1
|
Rafikov R, de Jesus Perez V, Dekan A, Kudryashova TV, Rafikova O. Deciphering the Complexities of Pulmonary Hypertension: The Emergent Role of Single-Cell Omics. Am J Respir Cell Mol Biol 2024; 72:32-40. [PMID: 39141563 PMCID: PMC11707669 DOI: 10.1165/rcmb.2024-0145ps] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024] Open
Abstract
Expanding upon the critical advancements brought forth by single-cell omics in pulmonary hypertension (PH) research, this review delves deep into how these technologies have been piloted in a new era of understanding this complex disease. By leveraging the power of single cell transcriptomics (scRNA-seq), researchers can now dissect the complicated cellular ecosystem of the lungs, examining the key players such as endothelial cells, smooth muscle cells, pericytes, and immune cells, and their unique roles in the pathogenesis of PH. This more granular view is beyond the limitations of traditional bulk analysis, allowing for the identification of novel therapeutic targets previously obscured in the aggregated data. Connectome analysis based on single-cell omics of the cells involved in pathological changes can reveal a clearer picture of the cellular interactions and transitions in the cellular subtypes. Furthermore, the review acknowledges the challenges that lie ahead, including the need for enhancing the resolution of scRNA-seq to capture even finer details of cellular changes, overcoming logistical barriers in processing human tissue samples, and the necessity of integrating diverse omics approaches to fully comprehend the molecular underpinnings of PH. The promise of these single-cell technologies is immense, offering the potential for targeted drug development and the discovery of biomarkers for early diagnosis and disease monitoring. Through these advancements, the field moves closer to realizing the goal of precision medicine for patients with PH.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Indiana University School of Medicine, Indianapolis, Indiana, United States;
| | | | - Aleksandr Dekan
- Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Tatiana V Kudryashova
- University of Pittsburgh Department of Medicine, Pittsburgh, Pennsylvania, United States
| | - Olga Rafikova
- Indiana University Purdue University at Indianapolis, Indianapolis, Indiana, United States
| |
Collapse
|
2
|
Zhang J, Li Q, Liao P, Xiao R, Zhu L, Hu Q. Calcium sensing receptor: A promising therapeutic target in pulmonary hypertension. Life Sci 2024; 340:122472. [PMID: 38290572 DOI: 10.1016/j.lfs.2024.122472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
Pulmonary hypertension (PH) is characterized by elevation of pulmonary arterial pressure and pulmonary vascular resistance. The increased pulmonary arterial pressure and pulmonary vascular resistance due to sustained pulmonary vasoconstriction and pulmonary vascular remodeling can lead to right heart failure and eventual death. A rise in intracellular Ca2+ concentration ([Ca2+]i) and enhanced pulmonary arterial smooth muscle cells (PASMCs) proliferation contribute to pulmonary vasoconstriction and pulmonary vascular remodeling. Recent studies demonstrated that extracellular calcium sensing receptor (CaSR) as a G-protein coupled receptor participates in [Ca2+]i increase induced by hypoxia in the experimental animals of PH and in PH patients. Pharmacological blockade or gene knockout of CaSR significantly attenuates the development of PH. This review will aim to discuss and update the pathogenicity of CaSR attributed to onset and progression in PH.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinli Li
- Department of Clinical Laboratory Medicine, People's Hospital of Dongxihu District Wuhan City and Union Dongxihu Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Pu Liao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Xiao
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liping Zhu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinghua Hu
- Key Laboratory of Pulmonary Diseases of Ministry of Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Lin A, Brittan M, Baker AH, Dimmeler S, Fisher EA, Sluimer JC, Misra A. Clonal Expansion in Cardiovascular Pathology. JACC Basic Transl Sci 2024; 9:120-144. [PMID: 38362345 PMCID: PMC10864919 DOI: 10.1016/j.jacbts.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 02/17/2024]
Abstract
Clonal expansion refers to the proliferation and selection of advantageous "clones" that are better suited for survival in a Darwinian manner. In recent years, we have greatly enhanced our understanding of cell clonality in the cardiovascular context. However, our knowledge of the underlying mechanisms behind this clonal selection is still severely limited. There is a transpiring pattern of clonal expansion of smooth muscle cells and endothelial cells-and, in some cases, macrophages-in numerous cardiovascular diseases irrespective of their differing microenvironments. These findings indirectly suggest the possible existence of stem-like vascular cells which are primed to respond during disease. Subsequent clones may undergo further phenotypic changes to adopt either protective or detrimental roles. By investigating these clone-forming vascular cells, we may be able to harness this inherent clonal nature for future therapeutic intervention. This review comprehensively discusses what is currently known about clonal expansion across the cardiovascular field. Comparisons of the clonal nature of vascular cells in atherosclerosis (including clonal hematopoiesis of indeterminate potential), pulmonary hypertension, aneurysm, blood vessel injury, ischemia- and tumor-induced angiogenesis, and cerebral cavernous malformations are evaluated. Finally, we discuss the potential clinical implications of these findings and propose that proper understanding and specific targeting of these clonal cells may provide unique therapeutic options for the treatment of these cardiovascular conditions.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H. Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Edward A. Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, New York, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Judith C. Sluimer
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Mayner JM, Masutani EM, Demeester E, Kumar A, Macapugay G, Beri P, Lo Sardo V, Engler AJ. Heterogeneous expression of alternatively spliced lncRNA mediates vascular smooth cell plasticity. Proc Natl Acad Sci U S A 2023; 120:e2217122120. [PMID: 37276403 PMCID: PMC10268236 DOI: 10.1073/pnas.2217122120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/13/2023] [Indexed: 06/07/2023] Open
Abstract
9p21.3 locus polymorphisms have the strongest correlation with coronary artery disease, but as a noncoding locus, disease connection is enigmatic. The lncRNA ANRIL found in 9p21.3 may regulate vascular smooth muscle cell (VSMC) phenotype to contribute to disease risk. We observed significant heterogeneity in induced pluripotent stem cell-derived VSMCs from patients homozygous for risk versus isogenic knockout or nonrisk haplotypes. Subpopulations of risk haplotype cells exhibited variable morphology, proliferation, contraction, and adhesion. When sorted by adhesion, risk VSMCs parsed into synthetic and contractile subpopulations, i.e., weakly adherent and strongly adherent, respectively. Of note, >90% of differentially expressed genes coregulated by haplotype and adhesion and were associated with Rho GTPases, i.e., contractility. Weakly adherent subpopulations expressed more short isoforms of ANRIL, and when overexpressed in knockout cells, ANRIL suppressed adhesion, contractility, and αSMA expression. These data suggest that variable lncRNA penetrance may drive mixed functional outcomes that confound pathology.
Collapse
Affiliation(s)
- Jaimie M. Mayner
- Chien-Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA92093
| | - Evan M. Masutani
- Chien-Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA92093
| | - Elena Demeester
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Aditya Kumar
- Chien-Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA92093
| | - Gail Macapugay
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
| | - Pranjali Beri
- Chien-Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA92093
| | - Valentina Lo Sardo
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI53705
| | - Adam J. Engler
- Chien-Lay Department of Bioengineering, University of California, San Diego, La Jolla, CA92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
| |
Collapse
|
5
|
Bax M, Romanov V, Junday K, Giannoulatou E, Martinac B, Kovacic JC, Liu R, Iismaa SE, Graham RM. Arterial dissections: Common features and new perspectives. Front Cardiovasc Med 2022; 9:1055862. [PMID: 36561772 PMCID: PMC9763901 DOI: 10.3389/fcvm.2022.1055862] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Arterial dissections, which involve an abrupt tear in the wall of a major artery resulting in the intramural accumulation of blood, are a family of catastrophic disorders causing major, potentially fatal sequelae. Involving diverse vascular beds, including the aorta or coronary, cervical, pulmonary, and visceral arteries, each type of dissection is devastating in its own way. Traditionally they have been studied in isolation, rather than collectively, owing largely to the distinct clinical consequences of dissections in different anatomical locations - such as stroke, myocardial infarction, and renal failure. Here, we review the shared and unique features of these arteriopathies to provide a better understanding of this family of disorders. Arterial dissections occur commonly in the young to middle-aged, and often in conjunction with hypertension and/or migraine; the latter suggesting they are part of a generalized vasculopathy. Genetic studies as well as cellular and molecular investigations of arterial dissections reveal striking similarities between dissection types, particularly their pathophysiology, which includes the presence or absence of an intimal tear and vasa vasorum dysfunction as a cause of intramural hemorrhage. Pathway perturbations common to all types of dissections include disruption of TGF-β signaling, the extracellular matrix, the cytoskeleton or metabolism, as evidenced by the finding of mutations in critical genes regulating these processes, including LRP1, collagen genes, fibrillin and TGF-β receptors, or their coupled pathways. Perturbances in these connected signaling pathways contribute to phenotype switching in endothelial and vascular smooth muscle cells of the affected artery, in which their physiological quiescent state is lost and replaced by a proliferative activated phenotype. Of interest, dissections in various anatomical locations are associated with distinct sex and age predilections, suggesting involvement of gene and environment interactions in disease pathogenesis. Importantly, these cellular mechanisms are potentially therapeutically targetable. Consideration of arterial dissections as a collective pathology allows insight from the better characterized dissection types, such as that involving the thoracic aorta, to be leveraged to inform the less common forms of dissections, including the potential to apply known therapeutic interventions already clinically available for the former.
Collapse
Affiliation(s)
- Monique Bax
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Valentin Romanov
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Keerat Junday
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
6
|
Crnkovic S, Valzano F, Fließer E, Gindlhuber J, Thekkekara Puthenparampil H, Basil M, Morley MP, Katzen J, Gschwandtner E, Klepetko W, Cantu E, Wolinski H, Olschewski H, Lindenmann J, Zhao YY, Morrisey EE, Marsh LM, Kwapiszewska G. Single-cell transcriptomics reveals skewed cellular communication and phenotypic shift in pulmonary artery remodeling. JCI Insight 2022; 7:153471. [PMID: 36099047 PMCID: PMC9714792 DOI: 10.1172/jci.insight.153471] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/12/2022] [Indexed: 02/04/2023] Open
Abstract
A central feature of progressive vascular remodeling is altered smooth muscle cell (SMC) homeostasis; however, the understanding of how different cell populations contribute to this process is limited. Here, we utilized single-cell RNA sequencing to provide insight into cellular composition changes within isolated pulmonary arteries (PAs) from pulmonary arterial hypertension and donor lungs. Our results revealed that remodeling skewed the balanced communication network between immune and structural cells, in particular SMCs. Comparative analysis with murine PAs showed that human PAs harbored heterogeneous SMC populations with an abundant intermediary cluster displaying a gradient transition between SMCs and adventitial fibroblasts. Transcriptionally distinct SMC populations were enriched in specific biological processes and could be differentiated into 4 major clusters: oxygen sensing (enriched in pericytes), contractile, synthetic, and fibroblast-like. End-stage remodeling was associated with phenotypic shift of preexisting SMC populations and accumulation of synthetic SMCs in neointima. Distinctly regulated genes in clusters built nonredundant regulatory hubs encompassing stress response and differentiation regulators. The current study provides a blueprint of cellular and molecular changes on a single-cell level that are defining the pathological vascular remodeling process.
