+ Channel. Cell 2020; 177:1495-1506.e12. [PMID: 31150622 DOI: 10.1016/j.cell.2019.04.043] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/23/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
The L-type voltage-gated Ca2+ (Cav) channels are modulated by various compounds exemplified by 1,4-dihydropyridines (DHP), benzothiazepines (BTZ), and phenylalkylamines (PAA), many of which have been used for characterizing channel properties and for treatment of hypertension and other disorders. Here, we report the cryoelectron microscopy (cryo-EM) structures of Cav1.1 in complex with archetypal antagonistic drugs, nifedipine, diltiazem, and verapamil, at resolutions of 2.9 Å, 3.0 Å, and 2.7 Å, respectively, and with a DHP agonist Bay K 8644 at 2.8 Å. Diltiazem and verapamil traverse the central cavity of the pore domain, directly blocking ion permeation. Although nifedipine and Bay K 8644 occupy the same fenestration site at the interface of repeats III and IV, the coordination details support previous functional observations that Bay K 8644 is less favored in the inactivated state. These structures elucidate the modes of action of different Cav ligands and establish a framework for structure-guided drug discovery.
Collapse
Affiliation(s)
- Yanyu Zhao
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gaoxingyu Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianping Wu
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Qiurong Wu
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shuai Gao
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Zhen Yan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Nieng Yan
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
14
|
van Meer BJ, Krotenberg A, Sala L, Davis RP, Eschenhagen T, Denning C, Tertoolen LGJ, Mummery CL. Simultaneous measurement of excitation-contraction coupling parameters identifies mechanisms underlying contractile responses of hiPSC-derived cardiomyocytes. Nat Commun 2019; 10:4325. [PMID: 31541103 PMCID: PMC6754438 DOI: 10.1038/s41467-019-12354-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are increasingly recognized as valuable for determining the effects of drugs on ion channels but they do not always accurately predict contractile responses of the human heart. This is in part attributable to their immaturity but the sensitivity of measurement tools may also be limiting. Measuring action potential, calcium flux or contraction individually misses critical information that is captured when interrogating the complete excitation-contraction coupling cascade simultaneously. Here, we develop an hypothesis-based statistical algorithm that identifies mechanisms of action. We design and build a high-speed optical system to measure action potential, cytosolic calcium and contraction simultaneously using fluorescent sensors. These measurements are automatically processed, quantified and then assessed by the algorithm. Multiplexing these three critical physical features of hiPSC-CMs allows identification of all major drug classes affecting contractility with detection sensitivities higher than individual measurement of action potential, cytosolic calcium or contraction.
Collapse
Affiliation(s)
- Berend J van Meer
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Ana Krotenberg
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Luca Sala
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands.,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Richard P Davis
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Thomas Eschenhagen
- Dept. of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Chris Denning
- Dept. of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Leon G J Tertoolen
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Christine L Mummery
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands. .,Dept. of Applied Stem Cell Technologies, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
15
|
Zheoat AM, Gray AI, Igoli JO, Ferro VA, Drummond RM. Hibiscus acid from Hibiscus sabdariffa (Malvaceae) has a vasorelaxant effect on the rat aorta. Fitoterapia 2019; 134:5-13. [PMID: 30690125 DOI: 10.1016/j.fitote.2019.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/16/2019] [Accepted: 01/24/2019] [Indexed: 02/05/2023]
Abstract
Hibiscus sabdariffa (Malvaceae) is a plant that is widely recognised for its antihypertensive properties; however the constituent(s) responsible for this biological activity are presently unknown. The aim of this study was to identify the potential compounds that are responsible for the vasorelaxant activity of H. sabdariffa. Thereafter, the mechanisms involved in producing the vasorelaxation were investigated. The plant was extracted consecutively with hexane, ethyl acetate and methanol. The methanolic extract was subjected to bioassay-guided fractionation in order to isolate pure compounds that possessed vasorelaxant activity. The vascular effects of the pure compounds were studied on the rat aorta in vitro using myography techniques. Hibiscus acid produced a concentration-dependent relaxation of the rat aorta pre-contracted with either phenylephrine (3 μM) or KCl (60 mM), irrespective of the presence of the endothelium. When the tissue was pre-contracted with phenylephrine, the concentration required to produce 50% relaxation (IC50), was 0.09 ± 0.01 mg/ml. Hibiscus acid had no effect on the phasic contraction induced by phenylephrine in Ca2+-free physiological solution; but it did affect the component of the contraction that is due to Ca2+ influx. In parallel studies, garcinia acid, a diastereoisomer of hibiscus acid, was found to have an almost identical vasorelaxant effect. The vasorelaxant action of both compounds is most likely due to the inhibition of Ca2+ influx via voltage-dependent Ca2+ channels.
Collapse
Affiliation(s)
- Ahmed M Zheoat
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Alexander I Gray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - John O Igoli
- Phytochemistry Research Group, Department of Chemistry, University of Agriculture, PMB 2373 Makurdi, Nigeria
| | - Valerie A Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK
| | - Robert M Drummond
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, Scotland, UK.
| |
Collapse
|
16
|
Xie B, Nguyen PM, Guček A, Thonig A, Barg S, Idevall-Hagren O. Plasma Membrane Phosphatidylinositol 4,5-Bisphosphate Regulates Ca(2+)-Influx and Insulin Secretion from Pancreatic β Cells. Cell Chem Biol 2017; 23:816-826. [PMID: 27447049 DOI: 10.1016/j.chembiol.2016.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Insulin secretion from pancreatic β cells is regulated by the blood glucose concentration and occurs through Ca(2+)-triggered exocytosis. The activities of multiple ion channels in the β cell plasma membrane are required to fine-tune insulin secretion in order to maintain normoglycemia. Phosphoinositide lipids in the plasma membrane often gate ion channels, and variations in the concentration of these lipids affect ion-channel open probability and conductance. Using light-regulated synthesis or depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate (PI[4,5]P2), we found that this lipid positively regulated both depolarization- and glucose-triggered Ca(2+) influx in a dose-dependent manner. Small reductions of PI(4,5)P2 caused by brief illumination resulted in partial suppression of Ca(2+) influx that followed the kinetics of the lipid, whereas depletion resulted in marked inhibition of both Ca(2+) influx and insulin secretion.
Collapse
Affiliation(s)
- Beichen Xie
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden
| | - Phuoc My Nguyen
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden
| | - Alenka Guček
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden
| | - Antje Thonig
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden
| | - Olof Idevall-Hagren
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, Husargatan 3, Box 571, 75123 Uppsala, Sweden.
| |
Collapse
|
17
|
Mustafá ER, López Soto EJ, Martínez Damonte V, Rodríguez SS, Lipscombe D, Raingo J. Constitutive activity of the Ghrelin receptor reduces surface expression of voltage-gated Ca 2+ channels in a Ca Vβ-dependent manner. J Cell Sci 2017; 130:3907-3917. [PMID: 29038230 DOI: 10.1242/jcs.207886] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/04/2017] [Indexed: 12/15/2022] Open
Abstract
Voltage-gated Ca2+ (CaV) channels couple membrane depolarization to Ca2+ influx, triggering a range of Ca2+-dependent cellular processes. CaV channels are, therefore, crucial in shaping neuronal activity and function, depending on their individual temporal and spatial properties. Furthermore, many neurotransmitters and drugs that act through G protein coupled receptors (GPCRs), modulate neuronal activity by altering the expression, trafficking, or function of CaV channels. GPCR-dependent mechanisms that downregulate CaV channel expression levels are observed in many neurons but are, by comparison, less studied. Here we show that the growth hormone secretagogue receptor type 1a (GHSR), a GPCR, can inhibit the forwarding trafficking of several CaV subtypes, even in the absence of agonist. This constitutive form of GPCR inhibition of CaV channels depends on the presence of a CaVβ subunit. CaVβ subunits displace CaVα1 subunits from the endoplasmic reticulum. The actions of GHSR on CaV channels trafficking suggest a role for this signaling pathway in brain areas that control food intake, reward, and learning and memory.
