1
|
Xia X, Liu X, Xu Q, Gu J, Ling S, Liu Y, Li R, Zou M, Jiang S, Gao Z, Chen C, Liu S, Liu N. USP14 deficiency inhibits neointima formation following vascular injury via degradation of Skp2 protein. Cell Death Discov 2024; 10:295. [PMID: 38909015 PMCID: PMC11193710 DOI: 10.1038/s41420-024-02069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
Ubiquitin-proteasome system (UPS) is involved in vascular smooth muscle cell (VSMC) proliferation. Deubiquitinating enzymes (DUBs) have an essential role in the UPS-regulated stability of the substrate; however, the function of DUBs in intimal hyperplasia remains unclear. We screened DUBs to identify a protein responsible for regulating VSMC proliferation and identified USP14 protein that mediates cancer development, inflammation, and foam cell formation. USP14 promotes human aortic smooth muscle cell and A7r5 cell growth in vitro, and its inhibition or deficiency decreases the intimal area in the mice carotid artery ligation model. In addition, USP14 stabilizes Skp2 expression by decreasing its degradation, while Skp2 overexpression rescues USP14 loss-induced issues. The current findings suggested an essential role of USP14 in the pathology of vascular remodeling, deeming it a promising target for arterial restenosis therapy.
Collapse
Affiliation(s)
- Xiaohong Xia
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 510095, China
| | - Xiaolin Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Qiong Xu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jielei Gu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Sisi Ling
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yajing Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Rongxue Li
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Min Zou
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Siqin Jiang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Zhiwei Gao
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Canshan Chen
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shiming Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| | - Ningning Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
2
|
Polymer–Metal Composite Healthcare Materials: From Nano to Device Scale. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6080218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Metals have been investigated as biomaterials for a wide range of medical applications. At nanoscale, some metals, such as gold nanoparticles, exhibit plasmonics, which have motivated researchers’ focus on biosensor development. At the device level, some metals, such as titanium, exhibit good physical properties, which could allow them to act as biomedical implants for physical support. Despite these attractive features, the non-specific delivery of metallic nanoparticles and poor tissue–device compatibility have greatly limited their performance. This review aims to illustrate the interplay between polymers and metals, and to highlight the pivotal role of polymer–metal composite/nanocomposite healthcare materials in different biomedical applications. Here, we revisit the recent plasmonic engineered platforms for biomolecules detection in cell-free samples and highlight updated nanocomposite design for (1) intracellular RNA detection, (2) photothermal therapy, and (3) nanomedicine for neurodegenerative diseases, as selected significant live cell–interactive biomedical applications. At the device scale, the rational design of polymer–metallic medical devices is of importance for dental and cardiovascular implantation to overcome the poor physical load transfer between tissues and devices, as well as implant compatibility under a dynamic fluidic environment, respectively. Finally, we conclude the treatment of these innovative polymer–metal biomedical composite designs and provide a future perspective on the aforementioned research areas.
Collapse
|
3
|
Wang LT, Huang H, Chang YH, Wang YQ, Wang JD, Cai ZH, Efferth T, Fu YJ. Biflavonoids from Ginkgo biloba leaves as a novel anti-atherosclerotic candidate: Inhibition potency and mechanistic analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154053. [PMID: 35567993 DOI: 10.1016/j.phymed.2022.154053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/14/2022] [Accepted: 03/13/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Ginkgo biloba L. is one of the oldest trees on earth, and its leaves have been used since ages as herbal medicine to treat cerebrovascular disorders. It is worth noting that in addition to the widely concerned flavonoids and terpenoids, it also contains various thus far neglected biflavonoids. In fact, biflavonoids are flavonoids consisting of apigenin or its derivatives as monomeric scaffold, and are linked via C-C or C-O-C bond. PURPOSE Based on the structural similarity of flavonoids, we hypothesized that biflavonoids may play a potential role in the treatment of cerebrovascular diseases. Here, we describe the effectiveness and underlying mechanisms for prevention and treatment of atherosclerosis (AS) by biflavonoids. STUDY DESIGN AND METHODS Four main biflavonoids in Ginkgo biloba leaves were screened by oleic acid-induced lipid production in HepG2 cells. The non-covalent effects of biflavonoids on the potential targets of atherosclerosis were screened by reverse targeting and molecular dynamics simulation. The interactions between biflavonoids and potential targets were evaluated by an exogenous cell model, which verified the consistency of the simulation results. CONCLUSION Among all four biflavonoids, ginkgetin significantly inhibited oleic acid-induced lipid production in HepG2 cells and reduced total cholesterol and triglyceride levels. The interaction of ginkgetin with CDK2 through π-alkyl and hydrogen bonds increased the binding of molecules and proteins. Ginkgetin arrested the cells in the G1-S phase, which significantly inhibited abnormal cell growth which closely related to the occurrence and development of atherosclerosis. Biflavonoids could be a promising natural medicine for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Li-Tao Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Han Huang
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yuan-Hang Chang
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yan-Qiu Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Zi-Hui Cai
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Mainz 55128, Germany
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China.
| |
Collapse
|
4
|
Xie Q, Zhang R, Liu D, Yang J, Hu Q, Shan C, Li X. Apigenin inhibits growth of melanoma by suppressing miR-512-3p and promoting the G1 phase of cell cycle involving the p27 Kip1 protein. Mol Cell Biochem 2022; 477:1569-1582. [PMID: 35194732 DOI: 10.1007/s11010-022-04363-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/11/2022] [Indexed: 11/24/2022]
Abstract
In the present study, we screened multiple melanoma cell lines for treatment of Apigenin and miRNA expression, also studied the role of miR-512-3p in melanoma. RT-PCR analysis was done for screening miRNA in melanoma cell lines (WM1361B, WM983A, WM1341D, SK-MEL-3, SH-4, SK-MEL-24 and RPMI-7951) compared to normal human epidermal melanocytes. Colony formation assay for cell viability studies, cell cycle by flowcytometry and protein expression by immunoblot analysis. For in vivo analysis tumour xenograft mouse model was created. Immunohistochemistry was done for PCNA positive cells. For expression of miR-512-3p in tumour tissues fluorescence in situ hybridization was done. In silico studies were done by molecular docking studies. The WM1361B and WM983A cell lines showed overexpression of miR-512-3p and increased cell proliferation compared to normal human epidermal melanocytes. Treatment of anti-miR-512-3p to WM1361B and WM983A cells halted cell proliferation and also caused G1-phase arrest. We studied the effect of Apigenin on the expression levels of miR-512-3p and associated molecular targets. Apigenin treatment in WM1361B and WM983A cells showed inhibition in expression of miR-512-3p, arrest of G1 phase of cell cycle, cytotoxicity and revival of p27 Kip1. Apigenin treatment significantly suppressed the growth of WM1361B in tumour induced mice, the activity was associated with decreased levels of miR-512-3p, tumour cell proliferation and increased levels of p27 Kip1 protein. Docking studies confirm potential affinity of Apigenin for p27 Kip1. Apigenin acts as an inhibitor of miR-512-3p by suppressing growth of melanoma both in vitro and in vivo targeting the p27 Kip1 axis.
Collapse
Affiliation(s)
- Qun Xie
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China
| | - Ruirui Zhang
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China
| | - Dandan Liu
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China.
| | - Jing Yang
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China.
| | - Qiang Hu
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China
| | - Chao Shan
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China
| | - Xiaohan Li
- Department of Plastic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No. 136 Jingzhou Road, Xiangcheng, Xiangyang, 441021, Hubei, People's Republic of China
| |
Collapse
|
5
|
Xia X, Liu X, Chai R, Xu Q, Luo Z, Gu J, Jin Y, Hu T, Yu C, Du B, Huang H, Ou W, Liu S, Liu N. USP10 exacerbates neointima formation by stabilizing Skp2 protein in vascular smooth muscle cells. J Biol Chem 2021; 297:101258. [PMID: 34599966 PMCID: PMC8524199 DOI: 10.1016/j.jbc.2021.101258] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 09/14/2021] [Accepted: 09/27/2021] [Indexed: 12/16/2022] Open
Abstract
The underlying mechanism of neointima formation remains unclear. Ubiquitin-specific peptidase 10 (USP10) is a deubiquitinase that plays a major role in cancer development and progression. However, the function of USP10 in arterial restenosis is unknown. Herein, USP10 expression was detected in mouse arteries and increased after carotid ligation. The inhibition of USP10 exhibited thinner neointima in the model of mouse carotid ligation. In vitro data showed that USP10 deficiency reduced proliferation and migration of rat thoracic aorta smooth muscle cells (A7r5) and human aortic smooth muscle cells (HASMCs). Mechanically, USP10 can bind to Skp2 and stabilize its protein level by removing polyubiquitin on Skp2 in the cytoplasm. The overexpression of Skp2 abrogated cell cycle arrest induced by USP10 inhibition. Overall, the current study demonstrated that USP10 is involved in vascular remodeling by directly promoting VSMC proliferation and migration via stabilization of Skp2 protein expression.
Collapse
Affiliation(s)
- Xiaohong Xia
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaolin Liu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Renjie Chai
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiong Xu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhenyu Luo
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jielei Gu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yangshuo Jin
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tumei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Cuifu Yu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Bijun Du
- Department of Obstetrics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongbiao Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Wenchao Ou
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shiming Liu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Ningning Liu
- Guangdong Key Laboratory of Vascular Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Milewski K, Takahashi K, Asano T, Katagiri Y, Hochul M, Buszman P, Tomaniak M, Gorycki B, Zurakowski A, Janas A, Mlodziankowski A, Kachel M, Wykrzykowska JJ, Wijns W, de Winter RJ, Buszman P, Onuma Y, Serruys P. Neointimal hyperplasia of ultra-thin stents with microcrystalline sirolimus or durable polymer everolimus-eluting stents: 6- and 24-month results of the DESSOLVE III OCT study. EUROINTERVENTION 2021; 16:1187-1194. [PMID: 31062697 PMCID: PMC9724984 DOI: 10.4244/eij-d-18-01201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS The DESSOLVE III OCT substudy aimed to compare serially neointimal hyperplasia volume obstruction (%VO) between the thin-strut MiStent with early polymer elimination and nine-month sustained drug release from microcrystalline sirolimus and the durable polymer-coated everolimus-eluting XIENCE stent at six and 24 months after implantation. METHODS AND RESULTS The efficacy endpoint was %VO, calculated as abluminal neointimal volume/stent volume. Thirty-six patients (MiStent 16 patients, 16 lesions; XIENCE 20 patients, 22 lesions) underwent serial OCT evaluation at both six and 24 months. At six months, mean abluminal %VO was significantly lower in the MiStent group than in the XIENCE group (14.54±3.70% vs 19.11±6.70%; p=0.011), whereas the difference in %VO between the two groups decreased at 24 months (20.88±5.72% vs 23.50±7.33%; p=0.24). There was no significant difference in percentage malapposed struts and percentage uncovered struts between the two groups at both time points. CONCLUSIONS In the serial comparative OCT analysis of the MiStent versus the XIENCE, the MiStent showed a more favourable efficacy for preventing neointimal formation with comparable strut tissue coverage, as compared with the XIENCE at six months, but this difference in %VO decreased at 24 months so that the difference in neointima at 24 months was no longer significant.