Collapse
Affiliation(s)
- Slaven Crnkovic
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and
| | - Francesco Valzano
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Jürgen Gindlhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Diagnostic and Research Institute of Pathology, Diagnostic and Research Center of Molecular BioMedicine, Medical University of Graz, Graz, Austria
| | | | - Maria Basil
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mike P. Morley
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy Katzen
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elisabeth Gschwandtner
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Walter Klepetko
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Edward Cantu
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heimo Wolinski
- Institute of Molecular Biosciences and,Field of Excellence BioHealth, University of Graz, Graz, Austria
| | | | - Jörg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - You-Yang Zhao
- Program for Lung and Vascular Biology, Section of Injury Repair and Regeneration, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA.,Departments of Pediatrics, Pharmacology, and Medicine, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Edward E. Morrisey
- Penn Center for Pulmonary Biology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria.,Division of Physiology & Pathophysiology, Otto Loewi Research Center and,Institute of Lung Health, German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
7
|
Human Induced Pluripotent Stem Cell-Derived Vascular Cells: Recent Progress and Future Directions. J Cardiovasc Dev Dis 2021; 8:jcdd8110148. [PMID: 34821701 PMCID: PMC8622843 DOI: 10.3390/jcdd8110148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great promise for cardiovascular regeneration following ischemic injury. Considerable effort has been made toward the development and optimization of methods to differentiate hiPSCs into vascular cells, such as endothelial and smooth muscle cells (ECs and SMCs). In particular, hiPSC-derived ECs have shown robust potential for promoting neovascularization in animal models of cardiovascular diseases, potentially achieving significant and sustained therapeutic benefits. However, the use of hiPSC-derived SMCs that possess high therapeutic relevance is a relatively new area of investigation, still in the earlier investigational stages. In this review, we first discuss different methodologies to derive vascular cells from hiPSCs with a particular emphasis on the role of key developmental signals. Furthermore, we propose a standardized framework for assessing and defining the EC and SMC identity that might be suitable for inducing tissue repair and regeneration. We then highlight the regenerative effects of hiPSC-derived vascular cells on animal models of myocardial infarction and hindlimb ischemia. Finally, we address several obstacles that need to be overcome to fully implement the use of hiPSC-derived vascular cells for clinical application.
Collapse
|
8
|
Wang Y, Huang XX, Leng D, Li JF, Liang Y, Jiang T. Effect of EZH2 on pulmonary artery smooth muscle cell migration in pulmonary hypertension. Mol Med Rep 2020; 23:129. [PMID: 33313943 PMCID: PMC7751464 DOI: 10.3892/mmr.2020.11768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/27/2020] [Indexed: 12/22/2022] Open
Abstract
Pulmonary hypertension (PH) is a life‑threatening disease that often involves vascular remodeling. Although pulmonary arterial smooth muscle cells (PASMCs) are the primary participants in vascular remodeling, their biological role is not entirely clear. The present study analyzed the role of enhancer of zeste homolog 2 (EZH2) in vascular remodeling of PH by investigating the behavior of PASMCs. The expression levels of EZH2 in PASMCs in chronic thromboembolic pulmonary hypertension (CTEPH), a type of PH, were detected. The role of EZH2 in PASMC migration was investigated by wound‑healing assay following overexpression and knockdown. Functional enrichment analysis of the whole‑genome expression profiles of PASMCs with EZH2 overexpression was performed using an mRNA Human Gene Expression Microarray. Quantitative (q)PCR was performed to confirm the results of the microarray. EZH2 expression levels increased in CTEPH cell models. The overexpression of EZH2 enhanced PASMC migration compared with control conditions. Functional enrichment analysis of the differentially expressed genes following EZH2 overexpression indicated a strong link between EZH2 and the immune inflammatory response and oxidoreductase activity in PASMCs. mRNA expression levels of superoxide dismutase 3 were verified by qPCR. The results suggested that EZH2 was involved in the migration of PASMCs in PH, and may serve as a potential target for the treatment of PH.
Collapse
Affiliation(s)
- Ying Wang
- Department of Clinical Laboratory, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiao-Xi Huang
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing 100020, P.R. China
| | - Dong Leng
- Department of Clinical Laboratory, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Ji-Feng Li
- Key Laboratory of Respiratory and Pulmonary Circulation Disorders, Institute of Respiratory Medicine, Beijing 100020, P.R. China
| | - Yan Liang
- Department of Clinical Laboratory, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
9
|
Rivera E, García-Herrera C, González-Candia A, Celentano DJ, Herrera EA. Effects of melatonin on the passive mechanical response of arteries in chronic hypoxic newborn lambs. J Mech Behav Biomed Mater 2020; 112:104013. [PMID: 32846285 DOI: 10.1016/j.jmbbm.2020.104013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/15/2020] [Accepted: 07/26/2020] [Indexed: 02/07/2023]
Abstract
Chronic hypoxia is a condition that increases the cardiovascular complications of newborns gestated and born at high altitude (HA), over 2500 m above sea level (masl). A particularly complex pathology is pulmonary arterial hypertension of the neonate (PHN), which is increased at HA due to hypobaric hypoxia. Basic and clinical research have recognized that new treatments are needed, because current ones are, in general, palliative and with low effectiveness. Therefore, recently we have proposed melatonin as a potential adjuvant treatment to improve cardiopulmonary function. However, melatonin effects on the mechanical response of the arteries and their microstructure are not known. This study assesses the effects of a neonatal treatment with daily low doses of melatonin on the passive biomechanical behavior of the aorta artery and main pulmonary artery of PHN lambs born in chronic hypobaric hypoxia (at 3600 masl). With this purpose, ex-vivo measurements were made on axial stretch, tensile and opening ring tests together with a histological analysis to explore the morphometry and microstructure of the arteries. Our results show that the passive mechanical properties of the aorta artery and main pulmonary artery of lambs do not seem to be affected by a treatment based on low melatonin doses. However, we found evidence that melatonin has microstructural effects, particularly, diminishing cell proliferation, which is an indicator of antiremodeling capacity. Therefore, the use of melatonin as an adjuvant against pathologies like PHN would present antiproliferative effect at the microstructural level, keeping the macroscopic properties of the aorta artery and main pulmonary artery.
Collapse
Affiliation(s)
- Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Av. Bernardo O'Higgins, 3363, Santiago de Chile, Chile
| | - Claudio García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Av. Bernardo O'Higgins, 3363, Santiago de Chile, Chile.
| | - Alejandro González-Candia
- International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano S/n, Putre, Chile; Institute of Health Sciences, University of O'Higgins, Libertador Bernardo O'Higgins 611, Rancagua, Chile
| | - Diego J Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago de Chile, Chile
| | - Emilio A Herrera
- Laboratorio de Función y Reactividad Vascular, Programa de Fisiopatología, ICBM, Universidad de Chile, Av. Salvador 486, Santiago de Chile, Chile; International Center for Andean Studies (INCAS), Universidad de Chile, Baquedano S/n, Putre, Chile
| |
Collapse
|
10
|
Abstract
Vascular smooth muscle cells (SMC) play a critical role in controlling blood pressure and blood distribution, as well as maintaining the structural integrity of the blood vessel. SMC also participate in physiological and pathological vascular remodeling due to their remarkable ability to dynamically modulate their phenotype. During the past decade, the development of in vivo fate mapping systems for unbiased identification and tracking of SMC and their progeny has led to major discoveries as well as the reevaluation of well-established concepts about the contribution of vascular SMC in major vascular diseases including atherosclerosis. Lineage tracing studies revealed that SMC undergoes multiple phenotypic transitions characterized by the expression of markers of alternative cell types (eg, macrophage-like and mesenchymal-stem cell-like) and populate injured or diseased vessels by oligoclonal expansion of a limited number of medial SMC. With the development of high-throughput transcriptomics and single-cell RNA sequencing (scRNAseq), the field is moving forward towards in-depth SMC phenotypic characterization. Herein, we review the major observations put forth by lineage and clonality tracing studies and the evidence in support for SMC phenotypic diversity in healthy and diseased vascular tissue. We will also discuss the opportunities and remaining challenges of combining lineage tracing and single-cell transcriptomics technologies, as well as studying the functional relevance of SMC phenotypic transitions and identifying the mechanisms controlling them.
Collapse
Affiliation(s)
- Mingjun Liu
- From the Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, PA (M.L., D.G.).,Division of Cardiology, University of Pittsburgh School of Medicine, PA (M.L., D.G.)
| | - Delphine Gomez
- From the Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, PA (M.L., D.G.).,Division of Cardiology, University of Pittsburgh School of Medicine, PA (M.L., D.G.)
| |
Collapse
|
11
|
Stenmark KR, Frid MG, Graham BB, Tuder RM. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovasc Res 2019; 114:551-564. [PMID: 29385432 DOI: 10.1093/cvr/cvy004] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is the end result of interaction between pulmonary vascular tone and a complex series of cellular and molecular events termed 'vascular remodelling'. The remodelling process, which can involve the entirety of pulmonary arterial vasculature, almost universally involves medial thickening, driven by increased numbers and hypertrophy of its principal cellular constituent, smooth muscle cells (SMCs). It is noted, however that SMCs comprise heterogeneous populations of cells, which can exhibit markedly different proliferative, inflammatory, and extracellular matrix production changes during remodelling. We further consider that these functional changes in SMCs of different phenotype and their role in PH are dynamic and may undergo significant changes over time (which we will refer to as cellular plasticity); no single property can account for the complexity of the contribution of SMC to pulmonary vascular remodelling. Thus, the approaches used to pharmacologically manipulate PH by targeting the SMC phenotype(s) must take into account processes that underlie dominant phenotypes that drive the disease. We present evidence for time- and location-specific changes in SMC proliferation in various animal models of PH; we highlight the transient nature (rather than continuous) of SMC proliferation, emphasizing that the heterogenic SMC populations that reside in different locations along the pulmonary vascular tree exhibit distinct responses to the stresses associated with the development of PH. We also consider that cells that have often been termed 'SMCs' may arise from many origins, including endothelial cells, fibroblasts and resident or circulating progenitors, and thus may contribute via distinct signalling pathways to the remodelling process. Ultimately, PH is characterized by long-lived, apoptosis-resistant SMC. In line with this key pathogenic characteristic, we address the acquisition of a pro-inflammatory phenotype by SMC that is essential to the development of PH. We present evidence that metabolic alterations akin to those observed in cancer cells (cytoplasmic and mitochondrial) directly contribute to the phenotype of the SM and SM-like cells involved in PH. Finally, we raise the possibility that SMCs transition from a proliferative to a senescent, pro-inflammatory and metabolically active phenotype over time.
