1
|
Zhang Y, Ye L, Duan DD, Yang H, Ma T. TMEM16A Plays an Insignificant Role in Myocardium Remodeling but May Promote Angiogenesis of Heart During Pressure-overload. Front Physiol 2022; 13:897619. [PMID: 35711304 PMCID: PMC9194855 DOI: 10.3389/fphys.2022.897619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Cardiac hypertrophy (CH) occurs with an increase in myocardium mass as an adaptive compensation to increased stress. Prolonged CH causes decompensated heart failure (HF). Enhanced angiogenesis by vascular endothelial growth factor (VEGF) is observed in hypertrophied hearts; impaired angiogenesis by angiotensin II (AngII) is observed in failing hearts. Angiogenesis is executed by vascular endothelial cells (ECs). Abnormal Ca2+ homeostasis is a hallmark feature of hypertrophied and failing hearts. Ca2+-activated chloride channel transmembrane protein 16A (TMEM16A) is expressed in cardiomyocytes and ECs but its role in heart under stress remains unknown. Methods: Pressure-overload-induced CH and HF mouse models were established. Echocardiography was performed to evaluate cardiac parameters. Quantitative real-time PCR, traditional and simple western assays were used to quantify molecular expression. Whole-cell patch-clamp experiments were used to detect TMEM16A current (ITMEM16A) and action potential duration (APD) of cardiomyocytes. VEGF and AngII were used separately in ECs culture to simulate enhanced or impaired angiogenesis, respectively. TMEM16A low-expressed and over-expressed ECs were obtained by siRNA or lentivirus transfection. Wound healing, tube formation and ECs spheroids sprouting assays were performed to assess migration and angiogenesis. Results: Neither TMEM16A molecular expression levels nor whole-cell ITMEM16A density varied significantly during the development of CH and HF. ITMEM16A comprises transient outward current, but doesn’t account for APD prolongation in hypertrophied or failing cardiomyocytes. In cultured ECs, TMEM16A knockdown inhibited migration and angiogenesis, TMEM16A overexpression showed opposite result. Promotion of migration and angiogenesis by VEGF was decreased in TMEM16A low-expressed ECs but was increased in TMEM16A over-expressed ECs. Inhibition of migration and angiogenesis by AngII was enhanced in TMEM16A low-expressed ECs but was attenuated in TMEM16A over-expressed ECs. Conclusion: TMEM16A contributes insignificantly in myocardium remodeling during pressure-overload. TMEM16A is a positive regulator of migration and angiogenesis under normal condition or simulated stress. TMEM16A may become a new target for upregulation of angiogenesis in ischemic disorders like ischemic heart disease.
Collapse
Affiliation(s)
- Yaofang Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lingyu Ye
- The Laboratory of Cardiovascular Phenomics, Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, United States
| | - Dayue Darrel Duan
- The Laboratory of Cardiovascular Phenomics, Department of Pharmacology, University of Nevada School of Medicine, Reno, NV, United States
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Peris-Yagüe V, Rubio T, Fakuade FE, Voigt N, Luther S, Majumder R. A Mathematical Model for Electrical Activity in Pig Atrial Tissue. Front Physiol 2022; 13:812535. [PMID: 35360247 PMCID: PMC8960738 DOI: 10.3389/fphys.2022.812535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
State of the art mathematical models are currently used to bridge the gap between basic research conducted in the laboratory and preclinical research conducted on large animals, which ultimately paves the way for clinical translation. In this regard, there is a great need for models that can be used alongside experiments for in-depth investigation and validation. One such experimental model is the porcine atrium, which is commonly used to study the mechanisms of onset and control of atrial fibrillation in the context of its surgical management. However, a mathematical model of pig atria is lacking. In this paper, we present the first ionically detailed mathematical model of porcine atrial electrophysiology, at body temperature. The model includes 12 ionic currents, 4 of which were designed based on experimental patch-clamp data directly obtained from literature. The formulations for the other currents are adopted from the human atrial model, and modified for porcine specificity based on our measured restitution data for different action potential characteristics: resting membrane potential, action potential amplitude, maximum upstroke velocity and action potential duration and different levels of membrane voltage repolarization. The intracellular Ca2+ dynamics follows the Luo-Rudy formulation for guinea pig ventricular cardiomyocytes. The resulting model represents “normal” cells which are formulated as a system of ordinary differential equations. We extend our model to two dimensions to obtain plane wave propagation in tissue with a velocity of 0.58 m/s and a wavelength of 8 cm. The wavelength reduces to 5 cm when the tissue is paced at 200 ms. Using S1-S2 cross-field protocol, we demonstrate in an 11.26 cm square simulation domain, the ability to initiate single spiral waves (rotation period ≃ 180 ms) that remain stable for more than 40 s. The spiral tip exhibits hypermeander. In agreement with previous experimental results using pig atria, our model shows that early repolarization is primarily driven by a calcium-mediated chloride current, IClCa, which is completely inactivated at high pacing frequencies. This is a condition that occurs only in porcine atria. Furthermore, the model shows spatiotemporal chaos with reduced repolarization.
Collapse
Affiliation(s)
- Víctor Peris-Yagüe
- Biomedical Physics Group, Max Planck Institute for Dynamics and Self Organisation, Gottingen, Germany
- Centre de Formaćio Interdisciplinària Superior (CFIS), Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Tony Rubio
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Gottingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Gottingen, Germany
| | - Funsho E. Fakuade
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Gottingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Gottingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), Georg-August University, Gottingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Gottingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Gottingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), Georg-August University, Gottingen, Germany
| | - Stefan Luther
- Biomedical Physics Group, Max Planck Institute for Dynamics and Self Organisation, Gottingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Gottingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Gottingen, Germany
| | - Rupamanjari Majumder
- Biomedical Physics Group, Max Planck Institute for Dynamics and Self Organisation, Gottingen, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University, Gottingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Gottingen, Germany
- *Correspondence: Rupamanjari Majumder
| |
Collapse
|
3
|
Chaumont C, Suffee N, Gandjbakhch E, Balse E, Anselme F, Hatem SN. Epicardial origin of cardiac arrhythmias: clinical evidences and pathophysiology. Cardiovasc Res 2021; 118:1693-1702. [PMID: 34152392 PMCID: PMC9215195 DOI: 10.1093/cvr/cvab213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Recent developments in imaging, mapping, and ablation techniques have shown that the epicardial region of the heart is a key player in the occurrence of ventricular arrhythmic events in several cardiac diseases, such as Brugada syndrome, arrhythmogenic cardiomyopathy, or dilated cardiomyopathy. At the atrial level as well, the epicardial region has emerged as an important determinant of the substrate of atrial fibrillation, pointing to common underlying pathophysiological mechanisms. Alteration in the gradient of repolarization between myocardial layers favouring the occurrence of re-entry circuits has largely been described. The fibro-fatty infiltration of the subepicardium is another shared substrate between ventricular and atrial arrhythmias. Recent data have emphasized the role of the epicardial reactivation in the formation of this arrhythmogenic substrate. There are new evidences supporting this structural remodelling process to be regulated by the recruitment of epicardial progenitor cells that can differentiate into adipocytes or fibroblasts under various stimuli. In addition, immune-inflammatory processes can also contribute to fibrosis of the subepicardial layer. A better understanding of such ‘electrical fragility’ of the epicardial area will open perspectives for novel biomarkers and therapeutic strategies. In this review article, a pathophysiological scheme of epicardial-driven arrhythmias will be proposed.
Collapse
Affiliation(s)
- Corentin Chaumont
- Cardiology Department, Rouen University Hospital, Rouen, France.,FHU REMOD-VHF, UNIROUEN, INSERM U1096, F76000, France
| | - Nadine Suffee
- INSERM UMRS1166, ICAN-Institute of CardioMetabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Estelle Gandjbakhch
- INSERM UMRS1166, ICAN-Institute of CardioMetabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Elise Balse
- INSERM UMRS1166, ICAN-Institute of CardioMetabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| | - Frédéric Anselme
- Cardiology Department, Rouen University Hospital, Rouen, France.,FHU REMOD-VHF, UNIROUEN, INSERM U1096, F76000, France
| | - Stéphane N Hatem
- INSERM UMRS1166, ICAN-Institute of CardioMetabolism and Nutrition, Sorbonne University, Institute of Cardiology, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
4
|
Filatova TS, Abramochkin DV, Pavlova NS, Pustovit KB, Konovalova OP, Kuzmin VS, Dobrzynski H. Repolarizing potassium currents in working myocardium of Japanese quail: a novel translational model for cardiac electrophysiology. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110919. [PMID: 33582263 DOI: 10.1016/j.cbpa.2021.110919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
|
5
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
6
|
Mubagwa K. Cardiac effects and toxicity of chloroquine: a short update. Int J Antimicrob Agents 2020; 56:106057. [PMID: 32565195 PMCID: PMC7303034 DOI: 10.1016/j.ijantimicag.2020.106057] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/07/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
There is currently increased interest in the use of the antimalarial drugs chloroquine and hydroxychloroquine for the treatment of other diseases, including cancer and viral infections such as coronavirus disease 2019 (COVID-19). However, the risk of cardiotoxic effects tends to limit their use. In this review, the effects of these drugs on the electrical and mechanical activities of the heart as well as on remodelling of cardiac tissue are presented and the underlying molecular and cellular mechanisms are discussed. The drugs can have proarrhythmic as well as antiarrhythmic actions resulting from their inhibition of ion channels, including voltage-dependent Na+ and Ca2+ channels, background and voltage-dependent K+ channels, and pacemaker channels. The drugs also exert a vagolytic effect due at least in part to a muscarinic receptor antagonist action. They also interfere with normal autophagy flux, an effect that could aggravate ischaemia/reperfusion injury or post-infarct remodelling. Most of the toxic effects occur at high concentrations, following prolonged drug administration or in the context of drug associations.