Collapse
Affiliation(s)
- Krzysztof Milewski
- Center for Cardiovascular Research and Development, American Heart of Poland, Katowice, Ustron, Poland,The Jerzy Kukuczka Academy of Physical Education, Faculty of Physiotherapy, Katowice, Poland
| | - Kuniaki Takahashi
- Department of Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Taku Asano
- Department of Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Yuki Katagiri
- Department of Cardiology, Academic Medical Center, Amsterdam, the Netherlands
| | - Mariusz Hochul
- Center for Cardiovascular Research and Development, American Heart of Poland, Katowice, Ustron, Poland
| | - Piotr Buszman
- Center for Cardiovascular Research and Development, American Heart of Poland, Katowice, Ustron, Poland
| | - Mariusz Tomaniak
- Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands,First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Bogdan Gorycki
- Center for Cardiovascular Research and Development, American Heart of Poland, Katowice, Ustron, Poland
| | - Aleksander Zurakowski
- Center for Cardiovascular Research and Development, American Heart of Poland, Katowice, Ustron, Poland
| | - Adam Janas
- Center for Cardiovascular Research and Development, American Heart of Poland, Katowice, Ustron, Poland
| | - Adam Mlodziankowski
- Center for Cardiovascular Research and Development, American Heart of Poland, Katowice, Ustron, Poland
| | - Mateusz Kachel
- Center for Cardiovascular Research and Development, American Heart of Poland, Katowice, Ustron, Poland
| | | | - William Wijns
- The Lambe Institute for Translational Medicine and Curam, Saolta University Healthcare Group, National University of Ireland Galway, Galway, Ireland
| | | | - Pawel Buszman
- Center for Cardiovascular Research and Development, American Heart of Poland, Katowice, Ustron, Poland,Medical University of Silesia in Katowice, Katowice, Poland
| | - Yoshinobu Onuma
- First Department of Cardiology, Medical University of Warsaw, Warsaw, Poland,Cardialysis, Rotterdam, the Netherlands
| | - Patrick Serruys
- Department of Cardiology, National University of Ireland, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
7
|
Toupchian O, Abdollahi S, Salehi-Abargouei A, Heshmati J, Clark CCT, Sheikhha MH, Fallahzadeh H, Mozaffari-Khosravi H. The effects of resveratrol supplementation on PPARα, p16, p53, p21 gene expressions, and sCD163/sTWEAK ratio in patients with type 2 diabetes mellitus: A double-blind controlled randomized trial. Phytother Res 2021; 35:3205-3213. [PMID: 33580595 DOI: 10.1002/ptr.7031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
The present study sought to evaluate the effect of resveratrol supplementation on mRNA expression levels of peroxisome proliferator-activated receptor alpha (PPARα), p53, p21, p16, and serum levels of cluster of differentiation 163 (CD163) to TNF-like weak inducer of apoptosis (TWEAK) ratio in patients with type 2 diabetes. In this double-blind randomized controlled trial, 71 patients were randomly assigned to receive either 1,000 mg of trans-resveratrol or placebo (methyl cellulose) for 8 weeks. Expression levels of genes of interest, and serum levels of sCD163 and sTWEAK were assessed at baseline and at the end of the study. Resveratrol supplementation significantly increased mRNA expression levels of p53 and p21 genes, compared with the placebo group (fold change of p53 = 1.29, p = .04; fold change of p21 = 1.46, p = .006). However, no significant effect on expression levels of PPARα and p16 genes was observed after supplementation. In addition, resveratrol significantly reduced serum levels of sCD163/sTWEAK ratio compared with the placebo group (p = .003). Resveratrol supplementation resulted in significant changes in p53 and p21 genes expression, while serum levels of sCD163/sTWEAK ratio also improved in the resveratrol group, without any significant change in adjusted sCD163 levels. More research is needed to confirm the beneficial effects of resveratrol for patients with diabetes.
Collapse
Affiliation(s)
- Omid Toupchian
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Shima Abdollahi
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Amin Salehi-Abargouei
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Mohammad Hasan Sheikhha
- Department of Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Yazd Clinical and Research Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Suzuki K, Yamada H, Fujii R, Munetsuna E, Ando Y, Ohashi K, Ishikawa H, Yamazaki M, Maeda K, Hashimoto S, Hamajima N. Association between circulating vascular-related microRNAs and an increase in blood pressure: a 5-year longitudinal population-based study. J Hypertens 2021; 39:84-89. [PMID: 32740403 DOI: 10.1097/hjh.0000000000002606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression and play essential roles in the pathogenesis of cardiovascular disease. Previous cross-sectional studies showed that the levels of several circulating miRNA are associated with hypertension, but there are no prospective longitudinal studies using a general population. The aim of this study is to evaluate the impact of circulating vascular-related miRNA (miR-126, miR-221, and miR-222) on changes in blood pressure and new-onset hypertension in a Japanese population. METHODS We conducted a 5-year longitudinal study using 192 health examination participants (87 men and 105 women). Serum miRNAs were measured using quantitative reverse transcription-PCR. Information regarding lifestyle and health condition was obtained using a self-administered questionnaire. Logistic regression analyses were performed to calculate odds ratios and 95% confidence intervals for new-onset hypertension in the 5-year period between the low and high group of serum miRNAs. RESULTS Serum levels of miR-126, miR-221, and miR-222 were significantly and negatively associated with changes in SBP and the rate of change of SBP. Serum miR-126, miR-221, and miR-222 levels were significantly lower in new-onset hypertensive patients compared with normotensive individuals. The confounding factors adjusted odds ratios of each 1 increment in serum miR-126, miR-221, and miR-222 levels were 0.82 (95% confidence interval: 0.69-0.98), 0.79 (0.68-0.91), and 0.61 (0.46-0.81) for new-onset hypertension, respectively. CONCLUSION Low serum levels of miR-126, miR-221, and miR-222 were associated with increased blood pressure and new-onset of hypertension. These circulating miRNAs are potential candidate biomarkers for the prediction of hypertension.
Collapse
Affiliation(s)
- Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences
| | | | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine
| | - Yoshitaka Ando
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake
| | - Koji Ohashi
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake
| | - Hiroaki Ishikawa
- Department of Clinical Biochemistry, Fujita Health University School of Medical Sciences, Toyoake
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, Takamatsu
| | - Keisuke Maeda
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences
| | | | - Nobuyuki Hamajima
- Department of Healthcare Administration, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
9
|
Carnosine Impedes PDGF-Stimulated Proliferation and Migration of Vascular Smooth Muscle Cells In Vitro and Sprout Outgrowth Ex Vivo. Nutrients 2020; 12:nu12092697. [PMID: 32899420 PMCID: PMC7551855 DOI: 10.3390/nu12092697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 01/02/2023] Open
Abstract
Carnosine, a naturally producing dipeptide, exhibits various beneficial effects. However, the possible role of carnosine in vascular disorders associated with pathological conditions, including proliferation and migration of vascular smooth muscle cells (VSMCs), largely remains unrevealed. Here, we investigated the regulatory role and mechanism of carnosine in platelet-derived growth factor (PDGF)-induced VSMCs. Carnosine inhibited the proliferation of PDGF-induced VSMCs without any cytotoxic effects. Carnosine treatment also induced G1-phase cell cycle arrest by causing a p21WAF1-mediated reduction in the expression of both cyclin-dependent kinases (CDKs) and cyclins in PDGF-treated VSMCs. Carnosine treatment suppressed c-Jun N-terminal kinase (JNK) phosphorylation in PDGF-stimulated signaling. Additionally, carnosine significantly prevented the migration of VSMCs exposed to PDGF. Carnosine abolished matrix metalloproteinase (MMP)-9 activity via reduced transcriptional binding activity of NF-κB, Sp-1, and AP-1 motifs in PDGF-treated VSMCs. Moreover, using aortic assay ex vivo, it was observed that carnosine addition attenuated PDGF-stimulated sprout outgrowth of VSMCs. Taken together, these results demonstrated that carnosine impeded the proliferation and migration of PDGF-stimulated VSMCs by regulating cell cycle machinery, JNK signaling, and transcription factor-mediated MMP-9 activity as well as prevented ex vivo sprout outgrowth of blood vessels. Thus, carnosine may be a potential candidate for preventing vascular proliferative disease.
Collapse
|
10
|
Zheng HK, Dong MH, Liu GH, An Z, Zhang L, Shan RT, Zhang WQ. Dysregulation of the Urothelial Cancer Associated 1 Long Noncoding RNA Promotes Proliferation of Vascular Smooth Muscle Cells by Modulating Expression of P27KIP1/CDK2. Genet Test Mol Biomarkers 2020; 24:204-211. [PMID: 32213082 DOI: 10.1089/gtmb.2019.0241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Hai-Kuo Zheng
- Department of Cardiovascular, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Ming-Hui Dong
- Veteran Cadre Department, Changchun Central Hospital, Changchun, China
| | - Guo-Hui Liu
- Department of Cardiovascular, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Zhe An
- Department of Cardiovascular, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Liang Zhang
- Department of Cardiovascular, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Rui-Ting Shan
- Department of Cardiovascular, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Wen-Qi Zhang
- Department of Cardiovascular, China–Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Katagiri Y, Onuma Y, Lurz P, Buszman P, Piek JJ, Wykrzykowska JJ, Asano T, Kogame N, Takahashi K, Chang CC, de Winter RJ, Serruys PW, Wijns W. Clinical outcomes of bioabsorbable polymer sirolimus-eluting stents versus durable polymer everolimus-eluting stents: two-year follow-up of the DESSOLVE III trial. EUROINTERVENTION 2020; 15:e1366-e1374. [DOI: 10.4244/eij-d-18-00944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Hypoxia Promotes Vascular Smooth Muscle Cell Proliferation through microRNA-Mediated Suppression of Cyclin-Dependent Kinase Inhibitors. Cells 2019; 8:cells8080802. [PMID: 31370272 PMCID: PMC6721514 DOI: 10.3390/cells8080802] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 01/22/2023] Open
Abstract
Regulation of vascular smooth muscle cell (VSMC) proliferation is essential to maintain vascular homeostasis. Hypoxia induces abnormal proliferation of VSMCs and causes vascular proliferative disorders, such as pulmonary hypertension and atherosclerosis. As several cyclin/cyclin-dependent kinase (CDK) complexes and CDK inhibitors (CKIs) control cell proliferation, in this study, we investigated CKIs involved in the hypoxia-induced proliferation process of human primary pulmonary artery smooth muscle cells to understand the underlying molecular mechanism. We demonstrated that p15, p16, and p21 are downregulated in pulmonary artery smooth muscle cells when exposed to hypoxia. In addition, we identified novel hypoxia-induced microRNAs (hypoxamiRs) including miR-497, miR-1268a, and miR-665 that are upregulated under hypoxia and post-transcriptionally regulate p15, p16, and p21 genes, respectively, by directly targeting their 3'UTRs. These miRNAs promoted the proliferation of VSMCs, and their inhibition decreased VSMC proliferation even in hypoxic conditions. Overall, this study revealed that miRNA-mediated regulatory mechanism of CKIs is essential for hypoxia-induced proliferation of VSMCs. These findings provide insights for a better understanding of the pathogenesis of vascular proliferative disorders.
Collapse
|
13
|
Wadey K, Lopes J, Bendeck M, George S. Role of smooth muscle cells in coronary artery bypass grafting failure. Cardiovasc Res 2019; 114:601-610. [PMID: 29373656 DOI: 10.1093/cvr/cvy021] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 01/22/2018] [Indexed: 01/30/2023] Open
Abstract
Atherosclerosis is the underlying pathology of many cardiovascular diseases. The formation and rupture of atherosclerotic plaques in the coronary arteries results in angina and myocardial infarction. Venous coronary artery bypass grafts are designed to reduce the consequences of atherosclerosis in the coronary arteries by diverting blood flow around the atherosclerotic plaques. However, vein grafts suffer a high failure rate due to intimal thickening that occurs as a result of vascular cell injury and activation and can act as 'a soil' for subsequent atherosclerotic plaque formation. A clinically-proven method for the reduction of vein graft intimal thickening and subsequent major adverse clinical events is currently not available. Consequently, a greater understanding of the underlying mechanisms of intimal thickening may be beneficial for the design of future therapies for vein graft failure. Vein grafting induces inflammation and endothelial cell damage and dysfunction, that promotes vascular smooth muscle cell (VSMC) migration, and proliferation. Injury to the wall of the vein as a result of grafting leads to the production of chemoattractants, remodelling of the extracellular matrix and cell-cell contacts; which all contribute to the induction of VSMC migration and proliferation. This review focuses on the role of altered behaviour of VSMCs in the vein graft and some of the factors which critically lead to intimal thickening that pre-disposes the vein graft to further atherosclerosis and re-occurrence of symptoms in the patient.