Collapse
Affiliation(s)
- Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Brian B Graham
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| | - Rubin M Tuder
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Avenue, RC2, B131, Aurora, CO 80045, USA
| |
Collapse
|
12
|
Gabriela Espinosa M, Catalin Staiculescu M, Kim J, Marin E, Wagenseil JE. Elastic Fibers and Large Artery Mechanics in Animal Models of Development and Disease. J Biomech Eng 2019; 140:2666245. [PMID: 29222533 DOI: 10.1115/1.4038704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Development of a closed circulatory system requires that large arteries adapt to the mechanical demands of high, pulsatile pressure. Elastin and collagen uniquely address these design criteria in the low and high stress regimes, resulting in a nonlinear mechanical response. Elastin is the core component of elastic fibers, which provide the artery wall with energy storage and recoil. The integrity of the elastic fiber network is affected by component insufficiency or disorganization, leading to an array of vascular pathologies and compromised mechanical behavior. In this review, we discuss how elastic fibers are formed and how they adapt in development and disease. We discuss elastic fiber contributions to arterial mechanical behavior and remodeling. We primarily present data from mouse models with elastic fiber deficiencies, but suggest that alternate small animal models may have unique experimental advantages and the potential to provide new insights. Advanced ultrastructural and biomechanical data are constantly being used to update computational models of arterial mechanics. We discuss the progression from early phenomenological models to microstructurally motivated strain energy functions for both collagen and elastic fiber networks. Although many current models individually account for arterial adaptation, complex geometries, and fluid-solid interactions (FSIs), future models will need to include an even greater number of factors and interactions in the complex system. Among these factors, we identify the need to revisit the role of time dependence and axial growth and remodeling in large artery mechanics, especially in cardiovascular diseases that affect the mechanical integrity of the elastic fibers.
Collapse
Affiliation(s)
| | | | - Jungsil Kim
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130
| | - Eric Marin
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, , St. Louis, MO 63130 e-mail:
| |
Collapse
|
13
|
Rafuse M, Xu X, Stenmark K, Neu CP, Yin X, Tan W. Layer-specific arterial micromechanics and microstructure: Influences of age, anatomical location, and processing technique. J Biomech 2019; 88:113-121. [PMID: 31010593 DOI: 10.1016/j.jbiomech.2019.03.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/24/2019] [Accepted: 03/18/2019] [Indexed: 01/15/2023]
Abstract
The importance of matrix micromechanics is increasingly recognized in cardiovascular research due to the intimate role they play in local vascular cell physiology. However, variations in micromechanics among arterial layers (i.e. intima, media, adventitia), as well as dependency on local matrix composition and/or structure, anatomical location or developmental stage remain largely unknown. This study determined layer-specific stiffness in elastic arteries, including the main pulmonary artery, ascending aorta, and carotid artery using atomic force indentation. To compare stiffness with age and frozen processing techniques, neonatal and adult pulmonary arteries were tested, while fresh (vibratomed) and frozen (cryotomed) tissues were tested from the adult aorta. Results revealed that the mean compressive modulus varied among the intima, sub-luminal media, inner-middle media, and adventitia layers in the range of 1-10 kPa for adult arteries. Adult samples, when compared to neonatal pulmonary arteries, exhibited increased stiffness in all layers except adventitia. Compared to freshly isolated samples, frozen preparation yielded small stiffness increases in each layer to varied degrees, thus inaccurately representing physiological stiffness. To interpret micromechanics measurements, composition and structure analyses of structural matrix proteins were conducted with histology and multiphoton imaging modalities including second harmonic generation and two-photon fluorescence. Composition analysis of matrix protein area density demonstrated that decrease in the elastin-to-collagen and/or glycosaminoglycan-to-collagen ratios corresponded to stiffness increases in identical layers among different types of arteries. However, composition analysis was insufficient to interpret stiffness variations between layers which had dissimilar microstructure. Detailed microstructure analyses may contribute to more complete understanding of arterial micromechanics.
Collapse
Affiliation(s)
- Michael Rafuse
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kurt Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Corey P Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Xiaobo Yin
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
14
|
Schwartz SM, Virmani R, Majesky MW. An update on clonality: what smooth muscle cell type makes up the atherosclerotic plaque? F1000Res 2018; 7:F1000 Faculty Rev-1969. [PMID: 30613386 PMCID: PMC6305222 DOI: 10.12688/f1000research.15994.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 12/13/2022] Open
Abstract
Almost 50 years ago, Earl Benditt and his son John described the clonality of the atherosclerotic plaque. This led Benditt to propose that the atherosclerotic lesion was a smooth muscle neoplasm, similar to the leiomyomata seen in the uterus of most women. Although the observation of clonality has been confirmed many times, interest in the idea that atherosclerosis might be a form of neoplasia waned because of the clinical success of treatments for hyperlipemia and because animal models have made great progress in understanding how lipid accumulates in the plaque and may lead to plaque rupture. Four advances have made it important to reconsider Benditt's observations. First, we now know that clonality is a property of normal tissue development. Second, this is even true in the vessel wall, where we now know that formation of clonal patches in that wall is part of the development of smooth muscle cells that make up the tunica media of arteries. Third, we know that the intima, the "soil" for development of the human atherosclerotic lesion, develops before the fatty lesions appear. Fourth, while the cells comprising this intima have been called "smooth muscle cells", we do not have a clear definition of cell type nor do we know if the initial accumulation is clonal. As a result, Benditt's hypothesis needs to be revisited in terms of changes in how we define smooth muscle cells and the quite distinct developmental origins of the cells that comprise the muscular coats of all arterial walls. Finally, since clonality of the lesions is real, the obvious questions are do these human tumors precede the development of atherosclerosis, how do the clones develop, what cell type gives rise to the clones, and in what ways do the clones provide the soil for development and natural history of atherosclerosis?
Collapse
Affiliation(s)
| | - Renu Virmani
- CV Path Institute, Gaithersberg, Maryland, 20878, USA
| | - Mark W. Majesky
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Hospital Research Institute, Seattle, WA, 98112, USA
| |
Collapse
|
15
|
Nguyen TU, Shojaee M, Bashur CA, Kishore V. Electrochemical fabrication of a biomimetic elastin-containing bi-layered scaffold for vascular tissue engineering. Biofabrication 2018; 11:015007. [PMID: 30411718 DOI: 10.1088/1758-5090/aaeab0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Biomimetic tissue-engineered vascular grafts (TEVGs) have immense potential to replace diseased small-diameter arteries (<4 mm) for the treatment of cardiovascular diseases. However, biomimetic approaches developed thus far only partially recapitulate the physicochemical properties of the native vessel. While it is feasible to fabricate scaffolds that are compositionally similar to native vessels (collagen and insoluble elastic matrix) using freeze-drying, these scaffolds do not mimic the aligned topography of collagen and elastic fibers found in native vessels. Extrusion-based scaffolds exhibit anisotropic collagen orientation but these scaffolds are compositionally dissimilar (cannot incorporate insoluble elastic matrix). In this study, an electrochemical fabrication technique was employed to develop a biomimetic elastin-containing bi-layered collagen scaffold which is compositionally and structurally similar to native vessels and the effect of insoluble elastin incorporation on scaffold mechanics and smooth muscle cell (SMC) response was investigated. Further, the functionality of human umbilical vein endothelial cells (HUVECs) on the scaffold lumen surface was assessed via immunofluorescence. Results showed that incorporation of insoluble elastin maintained the overall collagen alignment within electrochemically aligned collagen (ELAC) fibers and this underlying aligned topography can direct cellular orientation. Ring test results showed that circumferential orientation of ELAC fibers significantly improved scaffold mechanics. Real-time PCR revealed that the expression of α-smooth muscle actin (Acta2) and myosin heavy chain (MyhII) was significantly higher on elastin containing scaffolds suggesting that the presence of insoluble elastin can promote contractility in SMCs. Further, mechanical properties of the scaffolds significantly improved post-culture indicating the presence of a mature cell-synthesized and remodeled matrix. Finally, HUVECs expressed functional markers on collagen lumen scaffolds. In conclusion, electrochemical fabrication is a viable method for the generation of a functional biomimetic TEVG with the potential to be used in bypass surgery.
Collapse
Affiliation(s)
- Thuy-Uyen Nguyen
- Department of Chemical Engineering, Florida Institute of Technology, Melbourne, FL 32901, United States of America
| | | | | | | |
Collapse
|
16
|
Astorga CR, González-Candia A, Candia AA, Figueroa EG, Cañas D, Ebensperger G, Reyes RV, Llanos AJ, Herrera EA. Melatonin Decreases Pulmonary Vascular Remodeling and Oxygen Sensitivity in Pulmonary Hypertensive Newborn Lambs. Front Physiol 2018; 9:185. [PMID: 29559926 PMCID: PMC5845624 DOI: 10.3389/fphys.2018.00185] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/20/2018] [Indexed: 12/16/2022] Open
Abstract
Background: Chronic hypoxia and oxidative stress during gestation lead to pulmonary hypertension of the neonate (PHN), a condition characterized by abnormal pulmonary arterial reactivity and remodeling. Melatonin has strong antioxidant properties and improves pulmonary vascular function. Here, we aimed to study the effects of melatonin on the function and structure of pulmonary arteries from PHN lambs. Methods: Twelve lambs (Ovis aries) gestated and born at highlands (3,600 m) were instrumented with systemic and pulmonary catheters. Six of them were assigned to the control group (CN, oral vehicle) and 6 were treated with melatonin (MN, 1 mg.kg−1.d−1) during 10 days. At the end of treatment, we performed a graded oxygenation protocol to assess cardiopulmonary responses to inspired oxygen variations. Further, we obtained lung and pulmonary trunk samples for histology, molecular biology, and immunohistochemistry determinations. Results: Melatonin reduced the in vivo pulmonary pressor response to oxygenation changes. In addition, melatonin decreased cellular density of the media and diminished the proliferation marker KI67 in resistance vessels and pulmonary trunk (p < 0.05). This was associated with a decreased in the remodeling markers α-actin (CN 1.28 ± 0.18 vs. MN 0.77 ± 0.04, p < 0.05) and smoothelin-B (CN 2.13 ± 0.31 vs. MN 0.88 ± 0.27, p < 0.05). Further, melatonin increased vascular density by 134% and vascular luminal surface by 173% (p < 0.05). Finally, melatonin decreased nitrotyrosine, an oxidative stress marker, in small pulmonary vessels (CN 5.12 ± 0.84 vs. MN 1.14 ± 0.34, p < 0.05). Conclusion: Postnatal administration of melatonin blunts the cardiopulmonary response to hypoxia, reduces the pathological vascular remodeling, and increases angiogenesis in pulmonary hypertensive neonatal lambs.These effects improve the pulmonary vascular structure and function in the neonatal period under chronic hypoxia.
Collapse
Affiliation(s)
- Cristian R Astorga
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro González-Candia
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Alejandro A Candia
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department for the Woman and Newborn Health Promotion, Universidad de Chile, Santiago, Chile
| | - Esteban G Figueroa
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Daniel Cañas
- Department of Mechanical Engineering, Faculty of Engineering, Universidad de Santiago de Chile, Santiago, Chile
| | - Germán Ebensperger
- Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Roberto V Reyes
- Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Aníbal J Llanos
- Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| | - Emilio A Herrera
- Laboratory of Vascular Function & Reactivity, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Perinatal Physiology and Pathophysiology Unit, Pathophysiology Program, ICBM, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,International Center for Andean Studies, Universidad de Chile, Santiago, Chile
| |
Collapse
|
17
|
Leszczynska A, Murphy JM. Vascular Calcification: Is it rather a Stem/Progenitor Cells Driven Phenomenon? Front Bioeng Biotechnol 2018; 6:10. [PMID: 29479528 PMCID: PMC5811524 DOI: 10.3389/fbioe.2018.00010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Vascular calcification (VC) has witnessed a surge of interest. Vasculature is virtually an omnipresent organ and has a notably high capacity for repair throughout embryonic and adult life. Of the vascular diseases, atherosclerosis is a leading cause of morbidity and mortality on account of ectopic cartilage and bone formation. Despite the identification of a number of risk factors, all the current theories explaining pathogenesis of VC in atherosclerosis are far from complete. The most widely accepted response to injury theory and smooth muscle transdifferentiation to explain the VC observed in atherosclerosis is being challenged. Recent focus on circulating and resident progenitor cells in the vasculature and their role in atherogenesis and VC has been the driving force behind this review. This review discusses intrinsic cellular players contributing to fate determination of cells and tissues to form ectopic cartilage and bone formation.