Collapse
Affiliation(s)
- Kanigula Mubagwa
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, DR Congo.
| |
Collapse
|
7
|
Haworth RA. Use of Isolated Adult Myocytes to Evaluate Cardiotoxicity. II. Preparation and Properties*. Toxicol Pathol 2020. [DOI: 10.1177/019262339001804a01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The preparation and properties of isolated adult cardiac myocytes are reviewed, with the goal being to evaluate their usefulness as a model system for measuring cardiotoxicity. Some important factors in cell isolation methodology which impact on the quality of the preparation are identified, along with criteria for assessing the quality of cells after isolation. By all criteria, myocytes isolated by good procedures appear to largely retain their original properties. Moreover, the distinctive behavior of adult myocytes under metabolic stress endows them with a particular usefulness as monitors of toxicity. Overall, we conclude that the art of adult heart cell isolation and culture is now sufficiently advanced for either freshly isolated cells in suspension or cells in culture to be a useful model system for toxicity studies.
Collapse
Affiliation(s)
- Robert A. Haworth
- Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
8
|
Johnson EK, Springer SJ, Wang W, Dranoff EJ, Zhang Y, Kanter EM, Yamada KA, Nerbonne JM. Differential Expression and Remodeling of Transient Outward Potassium Currents in Human Left Ventricles. Circ Arrhythm Electrophysiol 2019; 11:e005914. [PMID: 29311162 DOI: 10.1161/circep.117.005914] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myocardial, transient, outward currents, Ito, have been shown to play pivotal roles in action potential (AP) repolarization and remodeling in animal models. The properties and contribution of Ito to left ventricular (LV) repolarization in the human heart, however, are poorly defined. METHODS AND RESULTS Whole-cell, voltage-clamp recordings, acquired at physiological (35°C to 37°C) temperatures, from myocytes isolated from the LV of nonfailing human hearts identified 2 distinct transient currents, Ito,fast (Ito,f) and Ito,slow (Ito,s), with significantly (P<0.0001) different rates of recovery from inactivation and pharmacological sensitives: Ito,f recovers in ≈10 ms, 100× faster than Ito,s, and is selectively blocked by the Kv4 channel toxin, SNX-482. Current-clamp experiments revealed regional differences in AP waveforms, notably a phase 1 notch in LV subepicardial myocytes. Dynamic clamp-mediated addition/removal of modeled human ventricular Ito,f, resulted in hyperpolarization or depolarization, respectively, of the notch potential, whereas slowing the rate of Ito,f inactivation resulted in AP collapse. AP-clamp experiments demonstrated that changes in notch potentials modified the time course and amplitudes of voltage-gated Ca2+ currents, ICa. In failing LV subepicardial myocytes, Ito,f was reduced and Ito,s was increased, notch and plateau potentials were depolarized (P<0.0001) and AP durations were prolonged (P<0.001). CONCLUSIONS Ito,f and Ito,s are differentially expressed in nonfailing human LV, contributing to regional heterogeneities in AP waveforms. Ito,f regulates notch and plateau potentials and modulates the time course and amplitude of ICa. Slowing Ito,f inactivation results in dramatic AP shortening. Remodeling of Ito,f in failing human LV subepicardial myocytes attenuates transmural differences in AP waveforms.
Collapse
Affiliation(s)
- Eric K Johnson
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Steven J Springer
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Wei Wang
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Edward J Dranoff
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Yan Zhang
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Evelyn M Kanter
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Kathryn A Yamada
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO
| | - Jeanne M Nerbonne
- From the Cardiovascular Division, Department of Medicine (E.K.J., S.J.S., W.W., E.J.D., Y.Z., E.M.K., K.A.Y., J.M.N.) and Department of Developmental Biology (J.M.N.), Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
9
|
Carmeliet E. From Bernstein's rheotome to Neher-Sakmann's patch electrode. The action potential. Physiol Rep 2019; 7:e13861. [PMID: 30604910 PMCID: PMC6316177 DOI: 10.14814/phy2.13861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/10/2018] [Accepted: 07/28/2018] [Indexed: 01/08/2023] Open
Abstract
The aim of this review was to provide an overview of the most important stages in the development of cellular electrophysiology. The period covered starts with Bernstein's formulation of the membrane hypothesis and the measurement of the nerve and muscle action potential. Technical innovations make discoveries possible. This was the case with the use of the squid giant axon, allowing the insertion of "large" intracellular electrodes and derivation of transmembrane potentials. Application of the newly developed voltage clamp method for measuring ionic currents, resulted in the formulation of the ionic theory. At the same time transmembrane measurements were made possible in smaller cells by the introduction of the microelectrode. An improvement of this electrode was the next major (r)evolution. The patch electrode made it possible to descend to the molecular level and record single ionic channel activity. The patch technique has been proven to be exceptionally versatile. In its whole-cell configuration it was the solution to measure voltage clamp currents in small cells. See also: https://doi.org/10.14814/phy2.13860 & https://doi.org/10.14814/phy2.13862.
Collapse
|
10
|
Liu X, Shi S, Yang H, Qu C, Chen Y, Liang J, Yang B. The activation of N-methyl-d-aspartate receptors downregulates transient outward potassium and L-type calcium currents in rat models of depression. Am J Physiol Cell Physiol 2017; 313:C187-C196. [PMID: 28566490 DOI: 10.1152/ajpcell.00092.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 01/22/2023]
Abstract
Major depression is an important clinical factor in ventricular arrhythmia. Patients diagnosed with major depression overexpress N-methyl-d-aspartate receptors (NMDARs). Previous studies found that chronic NMDAR activation increases susceptibility to ventricular arrhythmias. We aimed to explore the mechanisms by which NMDAR activation may increase susceptibility to ventricular arrhythmias. Male rats were randomly assigned to either normal environments as control (CTL) group or 4 wk of chronic mild stress (CMS) to produce a major depression disorder (MDD) model group. After 4 wk of CMS, depression-like behaviors were measured in both groups. Varying doses (1-100 μM) of NMDA and 10 μM NMDA antagonist (MK-801) were perfused through ventricular myocytes isolated from MDD rats to measure the L-type calcium current (ICa-L) and transient outward potassium current (Ito). Structural remodeling was assessed using serial histopathology including Masson's trichrome dye. Electrophysiological characteristics were evaluated using Langendorff perfusion. Depression-like behaviors were observed in MDD rats. MDD rats showed longer action potential durations at 90% repolarization and higher susceptibility to ventricular arrhythmias than CTL rats. MDD rats showed lower ICa-L and Ito current densities than CTL rats. Additionally, NMDA reduced both currents in a concentration-dependent manner, whereas there was no significant impact on the currents when perfused with MK-801. MDD rats exhibited significantly more fibrosis areas in heart tissue and reduced expression of Kv4.2, Kv4.3, and Cav1.2. We observed that acute NMDAR activation led to downregulation of potassium and L-type calcium currents in a rat model of depression, which may be the mechanism underlying ventricular arrhythmia promotion by depression.
Collapse
Affiliation(s)
- Xin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; and.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Shaobo Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; and.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; and.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; and.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Yuting Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; and.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Jinjun Liang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; and.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China; .,Cardiovascular Research Institute, Wuhan University, Wuhan, People's Republic of China; and.,Hubei Key Laboratory of Cardiology, Wuhan, People's Republic of China
| |
Collapse
|
11
|
Edwards AG, Louch WE. Species-Dependent Mechanisms of Cardiac Arrhythmia: A Cellular Focus. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2017; 11:1179546816686061. [PMID: 28469490 PMCID: PMC5392019 DOI: 10.1177/1179546816686061] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/20/2016] [Indexed: 12/17/2022]
Abstract
Although ventricular arrhythmia remains a leading cause of morbidity and mortality, available antiarrhythmic drugs have limited efficacy. Disappointing progress in the development of novel, clinically relevant antiarrhythmic agents may partly be attributed to discrepancies between humans and animal models used in preclinical testing. However, such differences are at present difficult to predict, requiring improved understanding of arrhythmia mechanisms across species. To this end, we presently review interspecies similarities and differences in fundamental cardiomyocyte electrophysiology and current understanding of the mechanisms underlying the generation of afterdepolarizations and reentry. We specifically highlight patent shortcomings in small rodents to reproduce cellular and tissue-level arrhythmia substrate believed to be critical in human ventricle. Despite greater ease of translation from larger animal models, discrepancies remain and interpretation can be complicated by incomplete knowledge of human ventricular physiology due to low availability of explanted tissue. We therefore point to the benefits of mathematical modeling as a translational bridge to understanding and treating human arrhythmia.