Collapse
Affiliation(s)
- Emilio R Mustafá
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Eduardo J López Soto
- Department of Neuroscience, Brown University; Sidney E. Frank Hall for Life Sciences, 185 Meeting Street, Providence, Rhode Island 02912, USA
| | - Valentina Martínez Damonte
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Silvia S Rodríguez
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| | - Diane Lipscombe
- Department of Neuroscience, Brown University; Sidney E. Frank Hall for Life Sciences, 185 Meeting Street, Providence, Rhode Island 02912, USA
| | - Jesica Raingo
- Electrophysiology Laboratory, Multidisciplinary Institute of Cell Biology (IMBICE), Universidad Nacional de La Plata - Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, and Comisión de Investigaciones de la Provincia de buenos Aires (CIC) Calle 526 1499-1579, B1906APM Tolosa, Buenos Aires, Argentina
| |
Collapse
|
18
|
Garland CJ, Bagher P, Powell C, Ye X, Lemmey HAL, Borysova L, Dora KA. Voltage-dependent Ca 2+ entry into smooth muscle during contraction promotes endothelium-mediated feedback vasodilation in arterioles. Sci Signal 2017; 10:10/486/eaal3806. [PMID: 28676489 DOI: 10.1126/scisignal.aal3806] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular smooth muscle contraction is suppressed by feedback dilation mediated by the endothelium. In skeletal muscle arterioles, this feedback can be activated by Ca2+ signals passing from smooth muscle through gap junctions to endothelial cells, which protrude through holes in the internal elastic lamina to make contact with vascular smooth muscle cells. Although hypothetically either Ca2+ or inositol trisphosphate (IP3) may provide the intercellular signal, it is generally thought that IP3 diffusion is responsible. We provide evidence that Ca2+ entry through L-type voltage-dependent Ca2+ channels (VDCCs) in vascular smooth muscle can pass to the endothelium through positions aligned with holes in the internal elastic lamina in amounts sufficient to activate endothelial cell Ca2+ signaling. In endothelial cells in which IP3 receptors (IP3Rs) were blocked, VDCC-driven Ca2+ events were transient and localized to the endothelium that protrudes through the internal elastic lamina to contact vascular smooth muscle cells. In endothelial cells in which IP3Rs were not blocked, VDCC-driven Ca2+ events in endothelial cells were amplified to form propagating waves. These waves activated voltage-insensitive, intermediate-conductance, Ca2+-activated K+ (IKCa) channels, thereby providing feedback that effectively suppressed vasoconstriction and enabled cycles of constriction and dilation called vasomotion. Thus, agonists that stimulate vascular smooth muscle depolarization provide Ca2+ to endothelial cells to activate a feedback circuit that protects tissue blood flow.
Collapse
Affiliation(s)
- Christopher J Garland
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Pooneh Bagher
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Chloe Powell
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Xi Ye
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Hamish A L Lemmey
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Lyudmyla Borysova
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Kim A Dora
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|
19
|
Sharma D, Tiwari BK, Mehto S, Antony C, Kak G, Singh Y, Natarajan K. Suppression of Protective Responses upon Activation of L-Type Voltage Gated Calcium Channel in Macrophages during Mycobacterium bovis BCG Infection. PLoS One 2016; 11:e0163845. [PMID: 27723836 PMCID: PMC5056721 DOI: 10.1371/journal.pone.0163845] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/15/2016] [Indexed: 12/22/2022] Open
Abstract
The prevalence of Mycobacterium tuberculosis (M. tb) strains eliciting drug resistance has necessitated the need for understanding the complexities of host pathogen interactions. The regulation of calcium homeostasis by Voltage Gated Calcium Channel (VGCCs) upon M. tb infection has recently assumed importance in this area. We previously showed a suppressor role of VGCC during M. tb infections and recently reported the mechanisms of its regulation by M. tb. Here in this report, we further characterize the role of VGCC in mediating defence responses of macrophages during mycobacterial infection. We report that activation of VGCC during infection synergistically downmodulates the generation of oxidative burst (ROS) by macrophages. This attenuation of ROS is regulated in a manner which is dependent on Toll like Receptor (TLR) and also on the route of calcium influx, Protein Kinase C (PKC) and by Mitogen Activation Protein Kinase (MAPK) pathways. VGCC activation during infection increases cell survival and downmodulates autophagy. Concomitantly, pro-inflammatory responses such as IL-12 and IFN-γ secretion and the levels of their receptors on cell surface are inhibited. Finally, the ability of phagosomes to fuse with lysosomes in M. bovis BCG and M. tb H37Rv infected macrophages is also compromised when VGCC activation occurs during infection. The results point towards a well-orchestrated strategy adopted by mycobacteria to supress protective responses mounted by the host. This begins with the increase in the surface levels of VGCCs by mycobacteria and their antigens by well-controlled and regulated mechanisms. Subsequent activation of the upregulated VGCC following tweaking of calcium levels by molecular sensors in turn mediates suppressor responses and prepare the macrophages for long term persistent infection.
Collapse
Affiliation(s)
- Deepika Sharma
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Brijendra Kumar Tiwari
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Subhash Mehto
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Cecil Antony
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Gunjan Kak
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Krishnamurthy Natarajan
- Infectious Disease Immunology Lab, Dr. B R Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
20
|
Effect of fetal hypothyroidism on tolerance to ischemia–reperfusion injury in aged male rats: Role of nitric oxide. Nitric Oxide 2016; 55-56:82-90. [DOI: 10.1016/j.niox.2016.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/20/2016] [Accepted: 04/08/2016] [Indexed: 12/21/2022]
|
21
|
Ghanbari M, Jeddi S, Bagheripuor F, Ghasemi A. The effect of maternal hypothyroidism on cardiac function and tolerance to ischemia-reperfusion injury in offspring male and female rats. J Endocrinol Invest 2015; 38:915-22. [PMID: 25823371 DOI: 10.1007/s40618-015-0267-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/03/2015] [Indexed: 01/13/2023]
Abstract
PURPOSE Accumulating evidence indicates that intrauterine evolution disturbance can contribute to myocardial ischemia reperfusion (IR) injury; in addition, thyroid hormones (THs) have a crucial role in the development of different systems during fetal life. The aim of this study was to determine the effect of TH deficiency during fetal life on tolerance of isolated heart to ischemia during adulthood in both genders. METHODS Hypothyroidism was induced in pregnant Wistar rats by administrating 0.025 % 6-propyl-2-thiouracil in drinking water throughout pregnancy. Offspring of rats with maternal hypothyroidism (MH) and control groups were tested in adulthood. Isolated hearts were perfused with Langendorff setup and exposed to 30 min of ischemia, followed by 45 min of reperfusion. Baseline values of the left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), heart rate (HR), and peak rates of positive and negative changes in left ventricular pressure (±dp/dt) were recorded. RESULTS In the MH groups the baseline levels of LVDP (male: 23 %, female: 33 %), HR (male: 31 %, female: 26 %), and ±dp/dt were significantly (p < 0.01) lower, compared to controls. After ischemia, hearts from male rats with MH had less tolerance to IR injury as assessed in terms of reductions in recovery of hemodynamic parameters compared to controls, while in female rats there were no significant differences between MH and controls. CONCLUSIONS MH decreases hemodynamic parameters in the heart of both male and female offspring in adulthood; in addition, hearts of male rats with MH show less tolerance to ischemia, compared to those of females.
Collapse
Affiliation(s)
- M Ghanbari
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Velenjak, 1985717413, Tehran, Iran
| | | | | | | |
Collapse
|
22
|
Lauro FV, Francisco DC, Elodia GC, Eduardo PG, Marcela RN, Lenin HH, Betty SA. Design and synthesis of new dihydrotestosterone derivative with positive inotropic activity. Steroids 2015; 95:39-50. [PMID: 25578737 DOI: 10.1016/j.steroids.2014.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 11/04/2014] [Accepted: 12/31/2014] [Indexed: 11/22/2022]
Abstract
There are several reports which indicate that some steroid derivatives have inotropic activity; nevertheless, the cellular site and mechanism of action of steroid derivatives at cardiovascular level is very confusing. In order, to clarify these phenomena in this study, two dihydrotestosterone derivatives (compounds 5 and 10) were synthesized with the objective of to evaluate its biological activity on left ventricular pressure and characterize their molecular mechanism. In the first stage, the Langendorff technique was used to measure changes on perfusion pressure and coronary resistance in an isolated rat heart model in absence or presence of the steroid derivatives. Additionally, to characterize the molecular mechanism involved in the inotropic activity induced by the compound 5 was evaluated by measuring left ventricular pressure in absence or presence of following compounds; nifedipine, flutamide, indomethacin, prazosin, isoproterenol, propranolol and metoprolol. The results showed that the compound 5 significantly increased the perfusion pressure and coronary resistance in comparison with dihydrotestosterone, compound 10 and the control conditions. Other data indicate that 5 increase left ventricular pressure in a dose-dependent manner (0.001-100 nM); nevertheless, this phenomenon was significantly inhibited only by propranolol or metoprolol at a dose of 1 nM. These data suggest that positive inotropic activity induced by the compound 5 is through β1-adrenergic receptor however, this effect was independent of cAMP levels. This phenomenon is a particularly interesting because the positive inotropic activity induced by this steroid derivative involves a molecular mechanism different in comparison with other positive inotropic drugs.