Collapse
Affiliation(s)
- Aleksandra Leszczynska
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - J Mary Murphy
- Regenerative Medicine Institute, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
18
|
Mecham RP. Elastin in lung development and disease pathogenesis. Matrix Biol 2018; 73:6-20. [PMID: 29331337 DOI: 10.1016/j.matbio.2018.01.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/30/2017] [Accepted: 01/07/2018] [Indexed: 12/24/2022]
Abstract
Elastin is expressed in most tissues that require elastic recoil. The protein first appeared coincident with the closed circulatory system, and was critical for the evolutionary success of the vertebrate lineage. Elastin is expressed by multiple cell types in the lung, including mesothelial cells in the pleura, smooth muscle cells in airways and blood vessels, endothelial cells, and interstitial fibroblasts. This highly crosslinked protein associates with fibrillin-containing microfibrils to form the elastic fiber, which is the physiological structure that functions in the extracellular matrix. Elastic fibers can be woven into many different shapes depending on the mechanical needs of the tissue. In large pulmonary vessels, for example, elastin forms continuous sheets, or lamellae, that separate smooth muscle layers. Outside of the vasculature, elastic fibers form an extensive fiber network that originates in the central bronchi and inserts into the distal airspaces and visceral pleura. The fibrous cables form a looping system that encircle the alveolar ducts and terminal air spaces and ensures that applied force is transmitted equally to all parts of the lung. Normal lung function depends on proper secretion and assembly of elastin, and either inhibition of elastin fiber assembly or degradation of existing elastin results in lung dysfunction and disease.
Collapse
Affiliation(s)
- Robert P Mecham
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Madhavan K, Frid MG, Hunter K, Shandas R, Stenmark KR, Park D. Development of an electrospun biomimetic polyurea scaffold suitable for vascular grafting. J Biomed Mater Res B Appl Biomater 2018; 106:278-290. [PMID: 28130878 PMCID: PMC6080858 DOI: 10.1002/jbm.b.33853] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 11/15/2016] [Accepted: 01/01/2017] [Indexed: 12/19/2022]
Abstract
The optimization of biomechanical and biochemical properties of a vascular graft to render properties relevant to physiological environments is a major challenge today. These critical properties of a vascular graft not only regulate its stability and integrity, but also control invasion of cells for scaffold remodeling permitting its integration with native tissue. In this work, we have synthesized a biomimetic scaffold by electrospinning a blend of a polyurea, poly(serinol hexamethylene urea) (PSHU), and, a polyester, poly-ε-caprolactone (PCL). Mechanical properties of the scaffold were varied by varying polymer blending ratio and electrospinning flow rate. Mechanical characterization revealed that scaffolds with lower PSHU content relative to PCL content resulted in elasticity close to native mammalian arteries. We also found that increasing electrospinning flow rates also increased the elasticity of the matrix. Optimization of elasticity generated scaffolds that enabled vascular smooth muscle cells (SMCs) to adhere, grow and maintain a SMC phenotype. The 30/70 scaffold also underwent slower degradation than scaffolds with higher PSHU content, thereby, providing the best option for in vivo remodeling. Further, Gly-Arg-Gly-Asp-Ser (RGD) covalently conjugated to the polyurea backbone in 30/70 scaffold resulted in significantly increased clotting times. Reducing surface thrombogenicity by the conjugation of RGD is critical to avoiding intimal hyperplasia. Hence, biomechanical and biochemical properties of a vascular graft can be balanced by optimizing synthesis parameters and constituent components. For these reasons, the optimized RGD-conjugated 30/70 scaffold electrospun at 2.5 or 5 mL/h has great potential as a suitable material for vascular grafting applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 278-290, 2018.
Collapse
Affiliation(s)
- Krishna Madhavan
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cardiovascular Pulmonary Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Maria G. Frid
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cardiovascular Pulmonary Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kendall Hunter
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cardiovascular Pulmonary Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Robin Shandas
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Surgery, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cardiovascular Pulmonary Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kurt R. Stenmark
- Department of Pediatrics, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Cardiovascular Pulmonary Group, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Daewon Park
- Department of Bioengineering, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
20
|
Zhu X, Jackson EK. RACK1 regulates angiotensin II-induced contractions of SHR preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol 2017; 312:F565-F576. [PMID: 28100502 PMCID: PMC5407068 DOI: 10.1152/ajprenal.00547.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
The preglomerular microcirculation of spontaneously hypertensive rats (SHR) is hypersensitive to angiotensin (ANG) II, and studies have shown that this is likely due to enhanced coincident signaling between G protein subunits αq (Gαq; released by ANG II) and βγ (Gβγ; released by Gi-coupled receptors) to active phospholipase C (PLC). Here we investigated the molecular basis for the enhanced coincident signaling between Gβγ and Gαq in SHR preglomerular vascular smooth muscle cells (PGVSMCs). Because receptor for activated C kinase 1 (RACK1; a scaffolding protein) organizes interactions between Gβγ, Gαq, and PLC, we included RACK1 in this investigation. Cell fractionation studies demonstrated increased levels of membrane (but not cytosolic) Gβ, Gαq, PLCβ3, and RACK1 in SHR PGVSMCs compared with Wistar-Kyoto rat PGVSMCs. In SHR PGVSMCs, coimmunoprecipitation demonstrated RACK1 binding to Gβ and PLCβ3, but only at cell membranes. Pertussis toxin (which blocks Gβγ) and U73122 (which blocks PLC) reduced membrane RACK1; however, RACK1 knockdown (shRNA) did not affect membrane levels of Gβ, Gαq, or PLCβ3 In a novel gel contraction assay, RACK1 knockdown in SHR PGVSMCs attenuated contractions to ANG II and abrogated the ability of neuropeptide Y (which signals via Gβγ) to enhance ANG II-induced contractions. We conclude that in SHR PGVSMCs the enlarged pool of Gβγ and PLCβ3 recruits RACK1 to membranes and RACK1 then organizes signaling. Consequently, knockdown of RACK1 prevents coincident signaling between ANG II and the Gi pathway. This is the first study to implicate RACK1 in vascular smooth muscle cell contraction and suggests that RACK1 inhibitors could be effective cardiovascular drugs.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cells, Cultured
- Disease Models, Animal
- GTP-Binding Protein beta Subunits/metabolism
- GTP-Binding Protein gamma Subunits/metabolism
- GTP-Binding Proteins/genetics
- GTP-Binding Proteins/metabolism
- Hypertension/enzymology
- Hypertension/physiopathology
- Juxtaglomerular Apparatus/blood supply
- Male
- Microvessels/enzymology
- Microvessels/physiopathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Neuropeptide Y/metabolism
- Phospholipase C beta/metabolism
- Protein Binding
- Protein Transport
- RNA Interference
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptors for Activated C Kinase
- Signal Transduction/drug effects
- Transfection
- Vasoconstriction/drug effects
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Svegliati S, Amico D, Spadoni T, Fischetti C, Finke D, Moroncini G, Paolini C, Tonnini C, Grieco A, Rovinelli M, Funaro A, Gabrielli A. Agonistic Anti-PDGF Receptor Autoantibodies from Patients with Systemic Sclerosis Impact Human Pulmonary Artery Smooth Muscle Cells Function In Vitro. Front Immunol 2017; 8:75. [PMID: 28228756 PMCID: PMC5296309 DOI: 10.3389/fimmu.2017.00075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/17/2017] [Indexed: 01/12/2023] Open
Abstract
One of the earliest events in the pathogenesis of systemic sclerosis (SSc) is microvasculature damage with intimal hyperplasia and accumulation of cells expressing PDGF receptor. Stimulatory autoantibodies targeting PDGF receptor have been detected in SSc patients and demonstrated to induce fibrosis in vivo and convert in vitro normal fibroblasts into SSc-like cells. Since there is no evidence of the role of anti-PDGF receptor autoantibodies in the pathogenesis of SSc vascular lesions, we investigated the biologic effect of agonistic anti-PDGF receptor autoantibodies from SSc patients on human pulmonary artery smooth muscle cells and the signaling pathways involved. The synthetic (proliferation, migration, and type I collagen gene α1 chain expression) and contractile (smooth muscle-myosin heavy chain and smooth muscle-calponin expression) profiles of human pulmonary artery smooth muscle cells were assessed in vitro after incubation with SSc anti-PDGF receptors stimulatory autoantibodies. The role of reactive oxygen species, NOX isoforms, and mammalian target of rapamycin (mTOR) was investigated. Human pulmonary artery smooth muscle cells acquired a synthetic phenotype characterized by higher growth rate, migratory activity, gene expression of type I collagen α1 chain, and less expression of markers characteristic of the contractile phenotype such as smooth muscle-myosin heavy chain and smooth muscle-calponin when stimulated with PDGF and autoantibodies against PDGF receptor, but not with normal IgG. This phenotypic profile is mediated by increased generation of reactive oxygen species and expression of NOX4 and mTORC1. Our data indicate that agonistic anti-PDGF receptor autoantibodies may contribute to the pathogenesis of SSc intimal hyperplasia.
