1
|
Wang L, Geng J, Wang H. Emerging Landscape of Supercharged Proteins and Peptides for Drug Delivery. ACS Pharmacol Transl Sci 2024; 7:614-629. [PMID: 38481692 PMCID: PMC10928892 DOI: 10.1021/acsptsci.3c00397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2025]
Abstract
Although groundbreaking biotechnological techniques such as gene editing have significantly progressed, the effective and targeted transport of therapeutic agents into host cells remains a major obstacle to the development of biotherapeutics. Confronting the unique challenge posed by large macromolecules such as proteins, peptides, and nucleic acids adds complexity to this issue. Recent findings reveal that the supercharging of proteins and peptides not only enables control over critical properties, such as temperature resistance and catalytic activity, but also holds promise as a viable strategy for their use in drug delivery. This review provides a concise summary of the attributes of supercharged proteins and peptides, encompassing both their natural occurrence and engineered variants. Furthermore, it sheds light on the present status and future possibilities of supercharged proteins and peptides as carriers for significant biomolecules in the realms of medical research and therapeutic applications.
Collapse
Affiliation(s)
- Lidan Wang
- Laboratory
Medicine Department, Chinese Medicine Hospital
of Puyang, Puyang 457000, China
| | - Jingping Geng
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - Hu Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21215, United States
| |
Collapse
|
2
|
Sadeghian I, Akbarpour M, Chafjiri FMA, Chafjiri PMA, Heidari R, Morowvat MH, Sadeghian R, Raee MJ, Negahdaripour M. Potential of oligonucleotide- and protein/peptide-based therapeutics in the management of toxicant/stressor-induced diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1275-1310. [PMID: 37688622 DOI: 10.1007/s00210-023-02683-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Exposure to toxicants/stressors has been linked to the development of many human diseases. They could affect various cellular components, such as DNA, proteins, lipids, and non-coding RNAs (ncRNA), thereby triggering various cellular pathways, particularly oxidative stress, inflammatory responses, and apoptosis, which can contribute to pathophysiological states. Accordingly, modulation of these pathways has been the focus of numerous investigations for managing related diseases. The involvement of various ncRNAs, such as small interfering RNA (siRNA), microRNAs (miRNA), and long non-coding RNAs (lncRNA), as well as various proteins and peptides in mediating these pathways, provides many target sites for pharmaceutical intervention. In this regard, various oligonucleotide- and protein/peptide-based therapies have been developed to treat toxicity-induced diseases, which have shown promising results in vitro and in vivo. This comprehensive review provides information about various aspects of toxicity-related diseases including their causing factors, main underlying mechanisms and intermediates, and their roles in pathophysiological states. Particularly, it highlights the principles and mechanisms of oligonucleotide- and protein/peptide-based therapies in the treatment of toxicity-related diseases. Furthermore, various issues of oligonucleotides and proteins/peptides for clinical usage and potential solutions are discussed.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Akbarpour
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Hossein Morowvat
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
3
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
4
|
Alfonsetti M, d’Angelo M, Castelli V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2022; 18:1220-1228. [PMID: 36453397 PMCID: PMC9838155 DOI: 10.4103/1673-5374.358619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline. This process represents the major risk factor for aging-related diseases such as Alzheimer's disease, Parkinson's disease, and ischemic stroke. The incidence of all these pathologies increases exponentially with age. Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies. Cognitive deficit and neurodegeneration, common features of aging-related pathologies, are related to the alteration of the activity and levels of neurotrophic factors, such as brain-derived neurotrophic factor, nerve growth factor, and glial cell-derived neurotrophic factor. For this reason, treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases. Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors, neurotrophins' binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies. Considering neurotrophins' crucial role in aging pathologies, here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,Correspondence to: Vanessa Castelli, .