Collapse
Affiliation(s)
- Figueroa-Valverde Lauro
- Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche Cam., Mexico.
| | - Díaz-Cedillo Francisco
- Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional. Prol. Carpio y Plan de Ayala s/n Col. Santo Tomas, D.F. C.P. 11340, Mexico
| | - García-Cervera Elodia
- Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche Cam., Mexico
| | - Pool-Gómez Eduardo
- Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche Cam., Mexico
| | - Rosas-Nexticapa Marcela
- Facultad de Nutrición, Universidad Veracruzana, Médicos y Odontologos s/n C.P. 91010, Unidad del Bosque Xalapa Veracruz, Mexico
| | - Hau-Heredia Lenin
- Laboratory of Pharmaco-Chemistry, Faculty of Chemical Biological Sciences, University Autonomous of Campeche, Av. Agustín Melgar s/n, Col Buenavista C.P. 24039 Campeche Cam., Mexico
| | - Sarabia Alcocer Betty
- Faculty of Medicine, University Autonomous of Campeche, Av. Patricio Trueba de Regil s/n, Col Lindavista C.P. 24090 Campeche Cam., Mexico
| |
Collapse
|
23
|
Skalova S, Svadlakova T, Shaikh Qureshi WM, Dev K, Mokry J. Induced pluripotent stem cells and their use in cardiac and neural regenerative medicine. Int J Mol Sci 2015; 16:4043-67. [PMID: 25689424 PMCID: PMC4346943 DOI: 10.3390/ijms16024043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 12/20/2022] Open
Abstract
Stem cells are unique pools of cells that are crucial for embryonic development and maintenance of adult tissue homeostasis. The landmark Nobel Prize winning research by Yamanaka and colleagues to induce pluripotency in somatic cells has reshaped the field of stem cell research. The complications related to the usage of pluripotent embryonic stem cells (ESCs) in human medicine, particularly ESC isolation and histoincompatibility were bypassed with induced pluripotent stem cell (iPSC) technology. The human iPSCs can be used for studying embryogenesis, disease modeling, drug testing and regenerative medicine. iPSCs can be diverted to different cell lineages using small molecules and growth factors. In this review we have focused on iPSC differentiation towards cardiac and neuronal lineages. Moreover, we deal with the use of iPSCs in regenerative medicine and modeling diseases like myocardial infarction, Timothy syndrome, dilated cardiomyopathy, Parkinson’s, Alzheimer’s and Huntington’s disease. Despite the promising potential of iPSCs, genome contamination and low efficacy of cell reprogramming remain significant challenges.
Collapse
Affiliation(s)
- Stepanka Skalova
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Tereza Svadlakova
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Wasay Mohiuddin Shaikh Qureshi
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Kapil Dev
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| | - Jaroslav Mokry
- Department of Histology and Embryology, Medical Faculty in Hradec Kralove, Charles University in Prague, Simkova 870, Hradec Kralove 50038, Czech Republic.
| |
Collapse
|
24
|
Zhang DM, Li Y, Cheang WS, Lau CW, Lin SM, Zhang QL, Yao N, Wang Y, Wu X, Huang Y, Ye WC. Cajaninstilbene acid relaxes rat renal arteries: roles of Ca2+ antagonism and protein kinase C-dependent mechanism. PLoS One 2012; 7:e47030. [PMID: 23056567 PMCID: PMC3467215 DOI: 10.1371/journal.pone.0047030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 09/07/2012] [Indexed: 11/30/2022] Open
Abstract
Cajaninstilbene acid (CSA) is a major active component present in the leaves of Cajanus cajan (L.) Millsp. The present study explores the underlying cellular mechanisms for CSA-induced relaxation in rat renal arteries. Vascular reactivity was examined in arterial rings that were suspended in a Multi Myograph System and the expression of signaling proteins was assessed by Western blotting method. CSA (0.1–10 µM) produced relaxations in rings pre-contracted by phenylephrine, serotonin, 9, 11-dideoxy-9α, 11α-epoxymethanoprostaglandin F2α (U46619), and 60 mM KCl. CSA-induced relaxations did not show difference between genders and were unaffected by endothelium denudation, nor by treatment with NG-nitro-L-arginine methyl ester, indomethacin, ICI-182780, tetraethylammonium ion, BaCl2, glibenclamide, 4-aminopyridine or propranolol. CSA reduced contraction induced by CaCl2 (0.01–5 mM) in Ca2+-free 60 mM KCl solution and by 30 nM (−)-Bay K8644 in 15 mM KCl solution. CSA inhibited 60 mM KCl-induced Ca2+ influx in smooth muscle of renal arteries. In addition, CSA inhibited contraction evoked by phorbol 12-myristate 13-acetate (PMA, protein kinase C agonist) in Ca2+-free Krebs solution. Moreover, CSA reduced the U46619- and PMA-induced phosphorylation of myosin light chain (MLC) at Ser19 and myosin phosphatase target subunit 1 (MYPT1) at Thr853 which was associated with vasoconstriction. CSA also lowered the phosphorylation of protein kinase C (PKCδ) at Thr505. In summary, the present results suggest that CSA relaxes renal arteries in vitro via multiple cellular mechanisms involving partial inhibition of calcium entry via nifedipine-sensitive calcium channels, protein kinase C and Rho kinase.
Collapse
Affiliation(s)
- Dong-Mei Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Yong Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Wai San Cheang
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Chi Wai Lau
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Shun-Ming Lin
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Qian-Lan Zhang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Nan Yao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Ying Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Xin Wu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Yu Huang
- Institute of Vascular Medicine, Li Ka Shing Institute of Health Sciences and School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (WCY); (YH)
| | - Wen-Cai Ye
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
- * E-mail: (WCY); (YH)
| |
Collapse
|
25
|
Multiscale modeling of calcium cycling in cardiac ventricular myocyte: macroscopic consequences of microscopic dyadic function. Biophys J 2011; 100:2904-12. [PMID: 21689523 DOI: 10.1016/j.bpj.2011.05.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 05/12/2011] [Accepted: 05/13/2011] [Indexed: 11/22/2022] Open
Abstract
In cardiac ventricular myocytes, calcium (Ca) release occurs at distinct structures (dyads) along t-tubules, where L-type Ca channels (LCCs) appose sarcoplasmic reticulum (SR) Ca release channels (RyR2s). We developed a model of the cardiac ventricular myocyte that simulates local stochastic Ca release processes. At the local Ca release level, the model reproduces Ca spark properties. At the whole-cell level, the model reproduces the action potential, Ca currents, and Ca transients. Changes in microscopic dyadic properties (e.g., during detubulation in heart failure) affect whole-cell behavior in complex ways, which we investigated by simulating changes in the dyadic volume and number of LCCs/RyR2s in the dyad, and effects of calsequestrin (CSQN) as a Ca buffer (CSQN buffer) or a luminal Ca sensor (CSQN regulator). We obtained the following results: 1), Increased dyadic volume and reduced LCCs/RyR2s decrease excitation-contraction coupling gain and cause asynchrony of SR Ca release, and interdyad coupling partially compensates for the reduced synchrony. 2), Impaired CSQN buffer depresses Ca transients without affecting the synchrony of SR Ca release. 3), When CSQN regulator function is impaired, interdyad coupling augments diastolic Ca release activity to form Ca waves and long-lasting Ca release events.