Collapse
Affiliation(s)
- Kerry Wadey
- Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Joshua Lopes
- Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Michelle Bendeck
- Translational Biology and Engineering Program, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sarah George
- Bristol Medical School, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| |
Collapse
|
14
|
Abdollahi S, Salehi-Abargouei A, Tabatabaie M, Sheikhha MH, Fallahzadeh H, Rahmanian M, Toupchian O, Karimi-Nazari E, Mozaffari-Khosravi H. The effect of resveratrol supplementation on the expression levels of factors associated with cellular senescence and sCD163/sTWEAK ratio in patients with type 2 diabetes mellitus: study protocol for a double-blind controlled randomised clinical trial. BMJ Open 2019; 9:e026337. [PMID: 31278094 PMCID: PMC6615841 DOI: 10.1136/bmjopen-2018-026337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Over the past decades, the number of people with type 2 diabetes (T2D) has increased globally. One of the major complications in these patients is cardiovascular disease; it seems that the cell proliferation inhibition can improve vascular function in these patients. It is proposed that peroxisome proliferator-activated receptor alpha (PPARα) can induce cell cycle arrest via cyclin-dependent kinase inhibitor 2A (p16) activation. Also, it has been shown that phosphorylated tumour suppressor protein p53 is involved in cell senescence by cyclin-dependent kinase inhibitor 1 (p21) upregulation. Resveratrol is a natural polyphenol and appears to improve the vascular function through the mentioned pathways. We will aim to evaluate the effects of resveratrol supplementation on mRNA expression of PPARα, p53, p21 and p16 in patients with T2D. We will also measure serum levels of cluster of differentiation 163 (CD163) and tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) as the indicators of cardiovascular status. METHODS AND ANALYSIS Seventy-two subjects suffering from T2D will participate in this double-blind randomised parallel placebo-controlled clinical trial. Participants will be randomly assigned to receive 1000 mg/day trans-resveratrol or placebo (methyl cellulose) for 8 weeks. The mRNA expression levels of PPARα, p53, p21 and p16 genes will be assessed using real-time PCR and serum CD163 and TWEAK levels will be measured using commercially available ELISA kits at baseline and the end of the study. Clinical outcome parameters (glycaemic and lipid profiles and body composition) will also be measured before and after study duration. ETHICS AND DISSEMINATION The study is performed in agreement with the Declaration of Helsinki and is approved by the Ethics Committee of the Shahid Sadoughi University of Medical Sciences (no: ir.ssu.sph.rec.1396.120). The results will be published in scientific journals. TRIAL REGISTRATION NUMBER IRCT20171118037528N1; Pre-results.
Collapse
Affiliation(s)
- Shima Abdollahi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amin Salehi-Abargouei
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahtab Tabatabaie
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Sheikhha
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Clinical and Research Center of infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Toupchian
- Department of Nutrition and Public Health, School of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Elham Karimi-Nazari
- Biological Sciences and Technology Institute, Malek Ashtar University of Technology, Tehran, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
15
|
Jeong K, Kim JH, Murphy JM, Park H, Kim SJ, Rodriguez YAR, Kong H, Choi C, Guan JL, Taylor JM, Lincoln TM, Gerthoffer WT, Kim JS, Ahn EYE, Schlaepfer DD, Lim STS. Nuclear Focal Adhesion Kinase Controls Vascular Smooth Muscle Cell Proliferation and Neointimal Hyperplasia Through GATA4-Mediated Cyclin D1 Transcription. Circ Res 2019; 125:152-166. [PMID: 31096851 DOI: 10.1161/circresaha.118.314344] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Neointimal hyperplasia is characterized by excessive accumulation of vascular smooth muscle cells (SMCs) leading to occlusive disorders, such as atherosclerosis and stenosis. Blood vessel injury increases growth factor secretion and matrix synthesis, which promotes SMC proliferation and neointimal hyperplasia via FAK (focal adhesion kinase). OBJECTIVE To understand the mechanism of FAK action in SMC proliferation and neointimal hyperplasia. METHODS AND RESULTS Using combined pharmacological FAK catalytic inhibition (VS-4718) and SMC-specific FAK kinase-dead (Myh11-Cre-ERT2) mouse models, we report that FAK regulates SMC proliferation and neointimal hyperplasia in part by governing GATA4- (GATA-binding protein 4) cyclin D1 signaling. Inhibition of FAK catalytic activity facilitates FAK nuclear localization, which is required for proteasome-mediated GATA4 degradation in the cytoplasm. Chromatin immunoprecipitation identified GATA4 binding to the mouse cyclin D1 promoter, and loss of GATA4-mediated cyclin D1 transcription diminished SMC proliferation. Stimulation with platelet-derived growth factor or serum activated FAK and redistributed FAK from the nucleus to cytoplasm, leading to concomitant increase in GATA4 protein and cyclin D1 expression. In a femoral artery wire injury model, increased neointimal hyperplasia was observed in parallel with elevated FAK activity, GATA4 and cyclin D1 expression following injury in control mice, but not in VS-4718-treated and SMC-specific FAK kinase-dead mice. Finally, lentiviral shGATA4 knockdown in the wire injury significantly reduced cyclin D1 expression, SMC proliferation, and neointimal hyperplasia compared with control mice. CONCLUSIONS Nuclear enrichment of FAK by inhibition of FAK catalytic activity during vessel injury blocks SMC proliferation and neointimal hyperplasia through regulation of GATA4-mediated cyclin D1 transcription.
Collapse
Affiliation(s)
- Kyuho Jeong
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Jung-Hyun Kim
- Mitchell Cancer Institute (J.-H.K., H.K., E.-Y.E.A), University of South Alabama, College of Medicine, Mobile
| | - James M Murphy
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Hyeonsoo Park
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Su-Jeong Kim
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Yelitza A R Rodriguez
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Hyunkyung Kong
- Mitchell Cancer Institute (J.-H.K., H.K., E.-Y.E.A), University of South Alabama, College of Medicine, Mobile
| | - Chungsik Choi
- Department of Physiology (C.C., T.M.L.), University of South Alabama, College of Medicine, Mobile
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati, College of Medicine, OH (J.-L.G.)
| | - Joan M Taylor
- Department of Pathology, University of North Carolina, School of Medicine, Chapel Hill (J.M.T.)
| | - Thomas M Lincoln
- Department of Physiology (C.C., T.M.L.), University of South Alabama, College of Medicine, Mobile
| | - William T Gerthoffer
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| | - Jun-Sub Kim
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile.,Department of Biotechnology, Korea National Transportation University, Chungbuk (J.-S.K.)
| | - Eun-Young Erin Ahn
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile.,Mitchell Cancer Institute (J.-H.K., H.K., E.-Y.E.A), University of South Alabama, College of Medicine, Mobile
| | - David D Schlaepfer
- Department of Reproductive Medicine, Moores Cancer Center, University of California, San Diego, La Jolla (D.D.S.)
| | - Ssang-Taek Steve Lim
- From the Department of Biochemistry and Molecular Biology (K.J., J.M.M., H.P., S.-J.K., Y.A.R.R., W.T.G., J.-S.K., E.-Y.E.A., S.-T.S.L.), University of South Alabama, College of Medicine, Mobile
| |
Collapse
|
16
|
Weiss A, Neubauer MC, Yerabolu D, Kojonazarov B, Schlueter BC, Neubert L, Jonigk D, Baal N, Ruppert C, Dorfmuller P, Pullamsetti SS, Weissmann N, Ghofrani HA, Grimminger F, Seeger W, Schermuly RT. Targeting cyclin-dependent kinases for the treatment of pulmonary arterial hypertension. Nat Commun 2019; 10:2204. [PMID: 31101827 PMCID: PMC6525202 DOI: 10.1038/s41467-019-10135-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease with poor prognosis and limited therapeutic options. We screened for pathways that may be responsible for the abnormal phenotype of pulmonary arterial smooth muscle cells (PASMCs), a major contributor of PAH pathobiology, and identified cyclin-dependent kinases (CDKs) as overactivated kinases in specimens derived from patients with idiopathic PAH. This increased CDK activity is confirmed at the level of mRNA and protein expression in human and experimental PAH, respectively. Specific CDK inhibition by dinaciclib and palbociclib decreases PASMC proliferation via cell cycle arrest and interference with the downstream CDK-Rb (retinoblastoma protein)-E2F signaling pathway. In two experimental models of PAH (i.e., monocrotaline and Su5416/hypoxia treated rats) palbociclib reverses the elevated right ventricular systolic pressure, reduces right heart hypertrophy, restores the cardiac index, and reduces pulmonary vascular remodeling. These results demonstrate that inhibition of CDKs by palbociclib may be a therapeutic strategy in PAH. Cells of the pulmonary vasculature show a hyperproliferative phenotype in pulmonary arterial hypertension (PAH), thus contributing to the disease pathogenesis. Here the authors show that cyclin-dependent kinases are overactivated in PAH, and that their pharmacological inhibition attenuates the disease in two independent rodent models
Collapse
Affiliation(s)
- Astrid Weiss
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Moritz Christian Neubauer
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Dinesh Yerabolu
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Baktybek Kojonazarov
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Beate Christiane Schlueter
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Lavinia Neubert
- Member of the German Center for Lung Research (DZL), Giessen, Germany.,Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, Hannover, 30625, Germany
| | - Danny Jonigk
- Member of the German Center for Lung Research (DZL), Giessen, Germany.,Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Strasse 1, Hannover, 30625, Germany
| | - Nelli Baal
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Institute for Clinical Immunology and Transfusion Medicine, University Hospital Giessen and Marburg (UKGM), Aulweg 128, Giessen, 35392, Germany
| | - Clemens Ruppert
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Peter Dorfmuller
- Member of the German Center for Lung Research (DZL), Giessen, Germany.,Department of Pathology, University Hospital of Giessen and Marburg (UKGM), Langhansstrasse 10, Giessen, 35392, Germany
| | - Soni Savai Pullamsetti
- Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Max Planck Institute (MPI) for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, 61231, Germany
| | - Norbert Weissmann
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein-Ardeschir Ghofrani
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Department of Medicine, Imperial College London, London, UK
| | - Friedrich Grimminger
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,University Hospital Giessen and Marburg (UKGM), Giessen, Germany
| | - Werner Seeger
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany.,Member of the German Center for Lung Research (DZL), Giessen, Germany.,Max Planck Institute (MPI) for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, 61231, Germany.,University Hospital Giessen and Marburg (UKGM), Giessen, Germany
| | - Ralph Theo Schermuly
- Justus-Liebig-University Giessen (JLU), Aulweg 130, Giessen, 35392, Germany. .,Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany. .,Cardio-Pulmonary Institute (CPI), EXC 2026, Project ID: 390649896, Giessen, Germany. .,Member of the German Center for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
17
|
Biolè C, Huczek Z, Nuñez-Gil I, Boccuzzi G, Autelli M, Montefusco A, Trabattoni D, Ryan N, Venuti G, Imori Y, Takano H, Matsuda J, Shimizu W, Muscoli S, Montabone A, Wojakowski W, Rognoni A, Helft G, Gallo D, Parma R, De Luca L, Figini F, Mitomo S, Pennone M, Mattesini A, Templin C, Quadri G, Wańha W, Cerrato E, Smolka G, Protasiewicz M, Kuliczkowski W, Rolfo C, Cortese B, Capodanno D, Chieffo A, Morbiducci U, Iannaccone M, Gili S, di Mario C, D'Amico M, Romeo F, Lüscher TF, Sheiban I, Escaned J, Varbella F, D'Ascenzo F. Daily risk of adverse outcomes in patients undergoing complex lesions revascularization: A subgroup analysis from the RAIN-CARDIOGROUP VII study (veRy thin stents for patients with left mAIn or bifurcatioN in real life). Int J Cardiol 2019; 290:64-69. [PMID: 30971372 DOI: 10.1016/j.ijcard.2019.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/13/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Percutaneous coronary intervention (PCI) for complex lesions, including unprotected left main (ULM) and bifurcations, is gaining a relevant role in treating coronary artery disease with good outcomes, also thanks to new generation stents. The daily risk of adverse cardiovascular events and their temporal distribution after these procedures is not known. METHODS All consecutive patients presenting with a critical lesion of ULM or bifurcation treated with very thin struts stents, enrolled in the RAIN-Cardiogroup VII study, were analyzed. The daily risk of major acute cardiovascular events (MACE), target lesion revascularization (TLR) and stent thrombosis (ST) and their temporal distribution in the first year of follow-up was the primary endpoint. Differences among subgroups (ULM, patient presentation, kind of stent polymer) were the secondary endpoint. RESULTS 2745 patients were included, mean age 68 ± 11 years, 33.3% diabetics, 54.5% had an acute coronary syndrome (ACS); 88.5% of treated lesions were bifurcations, 27.2% ULM. Average daily risk was 0.022% for MACE, 0.005% for TLR and 0.004% for ST, in the first year. Bimodal distribution of adverse events, especially TLR, with an early peak in the first 50 days and a late one after 150 days, was observed. Patients with ULM presented a significantly higher daily risk of events, and ACS patients presented higher MACE risk. No difference emerged according to the type of stent polymer. CONCLUSIONS The daily risk of adverse events in the first year after complex PCI in our study is acceptably low. PCI on ULM carries a higher risk of complications.