Collapse
Affiliation(s)
- Andrew G Edwards
- Center for Biomedical Computing, Simula Research Laboratory, Lysaker, Norway.,Center for Cardiological Innovation, Simula Research Laboratory, Lysaker, Norway.,Department of Biosciences, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,K.G. Jebsen Cardiac Research Centre and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Kanaporis G, Blatter LA. Ca(2+)-activated chloride channel activity during Ca(2+) alternans in ventricular myocytes. Channels (Austin) 2016; 10:507-17. [PMID: 27356267 DOI: 10.1080/19336950.2016.1207020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Cardiac alternans, defined beat-to-beat alternations in contraction, action potential (AP) morphology or cytosolic Ca transient (CaT) amplitude, is a high risk indicator for cardiac arrhythmias. We investigated mechanisms of cardiac alternans in single rabbit ventricular myocytes. CaTs were monitored simultaneously with membrane currents or APs recorded with the patch clamp technique. A strong correlation between beat-to-beat alternations of AP morphology and CaT alternans was observed. During CaT alternans application of voltage clamp protocols in form of pre-recorded APs revealed a prominent Ca(2+)-dependent membrane current consisting of a large outward component coinciding with AP phases 1 and 2, followed by an inward current during AP repolarization. Approximately 85% of the initial outward current was blocked by Cl(-) channel blocker DIDS or lowering external Cl(-) concentration identifying it as a Ca(2+)-activated Cl(-) current (ICaCC). The data suggest that ICaCC plays a critical role in shaping beat-to-beat alternations in AP morphology during alternans.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- a Department of Molecular Biophysics and Physiology , Rush University Medical Center , Chicago , IL , USA
| | - Lothar A Blatter
- a Department of Molecular Biophysics and Physiology , Rush University Medical Center , Chicago , IL , USA
| |
Collapse
|
13
|
Ye Z, Wu MM, Wang CY, Li YC, Yu CJ, Gong YF, Zhang J, Wang QS, Song BL, Yu K, Hartzell HC, Duan DD, Zhao D, Zhang ZR. Characterization of Cardiac Anoctamin1 Ca²⁺-Activated Chloride Channels and Functional Role in Ischemia-Induced Arrhythmias. J Cell Physiol 2015; 230:337-46. [PMID: 24962810 DOI: 10.1002/jcp.24709] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
Abstract
Anoctamin1 (ANO1) encodes a Ca(2+)-activated chloride (Cl(-)) channel (CaCC) in variety tissues of many species. Whether ANO1 expresses and functions as a CaCC in cardiomyocytes remain unknown. The objective of this study is to characterize the molecular and functional expression of ANO1 in cardiac myocytes and the role of ANO1-encoded CaCCs in ischemia-induced arrhythmias in the heart. Quantitative real-time RT-PCR, immunofluorescence staining assays, and immunohistochemistry identified the molecular expression, location, and distribution of ANO1 in mouse ventricular myocytes (mVMs). Patch-clamp recordings combined with pharmacological analyses found that ANO1 was responsible for a Ca(2+)-activated Cl(-) current (I(Cl.Ca)) in cardiomyocytes. Myocardial ischemia led to a significant increase in the current density of I(Cl.Ca), which was inhibited by a specific ANO1 inhibitor, T16A(inh)-A01, and an antibody targeting at the pore area of ANO1. Moreover, cardiomyocytes isolated from mice with ischemia-induced arrhythmias had an accelerated early phase 1 repolarization of action potentials (APs) and a deeper "spike and dome" compared to control cardiomyocytes from non-ischemia mice. Application of the antibody targeting at ANO1 pore prevented the ischemia-induced early phase 1 repolarization acceleration and caused a much shallower "spike and dome". We conclude that ANO1 encodes CaCC and plays a significant role in the phase 1 repolarization of APs in mVMs. The ischemia-induced increase in ANO1 expression may be responsible for the increased density of I(Cl.Ca) in the ischemic heart and may contribute, at least in part, to ischemia-induced arrhythmias.
Collapse
Affiliation(s)
- Zhen Ye
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Ming-Ming Wu
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Chun-Yu Wang
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Yan-Chao Li
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Chang-Jiang Yu
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Yuan-Feng Gong
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Jun Zhang
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Qiu-Shi Wang
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Bin-Lin Song
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Kuai Yu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia
| | - Dayue Darrel Duan
- Laboratory of Cardiovascular Phenomics, Department of Pharmacology, Center for Molecular Medicine, School of Medicine University of Nevada, Reno, Nevada
| | - Dan Zhao
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| | - Zhi-Ren Zhang
- Departments of Clinical Pharmacy and Cardiology, The 2nd Affiliated Hospital, Harbin Medical University, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, P. R. China
| |
Collapse
|
14
|
Abstract
Optimal cardiac function depends on proper timing of excitation and contraction in various regions of the heart, as well as on appropriate heart rate. This is accomplished via specialized electrical properties of various components of the system, including the sinoatrial node, atria, atrioventricular node, His-Purkinje system, and ventricles. Here we review the major regionally determined electrical properties of these cardiac regions and present the available data regarding the molecular and ionic bases of regional cardiac function and dysfunction. Understanding these differences is of fundamental importance for the investigation of arrhythmia mechanisms and pharmacotherapy.
Collapse
Affiliation(s)
- Daniel C Bartos
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, California, USA
| | - Crystal M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, California, USA
| |
Collapse
|
15
|
Cordeiro JM, Zeina T, Goodrow R, Kaplan AD, Thomas LM, Nesterenko VV, Treat JA, Hawel L, Byus C, Bett GC, Rasmusson RL, Panama BK. Regional variation of the inwardly rectifying potassium current in the canine heart and the contributions to differences in action potential repolarization. J Mol Cell Cardiol 2015; 84:52-60. [PMID: 25889894 DOI: 10.1016/j.yjmcc.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/09/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
The inward rectifier potassium current, IK1, contributes to the terminal phase of repolarization of the action potential (AP), as well as the value and stability of the resting membrane potential. Regional variation in IK1 has been noted in the canine heart, but the biophysical properties have not been directly compared. We examined the properties and functional contribution of IK1 in isolated myocytes from ventricular, atrial and Purkinje tissue. APs were recorded from canine left ventricular midmyocardium, left atrial and Purkinje tissue. The terminal rate of repolarization of the AP in ventricle, but not in Purkinje, depended on changes in external K(+) ([K(+)]o). Isolated ventricular myocytes had the greatest density of IK1 while atrial myocytes had the lowest. Furthermore, the outward component of IK1 in ventricular cells exhibited a prominent outward component and steep negative slope conductance, which was also enhanced in 10 mM [K(+)]o. In contrast, both Purkinje and atrial cells exhibited little outward IK1, even in the presence of 10 mM [K(+)]o, and both cell types showed more persistent current at positive potentials. Expression of Kir2.1 in the ventricle was 76.9-fold higher than that of atria and 5.8-fold higher than that of Purkinje, whereas the expression of Kir2.2 and Kir2.3 subunits was more evenly distributed in Purkinje and atria. Finally, AP clamp data showed distinct contributions of IK1 for each cell type. IK1 and Kir2 subunit expression varies dramatically in regions of the canine heart and these regional differences in Kir2 expression likely underlie regional distinctions in IK1 characteristics, contributing to variations in repolarization in response to in [K(+)]o changes.
Collapse
Affiliation(s)
- Jonathan M Cordeiro
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Tanya Zeina
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Robert Goodrow
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Aaron D Kaplan
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Lini M Thomas
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Vladislav V Nesterenko
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Jacqueline A Treat
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States
| | - Leo Hawel
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Craig Byus
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Glenna C Bett
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States; Department of Obstetrics and Gynecology, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Randall L Rasmusson
- Department of Physiology and Biophysics, State University of New York, University of Buffalo, Buffalo, NY, United States
| | - Brian K Panama
- Department of Experimental Cardiology, Masonic Medical Research Laboratory, Utica, NY, United States.
| |
Collapse
|
16
|
Matchkov VV, Boedtkjer DM, Aalkjaer C. The role of Ca2+ activated Cl− channels in blood pressure control. Curr Opin Pharmacol 2015; 21:127-37. [DOI: 10.1016/j.coph.2015.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 12/17/2022]
|
17
|
|
18
|
Perrin MJ, Adler A, Green S, Al-Zoughool F, Doroshenko P, Orr N, Uppal S, Healey JS, Birnie D, Sanatani S, Gardner M, Champagne J, Simpson C, Ahmad K, van den Berg MP, Chauhan V, Backx PH, van Tintelen JP, Krahn AD, Gollob MH. Evaluation of genes encoding for the transient outward current (Ito) identifies the KCND2 gene as a cause of J-wave syndrome associated with sudden cardiac death. ACTA ACUST UNITED AC 2014; 7:782-9. [PMID: 25214526 DOI: 10.1161/circgenetics.114.000623] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND J-wave ECG patterns are associated with an increased risk of sudden arrhythmic death, and experimental evidence supports a transient outward current (I(to))-mediated mechanism of J-wave formation. This study aimed to determine the frequency of genetic mutations in genes encoding the I(to) in patients with J waves on ECG. METHODS AND RESULTS Comprehensive mutational analysis was performed on I(to)-encoding KCNA4, KCND2, and KCND3 genes, as well as the previously described J-wave-associated KCNJ8 gene, in 51 unrelated patients with ECG evidence defining a J-wave syndrome. Only patients with a resuscitated cardiac arrest or type 1 Brugada ECG pattern were included for analysis. A rare genetic mutation of the KCND2 gene, p.D612N, was identified in a single patient. Co-expression of mutant and wild-type KCND2 with KChIP2 in HEK293 cells demonstrated a gain-of-function phenotype, including an increase in peak I(to) density of 48% (P<0.05) in the heterozygous state. Using computer modeling, this increase in Ito resulted in loss of the epicardial action potential dome, predicting an increased ventricular transmural Ito gradient. The previously described KCNJ8-S422L mutation was not identified in this cohort of patients with ECG evidence of J-wave syndrome. CONCLUSIONS These findings are the first to implicate the KCND2 gene as a novel cause of J-wave syndrome associated with sudden cardiac arrest. However, genetic defects in I(to)-encoding genes seem to be an uncommon cause of sudden cardiac arrest in patients with apparent J-wave syndromes.
Collapse
Affiliation(s)
- Mark J Perrin
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Arnon Adler
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Sharon Green
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Foad Al-Zoughool
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Petro Doroshenko
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Nathan Orr
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Shaheen Uppal
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Jeff S Healey
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - David Birnie
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Shubhayan Sanatani
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Martin Gardner
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Jean Champagne
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Chris Simpson
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Kamran Ahmad
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Maarten P van den Berg
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Vijay Chauhan
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Peter H Backx
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - J Peter van Tintelen
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Andrew D Krahn
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.)
| | - Michael H Gollob
- From the Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa (M.J.P., A.A., S.G., F.A.-Z., P.D., N.O., S.U., D.B.); Population Health Research Institute, McMaster University, Hamilton, ON (J.S.H.); Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC (S.S., A.D.K.); Division of Cardiology, Department of Medicine, Dalhousie University, Halifax, NS (M.G.); Division of Cardiology, Department of Medicine, Laval University, Québec, QC (J.C.); Division of Cardiology, Department of Medicine, Queens University, Kingston (C.S.); Division of Cardiology, St Michael's Hospital, University of Toronto, Toronto, ON, Canada (K.A.); Department of Genetics, University of Groningen, University Medical Center, Groningen, the Netherlands (M.P.v.d.B., J.P.v.T.); Division of Cardiology, Toronto General Hospital, University of Toronto, Toronto, ON, Canada (V.C., P.H.B., M.H.G.).
| |
Collapse
|
19
|
Adkins GB, Curtis MJ. Potential role of cardiac chloride channels and transporters as novel therapeutic targets. Pharmacol Ther 2014; 145:67-75. [PMID: 25160469 DOI: 10.1016/j.pharmthera.2014.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023]
Abstract
The heart and blood vessels express a range of anion currents (e.g. ICl.PKA) and symporter/antiporters (e.g. Cl(-)/HCO3(-) exchanger) that translocate chloride (Cl(-)). They have been proposed to contribute to a variety of physiological processes including cellular excitability, cell volume homeostasis and apoptosis. Additionally there is evidence that Cl(-) currents or transporters may play a role in cardiac pathophysiology. Arrhythmogenesis, the process of cardiac ischaemic preconditioning, and the adaptive remodelling process in myocardial hypertrophy and heart failure have all been linked to such channels or transporters. We have explored the possibility that selective targeting of one or more of these may provide benefit in cardiovascular disease. Existing evidence points to an emerging role of cardiac cell anion channels as potential therapeutic targets, the 'disease-specificity' of which may represent a substantial improvement on current targets. However, the limitations of current techniques hitherto applied (such as developmental compensation in gene-modified animals) and pharmacological agents (which do not at present possess sufficient selectivity for the adequate probing of function) have thus far hindered translation to the introduction of new therapy.