| |
Collapse
|
5
|
Parrasia S, Szabò I, Zoratti M, Biasutto L. Peptides as Pharmacological Carriers to the Brain: Promises, Shortcomings and Challenges. Mol Pharm 2022; 19:3700-3729. [PMID: 36174227 DOI: 10.1021/acs.molpharmaceut.2c00523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Central nervous system (CNS) diseases are among the most difficult to treat, mainly because the vast majority of the drugs fail to cross the blood-brain barrier (BBB) or to reach the brain at concentrations adequate to exert a pharmacological activity. The obstacle posed by the BBB has led to the in-depth study of strategies allowing the brain delivery of CNS-active drugs. Among the most promising strategies is the use of peptides addressed to the BBB. Peptides are versatile molecules that can be used to decorate nanoparticles or can be conjugated to drugs, with either a stable link or as pro-drugs. They have been used to deliver to the brain both small molecules and proteins, with applications in diverse therapeutic areas such as brain cancers, neurodegenerative diseases and imaging. Peptides can be generally classified as receptor-targeted, recognizing membrane proteins expressed by the BBB microvessels (e.g., Angiopep2, CDX, and iRGD), "cell-penetrating peptides" (CPPs; e.g. TAT47-57, SynB1/3, and Penetratin), undergoing transcytosis through unspecific mechanisms, or those exploiting a mixed approach. The advantages of peptides have been extensively pointed out, but so far few studies have focused on the potential negative aspects. Indeed, despite having a generally good safety profile, some peptide conjugates may display toxicological characteristics distinct from those of the peptide itself, causing for instance antigenicity, cardiovascular alterations or hemolysis. Other shortcomings are the often brief lifetime in vivo, caused by the presence of peptidases, the vulnerability to endosomal/lysosomal degradation, and the frequently still insufficient attainable increase of brain drug levels, which remain below the therapeutically useful concentrations. The aim of this review is to analyze not only the successful and promising aspects of the use of peptides in brain targeting but also the problems posed by this strategy for drug delivery.
Collapse
Affiliation(s)
- Sofia Parrasia
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Ildikò Szabò
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35131 Padova, Italy.,Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| |
Collapse
|
6
|
Wang F, Wu H, Hu A, Dong L, Lin X, Li M, Wang Y, Li W, Chang L, Chang Y, Liu H, Shi Y, Li N. Ultrasound combined with glial cell line-derived neurotrophic factor-loaded microbubbles for the targeted treatment of drug addiction. Front Bioeng Biotechnol 2022; 10:961728. [PMID: 36046678 PMCID: PMC9420873 DOI: 10.3389/fbioe.2022.961728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Drug addiction is a serious problem globally, recently exacerbated by the COVID-19 pandemic. Glial cell-derived neurotrophic factor (GDNF) is considered a potentially effective strategy for the treatment of addiction. Previous animal experiments have proven that GDNF has a good therapeutic effect on drug addiction, but its clinical application is limited due to its poor blood-brain barrier (BBB) permeability. Low-frequency focused ultrasound, combined with microbubbles, is a non-invasive and reversible technique for locally-targeted BBB opening. In the present study, magnetic resonance imaging-guided low-frequency focused ultrasound, combined with GDNF microbubbles, was used to target BBB opening in the ventral tegmental area (VTA) region. The effects of GDNF on morphine-induced conditioned place preference (CPP) and acute withdrawal symptoms in rats after a partially opened BBB were evaluated by behavioral observation. Western blot was used to detect changes in tyrosine hydroxylase (TH) expression levels in the VTA region after different treatments, and high performance liquid chromatography was used to detect the changes in monoamine neurotransmitter content. The results showed that ultrasound combined with GDNF microbubbles targeted and opened the BBB in the VTA region, and significantly increased GDNF content, destroyed morphine-induced CPP, and reduced the withdrawal symptoms of morphine addiction in rats. Furthermore, the up-regulation of TH expression and the increase of norepinephrine and dopamine content induced by morphine were significantly reversed, and the increase of 5-hydroxytryptamine content was partially reversed. Therefore, ultrasound combined with GDNF microbubbles to target and open the BBB can effectively increase the content of central GDNF, thus playing a therapeutic role in morphine addiction. Our study provides a new approach to locally open the BBB and target delivery of neurotrophic factors, such as GDNF, to treat brain diseases like addiction.