Collapse
Affiliation(s)
- Silvia Svegliati
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche , Ancona , Italy
| | - Donatella Amico
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche , Ancona , Italy
| | - Tatiana Spadoni
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche , Ancona , Italy
| | - Colomba Fischetti
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche , Ancona , Italy
| | - Doreen Finke
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche , Ancona , Italy
| | - Gianluca Moroncini
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche , Ancona , Italy
| | - Chiara Paolini
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche , Ancona , Italy
| | - Cecilia Tonnini
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche , Ancona , Italy
| | - Antonella Grieco
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche , Ancona , Italy
| | - Marina Rovinelli
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche , Ancona , Italy
| | - Ada Funaro
- Dipartimento di Scienze Mediche, Università di Torino, Torino, Italy
| | - Armando Gabrielli
- Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche , Ancona , Italy
| |
Collapse
|
22
|
Adeoye OO, Silpanisong J, Williams JM, Pearce WJ. Role of the sympathetic autonomic nervous system in hypoxic remodeling of the fetal cerebral vasculature. J Cardiovasc Pharmacol 2015; 65:308-16. [PMID: 25853949 PMCID: PMC4391294 DOI: 10.1097/fjc.0000000000000192] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fetal hypoxia triggers compensatory angiogenesis and remodeling through mechanisms not fully elucidated. In response to hypoxia, hypoxia-inducible factor drives expression of cytokines that exert multiple effects on cerebral structures. Among these, the artery wall is composed of a heterogeneous cell mix and exhibits distinct patterns of cellular differentiation and reactivity. Governing these patterns are the vascular endothelium, smooth muscle (SM), adventitia, sympathetic perivascular nerves (SPN), and the parenchyma. Although an extensive literature details effects of nonneuronal factors on cerebral arteries, the trophic role of perivascular nerves remains unclear. Hypoxia increases sympathetic innervation with subsequent release of norepinephrine (NE), neuropeptide-Y (NPY), and adenosine triphosphate, which exert motor and trophic effects on cerebral arteries and influence dynamic transitions among SM phenotypes. Our data also suggest that the cerebrovasculature reacts very differently to hypoxia in fetuses and adults, and we hypothesize that these differences arise from age-related differences in arterial SM phenotype reactivity and proximity to trophic factors, particularly of neural origin. We provide an integration of recent literature focused on mechanisms by which SPN mediate hypoxic remodeling. Our recent findings suggest that trophic effects of SPN on cerebral arteries accelerate functional maturation through shifts in SM phenotype in an age-dependent manner.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Adult
- Age Factors
- Animals
- Cerebrovascular Circulation
- Fetal Hypoxia/complications
- Fetal Hypoxia/metabolism
- Fetal Hypoxia/physiopathology
- Humans
- Hypoxia, Brain/complications
- Hypoxia, Brain/metabolism
- Hypoxia, Brain/physiopathology
- Muscle, Smooth, Vascular/innervation
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Neovascularization, Pathologic/etiology
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/physiopathology
- Neuropeptide Y/metabolism
- Norepinephrine/metabolism
- Sympathetic Nervous System/metabolism
- Sympathetic Nervous System/physiopathology
- Vascular Remodeling
Collapse
Affiliation(s)
- Olayemi O Adeoye
- Divisions of Physiology, Pharmacology, and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA
| | | | | | | |
Collapse
|
23
|
Adhikari N, Shekar KC, Staggs R, Win Z, Steucke K, Lin YW, Wei LN, Alford P, Hall JL. Guidelines for the isolation and characterization of murine vascular smooth muscle cells. A report from the International Society of Cardiovascular Translational Research. J Cardiovasc Transl Res 2015; 8:158-63. [PMID: 25788147 DOI: 10.1007/s12265-015-9616-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/18/2015] [Indexed: 10/23/2022]
Abstract
Vascular smooth muscle cells (VSMCs) play important roles in cardiovascular disorders and biology. Outlined in this paper is a step-by-step procedure for isolating aortic VSMCs from adult C57BL6J male mice by enzymatic digestion of the aorta using collagenase. The plating, culturing, and subculturing of the isolated cells are discussed in detail along with techniques to characterize VSMC phenotype by gene expression and immunofluorescence. Traction force microscopy was used to characterize contractility of single subcultured VSMCs at baseline.
Collapse
Affiliation(s)
- Neeta Adhikari
- Division of Cardiology, Lillehei Heart Institute, Department of Medicine, University of Minnesota, 4-138 CCRB, 2231 6th Street SE, Minneapolis, MN, 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pugliese SC, Poth JM, Fini MA, Olschewski A, El Kasmi KC, Stenmark KR. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 2014; 308:L229-52. [PMID: 25416383 DOI: 10.1152/ajplung.00238.2014] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxic pulmonary hypertension (PH) comprises a heterogeneous group of diseases sharing the common feature of chronic hypoxia-induced pulmonary vascular remodeling. The disease is usually characterized by mild to moderate pulmonary vascular remodeling that is largely thought to be reversible compared with the progressive irreversible disease seen in World Health Organization (WHO) group I disease. However, in these patients, the presence of PH significantly worsens morbidity and mortality. In addition, a small subset of patients with hypoxic PH develop "out-of-proportion" severe pulmonary hypertension characterized by pulmonary vascular remodeling that is irreversible and similar to that in WHO group I disease. In all cases of hypoxia-related vascular remodeling and PH, inflammation, particularly persistent inflammation, is thought to play a role. This review focuses on the effects of hypoxia on pulmonary vascular cells and the signaling pathways involved in the initiation and perpetuation of vascular inflammation, especially as they relate to vascular remodeling and transition to chronic irreversible PH. We hypothesize that the combination of hypoxia and local tissue factors/cytokines ("second hit") antagonizes tissue homeostatic cellular interactions between mesenchymal cells (fibroblasts and/or smooth muscle cells) and macrophages and arrests these cells in an epigenetically locked and permanently activated proremodeling and proinflammatory phenotype. This aberrant cellular cross-talk between mesenchymal cells and macrophages promotes transition to chronic nonresolving inflammation and vascular remodeling, perpetuating PH. A better understanding of these signaling pathways may lead to the development of specific therapeutic targets, as none are currently available for WHO group III disease.
Collapse
Affiliation(s)
- Steven C Pugliese
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado;
| | - Jens M Poth
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mehdi A Fini
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria; and
| | - Karim C El Kasmi
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, University of Colorado Denver, School of Medicine, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Departments of Medicine and Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
25
|
Peng X, Li HX, Shao HJ, Li GW, Sun J, Xi YH, Li HZ, Wang XY, Wang LN, Bai SZ, Zhang WH, Zhang L, Yang GD, Wu LY, Wang R, Xu CQ. Involvement of calcium-sensing receptors in hypoxia-induced vascular remodeling and pulmonary hypertension by promoting phenotypic modulation of small pulmonary arteries. Mol Cell Biochem 2014; 396:87-98. [DOI: 10.1007/s11010-014-2145-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 07/11/2014] [Indexed: 12/19/2022]
|
26
|
Sulfur dioxide inhibits vascular smooth muscle cell proliferation via suppressing the Erk/MAP kinase pathway mediated by cAMP/PKA signaling. Cell Death Dis 2014; 5:e1251. [PMID: 24853429 PMCID: PMC4047873 DOI: 10.1038/cddis.2014.229] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/27/2023]
Abstract
The present study was designed to investigate the role of endogenous sulfur dioxide (SO2) in vascular smooth muscle cell (VSMC) proliferation, and explore the possible role of cross-talk between cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and extracellular signal-regulated kinase (Erk)/mitogen-activated protein kinase (MAPK) pathways in this action. By cell counting, growth curve depict, flow cytometry and bromodeoxyuridine (BrdU) labeling assays, we found that SO2 inhibited VSMC proliferation by preventing cell cycle progression from G1 to S phase and by reducing DNA synthesis. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) overexpression significantly inhibited serum-induced proliferating cell nuclear antigen (PCNA) protein expression in VSMCs, demonstrated by western blot analysis. Moreover, overexpression of AAT1 or AAT2 markedly reduced incorporation of BrdU in serum-treated VSMCs. By contrast, either AAT1 or AAT2 knockdown significantly exacerbated serum-stimulated VSMC proliferation. Thus, both exogenous- and endogenous-derived SO2 suppressed serum-induced VSMC proliferation. However, annexin V-propidium iodide (PI) staining and cell cycle analysis demonstrated that SO2 did not influence VSMC apoptosis in the serum-induced proliferation model. In a platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation model, SO2 dephosphorylated the active sites of Erk1/2, MAPK kinase 1/2 and RAF proto-oncogene serine/threonine-protein kinase (c-Raf) induced by PDGF-BB. However, the inactivation of the three kinases of the Erk/MAPK pathway was not due to the separate interferences on them by SO2 simultaneously, but a consequence of the influence on the upstream activity of the c-Raf molecule. Hence, we examined the cAMP/PKA pathway, which could inhibit Erk/MAPK transduction in VSMCs. The results showed that SO2 could stimulate the cAMP/PKA pathway to block c-Raf activation, whereas the Ser259 site on c-Raf had an important role in SO2-induced suppression of Erk/MAPK pathway. The present study firstly demonstrated that SO2 exerted a negative regulation of VSMC proliferation via suppressing the Erk/MAPK pathway mediated by cAMP/PKA signaling.
Collapse
|
27
|
Mikaelian I, Cameron M, Dalmas DA, Enerson BE, Gonzalez RJ, Guionaud S, Hoffmann PK, King NMP, Lawton MP, Scicchitano MS, Smith HW, Thomas RA, Weaver JL, Zabka TS. Nonclinical Safety Biomarkers of Drug-induced Vascular Injury. Toxicol Pathol 2014; 42:635-57. [DOI: 10.1177/0192623314525686] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Better biomarkers are needed to identify, characterize, and/or monitor drug-induced vascular injury (DIVI) in nonclinical species and patients. The Predictive Safety Testing Consortium (PSTC), a precompetitive collaboration of pharmaceutical companies and the U.S. Food and Drug Administration (FDA), formed the Vascular Injury Working Group (VIWG) to develop and qualify translatable biomarkers of DIVI. The VIWG focused its research on acute DIVI because early detection for clinical and nonclinical safety monitoring is desirable. The VIWG developed a strategy based on the premise that biomarkers of DIVI in rat would be translatable to humans due to the morphologic similarity of vascular injury between species regardless of mechanism. The histomorphologic lexicon for DIVI in rat defines degenerative and adaptive findings of the vascular endothelium and smooth muscles, and characterizes inflammatory components. We describe the mechanisms of these changes and their associations with candidate biomarkers for which advanced analytical method validation was completed. Further development is recommended for circulating microRNAs, endothelial microparticles, and imaging techniques. Recommendations for sample collection and processing, analytical methods, and confirmation of target localization using immunohistochemistry and in situ hybridization are described. The methods described are anticipated to aid in the identification and qualification of translational biomarkers for DIVI.
Collapse
Affiliation(s)
- Igor Mikaelian
- Hoffmann-La Roche Inc, Nutley, New Jersey, USA
- Abbvie, Worcester, Massachusetts, USA
| | | | | | | | - Raymond J. Gonzalez
- Merck Research Laboratories, Merck and Co, Inc, West Point, Pennsylvania, USA
| | - Silvia Guionaud
- Shire, Hampshire International Business Park, Basingstoke, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol 2013; 2:675-709. [PMID: 23606929 DOI: 10.1002/cphy.c100081] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pulmonary vasculature comprises three anatomic compartments connected in series: the arterial tree, an extensive capillary bed, and the venular tree. Although, in general, this vasculature is thin-walled, structure is nonetheless complex. Contributions to structure (and thus potentially to function) from cells other than endothelial and smooth muscle cells as well as those from the extracellular matrix should be considered. This review is multifaceted, bringing together information regarding (i) classification of pulmonary vessels, (ii) branching geometry in the pulmonary vascular tree, (iii) a quantitative view of structure based on morphometry of the vascular wall, (iv) the relationship of nerves, a variety of interstitial cells, matrix proteins, and striated myocytes to smooth muscle and endothelium in the vascular wall, (v) heterogeneity within cell populations and between vascular compartments, (vi) homo- and heterotypic cell-cell junctional complexes, and (vii) the relation of the pulmonary vasculature to that of airways. These issues for pulmonary vascular structure are compared, when data is available, across species from human to mouse and shrew. Data from studies utilizing vascular casting, light and electron microscopy, as well as models developed from those data, are discussed. Finally, the need for rigorous quantitative approaches to study of vascular structure in lung is highlighted.