Collapse
Affiliation(s)
- Carloalberto Biolè
- Division of Cardiology, Departement of Internal Medicine, Città della Salute e della Scienza, Turin, Italy.
| | | | - Ivan Nuñez-Gil
- Department of Cardiology, Hospital Clinico San Carlos, Madrid, Spain
| | | | - Michele Autelli
- Division of Cardiology, Departement of Internal Medicine, Città della Salute e della Scienza, Turin, Italy
| | - Antonio Montefusco
- Division of Cardiology, Departement of Internal Medicine, Città della Salute e della Scienza, Turin, Italy
| | - Daniela Trabattoni
- Department of Cardiovascular Sciences, IRCCS Centro Cardiologico Monzino, Milan, Italy; University of Milan, Milan, Italy
| | - Nicola Ryan
- Department of Cardiology, Hospital Clinico San Carlos, Madrid, Spain
| | - Giuseppe Venuti
- Division of Cardiology, Cardio-Thoracic-Vascular Department, Azienda Ospedaliero Universitaria "Policlinico-Vittorio Emanuele", Catania, Italy
| | - Yoichi Imori
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Hitoshi Takano
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Junya Matsuda
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Saverio Muscoli
- San Raffaele Scientific Institute, Milan, Italy; Department of Medicine, Università degli Studi di Roma 'Tor Vergata', Rome, Italy
| | - Andrea Montabone
- Structural Interventional Cardiology, Careggi University Hospital, Florence, Italy
| | | | - Andrea Rognoni
- Coronary Care Unit and Catheterization Laboratory, A.O.U. Maggiore della Carità, Novara, Italy
| | - Gerard Helft
- Pierre and Marie Curie University, Paris, France
| | - Diego Gallo
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy
| | | | - Leonardo De Luca
- Division of Cardiology, S. Giovanni Evangelista Hospital, Tivoli, Rome, Italy
| | | | | | - Mauro Pennone
- Division of Cardiology, Departement of Internal Medicine, Città della Salute e della Scienza, Turin, Italy
| | - Alessio Mattesini
- Structural Interventional Cardiology, Careggi University Hospital, Florence, Italy
| | | | - Giorgio Quadri
- Department of Cardiology, Infermi Hospital, Rivoli, Italy; Department of Cardiology, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Wojciech Wańha
- Department of Cardiology, Medical University of Silesia, Katowice, Poland
| | - Enrico Cerrato
- Department of Cardiology, Infermi Hospital, Rivoli, Italy; Department of Cardiology, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Grzegorz Smolka
- Department of Cardiology, Medical University of Silesia, Katowice, Poland
| | | | | | - Cristina Rolfo
- Department of Cardiology, Infermi Hospital, Rivoli, Italy; Department of Cardiology, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Bernardo Cortese
- Interventional Cardiology, ASST Fatebenefratelli-Sacco, Milano, Italy
| | - Davide Capodanno
- Division of Cardiology, Cardio-Thoracic-Vascular Department, Azienda Ospedaliero Universitaria "Policlinico-Vittorio Emanuele", Catania, Italy
| | | | - Umberto Morbiducci
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Italy
| | - Mario Iannaccone
- Division of Cardiology, Departement of Internal Medicine, Città della Salute e della Scienza, Turin, Italy
| | - Sebastiano Gili
- Division of Cardiology, Universityszpital of Zurich, Switzerland
| | - Carlo di Mario
- Structural Interventional Cardiology, Careggi University Hospital, Florence, Italy
| | - Maurizio D'Amico
- Division of Cardiology, Departement of Internal Medicine, Città della Salute e della Scienza, Turin, Italy
| | - Francesco Romeo
- Department of Medicine, Università degli Studi di Roma 'Tor Vergata', Rome, Italy
| | - Thomas F Lüscher
- Division of Cardiology, Universityszpital of Zurich, Switzerland
| | | | - Javier Escaned
- Department of Cardiology, Hospital Clinico San Carlos, Madrid, Spain
| | - Ferdinando Varbella
- Department of Cardiology, Infermi Hospital, Rivoli, Italy; Department of Cardiology, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Fabrizio D'Ascenzo
- Division of Cardiology, Departement of Internal Medicine, Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
18
|
Zhao J, Yang M, Wu X, Yang Z, Jia P, Sun Y, Li G, Xie L, Liu B, Liu H. Effects of paclitaxel intervention on pulmonary vascular remodeling in rats with pulmonary hypertension. Exp Ther Med 2019; 17:1163-1170. [PMID: 30679989 PMCID: PMC6327549 DOI: 10.3892/etm.2018.7045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/23/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to investigate the effects of paclitaxel (PTX), at a non-cytotoxic concentration, on pulmonary vascular remodeling (PVR) in rats with pulmonary hypertension (PAH), and to explore the mechanisms underlying the PTX-mediated reversal of PVR in PAH. A total of 36 rats were divided into control group (n=12), model group (n=12) receiving a subcutaneous injection of monocrotaline (60 mg/kg) in the back on day 7 following left pneumonectomy and PTX group (n=12) with PTX (2 mg/kg) injection via the caudal vein 3 weeks following establishing the model. The degree of PVR among all groups, as well as the expression levels of Ki67, p27Kip1 and cyclin B1, were compared. The mean pulmonary artery pressure, right ventricular hypertrophy index [right ventricle/(left ventricle + septum) ratio] and the thickness of the pulmonary arterial tunica media in the model group were 58.34±2.01 mmHg, 0.64±0.046 and 65.3±3.3%, respectively, which were significantly higher when compared with 23.30±1.14 mmHg, 0.32±0.028 and 16.2±1.3% in the control group, respectively (P<0.01). The mean pulmonary artery pressure, right ventricular hypertrophy index and thickness of the pulmonary arterial tunica media in the PTX group were 42.35±1.53 mmHg, 0.44±0.029 and 40.5±2.6%, respectively, which were significantly lower when compared with the model group (P<0.01). Compared with the control group, the expression levels of Ki67 and cyclin B1 in the model group were significantly increased (P<0.01), while p27Kip1 expression was significantly reduced (P<0.01). Following PTX intervention, the expression levels of Ki67 and cyclin B1 were significantly reduced when compared with the model group (P<0.01), while p27Kip1 expression was significantly increased (P<0.01). The results of the present study suggest that PTX, administered at a non-cytotoxic concentration, may reduce PAH in rats, and prevent the effects of PVR in PAH. These effects of PTX may be associated with increased expression of p27Kip1 and decreased expression of cyclin B1.
Collapse
Affiliation(s)
- Jian Zhao
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Meifang Yang
- School of Nursing, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xindan Wu
- Department of Pediatrics, Chengdu Women and Children's Central Hospital, Chengdu, Sichuan 610091, P.R. China
| | - Zhangya Yang
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Peng Jia
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Yuqin Sun
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Li
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Liang Xie
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| | - Bin Liu
- Department of Pediatric Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hanmin Liu
- Department of Pediatric Cardiology, West China Second University Hospital, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
19
|
Administration of hydrogen-rich water prevents vascular aging of the aorta in LDL receptor-deficient mice. Sci Rep 2018; 8:16822. [PMID: 30429524 PMCID: PMC6235982 DOI: 10.1038/s41598-018-35239-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022] Open
Abstract
The main cause of arteriosclerosis is atherosclerosis in the aorta. Atherosclerosis is recognized as a chronic inflammatory condition that begins with the dysfunction or activation of arterial endothelium. Low-density lipoprotein (LDL) and especially its oxidized form play a key role in endothelial dysfunction and atherogenesis. Recent studies showed that senescent cells are involved in the development and progression of atherosclerosis, and eliminating senescent cells suppresses the senescence-associated secretory phenotype. We previously reported that molecular hydrogen-rich water (HW) has antioxidant and anti-inflammatory effects in numerous diseases. Here, we used LDL receptor-deficient mice fed a high-fat diet (HFD) for 13 weeks as a model for atherosclerosis and evaluated the effects of continuous administration of HW. The numbers of endothelial cells in the atheroma expressing the senescence factors p16INK4a and p21 decreased in HFD-fed mice given HW compared with HFD-fed mice given control water. Furthermore, macrophage infiltration and Tnfα expression in the atheroma were also suppressed. These results suggest that vascular aging can be suppressed by HW.
Collapse
|
20
|
Wang D, Uhrin P, Mocan A, Waltenberger B, Breuss JM, Tewari D, Mihaly-Bison J, Huminiecki Ł, Starzyński RR, Tzvetkov NT, Horbańczuk J, Atanasov AG. Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnol Adv 2018; 36:1586-1607. [PMID: 29684502 DOI: 10.1016/j.biotechadv.2018.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases are a major cause of human death worldwide. Excessive proliferation of vascular smooth muscle cells contributes to the etiology of such diseases, including atherosclerosis, restenosis, and pulmonary hypertension. The control of vascular cell proliferation is complex and encompasses interactions of many regulatory molecules and signaling pathways. Herein, we recapitulated the importance of signaling cascades relevant for the regulation of vascular cell proliferation. Detailed understanding of the mechanism underlying this process is essential for the identification of new lead compounds (e.g., natural products) for vascular therapies.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria; Institute of Clinical Chemistry, University Hospital Zurich, Wagistrasse 14, 8952 Schlieren, Switzerland
| | - Pavel Uhrin
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria.
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Strada Gheorghe Marinescu 23, 400337 Cluj-Napoca, Romania; Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania
| | - Birgit Waltenberger
- Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Johannes M Breuss
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal, 263136 Nainital, Uttarakhand, India
| | - Judit Mihaly-Bison
- Center for Physiology and Pharmacology, Institute of Vascular Biology and Thrombosis Research, Medical University of Vienna, Schwarzspanierstrasse 17, 1090 Vienna, Austria
| | - Łukasz Huminiecki
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Rafał R Starzyński
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Nikolay T Tzvetkov
- Pharmaceutical Institute, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany; NTZ Lab Ltd., Krasno Selo 198, 1618 Sofia, Bulgaria
| | - Jarosław Horbańczuk
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland
| | - Atanas G Atanasov
- Department of Molecular Biology, Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, ul. Postepu 36A, Jastrzębiec, 05-552 Magdalenka, Poland; Department of Pharmacognosy, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.