Collapse
|
26
|
Bannister RA, Grabner M, Beam KG. The alpha(1S) III-IV loop influences 1,4-dihydropyridine receptor gating but is not directly involved in excitation-contraction coupling interactions with the type 1 ryanodine receptor. J Biol Chem 2008; 283:23217-23. [PMID: 18556650 PMCID: PMC2516988 DOI: 10.1074/jbc.m804312200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 06/13/2008] [Indexed: 11/06/2022] Open
Abstract
In skeletal muscle, coupling between the 1,4-dihydropyridine receptor (DHPR) and the type 1 ryanodine receptor (RyR1) underlies excitation-contraction (EC) coupling. The III-IV loop of the DHPR alpha(1S) subunit binds to a segment of RyR1 in vitro, and mutations in the III-IV loop alter the voltage dependence of EC coupling, raising the possibility that this loop is directly involved in signal transmission from the DHPR to RyR1. To clarify the role of the alpha(1S) III-IV loop in EC coupling, we examined the functional properties of a chimera (GFP-alpha(1S)[III-IVa]) in which the III-IV loop of the divergent alpha(1A) isoform replaced that of alpha(1S). Dysgenic myotubes expressing GFP-alpha(1S)[III-IVa] yielded myoplasmic Ca(2+) transients that activated at approximately 10 mV more hyperpolarized potentials and that were approximately 65% smaller than those of GFP-alpha(1S). A similar reduction was observed in voltage-dependent charge movements for GFP-alpha(1S)[III-IVa], indicating that the chimeric channels trafficked less well to the membrane but that those that were in the membrane functioned as efficiently in EC coupling as GFP-alpha(1S). Relative to GFP-alpha(1S), L-type currents mediated by GFP-alpha(1S)[III-IVa] were approximately 40% smaller and activated at approximately 5 mV more hyperpolarized potentials. The altered gating of GFP-alpha(1S)[III-IVa] was accentuated by exposure to +/-Bay K 8644, which caused a much larger hyperpolarizing shift in activation compared with its effect on GFP-alpha(1S). Taken together, our observations indicate that the alpha(1S) III-IV loop is not directly involved in EC coupling but does influence DHPR gating transitions important both for EC coupling and activation of L-type conductance.
Collapse
Affiliation(s)
- Roger A Bannister
- Department of Physiology and Biophysics, University of Colorado-Denver, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
27
|
Peterson BZ, Catterall WA. Allosteric interactions required for high-affinity binding of dihydropyridine antagonists to Ca(V)1.1 Channels are modulated by calcium in the pore. Mol Pharmacol 2006; 70:667-75. [PMID: 16675661 DOI: 10.1124/mol.105.020644] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dihydropyridines (DHPs) are an important class of drugs, used extensively in the treatment of angina pectoris, hypertension, and arrhythmia. The molecular mechanism by which DHPs modulate Ca(2+) channel function is not known in detail. We have found that DHP binding is allosterically coupled to Ca(2+) binding to the selectivity filter of the skeletal muscle Ca(2+) channel Ca(V)1.1, which initiates excitation-contraction coupling and conducts L-type Ca(2+) currents. Increasing Ca(2+) concentrations from approximately 10 nM to 1 mM causes the DHP receptor site to shift from a low-affinity state to a high-affinity state with an EC(50) for Ca(2+) of 300 nM. Substituting each of the four negatively charged glutamate residues that form the ion selectivity filter with neutral glutamine or positively charged lysine residues results in mutant channels whose DHP binding affinities are decreased up to 10-fold and are up to 150-fold less sensitive to Ca(2+) than wild-type channels. Analysis of mutations of amino acid residues adjacent to the selectivity filter led to identification of Phe-1013 and Tyr-1021, whose mutation causes substantial changes in DHP binding. Thermo-dynamic mutant cycle analysis of these mutants demonstrates that Phe-1013 and Tyr-1021 are energetically coupled when a single Ca(2+) ion is bound to the channel pore. We propose that DHP binding stabilizes a nonconducting state containing a single Ca(2+) ion in the pore through which Phe-1013 and Tyr-1021 are energetically coupled. The selectivity filter in this energetically coupled high-affinity state is blocked by bound Ca(2+), which is responsible for the high-affinity inhibition of Ca(2+) channels by DHP antagonists.
Collapse
Affiliation(s)
- Blaise Z Peterson
- Cellular and Molecular Physiology, H166, Penn State Milton S. Hershey Medical Center, College of Medicine, 500 University Dr., Room C6603, P.O. Box 850, Hershey, PA 17033-0850, USA.
| | | |
Collapse
|
28
|
Canellada A, Cano E, Sánchez-Ruiloba L, Zafra F, Redondo JM. Calcium-dependent expression of TNF-α in neural cells is mediated by the calcineurin/NFAT pathway. Mol Cell Neurosci 2006; 31:692-701. [PMID: 16458016 DOI: 10.1016/j.mcn.2005.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 12/16/2005] [Accepted: 12/20/2005] [Indexed: 11/27/2022] Open
Abstract
We report induction of TNF-alpha via the calcium/calcineurin/NFAT pathway in PC12 neural cells. In PC12, expression of TNF-alpha mRNA, protein and TNF-alpha gene promoter activity was induced by co-stimulation with phorbol ester and either calcium ionophore A23187 or the L-type Voltage Gated Calcium Channel agonist Bay K 8644. Pre-treatment with calcineurin inhibitors CsA or FK506 inhibited the dominant calcium-dependent component of this induction, limiting it to the level achieved with phorbol ester alone. Promoter activation by Bay was abolished by nifedipine, a specific inhibitor of L-type Voltage Gated Calcium Channels. Exogenous NFAT protein transactivated the TNF-alpha promoter, and the peptide VIVIT-a specific inhibitor of calcineurin/NFAT binding-blocked calcium-inducible transactivation of the TNF-alpha promoter. Given proposed functions of TNF-alpha in spatial learning, memory and the pathogenesis of neurodegenerative diseases, the data presented suggest an important role for calcineurin/NFAT signaling in these key neurological processes.
Collapse
Affiliation(s)
- Andrea Canellada
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CBM-CSIC), Universidad Autónoma de Madrid (UAM), Facultad de Ciencias, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
29
|
Pedemonte N, Diena T, Caci E, Nieddu E, Mazzei M, Ravazzolo R, Zegarra-Moran O, Galietta LJV. Antihypertensive 1,4-dihydropyridines as correctors of the cystic fibrosis transmembrane conductance regulator channel gating defect caused by cystic fibrosis mutations. Mol Pharmacol 2005; 68:1736-46. [PMID: 16150931 DOI: 10.1124/mol.105.015149] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel gene. CF mutations like deltaF508 cause both a mistrafficking of the protein and a gating defect. Other mutations, like G551D, cause only a gating defect. Our aim was to find chemical compounds able to stimulate the activity of CFTR mutant proteins by screening a library containing approved drugs. Two thousand compounds were tested on Fischer rat thyroid cells coexpressing deltaF508-CFTR and a halide-sensitive yellow fluorescent protein (YFP) after correction of the trafficking defect by low-temperature incubation. The YFP-based screening allowed the identification of the antihypertensive 1,4-dihydropyridines (DHPs) nifedipine, nicardipine, nimodipine, isradipine, nitrendipine, felodipine, and niguldipine as compounds able to activate deltaF508-CFTR. This effect was not derived from the inhibition of voltage-dependent Ca2+ channels, the pharmacological target of antihypertensive DHPs. Indeed, methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-2(trifluoromethylphenyl)pyridine-5-carboxylate (BayK-8644), a DHP that is effective as an activator of such channels, also stimulated CFTR activity. DHPs were also effective on the G551D-CFTR mutant by inducing a 16- to 45-fold increase of the CFTR Cl- currents. DHP activity was confirmed in airway epithelial cells from patients with CF. DHPs may represent a novel class of therapeutic agents able to correct the defect caused by a set of CF mutations.
Collapse
Affiliation(s)
- Nicoletta Pedemonte
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, L.go Gerolamo Gaslini, 5, 16147 Genova, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
McCormack K. A New Perspective on Signal Transduction in Neuropathic Pain The Emerging Role of the G Protein By Dimer in Transducing and Modulating Opioid Signaling. Pain 2003. [DOI: 10.1201/9780203911259.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Rueda A, García L, Soria-Jasso LE, Arias-Montaño JA, Guerrero-Hernández A. The initial inositol 1,4,5-trisphosphate response induced by histamine is strongly amplified by Ca(2+) release from internal stores in smooth muscle. Cell Calcium 2002; 31:161-73. [PMID: 12027381 DOI: 10.1054/ceca.2002.0270] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have studied the Ca(2+)-dependence and wortmannin-sensitivity of the initial inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) response induced by activation of either histamine or muscarinic receptors in smooth muscle from guinea pig urinary bladder. Activation of H(1) receptors with histamine (100 microM) produced a significant elevation in Ins(1,4,5)P(3) levels with only 5s stimulation and in the presence of external Ca(2+). However, this response was abolished fully by either the prolonged absence of external Ca(2+) or the depletion of internal Ca(2+) stores with thapsigargin (100nM) or ryanodine (10 microM). In contrast, the same conditions only slightly reduced the initial Ins(1,4,5)P(3) response induced by carbachol. The prolonged incubation of smooth muscle in 10 microM wortmannin to inhibit type III PI 4-kinase abolished both the early histamine-evoked Ins(1,4,5)P(3) and Ca(2+) responses. Conversely, wortmannin did not alter Ca(2+) release induced by carbachol, despite a partial reduction of its Ins(1,4,5)P(3) response. Collectively, these data indicate that the detectable histamine-induced increase in Ins(1,4,5)P(3) is more the consequence of Ca(2+) release from internal stores than a direct activation of phospholipase C by H(1) receptors. In addition, the effect of wortmannin implies the existence of a Ca(2+)-dependent amplification loop for the histamine-induced Ins(1,4,5)P(3) response in smooth muscle.