Collapse
Affiliation(s)
- Mary I Townsley
- University of South Alabama, Department of Physiology, and Center for Lung Biology, Mobile, Alabama, USA.
| |
Collapse
|
29
|
Abstract
Hypoxic pulmonary hypertension of the newborn is characterized by elevated pulmonary vascular resistance and pressure due to vascular remodeling and increased vessel tension secondary to chronic hypoxia during the fetal and newborn period. In comparison to the adult, the pulmonary vasculature of the fetus and the newborn undergoes tremendous developmental changes that increase susceptibility to a hypoxic insult. Substantial evidence indicates that chronic hypoxia alters the production and responsiveness of various vasoactive agents such as endothelium-derived nitric oxide, endothelin-1, prostanoids, platelet-activating factor, and reactive oxygen species, resulting in sustained vasoconstriction and vascular remodeling. These changes occur in most cell types within the vascular wall, particularly endothelial and smooth muscle cells. At the cellular level, suppressed nitric oxide-cGMP signaling and augmented RhoA-Rho kinase signaling appear to be critical to the development of hypoxic pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China
| | | |
Collapse
|
30
|
Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:295-317. [PMID: 23737174 DOI: 10.1002/cphy.c100026] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension is a multifactorial disease characterized by sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP). Central to the pathobiology of this disease is the process of vascular remodelling. This process involves structural and functional changes to the normal architecture of the walls of pulmonary arteries (PAs) that lead to increased muscularization of the muscular PAs, muscularization of the peripheral, previously nonmuscular, arteries of the respiratory acinus, formation of neointima, and formation of plexiform lesions. Underlying or contributing to the development of these lesions is hypertrophy, proliferation, migration, and resistance to apoptosis of medial cells and this article is concerned with the cellular and molecular mechanisms of these processes. In the first part of the article we focus on the concept of smooth muscle cell phenotype and the difficulties surrounding the identification and characterization of the cell/cells involved in the remodelling of the vessel media and we review the general mechanisms of cell hypertrophy, proliferation, migration and apoptosis. Then, in the larger part of the article, we review the factors identified thus far to be involved in PH intiation and/or progression and review and discuss their effects on pulmonary artery smooth muscle cells (PASMCs) the predominant cells in the tunica media of PAs.
Collapse
Affiliation(s)
- Tamara Tajsic
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | | |
Collapse
|
31
|
Adeoye OO, Butler SM, Hubbell MC, Semotiuk A, Williams JM, Pearce WJ. Contribution of increased VEGF receptors to hypoxic changes in fetal ovine carotid artery contractile proteins. Am J Physiol Cell Physiol 2013; 304:C656-65. [PMID: 23325408 DOI: 10.1152/ajpcell.00110.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies suggest that vascular endothelial growth factor (VEGF) can modulate smooth muscle phenotype and, consequently, the composition and function of arteries upstream from the microcirculation, where angiogenesis occurs. Given that hypoxia potently induces VEGF, the present study explores the hypothesis that, in fetal arteries, VEGF contributes to hypoxic vascular remodeling through changes in abundance, organization, and function of contractile proteins. Pregnant ewes were acclimatized at sea level or at altitude (3,820 m) for the final 110 days of gestation. Endothelium-denuded carotid arteries from full-term fetuses were used fresh or after 24 h of organ culture in a physiological concentration (3 ng/ml) of VEGF. After 110 days, hypoxia had no effect on VEGF abundance but markedly increased abundance of the Flk-1 (171%) and Flt-1 (786%) VEGF receptors. Hypoxia had no effect on smooth muscle α-actin (SMαA), decreased myosin light chain (MLC) kinase (MLCK), and increased 20-kDa regulatory MLC (MLC(20)) abundances. Hypoxia also increased MLCK-SMαA, MLC(20)-SMαA, and MLCK-MLC(20) colocalization. Compared with hypoxia, organ culture with VEGF produced the same pattern of changes in contractile protein abundance and colocalization. Effects of VEGF on colocalization were blocked by the VEGF receptor antagonists vatalanib (240 nM) and dasatinib (6.3 nM). Thus, through increases in VEGF receptor density, hypoxia can recruit VEGF to help mediate remodeling of fetal arteries upstream from the microcirculation. The results support the hypothesis that VEGF contributes to hypoxic vascular remodeling through changes in abundance, organization, and function of contractile proteins.
Collapse
Affiliation(s)
- Olayemi O Adeoye
- Division of Physiology, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | |
Collapse
|
32
|
Greif DM, Kumar M, Lighthouse JK, Hum J, An A, Ding L, Red-Horse K, Espinoza FH, Olson L, Offermanns S, Krasnow MA. Radial construction of an arterial wall. Dev Cell 2013; 23:482-93. [PMID: 22975322 DOI: 10.1016/j.devcel.2012.07.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 05/24/2012] [Accepted: 07/16/2012] [Indexed: 01/04/2023]
Abstract
Some of the most serious diseases involve altered size and structure of the arterial wall. Elucidating how arterial walls are built could aid understanding of these diseases, but little is known about how concentric layers of muscle cells and the outer adventitial layer are assembled and patterned around endothelial tubes. Using histochemical, clonal, and genetic analysis in mice, here we show that the pulmonary artery wall is constructed radially, from the inside out, by two separate but coordinated processes. One is sequential induction of successive cell layers from surrounding mesenchyme. The other is controlled invasion of outer layers by inner layer cells through developmentally regulated cell reorientation and radial migration. We propose that a radial signal gradient controls these processes and provide evidence that PDGF-B and at least one other signal contribute. Modulation of such radial signaling pathways may underlie vessel-specific differences and pathological changes in arterial wall size and structure.
Collapse
Affiliation(s)
- Daniel M Greif
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Pathogenic role of store-operated and receptor-operated ca(2+) channels in pulmonary arterial hypertension. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:951497. [PMID: 23056939 PMCID: PMC3465915 DOI: 10.1155/2012/951497] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/12/2012] [Accepted: 07/16/2012] [Indexed: 12/31/2022]
Abstract
Pulmonary circulation is an important circulatory system in which the body brings in oxygen. Pulmonary arterial hypertension (PAH) is a progressive and fatal disease that predominantly affects women. Sustained pulmonary vasoconstriction, excessive pulmonary vascular remodeling, in situ thrombosis, and increased pulmonary vascular stiffness are the major causes for the elevated pulmonary vascular resistance (PVR) in patients with PAH. The elevated PVR causes an increase in afterload in the right ventricle, leading to right ventricular hypertrophy, right heart failure, and eventually death. Understanding the pathogenic mechanisms of PAH is important for developing more effective therapeutic approach for the disease. An increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and an important stimulus for PASMC migration and proliferation which lead to pulmonary vascular wall thickening and remodeling. It is thus pertinent to define the pathogenic role of Ca2+ signaling in pulmonary vasoconstriction and PASMC proliferation to develop new therapies for PAH. [Ca2+]cyt in PASMC is increased by Ca2+ influx through Ca2+ channels in the plasma membrane and by Ca2+ release or mobilization from the intracellular stores, such as sarcoplasmic reticulum (SR) or endoplasmic reticulum (ER). There are two Ca2+ entry pathways, voltage-dependent Ca2+ influx through voltage-dependent Ca2+ channels (VDCC) and voltage-independent Ca2+ influx through store-operated Ca2+ channels (SOC) and receptor-operated Ca2+ channels (ROC). This paper will focus on the potential role of VDCC, SOC, and ROC in the development and progression of sustained pulmonary vasoconstriction and excessive pulmonary vascular remodeling in PAH.
Collapse
|
34
|
Sluiter I, van der Horst I, van der Voorn P, Boerema-de Munck A, Buscop-van Kempen M, de Krijger R, Tibboel D, Reiss I, Rottier RJ. Premature differentiation of vascular smooth muscle cells in human congenital diaphragmatic hernia. Exp Mol Pathol 2012; 94:195-202. [PMID: 23018129 DOI: 10.1016/j.yexmp.2012.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Congenital diaphragmatic hernia (CDH) is a rare congenital anomaly characterized by the herniation of abdominal organs into the chest cavity. The high mortality and morbidity of CDH patients are primarily caused by the associated pulmonary hypertension (PH), characterized by the thickening of the vascular media and adventitia. The media consist of heterogeneous populations of vascular smooth muscle cells (VSMC), ranging from synthetic to the characteristic contractile cells. VSMCs are influenced by developmental and environmental cues and may play a role in the development of the structural changes observed in CDH patients. Therefore, we hypothesized that the distribution of the VSMC populations may already be different at the origin of CDH development. METHODOLOGY We analyzed the protein expression of specific markers associated with synthetic and contractile VSMC phenotypes in human lungs at different developmental stages. Next, we compared lungs of premature and term CDH patients, as well as patients with lung hypoplasia due to renal agenesis or PROM, with age-matched controls. RESULTS Synthetic and contractile VSMCs are distributed in a temporal and spatial specific pattern along the proximodistal axis of the lung. CDH patients have more abundant contractile VSMCs which are also more distally distributed. This different distribution pattern is already observed from 19 weeks of gestation onwards. CONCLUSION Our data suggest that the more extensive distribution of contractile VSMCs is associated with an early maturation of the pulmonary vasculature, contrasting the concept that CDH might be the result of delayed maturation of the epithelium.
Collapse
Affiliation(s)
- Ilona Sluiter
- Department of Pediatric Surgery, Erasmus MC Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hubbell MC, Semotiuk AJ, Thorpe RB, Adeoye OO, Butler SM, Williams JM, Khorram O, Pearce WJ. Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries. Am J Physiol Cell Physiol 2012; 303:C1090-103. [PMID: 22992677 DOI: 10.1152/ajpcell.00408.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic hypoxia increases vascular endothelial growth factor (VEGF) and thereby promotes angiogenesis. The present study explores the hypothesis that hypoxic increases in VEGF also remodel artery wall structure and contractility through phenotypic transformation of smooth muscle. Pregnant and nonpregnant ewes were maintained at sea level (normoxia) or 3,820 m (hypoxia) for the final 110 days of gestation. Common carotid arteries harvested from term fetal lambs and nonpregnant adults were denuded of endothelium and studied in vitro. Stretch-dependent contractile stresses were 32 and 77% of normoxic values in hypoxic fetal and adult arteries. Hypoxic hypocontractility was coupled with increased abundance of nonmuscle myosin heavy chain (NM-MHC) in fetal (+37%) and adult (+119%) arteries. Conversely, hypoxia decreased smooth muscle MHC (SM-MHC) abundance by 40% in fetal arteries but increased it 123% in adult arteries. Hypoxia decreased colocalization of NM-MHC with smooth muscle α-actin (SM-αA) in fetal arteries and decreased colocalization of SM-MHC with SM-αA in adult arteries. Organ culture with physiological concentrations (3 ng/ml) of VEGF-A(165) similarly depressed stretch-dependent stresses to 37 and 49% of control fetal and adult values. The VEGF receptor antagonist vatalanib ablated VEGF's effects in adult but not fetal arteries, suggesting age-dependent VEGF receptor signaling. VEGF replicated hypoxic decreases in colocalization of NM-MHC with SM-αA in fetal arteries and decreases in colocalization of SM-MHC with SM-αA in adult arteries. These results suggest that hypoxic increases in VEGF not only promote angiogenesis but may also help mediate hypoxic arterial remodeling through age-dependent changes in smooth muscle phenotype and contractility.