| |
Collapse
|
21
|
de Winter RJ, Katagiri Y, Asano T, Milewski KP, Lurz P, Buszman P, Jessurun GAJ, Koch KT, Troquay RPT, Hamer BJB, Ophuis TO, Wöhrle J, Wyderka R, Cayla G, Hofma SH, Levesque S, Żurakowski A, Fischer D, Kośmider M, Goube P, Arkenbout EK, Noutsias M, Ferrari MW, Onuma Y, Wijns W, Serruys PW. A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): a randomised, single-blind, multicentre, non-inferiority, phase 3 trial. Lancet 2018; 391:431-440. [PMID: 29203070 DOI: 10.1016/s0140-6736(17)33103-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND MiStent is a drug-eluting stent with a fully absorbable polymer coating containing and embedding a microcrystalline form of sirolimus into the vessel wall. It was developed to overcome the limitation of current durable polymer drug-eluting stents eluting amorphous sirolimus. The clinical effect of MiStent sirolimus-eluting stent compared with a durable polymer drug-eluting stents has not been investigated in a large randomised trial in an all-comer population. METHODS We did a randomised, single-blind, multicentre, phase 3 study (DESSOLVE III) at 20 hospitals in Germany, France, Netherlands, and Poland. Eligible participants were any patients aged at least 18 years who underwent percutaneous coronary intervention in a lesion and had a reference vessel diameter of 2·50-3·75 mm. We randomly assigned patients (1:1) to implantation of either a sirolimus-eluting bioresorbable polymer stent (MiStent) or an everolimus-eluting durable polymer stent (Xience). Randomisation was done by local investigators via web-based software with random blocks according to centre. The primary endpoint was a non-inferiority comparison of a device-oriented composite endpoint (DOCE)-cardiac death, target-vessel myocardial infarction, or clinically indicated target lesion revascularisation-between the groups at 12 months after the procedure assessed by intention-to-treat. A margin of 4·0% was defined for non-inferiority of the MiStent group compared with the Xience group. All participants were included in the safety analyses. This trial is registered with ClinicalTrials.gov, number NCT02385279. FINDINGS Between March 20, and Dec 3, 2015, we randomly assigned 1398 patients with 2030 lesions; 703 patients with 1037 lesions were assigned to MiStent, of whom 697 received the index procedure, and 695 patients with 993 lesions were asssigned to Xience, of whom 690 received the index procedure. At 12 months, the primary endpoint had occurred in 40 patients (5·8%) in the sirolimus-eluting stent group and in 45 patients (6·5%) in the everolimus-eluting stent group (absolute difference -0·8% [95% CI -3·3 to 1·8], pnon-inferiority=0·0001). Procedural complications occurred in 12 patients (1·7%) in the sirolimus-eluting stent group and ten patients (1·4%) in the everolimus-eluting stent group; no clinical adverse events could be attributed to these dislodgements through a minimum of 12 months of follow-up. The rate of stent thrombosis, a safety indicator, did not differ between groups and was low in both treatment groups. INTERPRETATION The sirolimus-eluting bioabsorbable polymer stent was non-inferior to the everolimus-eluting durable polymer stent for a device-oriented composite clinical endpoint at 12 months in an all-comer population. MiStent seems a reasonable alternative to other stents in clinical practice. FUNDING The European Cardiovascular Research Institute, Micell Technologies (Durham, NC, USA), and Stentys (Paris, France).
Collapse
Affiliation(s)
| | | | - Taku Asano
- Academic Medical Center, Amsterdam, Netherlands
| | - Krzysztof P Milewski
- Oddzial Kardiologii Inwazyjnej, Elektrofizjologii i Elektrostymulacji PAKS, American Heart of Poland SA, Tychy, Poland
| | - Philipp Lurz
- Department of Internal Medicine and Cardiology, University of Leipzig-Heart Center, Leipzig, Germany
| | - Pawel Buszman
- Center for Cardiovascular Research and Development, American Heart of Poland, Katowice, Poland
| | | | | | | | | | - Ton Oude Ophuis
- Department of Cardiology, Canisius Wilhelmina Ziekenhuis, Nijmegen, Netherlands
| | | | - Rafał Wyderka
- Zgierskie Centrum Kardiologii Med-Pro, Zgierz, Poland
| | - Guillaume Cayla
- Department of Cardiology, CHU Nîmes, Université de Montpellier, Montpellier, France
| | | | | | | | | | | | - Pascal Goube
- CH Sud Francilien Corbeil Essonne, Corbeil Essonnes, France
| | | | - Michel Noutsias
- Department of Cardiology, Pneumonology and Intensive Care Medicine, Clinic for Internal Medicine I, University Hospital Jena, Friedrich-Schiller-University, Jena, Germany
| | | | - Yoshinobu Onuma
- ThoraxCenter, Erasmus Medical Center, Rotterdam, Netherlands
| | - William Wijns
- Cardiovascular Research Center Aalst, Aalst, Belgium; National University of Ireland Galway, The Lambe Institute for Translational Medicine and CURAM, Galway, Ireland
| | - Patrick W Serruys
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
22
|
Application of galangin, an active component of Alpinia officinarum Hance (Zingiberaceae), for use in drug-eluting stents. Sci Rep 2017; 7:8207. [PMID: 28811550 PMCID: PMC5557749 DOI: 10.1038/s41598-017-08410-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/10/2017] [Indexed: 01/25/2023] Open
Abstract
In clinical pathology, stent interposition is used to treat vascular disease but can lead to restenosis. Drug-eluting stents (DES) are most commonly used to suppress restenosis but can also have side effects. Therefore, we investigated the anti-proliferative effect and its possible target in vitro and in vivo. We found that Alpinia officinarum Hance (AO) extract efficiently inhibited VSMC proliferation by arresting the transition from the G0/G1 to the S phase via the up-regulation of p27KIP1 expression. Galangin (GA) was determined to be a significant component of this extract, with the same anti-proliferative activity as the raw extract. Immunoblotting and immunofluorescence staining showed that both the AO extract and GA targeted the up-regulation of p27KIP1 expression. Therefore, we next examined the effect of these compounds in a cuff-injured neointimal hyperplasia model in vivo. In this animal model, both the AO extract and GA completely suppressed the neointima formation, and this inhibitory effect was also demonstrated to target the up-regulation of p27KIP1, including the suppression of proliferating cell nuclear antigen expression. Our findings indicate that AO extract and GA have a potent anti-proliferative activity, targeting the up-regulation of p27 expression. Thus, GA may represent an alternative medicine for use in DES.
Collapse
|
23
|
Natori T, Fujiyoshi M, Uchida M, Abe N, Kanaki T, Fukumoto Y, Ishii I. Growth arrest of vascular smooth muscle cells in suspension culture using low-acyl gellan gum. In Vitro Cell Dev Biol Anim 2016; 53:191-198. [PMID: 27924445 DOI: 10.1007/s11626-016-0098-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023]
Abstract
The proliferation of vascular smooth muscle cells (SMCs) causes restenosis in biomaterial vascular grafts. The purposes of this study were to establish a suspension culture system for SMCs by using a novel substrate, low-acyl gellan gum (GG) and to maintain SMCs in a state of growth inhibition. When SMCs were cultured in suspension with GG, their proliferation was inhibited. Their viability was 70% at day 2, which was maintained at more than 50% until day 5. In contrast, the viability of cells cultured in suspension without GG was 5.6% at day 2. By cell cycle analysis, the ratio of SMCs in the S phase when cultured in suspension with GG was lower than when cultured on plastic plates. In SMCs cultured in suspension with GG, the ratio of phosphorylated retinoblastoma (Rb) protein to Rb protein was decreased and p27Kip1 expression was unchanged in comparison with SMCs cultured on plastic plates. In addition, SMCs could be induced to proliferate again by changing the culture condition from suspension with GG to plastic plates. These results suggest that our established culturing method for SMCs is useful to maintain SMCs in a state of growth inhibition with high viability.
Collapse
Affiliation(s)
- Tomomi Natori
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8675, Japan
| | - Masachika Fujiyoshi
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8675, Japan
| | - Masashi Uchida
- Division of Pharmacy, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan
| | - Natsuki Abe
- Biological Research Laboratories, Nissan Chemical Industries Ltd., 1470 Shiraoka, Shiraoka, Saitama, 369-0305, Japan
| | - Tatsuro Kanaki
- Biological Research Laboratories, Nissan Chemical Industries Ltd., 1470 Shiraoka, Shiraoka, Saitama, 369-0305, Japan
| | - Yasunori Fukumoto
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8675, Japan
| | - Itsuko Ishii
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8675, Japan. .,Division of Pharmacy, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, Chiba, 260-8677, Japan.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Cell senescence is a major process regulating tissue mass, architecture and function, and underlies many diseases of ageing. Recent studies have elucidated some of the regulatory pathways leading to cell senescence, and senescence has also been found in the vasculature. However, assessment of cell senescence is problematic, and the effects of vascular cell senescence are in most cases unproven. The present article will review how senescence is assessed, how it is regulated, where senescence has been described, and the role of cell senescence in atherosclerosis. RECENT FINDINGS Senescence results in expression of multiple proteins, both intracellular and secreted. However, to date, none of these are specific for senescence, and multiple markers must be used together for positive identification. Despite these shortfalls, cell senescence is detectable in the vasculature in ageing and in human atherosclerosis, and recent studies in mice have indicated that cell senescence promotes both atherogenesis and multiple features of 'vulnerable' lesions in advanced atherosclerotic plaques. SUMMARY The almost ubiquitous presence of cell senescence in atherosclerosis and the fundamental role of senescence in regulating plaque development and stability suggest that prevention or amelioration of senescence in atherosclerosis is a viable therapeutic target.
Collapse
Affiliation(s)
- Abel Martin Garrido
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK
| | | |
Collapse
|
25
|
Abstract
Implantation of drug-eluting stents (DESs) via percutaneous coronary intervention is the most popular treatment option to restore blood flow to occluded vasculature. The many devices currently used in clinic and under examination in research laboratories are manufactured using a variety of coating techniques to create the incorporated drug release platforms. These coating techniques offer various benefits including ease of use, expense of equipment, and design variability. This review paper discusses recent novel DES designs utilizing individual or a combination of these coating techniques and their resulting drug release profiles.
Collapse
Affiliation(s)
- Megan Livingston
- Department of Regenerative Medicine and Orthopaedics, Houston Methodist Research Institute, Houston, USA
| | - Aaron Tan
- Centre for Nanotechnology & Regenerative Medicine, UCL Division of Surgery & Interventional Science, UCL Medical School, University College London (UCL), London, UK
| |
Collapse
|
26
|
Song JH, Jeong GH, Park SL, Won SY, Paek NS, Lee BH, Moon SK. Inhibitory effects of fermented extract of Ophiopogon japonicas on thrombin-induced vascular smooth muscle cells. Mol Med Rep 2015; 13:426-32. [PMID: 26530246 DOI: 10.3892/mmr.2015.4499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 09/03/2015] [Indexed: 11/06/2022] Open
Abstract
Ophiopogon japonicus is known to have various pharmacological effects. The present study investigated the effects of an extract of fermented Ophiopogon japonicas (FEOJ) on thrombin‑treated vascular smooth muscle cells (VSMCs). FEOJ treatment inhibited the proliferation of VSMCs treated with thrombin as indicated by an MTT assay. These inhibitory effects were associated with decreased phosphorylation of AKT, reduced expression of cyclin D1 and increased expression of p27KIP1 in thrombin‑induced VSMCs. In addition, FEOJ treatment suppressed the thrombin‑stimulated migration of VSMCs as demonstrated by a wound‑healing migration assay. Furthermore, zymographic analyses demonstrated that treatment of FEOJ with VSMCs suppressed the thrombin‑induced expression of matrix metalloproteinase (MMP)‑2, which was attributed to the reduction of nuclear factor (NF)‑κB binding activity. Collectively, these results demonstrated that FEOJ induced p27KIP1 expression, reduced cyclin D1 expression and AKT phosphorylation, and inhibited MMP‑2 expression mediated by downregulation of NF‑κB binding activity in thrombin‑treated VSMCs, which led to growth inhibition and repression of migration. These results supported the use of FEOJ for the prevention of vascular diseases and provided novel insight into the underlying mechanism of action.