Collapse
|
20
|
Jing L, Agarwal A, Chourasia S, Patwardhan A. Phase Relationship between Alternans of Early and Late Phases of Ventricular Action Potentials. Front Physiol 2012; 3:190. [PMID: 22701104 PMCID: PMC3370287 DOI: 10.3389/fphys.2012.00190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 05/21/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Alternans of early phase and of duration of action potential (AP) critically affect dispersion of refractoriness through their influence on conduction and repolarization. We investigated the phase relationship between the two alternans and its effect on conduction. METHODS AND RESULTS Transmembrane potentials recorded from ventricles of eight swine and three canines during paced activation intervals of ≤300 ms were used to quantify alternans of maximum rate of depolarization (|dv/dt|(max)) and of action potential duration (APD). Incidence of APD alternans was 62 and 76% in swine and canines. Alternans of APD was frequently accompanied with alternans of |dv/dt|(max). Of these, 4 and 26% were out of phase in swine and canines, i.e., low |dv/dt|(max) preceded long APD. Computer simulations show that out of phase alternans attenuate variation of wavelength and thus minimize formation of spatially discordant alternans. CONCLUSION The spontaneous switching of phase relationship between alternans of depolarization and repolarization suggests that mechanisms underlying these alternans may operate independent of each other. The phase between these alternans can critically impact spatial dispersion of refractoriness and thus stability of conduction, with the in phase relation promoting transition from concord to discord while out of phase preventing formation of discord.
Collapse
Affiliation(s)
- Linyuan Jing
- Center for Biomedical Engineering, University of KentuckyLexington, KY, USA
| | - Anuj Agarwal
- Center for Biomedical Engineering, University of KentuckyLexington, KY, USA
| | - Sonam Chourasia
- Center for Biomedical Engineering, University of KentuckyLexington, KY, USA
| | - Abhijit Patwardhan
- Center for Biomedical Engineering, University of KentuckyLexington, KY, USA
| |
Collapse
|
21
|
Virág L, Jost N, Papp R, Koncz I, Kristóf A, Kohajda Z, Harmati G, Carbonell-Pascual B, Ferrero JM, Papp JG, Nánási PP, Varró A. Analysis of the contribution of I(to) to repolarization in canine ventricular myocardium. Br J Pharmacol 2012; 164:93-105. [PMID: 21410683 DOI: 10.1111/j.1476-5381.2011.01331.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The contribution of the transient outward potassium current (I(to)) to ventricular repolarization is controversial as it depends on the experimental conditions, the region of myocardium and the species studied. The aim of the present study was therefore to characterize I(to) and estimate its contribution to repolarization reserve in canine ventricular myocardium. EXPERIMENTAL APPROACH Ion currents were recorded using conventional whole-cell voltage clamp and action potential voltage clamp techniques in canine isolated ventricular cells. Action potentials were recorded from canine ventricular preparations using microelectrodes. The contribution of I(to) to repolarization was studied using 100 µM chromanol 293B in the presence of 0.5 µM HMR 1556, which fully blocks I(Ks). KEY RESULTS The high concentration of chromanol 293B used effectively suppressed I(to) without affecting other repolarizing K(+) currents (I(K1), I(Kr), I(p)). Action potential clamp experiments revealed a slowly inactivating and a 'late' chromanol-sensitive current component occurring during the action potential plateau. Action potentials were significantly lengthened by chromanol 293B in the presence of HMR 1556. This lengthening effect induced by I(to) inhibition was found to be reverse rate-dependent. It was significantly augmented after additional attenuation of repolarization reserve by 0.1 µM dofetilide and this caused the occurrence of early afterdepolarizations. The results were confirmed by computer simulation. CONCLUSIONS AND IMPLICATIONS The results indicate that I(to) is involved in regulating repolarization in canine ventricular myocardium and that it contributes significantly to the repolarization reserve. Therefore, blockade of I(to) may enhance pro-arrhythmic risk.
Collapse
Affiliation(s)
- L Virág
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nerbonne JM. Molecular Analysis of Voltage‐Gated K
+
Channel Diversity and Functioning in the Mammalian Heart. Compr Physiol 2011. [DOI: 10.1002/cphy.cp020115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Gwanyanya A, Macianskiene R, Bito V, Sipido KR, Vereecke J, Mubagwa K. Inhibition of the calcium-activated chloride current in cardiac ventricular myocytes by N-(p-amylcinnamoyl)anthranilic acid (ACA). Biochem Biophys Res Commun 2010; 402:531-6. [PMID: 20971070 DOI: 10.1016/j.bbrc.2010.10.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/17/2010] [Indexed: 12/01/2022]
Abstract
N-(p-amylcinnamoyl)anthranilic acid (ACA), a phospholipase A(2) (PLA(2)) inhibitor, is structurally-related to non-steroidal anti-inflammatory drugs (NSAIDs) of the fenamate group and may also modulate various ion channels. We used the whole-cell, patch-clamp technique at room temperature to investigate the effects of ACA on the Ca(2+)-activated chloride current (I(Cl(Ca))) and other chloride currents in isolated pig cardiac ventricular myocytes. ACA reversibly inhibited I(Cl(Ca)) in a concentration-dependent manner (IC(50)=4.2 μM, n(Hill)=1.1), without affecting the L-type Ca(2+) current. Unlike ACA, the non-selective PLA(2) inhibitor bromophenacyl bromide (BPB; 50 μM) had no effect on I(Cl(Ca)). In addition, the analgesic NSAID structurally-related to ACA, diclofenac (50 μM) also had no effect on I(Cl(Ca)), whereas the current in the same cells could be suppressed by chloride channel blockers flufenamic acid (FFA; 100 μM) or 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS;100 μM). Besides I(Cl(Ca)), ACA (50 μM) also suppressed the cAMP-activated chloride current, but to a lesser extent. It is proposed that the inhibitory effects of ACA on I(Cl(Ca)) are PLA(2)-independent and that the drug may serve as a useful tool in understanding the nature and function of cardiac anion channels.
Collapse
Affiliation(s)
- Asfree Gwanyanya
- Division of Experimental Cardiac Surgery, Department of Cardiovascular Diseases, University of Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Cardiac Ito, KCNE2, and Brugada syndrome: Promiscuous subunit interactions, or what happens in HEK cells stays in HEK cells? Heart Rhythm 2010; 7:206-7. [DOI: 10.1016/j.hrthm.2009.10.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Indexed: 11/24/2022]
|
25
|
Niwa N, Nerbonne JM. Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 2010; 48:12-25. [PMID: 19619557 PMCID: PMC2813406 DOI: 10.1016/j.yjmcc.2009.07.013] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 06/25/2009] [Accepted: 07/10/2009] [Indexed: 12/21/2022]
Abstract
Rapidly activating and inactivating cardiac transient outward K(+) currents, I(to), are expressed in most mammalian cardiomyocytes, and contribute importantly to the early phase of action potential repolarization and to plateau potentials. The rapidly recovering (I(t)(o,f)) and slowly recovering (I(t)(o,s)) components are differentially expressed in the myocardium, contributing to regional heterogeneities in action potential waveforms. Consistent with the marked differences in biophysical properties, distinct pore-forming (alpha) subunits underlie the two I(t)(o) components: Kv4.3/Kv4.2 subunits encode I(t)(o,f), whereas Kv1.4 encodes I(t)(o,s), channels. It has also become increasingly clear that cardiac I(t)(o) channels function as components of macromolecular protein complexes, comprising (four) Kvalpha subunits and a variety of accessory subunits and regulatory proteins that influence channel expression, biophysical properties and interactions with the actin cytoskeleton, and contribute to the generation of normal cardiac rhythms. Derangements in the expression or the regulation of I(t)(o) channels in inherited or acquired cardiac diseases would be expected to increase the risk of potentially life-threatening cardiac arrhythmias. Indeed, a recently identified Brugada syndrome mutation in KCNE3 (MiRP2) has been suggested to result in increased I(t)(o,f) densities. Continued focus in this area seems certain to provide new and fundamentally important insights into the molecular determinants of functional I(t)(o) channels and into the molecular mechanisms involved in the dynamic regulation of I(t)(o) channel functioning in the normal and diseased myocardium.