Collapse
Affiliation(s)
- Margaret C Hubbell
- Divisions of Physiology, Pharmacology, and Biochemistry, Center for Perinatal Biology, Loma Linda University Schoolof Medicine, Loma Linda, California 92350, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Howard LS, Crosby A, Vaughan P, Sobolewski A, Southwood M, Foster ML, Chilvers ER, Morrell NW. Distinct responses to hypoxia in subpopulations of distal pulmonary artery cells contribute to pulmonary vascular remodeling in emphysema. Pulm Circ 2012; 2:241-9. [PMID: 22837865 PMCID: PMC3401878 DOI: 10.4103/2045-8932.97616] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We have shown previously that hypoxia inhibits the growth of distal human pulmonary artery smooth muscle cells (PASMC) isolated under standard normoxic conditions (PASMC(norm)). By contrast, a subpopulation of PASMC, isolated through survival selection under hypoxia was found to proliferate in response to hypoxia (PASMC(hyp)). We sought to investigate the role of hypoxia-inducible factor (HIF) in these differential responses and to assess the relationship between HIF, proliferation, apoptosis, and pulmonary vascular remodeling in emphysema. PASMC were derived from lobar resections for lung cancer. Hypoxia induced apoptosis in PASMC(norm) (as assessed by TUNEL) and mRNA expression of Bax and Bcl-2, and induced proliferation in PASMC(hyp) (as assessed by (3)H-thymidine incorporation). Both observations were mimicked by dimethyloxallyl glycine, a prolyl-hydroxylase inhibitor used to stabilize HIF under normoxia. Pulmonary vascular remodeling was graded in lung samples taken from patients undergoing lung volume reduction surgery for severe heterogenous emphysema. Carbonic anhydrase IX expression in the medial compartment was used as a surrogate of medial hypoxia and HIF stabilization and increased with increasing vascular remodeling. In addition, a mixture of proliferation, assessed by proliferating-cell nuclear antigen, and apoptosis, assessed by active caspase 3 staining, were both higher in more severely remodeled vessels. Hypoxia drives apoptosis and proliferation via HIF in distinct subpopulations of distal PASMC. These differential responses may be important in the pulmonary vascular remodeling seen in emphysema and further support the key role of HIF in hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- L S Howard
- National Pulmonary Hypertension Service (London), Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Sluiter I, van Heijst A, Haasdijk R, Kempen MBV, Boerema-de Munck A, Reiss I, Tibboel D, Rottier RJ. Reversal of pulmonary vascular remodeling in pulmonary hypertensive rats. Exp Mol Pathol 2012; 93:66-73. [PMID: 22472322 DOI: 10.1016/j.yexmp.2012.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 03/19/2012] [Indexed: 12/27/2022]
Abstract
Pulmonary hypertension is responsible for significant mortality and morbidity among newborns and infants. The pathology is characterized by pulmonary vascular remodeling with medial hypertrophy and adventitial thickening, leading to decreased gas exchange. Since it is unknown if these abnormalities are reversible, we analyzed these vascular changes in pulmonary hypertensive rats. Exposure of rats to hypobaric hypoxia for 4 weeks induced clinical signs of pulmonary hypertension, such as increased right ventricular systolic pressure, increased right ventricular weight and considerable pulmonary vascular remodeling. The vascular changes were associated with the expression of Non -Muscle Myosin Heavy Chain B in the pre-acinar vessels and an increased expression of alpha Smooth Muscle Actin, Smooth Muscle Myosin Heavy Chain 2 and Calponin in the intra-acinar vessels. The right ventricular systolic pressure and right ventricular weight gradually decreased after specific periods of recovery in normoxia, although this reversal did not reach baseline levels after six weeks at normoxia. However, the cellular changes in the pulmonary vasculature were completely reversed. Development of pulmonary hypertension is associated with an increase of synthetic perivascular cells in the pre-acinar arteries and an aberrant differentiation of perivascular cells in the smallest intra-acinar arteries. These cellular and structural changes in the pulmonary vasculature are completely reversible after recovery in normoxia.
Collapse
Affiliation(s)
- Ilona Sluiter
- Intensive Care and Department of Pediatric Surgery, Erasmus MC-Sophia, Dr. Molewaterplein 60, 3015 GJ Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Roy C, Marceau E, Gera L, Marceau F. An in vitro reconstitution system to address the mechanism of the vascular expression of the bradykinin B1 receptor in response to angiotensin converting enzyme inhibition. Vascul Pharmacol 2012; 57:15-23. [DOI: 10.1016/j.vph.2011.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 08/11/2011] [Accepted: 09/26/2011] [Indexed: 01/05/2023]
|
39
|
Goyal R, Henderson DA, Chu N, Longo LD. Ovine middle cerebral artery characterization and quantification of ultrastructure and other features: changes with development. Am J Physiol Regul Integr Comp Physiol 2011; 302:R433-45. [PMID: 22116510 DOI: 10.1152/ajpregu.00519.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of tone, blood pressure, and blood flow in the cerebral vasculature is of vital importance, particularly in the developing infant. We tested the hypothesis that, in addition to accretion of smooth muscle cells (SMCs) in cell layers with vessel thickening, significant changes in smooth muscle structure, as well as phenotype, extracellular matrix, and membrane proteins, in the media of cerebral arteries (CAs) during the course of late fetal development account for associated changes in contractility. Using transmission electron, confocal, wide-field epifluorescence, and light microscopy, we examined the structure and ultrastructure of CAs. Also, we utilized wire myography, Western immunoblotting, and real-time quantitative PCR to examine several other features of these arteries. We compared the main branch ovine middle CAs of 95- and 140-gestational day (GD) fetuses with those of adults (n = 5 for each experimental group). We observed a graded increase in phenylephrine- and KCl-induced contractile responses with development. Structurally, lumen diameter, media thickness, and media cross-sectional area increased dramatically from one age group to the next. With maturation, the cross-sectional profiles of CA SMCs changed from flattened bands in the 95-GD fetus to irregular ovoid-shaped fascicles in the 140-GD fetus and adult. We also observed a change in the type of collagen, specific integrin molecules, and several other parameters of SMC morphology with maturation. Ovine CAs at 95 GD appeared morphologically immature and poorly equipped to respond to major hemodynamic adjustments with maturation.
Collapse
Affiliation(s)
- Ravi Goyal
- Center for Perinatal Biology, Loma Linda Univ. School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | |
Collapse
|
40
|
Rensen S, Doevendans P, van Eys G. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J 2011; 15:100-8. [PMID: 17612668 PMCID: PMC1847757 DOI: 10.1007/bf03085963] [Citation(s) in RCA: 674] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vascular smooth muscle cells can perform both contractile and synthetic functions, which are associated with and characterised by changes in morphology, proliferation and migration rates, and the expression of different marker proteins. The resulting phenotypic diversity of smooth muscle cells appears to be a function of innate genetic programmes and environmental cues, which include biochemical factors, extracellular matrix components, and physical factors such as stretch and shear stress. Because of the diversity among smooth muscle cells, blood vessels attain the flexibility that is necessary to perform efficiently under different physiological and pathological conditions. In this review, we discuss recent literature demonstrating the extent and nature of smooth muscle cell diversity in the vascular wall and address the factors that affect smooth muscle cell phenotype. (Neth Heart J 2007;15:100-8.).
Collapse
Affiliation(s)
- S.S.M. Rensen
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands
| | - P.A.F.M. Doevendans
- Department of Cardiology, Heart Lung Centre Utrecht, Interuniversity Cardiology Institute, the Netherlands
| | - G.J.J.M. van Eys
- Department of Genetics and Cell Biology, Cardiovascular Research Institute Maastricht, University of Maastricht, the Netherlands
| |
Collapse
|
41
|
Butler SM, Abrassart JM, Hubbell MC, Adeoye O, Semotiuk A, Williams JM, Mata-Greenwood E, Khorram O, Pearce WJ. Contributions of VEGF to age-dependent transmural gradients in contractile protein expression in ovine carotid arteries. Am J Physiol Cell Physiol 2011; 301:C653-66. [PMID: 21653901 DOI: 10.1152/ajpcell.00413.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study explores the hypothesis that arterial smooth muscle cells are organized into layers with similar phenotypic characteristics that vary with the relative position between the lumen and the adventitia due to transmural gradients in vasotrophic factors. A corollary hypothesis is that vascular endothelial growth factor (VEGF) is a factor that helps establish transmural variations in smooth muscle phenotype. Organ culture of endothelium-denuded ovine carotid arteries with 3 ng/ml VEGF-A(165) for 24 h differentially and significantly influenced potassium-induced (55% increase) and stretch-induced (36% decrease) stress-strain relations in adult (n = 18) but not term fetal (n = 21) arteries, suggesting that smooth muscle reactivity to VEGF is acquired during postnatal maturation. Because inclusion of fetal bovine serum significantly inhibited all contractile effects of VEGF (adult: n = 11; fetus: n = 11), it was excluded in all cultures. When assessed in relation to the distance between the lumen and the adventitia in immunohistochemically stained coronal artery sections, expression of smooth muscle α-actin (SMαA), myosin light chain kinase (MLCK), and 20-kDa regulatory myosin light chain exhibited distinct protein-dependent and age-dependent gradients across the artery wall. VEGF depressed regional SMαA abundance up to 15% in adult (n = 6) but not in fetal (n = 6) arteries, increased regional MLCK abundance up to 140% in fetal (n = 8) but not in adult (n = 10) arteries, and increased regional MLC(20) abundance up to 28% in fetal arteries (n = 7) but decreased it by 17% in adult arteries (n = 9). Measurements of mRNA levels verified that VEGF receptor transcripts for both Flt-1 and kinase insert domain receptor (KDR) were expressed in both fetal and adult arteries. Overall, the present data support the unique hypothesis that smooth muscle cells are organized into lamina of similar phenotype with characteristics that depend on the relative position between the lumen and the adventitia and involve the direct effects of growth factors such as VEGF, which acts independently of the vascular endothelium in an age-dependent manner.
Collapse
Affiliation(s)
- Stacy M Butler
- Divisions of Physiology, Pharmacology, and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, California, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Newcomer RG, Moussallem MD, Keller TCS, Schlenoff JB, Sang QXA. Human coronary artery smooth muscle cell responses to bioactive polyelectrolyte multilayer interfaces. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2010; 2011:854068. [PMID: 21350669 PMCID: PMC3042685 DOI: 10.4061/2011/854068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 10/05/2010] [Indexed: 02/03/2023]
Abstract
Under normal physiological conditions, mature human coronary artery smooth muscle cells (hCASMCs) exhibit a "contractile" phenotype marked by low rates of proliferation and protein synthesis, but these cells possess the remarkable ability to dedifferentiate into a "synthetic" phenotype when stimulated by conditions of pathologic stress. A variety of polyelectrolyte multilayer (PEMU) films are shown here to exhibit bioactive properties that induce distinct responses from cultured hCASMCs. Surfaces terminated with Nafion or poly(styrenesulfonic acid) (PSS) induce changes in the expression and organization of intracellular proteins, while a hydrophilic, zwitterionic copolymer of acrylic acid and 3-[2-(acrylamido)-ethyl dimethylammonio] propane sulfonate (PAA-co-PAEDAPS) is resistant to cell attachment and suppresses the formation of key cytoskeletal components. Differential expression of heat shock protein 90 and actin is observed, in terms of both their magnitude and cellular localization, and distinct cytoplasmic patterns of vimentin are seen. The ionophore A23187 induces contraction in confluent hCASMC cultures on Nafion-terminated surfaces. These results demonstrate that PEMU coatings exert direct effects on the cytoskeletal organization of attaching hCASMCs, impeding growth in some cases, inducing changes consistent with phenotypic modulation in others, and suggesting potential utility for PEMU surfaces as a coating for coronary artery stents and other implantable medical devices.