Collapse
Affiliation(s)
- Jun-Hui Song
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| | - Gi Hee Jeong
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| | - Sung Lyea Park
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| | - Se Yeon Won
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| | - Nam Soo Paek
- Mediogen, Jecheon‑si, Chungcheongbuk‑do 390‑250, Republic of Korea
| | - Bog-Hieu Lee
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| | - Sung-Kwon Moon
- Department of Food and Nutrition, Chung‑Ang University, Anseong‑si, Gyeonggi‑do 456‑756, Republic of Korea
| |
Collapse
|
27
|
Uchida M, Suzuki S, Suzuki T, Ishii I. p27(Kip1) and p21(Cip1)-independent proliferative inhibition of vascular smooth muscle cells cultured in type-I collagen matrix honeycombs. Microvasc Res 2015; 103:36-40. [PMID: 26522285 DOI: 10.1016/j.mvr.2015.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/21/2015] [Accepted: 10/27/2015] [Indexed: 01/03/2023]
Abstract
The proliferation of vascular smooth muscle cells (SMCs) contributes to atherosclerotic plaque formation and restenosis. Cyclin-dependent kinase inhibitors, such as p27(Kip1) and p21(Cip1), are known to play significant roles in the control of the aberrant proliferation of SMCs. Primary cultured SMCs stop proliferating immediately when cultured in three-dimensional matrices of type-I collagen "honeycombs" structures. To clarify whether p27(Kip1) and p21(Cip1) are involved in the proliferative inhibition of SMCs cultured in honeycombs, the characteristics of SMCs derived from the aorta of both wild-type mice (p27[+/+] SMCs) and p27(Kip1) knockout mice (p27[-/-] SMCs) were investigated. Although the growth of p27(-/-) SMCs cultured on plates was faster than that of p27(+/+) SMCs, the number of both p27(+/+) and p27(-/-) SMCs did not change when they were cultured in honeycombs. p21(Cip1) expression was decreased but maintained in p27(-/-) SMCs cultured on plates and in honeycombs. Knockdown of p21(Cip1) in p27(-/-) SMCs promoted proliferation on plates. On the contrary, p21(Cip1) knockdown had no effect on the proliferation of p27(-/-) SMCs cultured in honeycombs. In conclusion, p27(Kip1) and p21(Cip1) are insufficient for the proliferative inhibition of SMCs cultured in honeycombs.
Collapse
Affiliation(s)
- Masashi Uchida
- Division of Pharmacy, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Saki Suzuki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takaaki Suzuki
- Division of Pharmacy, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan
| | - Itsuko Ishii
- Division of Pharmacy, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
28
|
Jing L, Wang W, Zhang S, Xie M, Tian D, Luo X, Wang D, Ning Q, Lü J, Wang W. Targeted inhibitory effect of Lenti-SM22alpha-p27-EGFP recombinant lentiviral vectors on proliferation of vascular smooth muscle cells without compromising re-endothelialization in a rat carotid artery balloon injury model. PLoS One 2015; 10:e0118826. [PMID: 25760326 PMCID: PMC4356572 DOI: 10.1371/journal.pone.0118826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 01/06/2015] [Indexed: 01/04/2023] Open
Abstract
AIMS In-stent restenosis remains a serious problem after the implantation of drug-eluting stents, which is attributable to neointima formation and re-endothelialization. Here, we tried to find a new method which aims at selectively inhibiting proliferation of vascular smooth muscle cells (VSMC) proliferation without inhibition of re-endothelialization. METHODS AND RESULTS We used the smooth muscle-specific SM22alpha promoter in a recombinant lentiviral vector to drive overexpression of cell-cycle inhibitor, p27, in VSMCs. p27 effectively inhibited VSMC proliferation mediated by cell cycle arrest at the G0/G1 checkpoint. The SM22alpha-p27 lentiviral vector inhibited VSMC proliferation more effectively than paclitaxel. Rats infected with Lenti-SM22alpha-p27 had a significantly lower intima/media (I/M) ratio and also showed inhibition of restenosis on day 28 after balloon injury. Moreover, the repair of injured endothelium, and re-endothelialization of the carotid artery wall, was not affected by the smooth muscle cell-specific expression of p27. CONCLUSION A recombinant lentiviral vector carrying the SM22alpha promoter was used to effectively infect and selectively overexpress p27 protein in VSMCs, leading to inhibition of intimal hyperplasia without compromising endothelial repair.
Collapse
Affiliation(s)
- Liang Jing
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Wenlong Wang
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Shuangshuang Zhang
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Daishi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Daowen Wang
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jiagao Lü
- Department of Cardiovascular Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- * E-mail: (WW); (JL)
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- * E-mail: (WW); (JL)
| |
Collapse
|
29
|
Apamin inhibits PDGF-BB-induced vascular smooth muscle cell proliferation and migration through suppressions of activated Akt and Erk signaling pathway. Vascul Pharmacol 2015; 70:8-14. [PMID: 25737404 DOI: 10.1016/j.vph.2014.12.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/13/2014] [Accepted: 12/28/2014] [Indexed: 11/21/2022]
Abstract
The increased proliferation and migration of vascular smooth muscle cells (VSMC) are key process in the development of atherosclerosis lesions. Platelet-derived growth factor (PDGF) initiates a multitude of biological effects that contribute to VSMC proliferation and migration. Apamin, a component of bee venom, has been known to block the Ca(2+)-activated K(+) channels. However, the effects of apamin in the regulation PDGF-BB-induced VSMC proliferation and migration has not been identified. In this study, we investigate the inhibitory effect of apamin on PDGF-BB-induced VSMC proliferation and migration. Apamin suppressed the PDGF-BB-induced VSMC proliferation and migration with no apparent cytotoxic effect. In accordance with these findings, apamin induced the arrest of cell cycle progression at G0/G1 phase. Apamin also decreased the expressions of G0/G1 specific regulatory proteins including proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin-dependent kinases (CDK) 4, cyclin E and CDK2, as well as increased the expression of p21(Cip1) in PDGF-BB-induced VSMC. Moreover, apamin inhibited PDGF-BB-induced phosphorylation of Akt and Erk1/2. These results suggest that apamin plays an important role in prevention of vascular proliferation and migration through the G0/G1 cell cycle arrest by PDGF signaling pathway. Thus, apamin may be a promising candidate for the therapy of atherosclerosis.
Collapse
|
30
|
Abstract
Cardiovascular disease is the leading cause of death worldwide. As such, there is great interest in identifying novel mechanisms that govern the cardiovascular response to disease-related stress. First described in failing hearts, autophagy within the cardiovascular system has been widely characterized in cardiomyocytes, cardiac fibroblasts, endothelial cells, vascular smooth muscle cells, and macrophages. In all cases, a window of optimal autophagic activity appears to be critical to the maintenance of cardiovascular homeostasis and function; excessive or insufficient levels of autophagic flux can each contribute to heart disease pathogenesis. In this Review, we discuss the potential for targeting autophagy therapeutically and our vision for where this exciting biology may lead in the future.
Collapse
|
31
|
Recent advances in micro/nanoscale biomedical implants. J Control Release 2014; 189:25-45. [DOI: 10.1016/j.jconrel.2014.06.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/13/2014] [Accepted: 06/14/2014] [Indexed: 12/22/2022]
|
32
|
PARK SUNGSOO, KIM WUNJAE, MOON SUNGKWON. Gleditsia sinensis thorn extract inhibits the proliferation and migration of PDGF-induced vascular smooth muscle cells. Mol Med Rep 2014; 10:2031-8. [DOI: 10.3892/mmr.2014.2422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 03/19/2014] [Indexed: 11/06/2022] Open
|
33
|
YU XIN, LI ZHENG. MicroRNAs regulate vascular smooth muscle cell functions in atherosclerosis (Review). Int J Mol Med 2014; 34:923-33. [DOI: 10.3892/ijmm.2014.1853] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 05/30/2014] [Indexed: 11/06/2022] Open
|
34
|
Vorpahl M, Schönhofer-Merl S, Michaelis C, Flotho A, Melchior F, Wessely R. The Ran GTPase-activating protein (RanGAP1) is critically involved in smooth muscle cell differentiation, proliferation and migration following vascular injury: implications for neointima formation and restenosis. PLoS One 2014; 9:e101519. [PMID: 24988324 PMCID: PMC4079658 DOI: 10.1371/journal.pone.0101519] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/07/2014] [Indexed: 12/12/2022] Open
Abstract
Differentiation and dedifferentiation, accompanied by proliferation play a pivotal role for the phenotypic development of vascular proliferative diseases (VPD), such as restenosis. Increasing evidence points to an essential role of regulated nucleoporin expression in the choice between differentiation and proliferation. However, whether components of the Ran GTPase cycle, which is of pivotal importance for both nucleocytoplasmic transport and for mitotic progression, are subject to similar regulation in VPD is currently unknown. Here, we show that differentiation of human coronary artery smooth muscle cell (CASMC) to a contractile phenotype by stepwise serum depletion leads to significant reduction of RanGAP1 protein levels. The inverse event, dedifferentiation of cells, was assessed in the rat carotid artery balloon injury model, a well-accepted model for neointima formation and restenosis. As revealed by temporospatial analysis of RanGAP1 expression, neointima formation in rat carotid arteries was associated with a significant upregulation of RanGAP1 expression at 3 and 7 days after balloon injury. Of note, neointimal cells located at the luminal surface revealed persistent RanGAP1 expression, as opposed to cells in deeper layers of the neointima where RanGAP1 expression was less or not detectable at all. To gain first evidence for a direct influence of RanGAP1 levels on differentiation, we reduced RanGAP1 in human coronary artery smooth muscle cells by siRNA. Indeed, downregulation of the essential RanGAP1 protein by 50% induced a differentiated, spindle-like smooth muscle cell phenotype, accompanied by an upregulation of the differentiation marker desmin. Reduction of RanGAP1 levels also resulted in a reduction of mitogen induced cellular migration and proliferation as well as a significant upregulation of the cyclin-dependent kinase inhibitor p27KIP1, without evidence for cellular necrosis. These findings suggest that RanGAP1 plays a critical role in smooth muscle cell differentiation, migration and proliferation in vitro and in vivo. Appropriate modulation of RanGAP1 expression may thus be a strategy to modulate VPD development such as restenosis.
Collapse
Affiliation(s)
- Marc Vorpahl
- Department of Cardiology, HELIOS Klinikum Wuppertal, University Witten/Herdecke, Witten, Germany
- * E-mail: (MV); (RW)
| | - Sabine Schönhofer-Merl
- Deutsches Herzzentrum Muenchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Cornelia Michaelis
- Deutsches Herzzentrum Muenchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
| | - Annette Flotho
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany
| | - Rainer Wessely
- Deutsches Herzzentrum Muenchen and 1. Medizinische Klinik, Klinikum rechts der Isar, Technische Universitaet Muenchen, Muenchen, Germany
- Zentrum fuer Herz-Gefaess-Lungenmedizin, Cologne, Germany
- * E-mail: (MV); (RW)
| |
Collapse
|
35
|
Keramati AR, Fathzadeh M, Go GW, Singh R, Choi M, Faramarzi S, Mane S, Kasaei M, Sarajzadeh-Fard K, Hwa J, Kidd KK, Babaee Bigi MA, Malekzadeh R, Hosseinian A, Babaei M, Lifton RP, Mani A. A form of the metabolic syndrome associated with mutations in DYRK1B. N Engl J Med 2014; 370:1909-1919. [PMID: 24827035 PMCID: PMC4069260 DOI: 10.1056/nejmoa1301824] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Genetic analysis has been successful in identifying causative mutations for individual cardiovascular risk factors. Success has been more limited in mapping susceptibility genes for clusters of cardiovascular risk traits, such as those in the metabolic syndrome. METHODS We identified three large families with coinheritance of early-onset coronary artery disease, central obesity, hypertension, and diabetes. We used linkage analysis and whole-exome sequencing to identify the disease-causing gene. RESULTS A founder mutation was identified in DYRK1B, substituting cysteine for arginine at position 102 in the highly conserved kinase-like domain. The mutation precisely cosegregated with the clinical syndrome in all the affected family members and was absent in unaffected family members and unrelated controls. Functional characterization of the disease gene revealed that nonmutant protein encoded by DYRK1B inhibits the SHH (sonic hedgehog) and Wnt signaling pathways and consequently enhances adipogenesis. Furthermore, DYRK1B promoted the expression of the key gluconeogenic enzyme glucose-6-phosphatase. The R102C allele showed gain-of-function activities by potentiating these effects. A second mutation, substituting proline for histidine 90, was found to cosegregate with a similar clinical syndrome in an ethnically distinct family. CONCLUSIONS These findings indicate a role for DYRK1B in adipogenesis and glucose homeostasis and associate its altered function with an inherited form of the metabolic syndrome. (Funded by the National Institutes of Health.).