Collapse
Affiliation(s)
- Noriko Niwa
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeanne M. Nerbonne
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
26
|
Zhang DY, Lau CP, Li GR. Human Kir2.1 channel carries a transient outward potassium current with inward rectification. Pflugers Arch 2008; 457:1275-85. [PMID: 19002489 DOI: 10.1007/s00424-008-0608-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 10/22/2008] [Indexed: 11/27/2022]
Abstract
We have previously reported a depolarization-activated 4-aminopyridine-resistant transient outward K(+) current with inward rectification (I (to.ir)) in canine and guinea pig cardiac myocytes. However, molecular identity of this current is not clear. The present study was designed to investigate whether Kir2.1 channel carries this current in stably transfected human embryonic kidney (HEK) 293 cells using whole-cell patch-clamp technique. It was found that HEK 293 cells stably expressing human Kir2.1 gene had a transient outward current elicited by voltage steps positive to the membrane potential (around -70 mV). The current exhibited a current-voltage relationship with intermediate inward rectification and showed time-dependent inactivation and rapid recovery from inactivation. The half potential (V (0.5)) of availability of the current was -49.4 +/- 2.1 mV at 5 mM K(+) in bath solution. Action potential waveform clamp revealed two components of outward currents; one was immediately elicited and then rapidly inactivated during depolarization, and another was slowly activated during repolarization of action potential. These properties were similar to those of I (to.ir) observed previously in native cardiac myocytes. Interestingly, inactivation of the I (to.ir) was strongly slowed by increasing intracellular free Mg(2+) (Mg(2+) ( i ), from 0.03 to 1.0, 4.0, and 8.0 mM). The component elicited by action potential depolarization increased with the elevation of Mg(2+) ( i ). Inclusion of spermine (100 muM) in the pipette solution remarkably inhibited both the I (to.ir) and steady-state current. These results demonstrate that the Mg(2+) ( i )-dependent current carried by Kir2.1 likely is the molecular identity of I (to.ir) observed previously in cardiac myocytes.
Collapse
Affiliation(s)
- De-Yong Zhang
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | |
Collapse
|
27
|
Niwa N, Wang W, Sha Q, Marionneau C, Nerbonne JM. Kv4.3 is not required for the generation of functional Ito,f channels in adult mouse ventricles. J Mol Cell Cardiol 2008; 44:95-104. [PMID: 18045613 PMCID: PMC2245858 DOI: 10.1016/j.yjmcc.2007.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Accepted: 10/10/2007] [Indexed: 11/28/2022]
Abstract
Accumulated evidence suggests that the heteromeric assembly of Kv4.2 and Kv4.3 alpha-subunits underlies the fast transient Kv current (I(to,f)) in rodent ventricles. Recent studies, however, demonstrated that the targeted deletion of Kv4.2 results in the complete elimination of I(to,f) in adult mouse ventricles, revealing an essential role for the Kv4.2 alpha-subunit in the generation of mouse ventricular I(to,f) channels. The present study was undertaken to investigate directly the functional role of Kv4.3 by examining the effects of the targeted disruption of the KCND3 (Kv4.3) locus. Mice lacking Kv4.3 (Kv4.3-/-) appear indistinguishable from wild-type control animals, and no structural or functional abnormalities were evident in Kv4.3-/- hearts. Voltage-clamp recordings revealed that functional I(to,f) channels are expressed in Kv4.3-/- ventricular myocytes, and that mean I(to,f) densities are similar to those recorded from wild-type cells. In addition, I(to,f) properties (inactivation rates, voltage dependences of inactivation and rates of recovery from inactivation) in Kv4.3-/- and wild-type mouse ventricular myocytes were indistinguishable. Quantitative RT-PCR and Western blot analyses did not reveal any measurable changes in the expression of Kv4.2 or the Kv channel interacting protein (KChIP2) in Kv4.3-/- ventricles. Taken together, the results presented here suggest that, in contrast with Kv4.2, Kv4.3 is not required for the generation of functional mouse ventricular I(to,f) channels.
Collapse
Affiliation(s)
- Noriko Niwa
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Wei Wang
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | - Céline Marionneau
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Jeanne M. Nerbonne
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| |
Collapse
|
28
|
Abstract
Triggered activity in cardiac muscle and intracellular Ca2+ have been linked in the past. However, today not only are there a number of cellular proteins that show clear Ca2+ dependence but also there are a number of arrhythmias whose mechanism appears to be linked to Ca2+-dependent processes. Thus we present a systematic review of the mechanisms of Ca2+ transport (forward excitation-contraction coupling) in the ventricular cell as well as what is known for other cardiac cell types. Second, we review the molecular nature of the proteins that are involved in this process as well as the functional consequences of both normal and abnormal Ca2+ cycling (e.g., Ca2+ waves). Finally, we review what we understand to be the role of Ca2+ cycling in various forms of arrhythmias, that is, those associated with inherited mutations and those that are acquired and resulting from reentrant excitation and/or abnormal impulse generation (e.g., triggered activity). Further solving the nature of these intricate and dynamic interactions promises to be an important area of research for a better recognition and understanding of the nature of Ca2+ and arrhythmias. Our solutions will provide a more complete understanding of the molecular basis for the targeted control of cellular calcium in the treatment and prevention of such.
Collapse
Affiliation(s)
- Henk E D J Ter Keurs
- Department of Medicine, Physiology and Biophysics, University of Calgary, Alberta, Canada
| | | |
Collapse
|
29
|
Johnson NC, Morgan MW. An unusual case of 4-aminopyridine toxicity. J Emerg Med 2006; 30:175-7. [PMID: 16567254 DOI: 10.1016/j.jemermed.2005.04.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 03/07/2005] [Accepted: 04/06/2005] [Indexed: 12/01/2022]
Abstract
4-aminopyridine (4-AP) is an orphan drug in the United States. It enhances neuronal conduction at synapses and is indicated in the treatment of selected neuromuscular disorders, including multiple sclerosis and myasthenia gravis, among others. Its documented toxicity generally has been limited to central nervous system (CNS) hyperexcitation and gastrointestinal upset. In this case, a 56-year-old man accidentally overdosed on an unknown amount of generic 4-AP. This history was unknown by his family and unavailable to initial providers. Approximately 1 h after ingestion, his son found him diaphoretic, vomiting, and having unintelligible speech. In the ensuing 2-3 h, the patient became moderately hypothermic (32.8 degrees C; 91 degrees F), developed atrial fibrillation with a rapid ventricular response, and had neurological changes that were confused with an acute cerebrovascular accident. After a 36-h stay in the intensive care unit that included mechanical ventilation, cardioversion, passive rewarming, and an extensive medical workup, the patient recovered without sequelae. After extubation he stated that he thought he may have ingested too much 4-AP after rubbing a large amount of it against a sore tooth to take advantage of its local analgesic properties. This case of 4-AP overdose resulting in atrial fibrillation with rapid ventricular response, hypothermia, and acute neurological changes mistaken for an acute cerebrovascular accident is an unusual one. This case shows that overdose of 4-AP can cause or mimic several serious medical conditions, and that a detailed history and physical examination are essential for uncovering unusual diagnoses.
Collapse
Affiliation(s)
- Nicholas C Johnson
- Department of Emergency Medicine, Regions Hospital, St. Paul, Minnesota, 55101, USA
| | | |
Collapse
|
30
|
Boyden PA, ter Keurs H. Would modulation of intracellular Ca2+ be antiarrhythmic? Pharmacol Ther 2005; 108:149-79. [PMID: 16038982 DOI: 10.1016/j.pharmthera.2005.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 03/22/2005] [Indexed: 01/10/2023]
Abstract
Under several types of conditions, reversal of steps of excitation-contraction coupling (RECC) can give rise to nondriven electrical activity. In this review we explore those conditions for several cardiac cell types (SA, atrial, Purkinje, ventricular cells). We find that abnormal spontaneous Ca2+ release from intracellular Ca2+ stores, aberrant Ca2+ influx from sarcolemmal channels or abnormal Ca2+ surges in nonuniform muscle can be the initiators of the RECC. Often, with such increases in Ca2+, spontaneous Ca2+ waves occur and lead to membrane depolarizations. Because the change in membrane voltage is produced by Ca2+-dependent changes in ion channel function, we also review here what is known about the molecular interaction of Ca2+ and several Ca2+-dependent processes, including the intracellular Ca2+ release channels implicated in the genetic basis of some forms of human arrhythmias. Finally, we review what is known about the effectiveness of several agents in modifying such Ca2+-dependent arrhythmias.
Collapse
Affiliation(s)
- Penelope A Boyden
- Department of Pharmacology, Center for Molecular Therapeutics, Columbia University, NY 10032, USA.
| | | |
Collapse
|
31
|
Abstract
The heart is a rhythmic electromechanical pump, the functioning of which depends on action potential generation and propagation, followed by relaxation and a period of refractoriness until the next impulse is generated. Myocardial action potentials reflect the sequential activation and inactivation of inward (Na(+) and Ca(2+)) and outward (K(+)) current carrying ion channels. In different regions of the heart, action potential waveforms are distinct, owing to differences in Na(+), Ca(2+), and K(+) channel expression, and these differences contribute to the normal, unidirectional propagation of activity and to the generation of normal cardiac rhythms. Changes in channel functioning, resulting from inherited or acquired disease, affect action potential repolarization and can lead to the generation of life-threatening arrhythmias. There is, therefore, considerable interest in understanding the mechanisms that control cardiac repolarization and rhythm generation. Electrophysiological studies have detailed the properties of the Na(+), Ca(2+), and K(+) currents that generate cardiac action potentials, and molecular cloning has revealed a large number of pore forming (alpha) and accessory (beta, delta, and gamma) subunits thought to contribute to the formation of these channels. Considerable progress has been made in defining the functional roles of the various channels and in identifying the alpha-subunits encoding these channels. Much less is known, however, about the functioning of channel accessory subunits and/or posttranslational processing of the channel proteins. It has also become clear that cardiac ion channels function as components of macromolecular complexes, comprising the alpha-subunits, one or more accessory subunit, and a variety of other regulatory proteins. In addition, these macromolecular channel protein complexes appear to interact with the actin cytoskeleton and/or the extracellular matrix, suggesting important functional links between channel complexes, as well as between cardiac structure and electrical functioning. Important areas of future research will be the identification of (all of) the molecular components of functional cardiac ion channels and delineation of the molecular mechanisms involved in regulating the expression and the functioning of these channels in the normal and the diseased myocardium.