Collapse
Affiliation(s)
- Robert G Newcomer
- Department of Chemistry and Biochemistry, Institute of Molecular Biophysics, The Florida State University, 3501 Chemical Sciences Laboratory Building, 102 Varsity Way, Tallahassee, FL 32306-4390, USA
| | | | | | | | | |
Collapse
|
43
|
Albiero M, Menegazzo L, Fadini GP. Circulating Smooth Muscle Progenitors and Atherosclerosis. Trends Cardiovasc Med 2010; 20:133-40. [DOI: 10.1016/j.tcm.2010.12.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 11/19/2010] [Indexed: 11/28/2022]
|
44
|
Circulating smooth muscle progenitor cells in atherosclerosis and plaque rupture: Current perspective and methods of analysis. Vascul Pharmacol 2010; 52:11-20. [DOI: 10.1016/j.vph.2009.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/12/2009] [Accepted: 11/23/2009] [Indexed: 11/17/2022]
|
45
|
Bachiller PR, Nakanishi H, Roberts JD. Transforming growth factor-beta modulates the expression of nitric oxide signaling enzymes in the injured developing lung and in vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2009; 298:L324-34. [PMID: 20023176 DOI: 10.1152/ajplung.00181.2009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide signaling has an important role in regulating pulmonary development and function. Expression of soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase I (PKGI), both critical mediators of nitric oxide (NO) signaling, is diminished in the injured newborn lung through unknown mechanisms. Recent studies suggest that excessive transforming growth factor-beta (TGF-beta) activity inhibits injured newborn lung development. To explore mechanisms that regulate pulmonary NO signaling, we tested whether TGF-beta decreases sGC and PKGI expression in the injured developing lung and pulmonary vascular smooth muscle cells (SMC). We found that chronic oxygen-induced lung injury decreased pulmonary sGCalpha(1) and PKGI immunoreactivity in mouse pups and that exposure to a TGF-beta-neutralizing antibody prevented this reduction of sGC and PKGI protein expression. In addition, TGF-beta(1) decreased expression of NO signaling enzymes in freshly isolated pulmonary microvascular SMC/myofibroblasts, suggesting that TGF-beta has a direct role in modulating NO signaling in the pup lung. Moreover, TGF-beta(1) decreased sGC and PKGI expression in pulmonary artery and aortic SMC from adult rats and mice, suggesting a general role for TGF-beta in modulating NO signaling in vascular SMC. Although other cytokines decrease sGC mRNA stability, TGF-beta did not modulate sGCalpha(1) or PKGIbeta mRNA turnover in vascular SMC. These studies indicate for the first time that TGF-beta decreases NO signaling enzyme expression in the injured developing lung and pulmonary vascular SMC. Moreover, they suggest that TGF-beta-neutralizing molecules might counteract the effects of injury on NO signaling in the newborn lung.
Collapse
Affiliation(s)
- Patricia R Bachiller
- Cardiovascular Research Center, Massachusetts General Hospital-East, 149 13th St., Charlestown, MA 02129, USA
| | | | | |
Collapse
|
46
|
Frid MG, Li M, Gnanasekharan M, Burke DL, Fragoso M, Strassheim D, Sylman JL, Stenmark KR. Sustained hypoxia leads to the emergence of cells with enhanced growth, migratory, and promitogenic potentials within the distal pulmonary artery wall. Am J Physiol Lung Cell Mol Physiol 2009; 297:L1059-72. [PMID: 19767409 DOI: 10.1152/ajplung.90611.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
All forms of chronic pulmonary hypertension (PH) are characterized by structural remodeling of the pulmonary artery (PA) media, a process previously attributed solely to changes in the phenotype of resident smooth muscle cells (SMC). However, recent experimental evidence in both systemic and pulmonary circulations suggests that other cell types, including circulating and local progenitors, contribute significantly to this process. The goal of this study was to determine if hypoxia-induced remodeling of distal PA (dPA) media involves the emergence of cells with phenotypic and functional characteristics distinct from those of resident dPA SMC and fibroblasts. In vivo, in contrast to the phenotypically uniform SMC composition of dPA media in control calves, the remodeled dPA media of neonatal calves with severe hypoxia-induced PH comprised cells exhibiting a distinct phenotype, including the expression of hematopoetic (CD45), leukocytic/monocytic (CD11b, CD14), progenitor (cKit), and motility-associated (S100A4) cell markers. Consistent with these in vivo observations, primary cell cultures isolated from dPA media of hypertensive calves yielded not only differentiated SMC, but also smaller, morphologically rhomboidal (thus termed here "R") cells that transiently expressed CD11b, constitutively expressed the mesenchymal cell marker type I procollagen, expressed high mRNA levels of progenitor cell markers cKit, CD34, CD73, as well as for inflammatory mediators, IL-6 and MCP-1, and, with time in culture, gained expression of a myofibroblast marker, alpha-SM-actin. R cells exhibited highly augmented proliferative, migratory, invasive, and potent promitogenic capabilities, which were due, at least in part, to the production of PDGFs, SDF-1/CXCL12, and S100A4. These data suggest that the cellular mechanisms of dPA remodeling include the emergence of cells with phenotypic and functional characteristics markedly distinct from those of resident dPA cells.
Collapse
Affiliation(s)
- Maria G Frid
- Department of Pediatrics, University of Colorado Denver, Aurora, 80045, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang S, Li Y. Expression of constitutively active cGMP-dependent protein kinase inhibits glucose-induced vascular smooth muscle cell proliferation. Am J Physiol Heart Circ Physiol 2009; 297:H2075-83. [PMID: 19717728 DOI: 10.1152/ajpheart.00521.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we have demonstrated that cGMP-dependent protein kinase (PKG) activity is downregulated in vessels from diabetic animals or in vascular smooth muscle cells (VSMCs) exposed to high-glucose conditions, contributing to diabetes-associated vessel dysfunction. However, whether decreased PKG activity plays a role in hyperglycemia-induced proliferation of VSMCs is unknown. In this report, high-glucose-mediated decreased PKG activity in VSMCs was restored by transfection of cells with expression vector for the catalytic domain of PKG-I (PKG-CD, constitutive active PKG). The effect of glucose on cell proliferation was determined. Our data demonstrated that high glucose exposure stimulated VSMC proliferation and G1 to S phase progression of the cell cycle, which was inhibited by restoration of PKG activity. Expression of constitutively active PKG inhibited G1 phase exit in VSMCs under high glucose conditions, which was accompanied by an inhibition of retinoblastoma protein (Rb) phosphorylation (a key switch for G1 to S phase cell cycle progression). Glucose-induced cyclin E expression and cyclin E-cyclin-dependent kinase 2 activity was also reduced by expression of PKG-CD in VSMCs. Moreover, expression of PKG-CD suppressed glucose-induced p27 degradation. These data demonstrate that restoring the high-glucose-mediated decrease in PKG activity in VSMCs inhibits glucose-induced abnormal VSMC proliferation occurring upstream of Rb phosphorylation. Our work provides the first direct evidence linking decreased PKG activity to high glucose-induced proliferation and cell cycle progression in VSMCs, suggesting that strategies to increase PKG activity might be useful in preventing abnormal VSMC proliferation in diabetic patients and might provide treatments for diabetes-associated proliferative vascular diseases.
Collapse
Affiliation(s)
- Shuxia Wang
- Graduate Center for Nutritional Sciences, University of Kentucky, Wethington Bldg, Rm. 517, 900 S. Limestone St, Lexington, KY, USA.
| | | |
Collapse
|
48
|
Arciniegas E, Neves CY, Carrillo LM, Zambrano EA, Ramírez R. Endothelial-Mesenchymal Transition Occurs during Embryonic Pulmonary Artery Development. ACTA ACUST UNITED AC 2009; 12:193-200. [PMID: 16162442 DOI: 10.1080/10623320500227283] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Pulmonary vascular remodeling is a process generally associated with pulmonary hypertension that involves intimal thickening, medial hyperthrophy, and plexiform lesions. Morphological studies during pulmonary hypertension have indicated that intimal thickening consists of immature smooth muscle cells (SMCs) associated with determined extracellular matrix components, suggesting an important role for these cells in vascular lesions. Controversy exists regarding the nature and origin of the cells conforming the intimal thickenings. In this study, the authors characterized the in vivo phenotype of the cells located in the pulmonary artery wall during the advanced stages of chicken embryo development and examined whether intimal thickenings are present in such stages. Immunolabeling of cryosections demonstrated presence of intimal thickenings composed of mesenchymal cells that may arise from the endothelium. These cells persist either as nonmuscle throughout the development, or possibly convert to cells expressing alpha -smooth muscle actin (alpha-SM actin). To determine whether pulmonary endothelial cells undergo a transition to mesenchymal cells, the authors used pulmonary artery explants from 10- to 11-day-old chicken embryos and found that explanted endothelial cells detached from the monolayer and acquired mesenchymal characteristics. Some of these cells maintained immunoreactivity for von Willebrand factor (vWF), whereas other jointly lost vWF and gained alpha -SM actin expression (transitional cells), suggesting conversion to SMCs. Therefore, these findings strongly support the authors' in vivo observations and demonstrate that embryonic pulmonary endothelial cells undergo a transition to mesenchymal cells and participate in intimal thickening formation and pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Enrique Arciniegas
- Laboratorio de Microscopía Electrónica, Servicio Autónomo Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | | | |
Collapse
|
49
|
Abstract
An important factor in the transition from an open to a closed circulatory system was a change in vessel wall structure and composition that enabled the large arteries to store and release energy during the cardiac cycle. The component of the arterial wall in vertebrates that accounts for these properties is the elastic fiber network organized by medial smooth muscle. Beginning with the onset of pulsatile blood flow in the developing aorta, smooth muscle cells in the vessel wall produce a complex extracellular matrix (ECM) that will ultimately define the mechanical properties that are critical for proper function of the adult vascular system. This review discusses the structural ECM proteins in the vertebrate aortic wall and will explore how the choice of ECM components has changed through evolution as the cardiovascular system became more advanced and pulse pressure increased. By correlating vessel mechanics with physiological blood pressure across animal species and in mice with altered vessel compliance, we show that cardiac and vascular development are physiologically coupled, and we provide evidence for a universal elastic modulus that controls the parameters of ECM deposition in vessel wall development. We also discuss mechanical models that can be used to design better tissue-engineered vessels and to test the efficacy of clinical treatments.
Collapse
Affiliation(s)
- Jessica E Wagenseil
- Department of Biomedical Engineering, Saint Louis University, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
50
|
Rabinovitch M. Pathobiology of pulmonary hypertension. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 2:369-99. [PMID: 18039104 DOI: 10.1146/annurev.pathol.2.010506.092033] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A variety of conditions can lead to the development of pulmonary arterial hypertension (PAH). Current treatments can improve symptoms and reduce the severity of the hemodynamic abnormality, but most patients remain quite limited, and deterioration in their condition necessitates a lung transplant. This review discusses current experimental and clinical studies that investigate the pathobiology of PAH. An emerging theme is the consideration of ways in which one might reverse the advanced occlusive structural changes in the pulmonary circulation causing PAH. The current debate concerning the role of regeneration through stem cells is presented. This review also highlights investigations in a number of laboratories relating the pathobiology of PAH to mutations causing loss of function of bone morphogenetic protein receptor II in patients with familial PAH, as well as sporadic cases.
Collapse
Affiliation(s)
- Marlene Rabinovitch
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|