Collapse
Affiliation(s)
- A Rueda
- Departamento de Bioquímica, CINVESTAV, México
| | | | | | | | | |
Collapse
|
32
|
Miyamoto S, Ozaki H, Hori M, Endoh M, Karaki H. Tight coupling between the rate of rise of Ca2+ transient and peak twitch contraction in guinea-pig papillary muscle. Eur J Pharmacol 1999; 377:199-207. [PMID: 10456431 DOI: 10.1016/s0014-2999(99)00423-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We evaluated the relationship between cytoplasmic Ca2+ concentration ([Ca2+]i) and force in guinea-pig papillary muscles loaded with a fluorescent Ca2+ indicator, fura-PE3. In the absence of ryanodine, [Ca2+]i transient and force were altered by changing extracellular Ca2+ concentration and stimulation frequency, and also by adding methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl)-pyri dine-5-carboxylate (Bay K 8644) or ouabain. Under these conditions, the peak force correlated linearly with the maximal rate of rise of [Ca2+]i (gamma = 0.948) more than the peak [Ca2+]i transient (gamma = 0.737). Ryanodine inhibited the increase in the maximal rate of rise of [Ca2+]i resulting in abolishment of the correlation between force and the maximal rate of rise of [Ca2+]i. These results suggest that the maximal rate of rise of [Ca2+]i reflects Ca2+ release from the sarcoplasmic reticulum, and this fraction of [Ca2+]i is crucial for determining the amplitude of twitch contractions when the sarcoplasmic reticulum is intact in guinea-pig papillary muscle.
Collapse
Affiliation(s)
- S Miyamoto
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Japan.
| | | | | | | | | |
Collapse
|
33
|
Ved HS, Koenig ML, Dave JR, Doctor BP. Huperzine A, a potential therapeutic agent for dementia, reduces neuronal cell death caused by glutamate. Neuroreport 1997; 8:963-8. [PMID: 9141073 DOI: 10.1097/00001756-199703030-00029] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Huperzine a, a potential therapeutic agent for Alzheimer's disease, inhibits acetylcholinesterase in primary cultures derived from forebrain, hippocampus, cortex and cerebellum of embryonic rat brain. Glutamate induces cell death in cultures from all these brain regions. Maximum cell toxicity was observed in cerebellar cultures. Pretreatment of cell cultures with Huperzine A reduced cell toxicity, as evidenced by cytotoxicity assay and general morphology. Huperzine A pretreatment also reduced glutamate-induced calcium mobilization, but did not affect elevations in intraneuronal free Ca2+ ([Ca]i) caused by KCl or (-)Bay K 8644. The data suggest that Huperzine A could be a potent neuroprotective agent not only where cholinergic neurons are impaired, but also under conditions in which glutamatergic functions are compromised.
Collapse
Affiliation(s)
- H S Ved
- Division of Biochemistry, Walter Reed Army Institute of Research, Washington, DC 20307-5100, USA
| | | | | | | |
Collapse
|
34
|
Delpech N, Soustre H, Potreau D. Endothelin-1 inhibits L-type Ca2+ current enhanced by isoprenaline in rat atrial myocytes. J Cardiovasc Pharmacol 1997; 29:136-43. [PMID: 9007683 DOI: 10.1097/00005344-199701000-00021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Endothelin-1 (ET-1) was shown to exert direct cardiac effects by complex signaling pathways and to interact with neurotransmitter regulation of cardiac activity. The effect of ET-1 was investigated on the beta-adrenergic stimulation of cardiac L-type Ca2+ current (ICaL) on isolated rat atrial myocytes by using the patch-clamp technique. ET-1 (5 x 10(-8) M) reversed the increase in ICaL induced by isoprenaline (10(-6) M) but had no effect on basal ICaL and on (-) Bay K 8644-increased ICaL (10(-6) M); so ET-1 might exert an effect only when the Ca2+ channels are phosphorylated. The antiadrenergic action of ET-1, blocked by BQ-123 (10(-6) M) and unaffected by IRL 1038 (3.5 x 10(-8) M) should be mediated by ET-A receptors. The inhibitory action of ET-1 was still observed when ICaL was previously increased by forskolin (3 x 10(-6) M), 8-bromo-cyclic adenosine monophosphate (8-Br-cAMP; 200 microM), or cAMP (100 microM) in presence of isobutyl methyl xanthine (IBMX; 10(-6) M), suggesting that the antiadrenergic action of ET-1 on ICaL was exerted independent of the cAMP-dependent phosphorylation pathway. ET-1 is known to be an activator of phosphoinositide hydrolysis, resulting in an increased production of IP3 and diacylglycerol (DAG). A Ca(2+)-dependent inhibition of ICaL consequently to an elevation of the intracellular Ca2+ pool via IP3 might be excluded in the action of ET-1, because of the presence of EGTA in the intrapipette medium. ET-1 reversed the isoprenaline-induced increase in ICaL in the presence of protein kinase C inhibitor [PKC(19-31); 100 microM), making unlikely the involvement of a DAG-dependent activation of PKC. Therefore the antiadrenergic action of ET-1 might also be independent on the phosphoinositide pathway.
Collapse
Affiliation(s)
- N Delpech
- Laboratory of General Physiology, URA CNRS 1869, Faculty of Sciences, Poitiers, France
| | | | | |
Collapse
|
35
|
Abstract
Voltage-dependent Ca2+ channels are one of the main routes for the entry of Ca2+ into excitable cells. These channels are unique in cell-signalling terms in that they can transduce an electrical signal (membrane depolarization) via Ca2+ entry into a chemical signal, by virtue of the diverse range of intracellular Ca(2+)-dependent enzymes and processes. In a variety of cell types, currents through voltage-dependent Ca2+ channels can be increased in amplitude by a number of means. Although the term facilitation was originally defined as an increase of Ca2+ current resulting from one or a train of prepulses to depolarizing voltages, there is a great deal of overlap between facilitation by this means and enhancement by other routes, such as phosphorylation.
Collapse
Affiliation(s)
- A C Dolphin
- Dept of Pharmacology, Royal Free Hospital School of Medicine, London, UK
| |
Collapse
|
36
|
Chang GJ, SU MJ, Lee PH, Lee SS, Liu KC. Mechanical and electrophysiological effects of a hydroxyphenyl-substituted tetrahydroisoquinoline, SL-1, on isolated rat cardiac tissues. Can J Physiol Pharmacol 1995; 73:1651-60. [PMID: 8789420 DOI: 10.1139/y95-727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The mechanisms of the positive inotropic action of a new synthetic tetrahydroisoquinoline compound, SL-1, were investigated in isolated rat cardiac tissues and ventricular myocytes. SL-1 produced a rapidly developing, concentration-dependent positive inotropic response in both atrial and ventricular muscles and a negative chronotropic effect in spontaneously beating right atria. The positive inotropic effect was not prevented by pretreatment with reserpine (3 mg/kg) or the alpha-adrenoceptor antagonist prazosin (1 microM), but was suppressed by either the beta-adrenoceptor antagonist atenolol (3 microM) or the K+ channel blocker 4-aminopyridine (4AP, 1mM). In the whole-cell recording study, SL-1 increased the plateau level and prolonged the action potential duration in a concentration-dependent manner and decreased the maximum upstroke velocity (Vmax) and amplitude of the action potential in isolated rat ventricular myocytes stimulated at 1.0 Hz. On the other hand, SL-1 had little effect on the resting membrane potential, although it caused a slight decrease at higher concentrations. Voltage clamp experiments revealed that the increase of action potential plateau and prolongation of action potential duration were associated with an increase of Ca2+ inward current (ICa) via the activation of beta-adrenoceptors and a prominent inhibition of 4AP-sensitive transient outward K+ current (Ito) with an IC50 of 3.9 microM. Currents through the inward rectifier K+ channel (IK1) were also reduced. The inhibition of Ito is characterized by a reduction in peak amplitude and a marked acceleration of current decay but without changes on the voltage dependence of steady-state inactivation. In addition to the inhibition of K+ currents, SL-1 also inhibited the Na+ inward current (INa) with an IC50 of 5.4 microM, which was correlated with the decrease of Vmax. We conclude that the positive inotropic effect of SL-1 may be due to an increase in Ca2+ current mediated via partial activation of beta-adrenoceptors and an inhibition of K+ outward currents and the subsequent prolongation of action potentials.