Collapse
Affiliation(s)
- Jeanne M Nerbonne
- Dept. of Molecular Biology and Pharmacology, Washington University Medical School, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| | | |
Collapse
|
32
|
James AF, Choisy SCM, Hancox JC. Recent advances in understanding sex differences in cardiac repolarization. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 94:265-319. [PMID: 15979693 DOI: 10.1016/j.pbiomolbio.2005.05.010] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A number of gender differences exist in the human electrocardiogram (ECG): the P-wave and P-R intervals are slightly longer in men than in women, whilst women have higher resting heart rates than do men, but a longer rate-corrected QT (QT(C)) interval. Women with the LQT1 and LQT2 variants of congenital long-QT syndrome (LQTS) are at greater risk of adverse cardiac events. Similarly, many drugs associated with acquired LQTS have a greater risk of inducing torsades de pointes (TdP) arrhythmia in women than in men. There are also male:female differences in Brugada syndrome, early repolarisation syndrome and sudden cardiac death. The differences in the ECG between men and women, and in particular those relating to the QT interval, have been explored experimentally and provide evidence of differences in the processes underlying ventricular repolarization. The data available from rabbit, canine, rat, mouse and guinea pig models are reviewed and highlight involvement of male:female differences in Ca and K currents, although the possible involvement of rapid and persistent Na current and Na-Ca exchange currents cannot yet be excluded. The mechanisms underlying observed differences remain to be elucidated fully, but are likely to involve the influence of gonadal steroids. With respect to the QT interval and risk of TdP, a range of evidence implicates a protective role of testosterone in male hearts, possibly by both genomic and non-genomic pathways. Evidence regarding oestrogen and progesterone is less unequivocal, although the interplay between these two hormones may influence both repolarization and pro-arrhythmic risk.
Collapse
Affiliation(s)
- Andrew F James
- Department of Physiology & Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
33
|
Ren Z, Baumgarten CM. Antagonistic regulation of swelling-activated Cl- current in rabbit ventricle by Src and EGFR protein tyrosine kinases. Am J Physiol Heart Circ Physiol 2005; 288:H2628-36. [PMID: 15681694 PMCID: PMC1305917 DOI: 10.1152/ajpheart.00992.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of swelling-activated Cl(-) current (I(Cl,swell)) is complex, and multiple signaling cascades are implicated. To determine whether protein tyrosine kinase (PTK) modulates I(Cl,swell) and to identify the PTK involved, we studied the effects of a broad-spectrum PTK inhibitor (genistein), selective inhibitors of Src (PP2, a pyrazolopyrimidine) and epidermal growth factor receptor (EGFR) kinase (PD-153035), and a protein tyrosine phosphatase (PTP) inhibitor (orthovanadate). I(Cl,swell) evoked by hyposmotic swelling was increased 181 +/- 17% by 100 microM genistein, and the genistein-induced current was blocked by the selective I(Cl,swell) blocker tamoxifen (10 microM). Block of Src with PP2 (10 microM) stimulated tamoxifen-sensitive I(Cl,swell) by 234 +/- 27%, mimicking genistein, whereas the inactive analog of PP2, PP3 (10 microM), had no effect. Moreover, block of PTP by orthovanadate (1 mM) inhibited I(Cl,swell) and prevented its stimulation by PP2. In contrast with block of Src, block of EGFR kinase with PD-153035 (20 nM) inhibited I(Cl,swell). Several lines of evidence argue that the PP2-stimulated current was I(Cl,swell): 1) the stimulation was volume dependent, 2) the current was blocked by tamoxifen, 3) the current outwardly rectified with both symmetrical and physiological Cl(-) gradients, and 4) the current reversed near the Cl(-) equilibrium potential. To rule out contributions of other currents, Cd(2+) (0.2 mM) and Ba(2+) (1 mM) were added to the bath. Surprisingly, Cd(2+) suppressed the decay of I(Cl,swell), and Cd(2+) plus Ba(2+) eliminated time-dependent currents between -100 and +100 mV. Nevertheless, these divalent ions did not eliminate I(Cl,swell) or prevent its stimulation by PP2. The results indicate that tyrosine phosphorylation controls I(Cl,swell), and regulation of I(Cl,swell) by the Src and EGFR kinase families of PTK is antagonistic.
Collapse
Affiliation(s)
- Zuojun Ren
- Department of Cardiology, China Medical University, Shenyang, Liaoning, People’s Republic of China; and Departments of
- Physiology and
| | - Clive M. Baumgarten
- Physiology and
- Internal Medicine (Cardiology) and Biomedical Engineering, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia
- Address for reprint requests and other correspondence: C. M. Baumgarten, Dept. of Physiology, Box 980551, Medical College of Virginia, Virginia Commonwealth Univ., 1101 E. Marshall St., Richmond, VA 23298 (E-mail:
)
| |
Collapse
|
34
|
Akar FG, Wu RC, Deschenes I, Armoundas AA, Piacentino V, Houser SR, Tomaselli GF. Phenotypic differences in transient outward K+ current of human and canine ventricular myocytes: insights into molecular composition of ventricular Ito. Am J Physiol Heart Circ Physiol 2003; 286:H602-9. [PMID: 14527940 DOI: 10.1152/ajpheart.00673.2003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ca(2+)-independent transient outward K(+) current (I(to)) plays an important electrophysiological role in normal and diseased hearts. However, its contribution to ventricular repolarization remains controversial because of differences in its phenotypic expression and function across species. The dog, a frequently used model of human cardiac disease, exhibits altered functional expression of I(to). To better understand the relevance of electrical remodeling in dogs to humans, we studied the phenotypic differences in ventricular I(to) of both species with electrophysiological, pharmacological, and protein-chemical techniques. Several notable distinctions were elucidated, including slower current decay, more rapid recovery from inactivation, and a depolarizing shift of steady-state inactivation in human vs. canine I(to). Whereas recovery from inactivation of human I(to) followed a monoexponential time course, canine I(to) recovered with biexponential kinetics. Pharmacological sensitivity to flecainide was markedly greater in human than canine I(to), and exposure to oxidative stress did not alter the inactivation kinetics of I(to) in either species. Western blot analysis revealed immunoreactive bands specific for Kv4.3, Kv1.4, and Kv channel-interacting protein (KChIP)2 in dog and human, but with notable differences in band sizes across species. We report for the first time major variations in phenotypic properties of human and canine ventricular I(to) despite the presence of the same subunit proteins in both species. These data suggest that differences in electrophysiological and pharmacological properties of I(to) between humans and dogs are not caused by differential expression of the K channel subunit genes thought to encode I(to), but rather may arise from differences in molecular structure and/or posttranslational modification of these subunits.
Collapse
Affiliation(s)
- Fadi G Akar
- Institute of Molecular Cardiobiology, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Finley MR, Lillich JD, Gilmour RF, Freeman LC. Structural and functional basis for the long QT syndrome: relevance to veterinary patients. J Vet Intern Med 2003; 17:473-88. [PMID: 12892298 DOI: 10.1111/j.1939-1676.2003.tb02468.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Long QT syndrome (LQTS) is a condition characterized by prolongation of ventricular repolarization and is manifested clinically by lengthening of the QT interval on the surface ECG. Whereas inherited forms of LQTS associated with mutations in the genes that encode ion channel proteins are identified only in humans, the acquired form of LQTS occurs in humans and companion animal species. Often, acquired LQTS is associated with drug-induced block of the cardiac K+ current designated I(Kr). However, not all drugs that induce potentially fatal ventricular arrhythmias antagonize I(Kr), and not all drugs that block I(Kr), are associated with ventricular arrhythmias. In clinical practice, the extent of QT interval prolongation and risk of ventricular arrhythmia associated with antagonism of I(Kr) are modulated by pharmacokinetic and pharmacodynamic variables. Veterinarians can influence some of the potential risk factors (eg, drug dosage, route of drug administration, presence or absence of concurrent drug therapy, and patient electrolyte status) but not all (eg, patient gender/genetic background). Veterinarians need to be aware of the potential for acquired LQTS during therapy with drugs identified as blockers of HERG channels and I(Kr).
Collapse
Affiliation(s)
- Melissa R Finley
- Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5802, USA
| | | | | | | |
Collapse
|
36
|
Swynghedauw B, Baillard C, Milliez P. The long QT interval is not only inherited but is also linked to cardiac hypertrophy. J Mol Med (Berl) 2003; 81:336-45. [PMID: 12750820 DOI: 10.1007/s00109-003-0437-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2003] [Accepted: 03/07/2003] [Indexed: 11/26/2022]
Abstract
This review focuses on the molecular determinants of the duration of the QT interval as measured on by electrocardiography in normal subjects and during cardiac hypertrophy and failure. (a) In control conditions, on a single cell, the shape and duration of the action potential is the result of a balance between different ion currents which in turn were determined by the number of functional channels. On multicellular preparations the QT duration also represents the repolarization time; nevertheless it is modified by the transmural gradients. On body-surface electrocardiography the duration of the QT interval depends also of an additional factor: the spatial three-dimensional projection of the electrical waves vectors, which makes any determination of the epicardial dispersion by measuring QT interval dispersion questionable. (b) The enhanced action potential duration is well documented in cardiac hypertrophy and heart failure and is usually caused by a reduction in outward current densities in most of the species except mice. Among these currents I(tO) is the most frequently altered, especially in humans. Such an altered current density is caused by a diminished expression of the genes encoding either the ion channel subunits or regulatory proteins, such as KChIP2. In addition, hypertrophy modifies or even reverses the transmural gradient. In human and rats hypertensive cardiopathy is associated with a prolongation of the QT interval duration. The reduction in I(tO) is likely to be adaptive; it participates in the slowing of the cardiac cycle and reflects the fetal genetic reprogramming. Recent data also suggest that a reduction in the transient outward K(+) current density triggers protein synthesis through an activation of the calcineurin pathways. Thus a prolongation of the QT interval is not only inherited or drug-induced; it is also an essential component of the adaptive process in chronic mechanical overload. It is fundamentally incorrect to measure QT dispersion on a surface electrocardiography, but the mean QT interval may provide information concerning the progression of the disease, just as, and with the same restrictions, in the case of the quantification of V(max).