Collapse
Affiliation(s)
- Ali R Keramati
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Mohsen Fathzadeh
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Gwang-Woong Go
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Rajvir Singh
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Murim Choi
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Saeed Faramarzi
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Shrikant Mane
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Mohammad Kasaei
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Kazem Sarajzadeh-Fard
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - John Hwa
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Kenneth K Kidd
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Mohammad A Babaee Bigi
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Reza Malekzadeh
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Adallat Hosseinian
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Masoud Babaei
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Richard P Lifton
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| | - Arya Mani
- Department of Internal Medicine, Yale Cardiovascular Research Center (A.R.K., M.F., G.-W.G., R.S., S.F., J.H., A.M.), Yale Center for Mendelian Genomics (M.C., S.M., R.P.L., A.M.), Department of Genetics (K.K.K., R.P.L., A.M.), and Howard Hughes Medical Institute (R.P.L.), Yale University School of Medicine, New Haven, CT; the Digestive Disease Research Institute, Shariati Hospital (M.F., K.S.-F., R.M.), and Department of Medical Genetics (M.F.), Tehran University of Medical Sciences, Tehran, the Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz (M.K., K.S.-F., M.A.B.B.), and Ardabil University of Medical Sciences, Ardabil (A.H., M.B.) - all in Iran
| |
Collapse
|
36
|
Ganesh SK, Morissette R, Xu Z, Schoenhoff F, Griswold BF, Yang J, Tong L, Yang ML, Hunker K, Sloper L, Kuo S, Raza R, Milewicz DM, Francomano CA, Dietz HC, Van Eyk J, McDonnell NB. Clinical and biochemical profiles suggest fibromuscular dysplasia is a systemic disease with altered TGF-β expression and connective tissue features. FASEB J 2014; 28:3313-24. [PMID: 24732132 DOI: 10.1096/fj.14-251207] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibromuscular dysplasia (FMD) is a rare, nonatherosclerotic arterial disease for which the molecular basis is unknown. We comprehensively studied 47 subjects with FMD, including physical examination, spine magnetic resonance imaging, bone densitometry, and brain magnetic resonance angiography. Inflammatory biomarkers in plasma and transforming growth factor β (TGF-β) cytokines in patient-derived dermal fibroblasts were measured by ELISA. Arterial pathology other than medial fibrodysplasia with multifocal stenosis included cerebral aneurysm, found in 12.8% of subjects. Extra-arterial pathology included low bone density (P<0.001); early onset degenerative spine disease (95.7%); increased incidence of Chiari I malformation (6.4%) and dural ectasia (42.6%); and physical examination findings of a mild connective tissue dysplasia (95.7%). Screening for mutations causing known genetically mediated arteriopathies was unrevealing. We found elevated plasma TGF-β1 (P=0.009), TGF-β2 (P=0.004) and additional inflammatory markers, and increased TGF-β1 (P=0.0009) and TGF-β2 (P=0.0001) secretion in dermal fibroblast cell lines from subjects with FMD compared to age- and gender-matched controls. Detailed phenotyping of patients with FMD allowed us to demonstrate that FMD is a systemic disease with alterations in common with the spectrum of genetic syndromes that involve altered TGF-β signaling and offers TGF-β as a marker of FMD.
Collapse
Affiliation(s)
- Santhi K Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA;
| | - Rachel Morissette
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA;
| | - Zhi Xu
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Florian Schoenhoff
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Benjamin F Griswold
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Jiandong Yang
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Lan Tong
- Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kristina Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Leslie Sloper
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Shinie Kuo
- Division of Cardiovascular Medicine, Department of Internal Medicine, and Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rafi Raza
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA
| | - Dianna M Milewicz
- Division of Medical Genetics, Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas, USA
| | | | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; and Howard Hughes Medical Institute, Baltimore, Maryland, USA
| | - Jennifer Van Eyk
- Johns Hopkins Bayview Proteomics Center, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nazli B McDonnell
- Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, Maryland, USA;
| |
Collapse
|
37
|
Breitenstein A, Akhmedov A, Camici GG, Lüscher TF, Tanner FC. p27(Kip1) inhibits tissue factor expression. Biochem Biophys Res Commun 2013; 439:559-63. [PMID: 24021283 DOI: 10.1016/j.bbrc.2013.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND The cyclin-dependent kinase inhibitor (CDKI) p27(Kip1) regulates cell proliferation and thus inhibits atherosclerosis and vascular remodeling. Expression of tissue factor (TF), the key initator of the coagulation cascade, is associated with atherosclerosis. Yet, it has not been studied whether p27(Kip1) influences the expression of TF. METHODS AND RESULTS p27(Kip1) overexpression in human aortic endothelial cells was achieved by adenoviral transfection. Cells were rendered quiescent for 24h in 0.5% fetal-calf serum. After stimulation with TNF-α (5 ng/ml), TF protein expression and activity was significantly reduced (n=4; P<0.001) in cells transfected with p27(Kip1). In line with this, p27(Kip1) overexpression reduced cytokine-induced TF mRNA expression (n=4; P<0.01) and TF promotor activity (n=4; P<0.05). In contrast, activation of the MAP kinases p38, ERK and JNK was not affected by p27(Kip1) overexpression. CONCLUSION This in vitro study suggests that p27(Kip1) inhibits TF expression at the transcriptional level. These data indicate an interaction between p27(Kip1) and TF in important pathological alterations such as atherosclerosis and vascular remodeling.
Collapse
Affiliation(s)
- Alexander Breitenstein
- Cardiology, University Heart Center, University Hospital Zurich, Switzerland; Cardiovascular Research, Physiology Institute, University of Zurich, Switzerland; Center for Integrative Human Physiology (ZHIP), University of Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
38
|
Irregular neointimal lining with prominent proliferative activity after carotid patch angioplasty: an autopsy case report. World Neurosurg 2013; 82:240.e1-6. [PMID: 23851228 DOI: 10.1016/j.wneu.2013.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/25/2013] [Accepted: 06/29/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Although the healing response after carotid balloon injury and carotid patch angioplasty injury has been well-documented in animal models, there is limited information about this process after carotid endarterectomy (CEA) in human patients. CASE DESCRIPTION We describe the autopsy results of a 79-year-old man who died 18 days after CEA with patch angioplasty. The treated carotid artery had an adequate luminal diameter. Elastica-Masson staining revealed that the treated portion was covered with neointima but the patch graft was exposed to the arterial lumen at 18 days after CEA. Immunohistochemistry staining for alpha-smooth muscle actin (α-SMA), von-Willebrand factor, and vascular endothelial growth factor receptor-2 revealed that the neointima was mainly composed of α-SMA-positive cells. In addition, the α-SMA-rich neointima had many more Ki-67-positive cells than did the internal carotid artery intima in the area beyond the CEA-treated portion. CONCLUSIONS This case report is the first to describe an entire carotid artery specimen in the acute stage after CEA with patch angioplasty. These findings suggest that an α-SMA-rich neointima with prominent proliferative activity covers the inner surface of the treated carotid artery, but patch grafts are left uncovered. The intrinsic arterial wall may have an important role in intimal regeneration after CEA, although the nature of the neointima and the mechanism by which it regulates proliferative activity remain unclarified.
Collapse
|
39
|
Conte MS, Owens CD, Belkin M, Creager MA, Edwards KL, Gasper WJ, Kenagy RD, LeBoeuf RC, Sobel M, Clowes A. A single nucleotide polymorphism in the p27(Kip1) gene is associated with primary patency of lower extremity vein bypass grafts. J Vasc Surg 2013; 57:1179-85.e1-2. [PMID: 23312942 DOI: 10.1016/j.jvs.2012.11.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Factors responsible for the variability in outcomes after lower extremity vein bypass grafting (LEVBG) are poorly understood. Recent evidence has suggested that a single nucleotide polymorphism (SNP) in the promoter region of the p27(Kip1) gene, a cell-cycle regulator, is associated with coronary in-stent restenosis. We hypothesized an association with vein graft patency. METHODS This was a retrospective genetic association study nested within a prospective cohort of 204 patients from three referral centers undergoing LEVBG for claudication or critical ischemia. The main outcome measure was primary vein graft patency. RESULTS All patients were followed up for a minimum of 1 year with duplex graft surveillance (median follow-up, 893 days; interquartile range, 539-1315). Genomic DNA was isolated and SNP analysis for the p27(Kip1)-838C>A variants was performed. Allele frequencies were correlated with graft outcome using survival analysis and Cox proportional hazards modeling. The p27(Kip1)-838C>A allele frequencies observed were CA, 53%; CC, 30%; and AA, 17%, satisfying Hardy-Weinberg equilibrium. Race (P = .025) and history of coronary artery disease (P = .027) were different across the genotypes; all other baseline variables were similar. Primary graft patency was greater among patients with the -838AA genotype (75% AA vs 55% CA/CC at 3 years; P = .029). In a Cox proportional hazards model including age, sex, race, diabetes, critical limb ischemia, redo (vs primary) bypass, vein type, and baseline C-reactive protein level, the p27(Kip1)-838AA genotype was significantly associated with higher graft patency (hazard ratio for failure, 0.4; 95% confidence interval, 0.17-0.93). Genotype was also associated with early (0-1 month) changes in graft lumen diameter by ultrasound imaging. CONCLUSIONS These data suggest that the p27(Kip1)-838C>A SNP is associated with LEVBG patency and, together with previous reports, underscore a central role for p27(Kip1) in the generic response to vascular injury.
Collapse
Affiliation(s)
- Michael S Conte
- Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, Calif 94143, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Carmazzi Y, Iorio M, Armani C, Cianchetti S, Raggi F, Neri T, Cordazzo C, Petrini S, Vanacore R, Bogazzi F, Paggiaro P, Celi A. The mechanisms of nadroparin-mediated inhibition of proliferation of two human lung cancer cell lines. Cell Prolif 2013; 45:545-56. [PMID: 23106301 DOI: 10.1111/j.1365-2184.2012.00847.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVES Clinical data suggest that heparin treatment improves survival of lung cancer patients, but the mechanisms involved are not fully understood. We investigated whether low molecular weight heparin nadroparin, directly affects lung cancer cell population growth in conventionally cultured cell lines. MATERIALS AND METHODS A549 and CALU1 cells' viability was assessed by MTT and trypan blue exclusion assays. Cell proliferation was assessed using 5-bromo-2-deoxyuridine incorporation. Apoptosis and cell-cycle distribution were analysed by flow cytometry; cyclin B1, Cdk1, p-Cdk1 Cdc25C, p-Cdc25C and p21 expressions were analysed by western blotting. mRNA levels were analysed by real time RT-PCR. RESULTS Nadroparin inhibited cell proliferation by 30% in both cell lines; it affected the cell cycle in A549, but not in CALU-1 cells, inducing arrest in the G(2) /M phase. Nadroparin in A549 culture inhibited cyclin B1, Cdk1, Cdc25C and p-Cdc25C, while levels of p-Cdk1 were elevated; p21 expression was not altered. Dalteparin caused a similar reduction in A549 cell population growth; however, it did not alter cyclin B1 expression as expected, based on previous reports. Fondaparinux caused minimal inhibition of A549 cell population growth and no effect on either cell cycle or cyclin B1 expression. CONCLUSIONS Nadroparin inhibited proliferation of A549 cells by inducing G(2) /M phase cell-cycle arrest that was dependent on the Cdc25C pathway, whereas CALU-1 cell proliferation was halted by as yet not elucidated modes.