Collapse
Affiliation(s)
- G J Chang
- Pharmacological Institute, College of Medicine, National Taiwan University
| | | | | | | | | |
Collapse
|
37
|
Leite CM, Vassallo DV, Mill JG. Characteristics of tetanic contractions in caffeine-treated rat myocardium. Can J Physiol Pharmacol 1995; 73:638-43. [PMID: 7585331 DOI: 10.1139/y95-081] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Skinned fiber preparations are used to obtain the maximal contractile activation of isolated myocardial preparations. Tetanic contractions elicited in the presence of sarcoplasmic reticulum inhibitors have also been used as an alternative method to produce maximal active tension in the intact myocardium. In this work our purpose was to define the best conditions to obtain tetanic contractions in the rat myocardium and to compare the influence of muscle length and inotropic interventions (Ca2+ and Bay K 8644) in the tension produced in twitches and tetanic contractures. Papillary muscles were mounted in a perfusion chamber to record isometric force. Tetanic contractions were elicited by using suprathreshold stimulation with rectangular pulses (10 ms duration) at 5 Hz in the presence of 2.5 mM caffeine. Caffeine depressed the twitch tension but the tetanic tension was similar to that produced under steady-state stimulation (0.5 Hz) in control conditions. Tetanic and twitch tensions were similar along the whole extension of the length-tension curve and under the positive inotropic effects produced by Ca2+ (0.25 to 3.75 mM) or by the Ca(2+)-channel agonist Bay K 8644 (1 microM). During long tetanic stimuli (60 s) a time-dependent tension decay was observed. This decay was prolonged by reducing the extracellular K+ from 5.4 to 1.0 microM, suggesting that Ca2+ extrusion through the Na-Ca exchanger seems to occur during tetanic stimulation. Since tetanic tension was never higher than the tension obtained in twitches elicited at the same Ca2+ concentration (0.5 Hz), we conclude that tetanic contractures represent a useful tool to investigate the contractile response of intact myocardial preparations with a nonfunctional sarcoplasmic reticulum.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C M Leite
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Brazil
| | | | | |
Collapse
|
38
|
Pagel PS, Warltier DC. Mechanical consequences of calcium channel modulation during volatile anesthetic-induced left ventricular systolic and diastolic dysfunction. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 31:125-43. [PMID: 7532986 DOI: 10.1016/s1054-3589(08)60613-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- P S Pagel
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee 53226
| | | |
Collapse
|
39
|
Ryder KO, Bryant SM, Hart G. Changes in cell length consequent on depolarization in single left ventricular myocytes from guinea-pigs with pressure-overload left ventricular hypertrophy. Proc Biol Sci 1993; 253:35-42. [PMID: 8396776 DOI: 10.1098/rspb.1993.0079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell length was measured in single guinea-pig left ventricular myocytes by using a high-resolution photodiode array. Step depolarizations from a holding potential of -45 mV were applied using a switch-clamp technique with 2 M KCl microelectrodes, which were devoid of Ca2+ buffering. Comparison was made between myocytes from sham-operated guinea-pigs and guinea-pigs with mild pressure-overload left ventricular hypertrophy induced by infra-renal aortic constriction. The relation between cell shortening and membrane voltage was bell shaped, and a phasic component of shortening was evident at the range of potentials over which the L-type calcium current was activated. Mean cell shortening was increased in the hypertrophy group, and was maximal at +15 mV in both groups (control, 7.6 +/- 0.9 microns, n = 11, hypertrophy 11.0 +/- 1.2 microns, n = 20, p < 0.05). The latency to the onset of contraction was significantly shorter in the hypertrophy myocytes at -25 mV and at potentials positive to +50 mV. The relation between time-to-peak shortening and voltage showed a trend to shorter times in the hypertrophy group. At very positive potentials a slow component of contraction was identified which was relatively larger in the hypertrophy myocytes. This finding is consistent with increased calcium entry via sarcolemmal sodium-calcium exchange in the myocytes from the hypertrophy group.
Collapse
Affiliation(s)
- K O Ryder
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Headington, U.K
| | | | | |
Collapse
|
40
|
Lee KS, Tsai TD, Lee EW. Membrane activity of class III antiarrhythmic compounds; a comparison between ibutilide, d-sotalol, E-4031, sematilide and dofetilide. Eur J Pharmacol 1993; 234:43-53. [PMID: 8472760 DOI: 10.1016/0014-2999(93)90704-l] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study compares the membrane activity of ibutilide, d-sotalol, sematilide, E-4031 and dofetilide on single ventricular cells under identical experimental conditions. We found that ibutilide and dofetilide produced a 'bell-shaped' concentration-dependent effect on action potential duration. Ionic current measurement showed that ibutilide, at 10(-8) M, increased a late inward current; the other compounds had either no effect or decreased it. Moreover, only ibutilide, at a high concentration of 10(-5) M, increased an outward current, as oppose to a uniform depression of IK by d-sotalol, sematilide, E-4031 and dofetilide, and the depression of IK by the latter compounds could be reversed by 10(-5) M ibutilide. Finally, low concentration of ibutilide could further prolong the action potential duration that had already been prolonged by a K+ channel blocker, but a high concentration of ibutilide did just the opposite by reversing the prolongation caused by K+ channel blockers. Therefore, action potentials agree well with the ionic current results. Possible mechanistic advantage of ibutilide over K+ channel blockers was discussed.
Collapse
Affiliation(s)
- K S Lee
- Cardiovascular Diseases Research, Upjohn Co., Kalamazoo, MI 49007
| | | | | |
Collapse
|
41
|
Ben-David J, Zipes DP, Ayers GM, Pride HP. Canine left ventricular hypertrophy predisposes to ventricular tachycardia induction by phase 2 early afterdepolarizations after administration of BAY K 8644. J Am Coll Cardiol 1992; 20:1576-84. [PMID: 1280660 DOI: 10.1016/0735-1097(92)90453-t] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVES The purpose of this study was to test the hypothesis that the longer duration of ventricular action potentials in hypertrophied hearts predisposes to the development of early after-depolarizations and triggered ventricular tachyarrhythmias. BACKGROUND For unknown reasons, the incidence of sudden death is greater in patients with myocardial hypertrophy. METHODS We measured left ventricular monophasic action potentials in normal dogs and dogs with left ventricular hypertrophy before and after administration of the calcium agonist BAY K 8644 and the potassium channel blocker cesium. RESULTS We demonstrated longer action potential durations in dogs with than in those without left ventricular hypertrophy. Also, BAY K 8644 produced phase 2 early afterdepolarizations and ventricular tachyarrhythmias more frequently in the dogs with than in those without left ventricular hypertrophy. Phenylephrine, an alpha agonist, further increased the action potential duration in hypertrophied hearts and the propensity to develop early afterdepolarizations and ventricular tachyarrhythmia after administration of BAY K 8644. Control and hypertrophied hearts developed early afterdepolarizations and ventricular tachyarrhythmia equally when exposed to cesium. CONCLUSIONS Although in vitro studies have shown that fibers of hypertrophied ventricular myocardium can develop triggered activity as a result of both early and late afterdepolarizations, the present study is the first to show in vivo that the hypertrophied ventricular myocardium compared with the normal ventricle is predisposed to develop phase 2 early afterdepolarizations that appear to trigger ventricular tachyarrhythmia. It is possible that such a mechanism contributes to the development of ventricular tachyarrhythmia and sudden cardiac death in patients with left ventricular hypertrophy. If this is shown to be true, specific pharmacologic interventions can be suggested.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/administration & dosage
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/adverse effects
- Action Potentials/drug effects
- Animals
- Causality
- Cesium/adverse effects
- Death, Sudden, Cardiac/epidemiology
- Death, Sudden, Cardiac/etiology
- Disease Models, Animal
- Dogs
- Evaluation Studies as Topic
- Hemodynamics/drug effects
- Hypertrophy, Left Ventricular/complications
- Hypertrophy, Left Ventricular/drug therapy
- Hypertrophy, Left Ventricular/pathology
- Incidence
- Organ Size/drug effects
- Phenylephrine/adverse effects
- Prevalence
- Tachycardia, Ventricular/chemically induced
- Tachycardia, Ventricular/diagnosis
- Tachycardia, Ventricular/epidemiology
- Time Factors
Collapse
Affiliation(s)
- J Ben-David
- Krannert Institute of Cardiology, Indianapolis, Indiana 46202
| | | | | | | |
Collapse
|
42
|