Collapse
Affiliation(s)
- Bernard Swynghedauw
- U572-INSERM, Lariboisière Hospital, 41 Bd de la Chapelle, 75475 Paris Cedex 10, France.
| | | | | |
Collapse
|
37
|
Bhattacharyya ML, Mull KP, Debnam Q, Kabir S, Ivy A. Contrasting roles of a novel K+ channel blocker and a K+ channel opener on electro-mechanical activity in canine heart tissue. Int J Cardiol 2003; 89:71-8. [PMID: 12727007 DOI: 10.1016/s0167-5273(02)00429-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We tested the effects of a potassium channel opener diazoxide on the action potential duration (APD) and contractile force changes in canine Purkinje tissue induced by a novel class III anti-arrhythmic agent (C3A), KCB-328 (0.5 microM) with 3,4-dimethoxyphenethyl ring structure (0.5 microM). KCB-328 shortened APD(25) by 8.3+/-2.1%, prolonged APD(50) and APD(90) by 31.2+/-5.3 and 50.0+/-7.1%, respectively. Diazoxide (0.1 mM) shortened APD at all levels by 58.3+/-8.1, 54.1+/-6.1, and 42.8+/-5.8%, respectively. In the presence of diazoxide, KCB-328 still prolonged APD(50) and APD(90) (12.5+/-3.8 and 26.8+/-5.9%, respectively). KCB-328 increased force of contraction in a dose-dependent manner. KCB-328 increased force less in the presence of diazoxide. Administration of diazoxide only, reduced force of contraction. We conclude that APD prolongation by KCB-328 may occur even in the presence of diazoxide. It is not sufficient for the restoration of already diminished contractile force and that such an APD prolongation may be unrelated to the restoration of force of contraction even though both are most often seen to occur simultaneously.
Collapse
Affiliation(s)
- Mohit Lal Bhattacharyya
- Department of Anatomy and Physiology, Meharry Medical College, 1005 D.B. Todd Boulevard, Nashville, TN 37208, USA.
| | | | | | | | | |
Collapse
|
38
|
Abstract
A unique transient outward K(+) current (I(to)) has been described to result from the removal of extracellular Ca(2+) from ventricular myocytes of the guinea pig (15). This study addressed the question of whether this current represented K(+)-selective I(to) or the efflux of K(+) via L-type Ca(2+) channels. This outward current was inhibited by Cd(2+), Ni(2+), Co(2+), and La(3+) as well as by nifedipine. All of these compounds were equally effective inhibitors of the L-type Ca(2+) current. The current was not inhibited by 4-aminopyridine. Apparent inhibition of the outward current by extracellular Ca(2+) was shown to result from the displacement of the reversal potential of cation flux through L-type Ca(2+) channels. The current was found not to be K(+) selective but also permeant to Cs(+). The voltage dependence of inactivation of the outward current was identical to that of the L-type Ca(2+) current. It is concluded that extracellular Ca(2+) does not mask an A-type K(+) current in guinea pig ventricular myocytes.
Collapse
Affiliation(s)
- Ian Findlay
- Faculté des Sciences, Centre National de la Recherche Scientifique UMR 6542, Université de Tours, France.
| |
Collapse
|
39
|
Physiology and Molecular Biology of Ion Channels Contributing to Ventricular Repolarization. CONTEMPORARY CARDIOLOGY 2003. [DOI: 10.1007/978-1-59259-362-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
40
|
Li GR, Lau CP, Ducharme A, Tardif JC, Nattel S. Transmural action potential and ionic current remodeling in ventricles of failing canine hearts. Am J Physiol Heart Circ Physiol 2002; 283:H1031-41. [PMID: 12181133 DOI: 10.1152/ajpheart.00105.2002] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Heart failure (HF) produces important alterations in currents underlying cardiac repolarization, but the transmural distribution of such changes is unknown. We therefore recorded action potentials and ionic currents in cells isolated from the endocardium, midmyocardium, and epicardium of the left ventricle from dogs with and without tachypacing-induced HF. HF greatly increased action potential duration (APD) but attenuated APD heterogeneity in the three regions. Early afterdepolarizations (EADs) were observed in all cell types of failing hearts but not in controls. Inward rectifier K(+) current (I(K1)) was homogeneously reduced by approximately 41% (at -60 mV) in the three cell types. Transient outward K(+) current (I(to1)) was decreased by 43-45% at +30 mV, and the slow component of the delayed rectifier K(+) current (I(Ks)) was significantly downregulated by 57%, 49%, and 58%, respectively, in epicardial, midmyocardial, and endocardial cells, whereas the rapid component of the delayed rectifier K(+) current was not altered. The results indicate that HF remodels electrophysiology in all layers of the left ventricle, and the downregulation of I(K1), I(to1), and I(Ks) increases APD and favors occurrence of EADs.
Collapse
Affiliation(s)
- Gui-Rong Li
- Institute of Cardiovascular Science and Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | | | | | | | | |
Collapse
|
41
|
Xu Y, Dong PH, Zhang Z, Ahmmed GU, Chiamvimonvat N. Presence of a calcium-activated chloride current in mouse ventricular myocytes. Am J Physiol Heart Circ Physiol 2002; 283:H302-14. [PMID: 12063303 DOI: 10.1152/ajpheart.00044.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The properties of several components of outward K(+) currents, including the pharmacological and kinetics profiles as well as the respective molecular correlates, have been identified in mouse cardiac myocytes. Surprisingly little is known with regard to the Ca(2+)-activated ionic currents. We studied the Ca(2+)-activated transient outward currents in mouse ventricular myocytes. We have identified a 4-aminopyridine (4-AP)- and tetraethyl ammonium-resistant transient outward current that is Ca(2+) dependent. The current is carried by Cl(-) and is critically dependent on Ca(2+) influx via voltage-gated Ca(2+) channels and the sarcoplasmic reticulum Ca(2+) store. The current can be blocked by the anion transport blockers niflumic acid and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. Single channel recordings reveal small conductance channels (approximately 1 pS in 140 mM Cl(-)) that can be blocked by anion transport blockers. Ensemble-averaged current faithfully mirrors the transient kinetics observed at the whole level. Niflumic acid (in the presence of 4-AP) leads to prolongation of the early repolarization. Thus this current may contribute to early repolarization of action potentials in mouse ventricular myocytes.
Collapse
Affiliation(s)
- Yanfang Xu
- Division of Cardiovascular Medicine, Department of Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
42
|
Hirayama Y, Kuruma A, Hiraoka M, Kawano S. Calcium-activated CL- current is enhanced by acidosis and contributes to the shortening of action potential duration in rabbit ventricular myocytes. THE JAPANESE JOURNAL OF PHYSIOLOGY 2002; 52:293-300. [PMID: 12230806 DOI: 10.2170/jjphysiol.52.293] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Ca2+-activated Cl- current (I(Cl(Ca))) is activated by Ca2+ transient via Ca2+-induced Ca2+ release from sarcoplasmic reticulum in cardiac myocytes and is supposed to play an important role in the repolarization of action potential. It is not well understood, however, how I(Cl(Ca)) is modulated to affect action potential in normal or pathological conditions. In this study we examined the effects of external acidosis on I(Cl(Ca)) and action potential. A whole-cell patch clamp was performed to record action potential and I(Cl(Ca)), using isolated rabbit ventricular myocytes. In the standard solution at pH 7.4, action potential duration (APD) was markedly prolonged by lowering the extracellular Cl- concentration ([Cl-](o)) or by applying an anion channel blocker, 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). In the low pH solution at 6.4, APD was markedly shortened and the amplitude of I(Cl(Ca)) was increased at all membrane potentials. At pH 6.4, the apparent steady-state inactivation curves of I(Cl(Ca)) were shifted to more positive potentials compared with those at pH 7.4, but no change in inactivation occurred at a holding potential of -60 mV. The apparent activation curves were not changed between the two sets of conditions. When I(Cl(Ca)) was inhibited at low pH, early afterdepolarizations and triggered activities were induced. The amplitude of I(Cl(Ca)) was suggested to be enhanced by the external acidosis, which may have prevented the induction of early afterdepolarization or triggered activity.
Collapse
Affiliation(s)
- Yoshiyuki Hirayama
- Department of Cardiovascular Diseases, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, 113-8510 Japan
| | | | | | | |
Collapse
|
43
|
Abstract
The normal electrophysiologic behavior of the heart is determined by ordered propagation of excitatory stimuli that result in rapid depolarization and slow repolarization, thereby generating action potentials in individual myocytes. Abnormalities of impulse generation, propagation, or the duration and configuration of individual cardiac action potentials form the basis of disorders of cardiac rhythm, a continuing major public health problem for which available drugs are incompletetly effective and often dangerous. The integrated activity of specific ionic currents generates action potentials, and the genes whose expression results in the molecular components underlying individual ion currents in heart have been cloned. This review discusses these new tools and how their application to the problem of arrhythmias is generating new mechanistic insights to identify patients at risk for this condition and developing improved antiarrhythmic therapies.
Collapse
Affiliation(s)
- Dan M Roden
- Departments of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
44
|
Verkerk AO, Wilders R, Zegers JG, van Borren MMGJ, Ravesloot JH, Verheijck EE. Ca(2+)-activated Cl(-) current in rabbit sinoatrial node cells. J Physiol 2002; 540:105-17. [PMID: 11927673 PMCID: PMC2290232 DOI: 10.1113/jphysiol.2001.013184] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2001] [Accepted: 12/20/2001] [Indexed: 11/08/2022] Open
Abstract
The Ca(2+)-activated Cl(-) current (I(Cl(Ca))) has been identified in atrial, Purkinje and ventricular cells, where it plays a substantial role in phase-1 repolarization and delayed after-depolarizations. In sinoatrial (SA) node cells, however, the presence and functional role of I(Cl(Ca)) is unknown. In the present study we address this issue using perforated patch-clamp methodology and computer simulations. Single SA node cells were enzymatically isolated from rabbit hearts. I(Cl(Ca)) was measured, using the perforated patch-clamp technique, as the current sensitive to the anion blocker 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS). Voltage clamp experiments demonstrate the presence of I(Cl(Ca)) in one third of the spontaneously active SA node cells. The current was transient outward with a bell-shaped current-voltage relationship. Adrenoceptor stimulation with 1 microM noradrenaline doubled the I(Cl(Ca)) density. Action potential clamp measurements demonstrate that I(Cl(Ca)) is activate late during the action potential upstroke. Current clamp experiments show, both in the absence and presence of 1 microM noradrenaline, that blockade of I(Cl(Ca)) increases the action potential overshoot and duration, measured at 20 % repolarization. However, intrinsic interbeat interval, upstroke velocity, diastolic depolarization rate and the action potential duration measured at 50 and 90 % repolarization were not affected. Our experimental data are supported by computer simulations, which additionally demonstrate that I(Cl(Ca)) has a limited role in pacemaker synchronization or action potential conduction. In conclusion, I(Cl(Ca)) is present in one third of SA node cells and is activated during the pacemaker cycle. However, I(Cl(Ca)) does not modulate intrinsic interbeat interval, pacemaker synchronization or action potential conduction.