Collapse
Affiliation(s)
- Y Carmazzi
- Laboratory of Respiratory Cell Biology, Cardiac, Thoracic and Vascular Department, University of Pisa and University Hospital of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tada T, Byrne RA, Cassese S, King L, Schulz S, Mehilli J, Schömig A, Kastrati A. Comparative efficacy of 2 zotarolimus-eluting stent generations: resolute versus endeavor stents in patients with coronary artery disease. Am Heart J 2013; 165:80-6. [PMID: 23237137 DOI: 10.1016/j.ahj.2012.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/03/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND The Resolute zotarolimus-eluting stent (R-ZES) utilizes the same metallic platform and anti-restenotic drug as the Endeavor zotarolimus-eluting stent (E-ZES) but is coated with a more biocompatible polymer with enhanced drug-release kinetics. The aim of this study was to compare the long-term clinical outcomes of 2 zotarolimus-eluting stent generations. METHODS In two randomized trials with broad inclusion criteria (ISAR-TEST 2 and ISAR-TEST 5), 1,000 patients were treated with R-ZES and 339 patients treated with E-ZES. In both trials follow-up angiography was scheduled at 6 to 8 months. The efficacy endpoint of interest was target lesion revascularization and the safety endpoints were the combined incidence of cardiac death or myocardial infarction related to target vessel as well as the incidence of definite stent thrombosis at 2-year follow-up. RESULTS The incidence of target lesion revascularization at 2 years was 12.0% in the R-ZES group and 16.0% in the E-ZES (HR 0.72 [95% CI: 0.52-1.00], P = .052). The incidence of cardiac death or myocardial infarction was 5.5% vs. 4.8% (HR 1.15, [95% CI: 0.66-2.02], P = .62) and of definite stent thrombosis was 0.4% vs. 0.6% (HR 0.68, [95% CI: 0.12-3.72], P = .66), respectively. All measures of angiographic restenosis were in favor of the R-ZES; in-stent late lumen loss was 0.29 ± 0.56 with the R-ZES versus 0.58 ± 0.55 with the E-ZES (P < .0001). CONCLUSIONS Comparison of the 2 Food and Drug Administration-approved zotarolimus-eluting stents suggested that the R-ZES as compared to the E-ZES displayed overall superior antirestenotic efficacy. Both devices were associated with a similar low risk of adverse safety events through 2 years.
Collapse
|
42
|
Guan H, Chen C, Zhu L, Cui C, Guo Y, Fu M, Wang L, Tang Q. Indole-3-carbinol blocks platelet-derived growth factor-stimulated vascular smooth muscle cell function and reduces neointima formation in vivo. J Nutr Biochem 2013; 24:62-9. [DOI: 10.1016/j.jnutbio.2012.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 02/01/2023]
|
43
|
Li J, Li P, Zhang Y, Li GB, Zhou YG, Yang K, Dai SS. c-Ski inhibits the proliferation of vascular smooth muscle cells via suppressing Smad3 signaling but stimulating p38 pathway. Cell Signal 2012; 25:159-67. [PMID: 22986000 DOI: 10.1016/j.cellsig.2012.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/17/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
Proliferation of vascular smooth muscle cells (VSMCs) plays key roles in the progression of intimal hyperplasia, but the molecular mechanisms that trigger VSMC proliferation after vascular injury remain unclear. c-Ski, a co-repressor of transforming growth factor β (TGF-β)/Smad signaling, was detected to express in VSMC of rat artery. During the course of arterial VSMC proliferation induced by balloon injury in rat, the endogenous protein expressions of c-Ski decreased markedly in a time-dependent manner. In vivo c-Ski gene delivery was found to significantly suppress balloon injury-induced VSMC proliferation and neointima formation. Further investigation in A10 rat aortic smooth muscle cells demonstrated that overexpression of c-Ski gene inhibited TGF-β1 (1 ng/ml)-induced A10 cell proliferation while knockdown of c-Ski by RNAi enhanced the stimulatory effect of TGF-β1 on A10 cell growth. Western blot for signaling detection showed that suppression of Smad3 phosphorylation while stimulating p38 signaling associated with upregulation of cyclin-dependent kinase inhibitors p21 and p27 was responsible for the inhibitory effect of c-Ski on TGF-β1-induced VSMC proliferation. These data suggest that the decrease of endogenous c-Ski expression is implicated in the progression of VSMC proliferation after arterial injury and c-Ski administration represents a promising role for treating intimal hyperplasia via inhibiting the proliferation of VSMC.
Collapse
Affiliation(s)
- Jun Li
- Department of Cardiothoracic Surgery, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Meijer-Jorna LB, van der Loos CM, Teeling P, de Boer OJ, Florquin S, van der Horst CMAM, van der Wal AC. Proliferation and maturation of microvessels in arteriovenous malformations - expression patterns of angiogenic and cell cycle-dependent factors. J Cutan Pathol 2012; 39:610-20. [DOI: 10.1111/j.1600-0560.2012.01913.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Effects and mechanisms of the functional parts of Dahuang Zhechong Pill (大黄 虫丸) containing serum on platelet-derived growth factor-stimulated proliferation of vascular smooth muscle cells. Chin J Integr Med 2012; 19:432-8. [DOI: 10.1007/s11655-012-1033-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Indexed: 11/27/2022]
|
46
|
Sicari BM, Troxell R, Salim F, Tanwir M, Takane KK, Fiaschi-Taesch N. c-myc and skp2 coordinate p27 degradation, vascular smooth muscle proliferation, and neointima formation induced by the parathyroid hormone-related protein. Endocrinology 2012; 153:861-72. [PMID: 22210745 DOI: 10.1210/en.2011-1590] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) contains a classical bipartite nuclear localization signal. Nuclear PTHrP induces proliferation of arterial vascular smooth muscle cells (VSMC). In the arterial wall, PTHrP is markedly up-regulated in response to angioplasty and promotes arterial restenosis. PTHrP overexpression exacerbates arterial restenosis, and knockout of the PTHrP gene results in decreased VSMC proliferation in vivo. In arterial VSMC, expression of the cell cycle inhibitor, p27, rapidly decreases after angioplasty, and replacement of p27 markedly reduces neointima development. We have shown that PTHrP overexpression in VSMC leads to p27 down-regulation, mostly through increased proteosomal degradation. Here, we determined the molecular mechanisms through which PTHrP targets p27 for degradation. S-phase kinase-associated protein 2 (skp2) and c-myc, two critical regulators of p27 expression and stability, and neointima formation were up-regulated in PTHrP overexpression in VSMC. Normalization of skp2 or c-myc using small interfering RNA restores normal cell cycle and p27 expression in PTHrP overexpression in VSMC. These data indicate that skp2 and c-myc mediate p27 loss and proliferation induced by PTHrP. c-myc promoter activity was increased, and c-myc target genes involved in p27 stability were up-regulated in PTHrP overexpression in VSMC. In primary VSMC, PTHrP overexpression led to increased c-myc and decreased p27. Conversely, knockdown of PTHrP in primary VSMC from PTHrP(flox/flox) mice led to cell cycle arrest, p27 up-regulation, with c-myc and skp2 down-regulation. Collectively, these data describe for the first time the role of PTHrP in the regulation of skp2 and c-myc in VSMC. This novel PTHrP-c-myc-skp2 pathway is a potential target for therapeutic manipulation of the arterial response to injury.
Collapse
Affiliation(s)
- Brian M Sicari
- Division of Endocrinology, University of Pittsburgh School of Medicine, 3550 Terrace Street, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
47
|
Papafaklis MI, Chatzizisis YS, Naka KK, Giannoglou GD, Michalis LK. Drug-eluting stent restenosis: effect of drug type, release kinetics, hemodynamics and coating strategy. Pharmacol Ther 2011; 134:43-53. [PMID: 22212618 DOI: 10.1016/j.pharmthera.2011.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/07/2011] [Indexed: 11/26/2022]
Abstract
Restenosis following stent implantation diminishes the procedure's efficacy influencing long-term clinical outcomes. Stent-based drug delivery emerged a decade ago as an effective means of reducing neointimal hyperplasia by providing localized pharmacotherapy during the acute phase of the stent-induced injury and the ensuing pathobiological mechanisms. However, drug-eluting stent (DES) restenosis may still occur especially when stents are used in complex anatomical and clinical scenarios. A DES consists of an intravascular metallic frame and carriers which allow controlled release of active pharmaceutical agents; all these components are critical in determining drug distribution locally and thus anti-restenotic efficacy. Furthermore, dynamic flow phenomena characterizing the vascular environment, and shear stress distribution, are greatly influenced by stent implantation and play a significant role in drug deposition and bioavailability within local vascular tissue. In this review, we discuss the performance of DES and the interaction of the different DES components with the hemodynamic milieu emphasizing on the inhibition of clinical restenosis.
Collapse
Affiliation(s)
- Michail I Papafaklis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02120, USA.
| | | | | | | | | |
Collapse
|
48
|
Jacob T, Hingorani A, Ascher E. p53 gene therapy modulates signal transduction in the apoptotic and cell cycle pathways downregulating neointimal hyperplasia. Vasc Endovascular Surg 2011; 46:45-53. [PMID: 22156152 DOI: 10.1177/1538574411422277] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To investigate the molecular mechanisms that lead to inhibition of intimal hyperplasia (IH) following p53 gene therapy. METHODS In vivo p53 gene transfer to balloon injured rat carotid arteries was performed by utilizing adenovirus. The relationship between p53, p21, retinoblastoma protein (Rb), B-cell lymphoma 2 (Bcl-2), Bax, and Bcl-x was examined by immunohistochemistry. Expression of cyclin D1, Fas/CD95, and poly(ADP-ribose)polymerase (PARP) was determined. RESULTS Our data indicate increased expression of p53 in the nuclei of vascular smooth muscle cells (VSMCs) in the media (P < .01) compared with the controls. In the treated animals, Bax and Bcl-x, p21, and Rb were significantly upregulated (P < .01). Immunoreactivity to Bcl-2 was observed only in the neointima of untreated groups at 14 days. An increased presence of Fas and decreased expression of PARP was observed in the cytoplasm of the VSMCs of p53-treated animals. CONCLUSIONS P53 gene transfer activated a battery of downstream effector genes whose products are directly involved in cell cycle arrest, DNA repair, and apoptosis.
Collapse
Affiliation(s)
- Theresa Jacob
- Department of Surgery, Maimonides Medical Center, Brooklyn, NY 11219, USA.
| | | | | |
Collapse
|
49
|
Song P, Wang S, He C, Wang S, Liang B, Viollet B, Zou MH. AMPKα2 deletion exacerbates neointima formation by upregulating Skp2 in vascular smooth muscle cells. Circ Res 2011; 109:1230-9. [PMID: 21980125 DOI: 10.1161/circresaha.111.250423] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RATIONALE Adenosine monophosphate-activated protein kinase (AMPK), a metabolic and redox sensor, is reported to suppress cell proliferation of nonmalignant and tumor cells. Whether AMPKα alters vascular neointima formation induced by vascular injury is unknown. OBJECTIVE The aim of this study was to determine the roles of AMPKα in the development of vascular neointima hyperplasia and to elucidate the underlying mechanisms. METHODS AND RESULTS Vascular smooth muscle cell (VSMC) proliferation and neointimal hyperplasia were evaluated in cultured VSMCs and wire-injured mouse carotid arteries from wild-type (WT, C57BL/6J), AMPKα2(-/-), and AMPKα1(-/-) mice. Mouse VSMCs derived from aortas of AMPKα2(-/-) mice exhibited increased proliferation compared with either WT or AMPKα1(-/-) VSMCs. Further, deletion of AMPKα2 but not AMPKα1 reduced the level of p27(Kip1), a cyclin-dependent kinase inhibitor, and increased the level of S-phase kinase-associated protein 2 (Skp2), a known E3 ubiquitin ligase for p27(Kip1), through activation of p52 nuclear factor kappa B (NF-κB)-2. Moreover, either pharmacological (ie, through compound C) or genetical (ie, through AMPKα2-specific siRNA) inhibition of AMPK decreased p27(Kip1) levels but increased the abundance of Skp2 in human VSMCs. Furthermore, gene silencing of Skp2 reversed the levels of p27(Kip1) and VSMCs proliferation. Finally, neointima formation after mechanical arterial injury was increased in AMPKα2(-/-) but not AMPKα1(-/-) mice. CONCLUSIONS These findings indicate that deletion of AMPKα2 through p52-Skp2-mediated ubiquitination and degradation of p27(Kip1) accentuates neointimal hyperplasia in response to wire injury.
Collapse
Affiliation(s)
- Ping Song
- Section of Molecular Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Human tissue kallikrein 1 gene delivery inhibits PDGF-BB-induced vascular smooth muscle cells proliferation and upregulates the expressions of p27Kip1 and p2lCip1. Mol Cell Biochem 2011; 360:363-71. [DOI: 10.1007/s11010-011-1076-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 09/16/2011] [Indexed: 11/26/2022]
|