Connors SP, Gill EW, Terrar DA. Actions and mechanisms of action of novel analogues of sotalol on guinea-pig and rabbit ventricular cells. Br J Pharmacol 1992; 106:958-65. [PMID: 1393293 PMCID: PMC1907682 DOI: 10.1111/j.1476-5381.1992.tb14442.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
1. The actions and mechanisms of action of novel analogues of sotalol which prolong cardiac action potentials were investigated in guinea-pig and rabbit isolated ventricular cells. 2. In guinea-pig and rabbit cells the compounds significantly prolonged action potential duration at 20% and 90% repolarization levels without affecting resting membrane potential. In guinea-pig but not rabbit cells there was an increase in action potential amplitude and in rabbit cells there was no change in the shape or position of the 'notch' in the action potential. 3. Possible mechanisms of action were studied in more detail in the case of compound II (1-(4-methanesulphonamidophenoxy)-3-(N-methyl 3,4 dichlorophenylethylamino)-2-propanol). Prolongation of action potential duration continued to occur in the presence of nisoldipine, and calcium currents recorded under voltage-clamp conditions were not reduced by compound II (1 microM). Action potential prolongation by compound II was also unaffected in the presence of 10 microM tetrodotoxin. 4. Compound II (1 microM) did not influence IK1 assessed from the current during ramp changes in membrane potential (20 mV s-1) over the range -90 to -10 mV. 5. Compound II (1 microM) blocked time-dependent delayed rectifier potassium current (IK) activated by step depolarizations and recorded as an outward tail following repolarization. When a submaximal concentration (50 nM) was applied there was no change in the apparent reversal potential of IK.6. Submaximal concentrations of compound II were without effect on activation of IK with time at a membrane potential of + 40 mV, and no changes were detected in the time constants of the two components of IK decay over the range of potentials - 60 to 0 mV. Compound 11 (50 nM) appeared to cause a small shift in the activation of IK with membrane potential (an apparent shift of approximately 10mV in the depolarizing direction at the mid-point of the curve).7. Log dose-response curves for action potential prolongation and for blockade of IK by compound II were similar. The IC50 for compound II was approximately 30 nM.8. It is concluded that this novel series of compounds prolongs action potential duration, and that in the case of compound II the evidence supports a potent selective effect on the time-dependent potassium current IK, an effect which can account for this prolongation.
Collapse
Affiliation(s)
- S P Connors
- University Department of Pharmacology, Oxford
| | | | | |
Collapse
|
43
|
Salvatici RP, Gallardo-Carpentier A, Isaacson RL, Carpentier RG. Cardiac inotropic effects of ethanol and calcium-channel modulators. Alcohol 1992; 9:293-7. [PMID: 1379050 DOI: 10.1016/0741-8329(92)90069-m] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our objective was to analyze the influence of ethanol ingestion on the in vitro inotropic effects of dihydropyridines alone, or in combination with ethanol, on atrial muscle from rats offered a liquid diet with ethanol ("ethanol rats," ER) or without ethanol ("normal rats," NR). Left atria from NR or ER were superfused with Tyrode's solution (36 degrees C) and driven at 1.5 Hz while recording tension. Bay K 8644 (BAYK) increased, while nimodipine or ethanol decreased, the tension developed and the velocity of development of tension. The preparations recovered rapidly from the effects of ethanol, but not from those of the dihydropyridines. The effects of ethanol and dihydropyridines in combination were the result of the additive or counteractive actions of the drugs. The effects of ethanol and nimodipine on ER preparations were not different from those observed in NR. The action of BAYK was significantly smaller in ER than in NR. In other words, chronic ingestion of ethanol reduced the positive inotropic effect of BAYK, but it did not modify the negative inotropic action of nimodipine or ethanol.
Collapse
Affiliation(s)
- R P Salvatici
- Department of Physiology, College of Medicine, Howard University, Washington, DC 20059
| | | | | | | |
Collapse
|
44
|
Kishii K, Morimoto T, Nakajima N, Yamazaki K, Tsujitani M, Takayanagi I. Effects of LP-805, a novel vasorelaxant agent, a potassium channel opener, on rat thoracic aorta. GENERAL PHARMACOLOGY 1992; 23:347-53. [PMID: 1511846 DOI: 10.1016/0306-3623(92)90094-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. In rat thoracic aorta, LP-805 (0.1-10 microM) caused the marked reduction of NE-induced maximum response and relaxed the low K+ (less than 35.9 mM)-induced contraction, in a concentration-dependent manner, but failed to relax the high K+ (65.9 mM)-induced contraction. 2. Glibenclamide (0.3-1 microM) caused a parallel shift of concentration-response curve produced by LP-805 for 25.9 mM K(+)-induced contraction and prevented the LP-805-induced reduction in maximum response evoked by NE in a concentration-dependent manner. 3. Glibenclamide (10 microM) prevented the LP-805 (10 microM)-induced decrease in cytosolic Ca2+ levels which was increased by 1 microM NE or 25.9 mM K+. 4. LP-805 (10 microM) increased basal 86Rb efflux, which was completely inhibited by 10 microM glibenclamide. 5. The results suggest that LP-805 causes a vasorelaxation as a consequence of the decrease in cytosolic Ca2+ levels due to the increase in K+ efflux via opening ATP-dependent K+ channels.
Collapse
Affiliation(s)
- K Kishii
- POLA Pharmaceutical R&D Laboratory, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Wilson JS, Shearer DT, Adelakun AK, Carpentier RG. Mechanisms of the inotropic actions of MPTP and MPP+ on isolated atria of rat. Toxicol Appl Pharmacol 1991; 111:49-57. [PMID: 1949035 DOI: 10.1016/0041-008x(91)90133-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Besides having toxic actions, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and MPP+ (1-methyl-4-phenyl-pyridinium ion) produce the release of catecholamines in the peripheral and central nervous systems. This paper reports on the effects of MPTP and MPP+ on isolated left atria of rats and their mechanisms. MPP+ and MPTP produced a concentration-dependent positive inotropic effect. This action was blocked by propranolol and nomifensine; however, inhibition of monoamine oxidase had no effect on the response. In atria from reserpinized rats, the positive inotropic effect of MPTP was also blocked and a negative inotropic effect was unmasked which continued to increase in magnitude during wash. The negative inotropic effect was markedly reduced by superoxide dismutase and catalase. These results indicate that MPTP and MPP+ produce a catecholamine-mediated positive inotropic effect that is not MAO-dependent, unlike the toxic actions of MPTP. These results also suggest that MPTP may directly damage cardiac muscle by generating free radicals which might explain why high doses of MPTP are lethal to animals.
Collapse
Affiliation(s)
- J S Wilson
- Department of Anatomy, College of Medicine, Howard University, Washington, D.C. 20059
| | | | | | | |
Collapse
|
46
|
Sawaya BP, Weihprecht H, Campbell WR, Lorenz JN, Webb RC, Briggs JP, Schnermann J. Direct vasoconstriction as a possible cause for amphotericin B-induced nephrotoxicity in rats. J Clin Invest 1991; 87:2097-107. [PMID: 1710234 PMCID: PMC296966 DOI: 10.1172/jci115240] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In anesthetized rats we tested the hypothesis that amphotericin B (AmB) reduces glomerular filtration rate (GFR) by activating the tubuloglomerular feedback (TGF) mechanism. Infusion of 1 mg/kg AmB over 50 min was followed by a reduction in kidney GFR (from 0.47 +/- 0.03 to 0.39 +/- 0.02 ml/min per 100 g body wt during the second hour after infusion; P less than 0.05) and by an increase in urine flow and urinary chloride excretion. Single-nephron GFR (SNGFR) measured in proximal (TGF interrupted) or distal tubules (TGF intact) decreased to a similar degree from 33.4 +/- 1.8 and 30.6 +/- 1.2 nl/min in the control period to 19.7 +/- 1.9 and 21.2 +/- 1.6 nl/min during the second hour after AmB infusion (P less than 0.05). Distal chloride concentrations and TGF responses to changes in loop of Henle flow rate were not significantly altered by AmB. AmB at 10(-5) M reduced the diameter of isolated perfused afferent arterioles from rabbit kidneys. In isometrically contracting rings of rabbit aorta and renal artery in vitro AmB produced endothelium-independent constriction, with half-maximal contraction (EC50) being achieved by 1.8 x 10(-6) and 2.6 x 10(-6) M in intact vessels and 1.3 x 10(-6) and 1.7 x 10(-6) M in endothelium-denuded vessels respectively. Tension development did not occur in Ca-free media or in the presence of Ca channel blockers. Pretreatment with ouabain or Bay K 8644 potentiated the effect of AmB. The vasoconstrictive effect of AmB was counteracted by aminophylline and atrial natriuretic peptide. We conclude that the AmB-induced reduction in GFR is not caused by TGF activation and that AmB has a direct vasoconstrictor effect that is probably initiated by depolarization-induced opening of Ca channels. This effect may be an important component of the nephrotoxic actions of AmB.