Collapse
Affiliation(s)
- Arie O Verkerk
- Academic Medical Center, University of Amsterdam, Task Force Heart Failure and Aging, Department of Physiology, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
45
|
Heredia MP, Fernández-Velasco M, Benito G, Delgado C. Neuropeptide Y increases 4-aminopyridine-sensitive transient outward potassium current in rat ventricular myocytes. Br J Pharmacol 2002; 135:1701-6. [PMID: 11934810 PMCID: PMC1573308 DOI: 10.1038/sj.bjp.0704643] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The modulation of 4-aminopyridine sensitive transient outward potassium current (4-AP I(to)) by neuropeptide Y (NPY) (100 nM) in rat ventricular myocytes was examined using the whole cell voltage-clamp technique. 2. Continuous exposure to NPY (100 nM) for 3 - 6 h significantly increased 4-AP I(to) density. The stimulation of 4-AP I(to) density by NPY was concentration-dependent (EC(50)=10 nM). 3. In the presence of BIBP 3226, an NPY receptor antagonist that binds selectively to NPY Y1-receptors, the effect of NPY on 4-AP I(to) density was maintained. However, in the presence of BIIE 0246, a highly selective non-peptide NPY Y2-receptor antagonist, NPY was unable to increase 4-AP I(to) density. 4. The effect of NPY on 4-AP I(to) density was prevented by pretreatment with 500 ng ml(-1) pertussis toxin (PTX) and by the specific protein kinase C (PKC) inhibitor, calphostin C (100 nM). 5. Thus, short term exposure to NPY induces an increase of 4-AP I(to) density in rat ventricular myocytes mediated by Y2-receptors and involving the action of PKC via a PTX-sensitive signalling cascade.
Collapse
Affiliation(s)
- M P Heredia
- Institute of Pharmacology and Toxicology (CSIC-UCM), School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - M Fernández-Velasco
- Institute of Pharmacology and Toxicology (CSIC-UCM), School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - G Benito
- Institute of Pharmacology and Toxicology (CSIC-UCM), School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - C Delgado
- Institute of Pharmacology and Toxicology (CSIC-UCM), School of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Author for correspondence:
| |
Collapse
|
46
|
Zygmunt AC. Physiological role of the Ca2+-activated Cl− current in mammalian heart. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)53029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Walsh KB, Sweet JK, Parks GE, Long KJ. Modulation of outward potassium currents in aligned cultures of neonatal rat ventricular myocytes during phorbol ester-induced hypertrophy. J Mol Cell Cardiol 2001; 33:1233-47. [PMID: 11444926 DOI: 10.1006/jmcc.2001.1386] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C-stimulating phorbol esters induce a strong hypertrophic response when applied in vitro to cardiac ventricular myocytes. The aim of this study was to determine if this in vitro model of hypertrophy is associated with changes in the expression of voltage-gated K(+)channels. Myocytes were isolated from 3--4-day-old neonatal rats and cultured on aligned collagen thin gels. Membrane currents were measured with the use of the whole-cell arrangement of the patch clamp technique and the expression levels of the Kv1.4, Kv4.2 and Kv2.1 alpha subunits quantified using Western blot analysis. Voltage steps positive to -30 mV resulted in the activation of both a transient (I(to)) and a sustained (I(sus)) component of outward K(+)current in the aligned myocytes. Overnight exposure to phorbol 12-myristate 13-acetate (PMA) caused a 55% increase in myocyte size and a three-fold reduction in the peak amplitude of I(to). No differences in the half-maximal voltages required for activation and steady-state inactivation were observed between I(to)measured in control and PMA-treated myocytes. In contrast, PMA treatment resulted in a 62% increase in a tetraethylammonium-sensitive component of I(sus)(TEA-I(sus)) and was associated with the appearance of a slow component of current decay. Expression levels of the Kv1.4 and Kv4.2 alpha subunits were strongly depressed in the hypertrophic myocytes, while the density of the Kv2.1 alpha subunit was enhanced. PMA-induced changes in the Kv alpha subunits were partially prevented through inhibition of the mitogen-activated protein kinase (MAPK) pathway. Thus, PMA-induced hypertrophy of cultured ventricular myocytes is associated with an altered expression of voltage-gated K(+)channels.
Collapse
Affiliation(s)
- K B Walsh
- Department of Pharmacology & Physiology, University of South Carolina, School of Medicine, Columbia, SC 29209, USA.
| | | | | | | |
Collapse
|
48
|
Hirayama Y, Kuruma A, Hiraoka M, Kawano S. Beat dependent alteration of Ca2+-activated Cl- current during rapid stimulation in rabbit ventricular myocytes. JAPANESE HEART JOURNAL 2001; 42:207-19. [PMID: 11384081 DOI: 10.1536/jhj.42.207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The transient outward currents (Ito) play an important role in action potential repolarization in cardiac myocytes. Two components of Ito have been identified as 4-AP-sensitive but Ca2+-insensitive Ito carried by K, and Ca2+-sensitive but 4-AP insensitive Ito carried by Cl- (I(Cl(Ca))). It is known that the amplitudes of Ito change depending on the stimulation frequency. In this study we investigated the beat dependent alteration of I(Cl(Ca)) during rapid stimulation using the whole cell patch clamp technique in rabbit ventricular myocytes. The cells were internally perfused with a solution containing 0.1 microM free Ca2+ to develop I(Cl(Ca)) and all internal K+ was replaced with Cs+ to block 4-AP-sensitive Ito and other K+ currents. By applying depolarizing pulses at a high frequency of 2.5 Hz, the amplitudes of I(Cl(Ca)) gradually increased as the number of pulses increased following a transient decrease in the 2nd pulse and reached a plateau level at the 20th pulse. The shape of the current-voltage curve of I(Cl(Ca)) was not overly different for different numbers of preceding pulses. The recovery from inactivation of I(Cl(Ca)) could be fitted to a single exponential curve and full recovery was achieved after > 1 sec with a time constant of 368 ms. The ramp clamp experiments showed that the conductance of the background I(Cl(Ca)) increased with the preceding pulse numbers, indicating that the resting level of [Ca2]i increased with the pulses applied. From these results, we conclude that beat dependent alteration of I(Cl(Ca)) is determined by not only its apparent kinetic property, but also the resting level of [Ca2+]i during rapid stimulation.
Collapse
Affiliation(s)
- Y Hirayama
- Department of Cardiovascular Diseases, Medical Research Institute, Tokyo Medical and Dental University, Japan
| | | | | | | |
Collapse
|
49
|
Ravesloot JH, Rombouts E. 2,4-dinitrophenol acutely inhibits rabbit atrial Ca2+-sensitive Cl- current (ITO2). Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of 2,4-dinitrophenol (DNP), the uncoupler of mitochondrial oxidative phosphorylation, on the Ca2+-sensitive Cl- current component of the transient outward current (ITO2). Amphotericin B perforated-patch, whole-cell patch-clamp technique was employed (35°C) using enzymatically isolated single rabbit atrial myocytes. We defined ITO2 as the amplitude of the 2 mM 4-aminopyridine resistant transient outward current sensitive to anthracene-9-carboxylic acid (A9C). Between +5 and +45 mV, 0.2 mM A9C inhibited ITO2 by ~70% (n = 13). Within 30 s after application of 0.2 mM DNP, both normal ITO2 transients (n = 8) and the ITO2 transients that remained after A9C treatment (n = 8) were inhibited completely. In cells expressing ITO2 (70% of total), DNP also suppressed an A9C-insensitive slow outward current by ~40%, but the holding current at -80 mV was unaffected. There was a ~2 min latency between inhibitory effects of DNP and subsequent membrane current increase, presumably caused by activation of the ATP-sensitive K+ channels (n = 16). We conclude that DNP acutely inhibits ITO2 via a mechanism presumably separate from metabolic inhibition.Key words: patch clamp, rabbit heart, simulated ischemia, calcium-sensitive chloride current.
Collapse
|
50
|
Pu J, Robinson RB, Boyden PA. Abnormalities in Ca(i)handling in myocytes that survive in the infarcted heart are not just due to alterations in repolarization. J Mol Cell Cardiol 2000; 32:1509-23. [PMID: 10900177 DOI: 10.1006/jmcc.2000.1184] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies from our laboratory have defined alterations in Ca(i)handling in the non-dialyzed subepicardial cells that have survived in the 5 day infarcted heart (IZs). To determine whether changes in the action potential profile contributed to the observed Ca(i)changes we have used a combined voltage clamp/epifluorescent technique to determine and compare changes in fura 2 ratios in IZs compared to those of epicardial cells from the non-infarcted canine hearts (NZs). We found that Ca(i)changes in voltage clamped IZs persisted. In NZs, Ca(i)transients showed the expected voltage dependence while IZs did not. To determine whether altered NaCa exchanger activity contributed to the observed changes in Ca(i)in IZs, we measured NaCa exchanger Ca(2+)fluxes (reverse and forward mode) and ionic currents in both cell types and under different Na(i)loads (10 and 20 m m). We found that there were no significant differences in resting, peak or magnitude of fura 2 ratio changes or in outward current densities between NZs and IZs even under the different Na(i)loads. Thus, we suggest that chronic up- or downregulation of the NaCa exchanger protein does not underlie observed Ca(i)changes in IZs. Additionally, Ca(2+)released with paced voltage steps represented 79% of that released by caffeine in NZs while, in IZs, caffeine releasable Ca(2+)was equivalent to that released with step depolarization. Thus, abnormalities in Ca(i)handling in IZs appear not to arise secondarily to changes in action potential configuration nor do they appear to be due to disease-induced alteations in NaCa exchanger function.
Collapse
Affiliation(s)
- J Pu
- Department of Pharmacology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|