Collapse
Affiliation(s)
- B P Sawaya
- Department of Internal Medicine, University of Michigan, Ann Arbor 48109
| | | | | | | | | | | | | |
Collapse
|
47
|
Josephson IR, Sperelakis N. Fast activation of cardiac Ca++ channel gating charge by the dihydropyridine agonist, BAY K 8644. Biophys J 1990; 58:1307-11. [PMID: 1705451 PMCID: PMC1281075 DOI: 10.1016/s0006-3495(90)82471-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nonlinear charge movement (gating current) was studied by the whole-cell patch clamp method using cultured 17-d-old embryonic chick heart cells. Na+ and Ca++ currents were blocked by the addition of 10 microM TTX and 3 mM CoCl2; Cs+ replaced K+ both intra- and extracellularly. Linear capacitive and leakage currents were subtracted by a P/5 procedure. The small size (15 microns in diameter) and the lack of an organized internal membrane system in these myocytes permits a rapid voltage clamp of the surface membrane. Ca++ channel gating currents were activated positive to -60 mV; the rising phase was not distorted due to the system response time. The addition of BAY K 8644 (10(-6) M) caused a shortening of the time to peak of the Ca++ gating current, and a negative shift in the isochronal Qon vs. Vm curve. Qmax was unchanged by BAY K 8644. The voltage-dependent shift produced by BAY K 8644 is similar to that produced by isoproterenol (Josephson, I.R., and N. Sperelakis. 1990. Biophys. J. 57:305a. [Abstr.]). The results suggest that the binding of BAY K 8466 to one or more of the Ca++ channel subunits alters the kinetics and shifts the voltage dependence of gating. These changes in the gating currents can explain the parallel changes in the macroscopic Ca++ currents.
Collapse
Affiliation(s)
- I R Josephson
- Department of Physiology and Biophysics, University of Cincinnati, College of Medicine, Ohio 45267
| | | |
Collapse
|
48
|
Gandhi VC, Jones DJ. Modulation of [3H]serotonin release by dihydropyridines in spinal cord synaptosomes. Eur J Pharmacol 1990; 187:271-80. [PMID: 1703081 DOI: 10.1016/0014-2999(90)90013-v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The release of [3H]monoamines from preloaded synaptosomes from spinal cord is K(+)-dependent and can be modulated by L-type Ca2+ channel agonists such as the 1,4-dihydropyridine (1,4-DHP), Bay K 8644. Whereas the basal release of [3H]monoamines was not altered by Bay K 8644, K(+)-stimulated release of [3H]norepinephrine was enhanced 35% and [3H]serotonin 50%. Modulation of release by Bay K 8644 was dependent on the K+ concentration in the medium, being present only at submaximal depolarization with 15 mM K+. Enhanced release in the presence of Bay K 8644 was concentration-dependent and Ca2(+)-dependent. Ca2(+)-independent release induced by fenfluramine was not enhanced by Bay K 8644. Both nimodipine and nitrendipine, 1,4-DHP antagonists, produced a concentration-dependent block of the Bay K 8644-induced monoamine release and had no independent effect on basal or K(+)-stimulated release. omega-Conotoxin GVIA (omega-CgTx) produced a concentration dependent decrease of K(+)-stimulated serotonin release, which antagonized the stimulatory effect of low concentrations of Bay K 8644. However, omega-CgTx did not alter the enhancement of K(+)-stimulated release at higher concentrations of Bay K 8644. The data from the present work establish the conditions for modulation of K(+)-evoked monoamine release in spinal cord by 1,4-DHP agonists and suggest a role for the L-type voltage dependent Ca2+ channel in this process.
Collapse
Affiliation(s)
- V C Gandhi
- Department of Anesthesiology, University of Texas Health Science Center, San Antonio 78284-7838
| | | |
Collapse
|
49
|
Tiaho F, Richard S, Lory P, Nerbonne JM, Nargeot J. Cyclic-AMP-dependent phosphorylation modulates the stereospecific activation of cardiac Ca channels by Bay K 8644. Pflugers Arch 1990; 417:58-66. [PMID: 1705699 DOI: 10.1007/bf00370769] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Voltage-gated Ca channels have been reported to be regulated by membrane potential, phosphorylation and binding of specific agonists or antagonists such as dihydropyridines. We report here evidence that cyclic AMP (cAMP) modulates the activation of Ca-channel current by the dihydropyridine agonist Bay K 8644. Bay K 8644 (racemate) alone induces a primary voltage-dependent, potentiating effect on peak current amplitude and accelerates the current decay. In contrast, in the presence of cAMP activators, we observed a striking slowing of the decay in addition to the increase in peak current. The agonist (-)-Bay K 8644, but not the antagonist (+)-Bay K 8644, when applied in combination with cAMP, forskolin or isoproterenol, mimics the effect of the racemate. We have interpreted the results presented here in respect of a cAMP-dependent modulation of Bay K 8644 effects on cardiac Ca-channel currents. It may open the new perspective that dephosphorylated and phosphorylated Ca channels have distinct pharmacology.
Collapse
Affiliation(s)
- F Tiaho
- Centre de Recherches de Biochimie Macromoléculaire, C.N.R.S. UPR 8402, I.N.S.E.R.M. U 249, Montpellier
| | | | | | | | | |
Collapse
|
50
|
Hisada T, Kurachi Y, Sugimoto T. Properties of membrane currents in isolated smooth muscle cells from guinea-pig trachea. Pflugers Arch 1990; 416:151-61. [PMID: 2162028 DOI: 10.1007/bf00370237] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tracheal smooth muscle cells were enzymatically isolated from guinea-pig trachea. These cells contracted in response to acetylcholine (0.01-10 microM) in a concentration-dependent fashion. Under current-clamp conditions with 140 mM K+ in the pipette solution, the membrane potential oscillated spontaneously at around -30 mV. Under voltage-clamp conditions, there appeared spontaneous but steady oscillations of outward current (IO). On depolarization from a holding potential at -40 mV, three components of outward current were elicited: transient outward current (IT), steady-state outward current (IS) and IO. These three components of outward current reversed around the K+ equilibrium potential and were abolished by Cs+ in the pipette, indicating that K+ was the major charge carrier of these outward currents. All these three components were completely suppressed by extracellular tetraethylammonium (10 mM). Both IT and IO were depressed by quinidine (1 mM), 4-aminopyridine (10 mM) and nifedipine (100 nM), but IS was not affected. IT and IO were suppressed by a Ca2(+)-free perfusate with less than 1 nM Ca2+ in the pipette, while with 10 nM Ca2+ in the pipette, only IO was suppressed. In both conditions, IS was not affected by the Ca2(+)-free perfusate. Therefore, it is suggested that IO, IT and IS are separate types of K+ current. With Cs+ in the pipette, K+ currents were almost completely suppressed and a transient inward current was observed during depolarizing pulses. The inward current was not affected by tetrodotoxin and increased when the concentration of extracellular Ca2+ was raised, indicating that the current is a Ca2+ channel current. Even with a holding potential of -80 mV, the low-threshold inward current could not be observed. The high-threshold Ca2+ current was abolished by nifedipine (100 nM) and was enhanced by Bay K 8644 (100 nM). The order of permeation of divalent cations through the Ca2+ channel was Ba2+ greater than Sr2+ approximately Ca2+. Cd2+ blocked the Ca2+ current more effectively than Ni2+. These results may indicate that the Ca2+ current of tracheal smooth muscle cells is mainly composed of the current through an L-type Ca2+ channel.
Collapse
Affiliation(s)
- T Hisada
- Second Department of Internal Medicine, Faculty of Medicine, University of Tokyo, Japan
| | | | | |
Collapse
|