Collapse
Affiliation(s)
- Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hongwei Wu
- Department of Chemistry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Azhen Hu
- Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Lei Dong
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiaoxia Lin
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Menghao Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yongling Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Wenjun Li
- Division of Oral and Craniofacial Biomedicine, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Liansheng Chang
- Department of Human Anatomy Histology and Embryology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuqiao Chang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hanqing Liu
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, Guangdong, China
- *Correspondence: Hanqing Liu, ; Yu Shi, ; Nana Li,
| | - Yu Shi
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen, China
- *Correspondence: Hanqing Liu, ; Yu Shi, ; Nana Li,
| | - Nana Li
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan, China
- *Correspondence: Hanqing Liu, ; Yu Shi, ; Nana Li,
| |
Collapse
|
7
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Deng P, Halmai JANM, Beitnere U, Cameron D, Martinez ML, Lee CC, Waldo JJ, Thongphanh K, Adhikari A, Copping N, Petkova SP, Lee RD, Lock S, Palomares M, O’Geen H, Carter J, Gonzalez CE, Buchanan FKB, Anderson JD, Fierro FA, Nolta JA, Tarantal AF, Silverman JL, Segal DJ, Fink KD. An in vivo Cell-Based Delivery Platform for Zinc Finger Artificial Transcription Factors in Pre-clinical Animal Models. Front Mol Neurosci 2022; 14:789913. [PMID: 35153670 PMCID: PMC8829036 DOI: 10.3389/fnmol.2021.789913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022] Open
Abstract
Zinc finger (ZF), transcription activator-like effectors (TALE), and CRISPR/Cas9 therapies to regulate gene expression are becoming viable strategies to treat genetic disorders, although effective in vivo delivery systems for these proteins remain a major translational hurdle. We describe the use of a mesenchymal stem/stromal cell (MSC)-based delivery system for the secretion of a ZF protein (ZF-MSC) in transgenic mouse models and young rhesus monkeys. Secreted ZF protein from mouse ZF-MSC was detectable within the hippocampus 1 week following intracranial or cisterna magna (CM) injection. Secreted ZF activated the imprinted paternal Ube3a in a transgenic reporter mouse and ameliorated motor deficits in a Ube3a deletion Angelman Syndrome (AS) mouse. Intrathecally administered autologous rhesus MSCs were well-tolerated for 3 weeks following administration and secreted ZF protein was detectable within the cerebrospinal fluid (CSF), midbrain, and spinal cord. This approach is less invasive when compared to direct intracranial injection which requires a surgical procedure.
Collapse
Affiliation(s)
- Peter Deng
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Julian A. N. M. Halmai
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ulrika Beitnere
- Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States
| | - David Cameron
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Michele L. Martinez
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, Gene Therapy Center, and California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Charles C. Lee
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, Gene Therapy Center, and California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Jennifer J. Waldo
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Krista Thongphanh
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States
| | - Anna Adhikari
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Nycole Copping
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Stela P. Petkova
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Ruth D. Lee
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Samantha Lock
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Miranda Palomares
- Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States
| | - Henriette O’Geen
- Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States
| | - Jasmine Carter
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Casiana E. Gonzalez
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Fiona K. B. Buchanan
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Johnathan D. Anderson
- Department of Otolaryngology, University of California, Davis, Davis, CA, United States
| | - Fernando A. Fierro
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States
| | - Jan A. Nolta
- Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States
| | - Alice F. Tarantal
- Departments of Pediatrics and Cell Biology and Human Anatomy, School of Medicine, Gene Therapy Center, and California National Primate Research Center, University of California, Davis, Davis, CA, United States
| | - Jill L. Silverman
- Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States
| | - David J. Segal
- Department of Biochemistry and Molecular Medicine, Genome Center, University of California, Davis, Davis, CA, United States
| | - Kyle D. Fink
- Department of Neurology, University of California Davis School of Medicine, Sacramento, CA, United States,Stem Cell Program and Gene Therapy Center, University of California, Davis, Sacramento, CA, United States,Department of Psychiatry and Behavioral Sciences, MIND Institute, University of California Davis School of Medicine, Sacramento, CA, United States,*Correspondence: Kyle D. Fink,
| |
Collapse
|
9
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
10
|
Zhang Z, Sun GY, Ding S. Glial Cell Line-Derived Neurotrophic Factor and Focal Ischemic Stroke. Neurochem Res 2021; 46:2638-2650. [PMID: 33591443 PMCID: PMC8364922 DOI: 10.1007/s11064-021-03266-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 11/29/2022]
Abstract
Focal ischemic stroke (FIS) is a leading cause of human debilitation and death. Following the onset of a FIS, the brain experiences a series of spatiotemporal changes which are exemplified in different pathological processes. One prominent feature of FIS is the development of reactive astrogliosis and glial scar formation in the peri-infarct region (PIR). During the subacute phase, astrocytes in PIR are activated, referred to as reactive astrocytes (RAs), exhibit changes in morphology (hypotrophy), show an increased proliferation capacity, and altered gene expression profile, a phenomenon known as reactive astrogliosis. Subsequently, the morphology of RAs remains stable, and proliferation starts to decline together with the formation of glial scars. Reactive astrogliosis and glial scar formation eventually cause substantial tissue remodeling and changes in permanent structure around the PIR. Glial cell line-derived neurotrophic factor (GDNF) was originally isolated from a rat glioma cell-line and regarded as a potent survival neurotrophic factor. Under normal conditions, GDNF is expressed in neurons but is upregulated in RAs after FIS. This review briefly describes properties of GDNF, its receptor-mediated signaling pathways, as well as recent studies regarding the role of RAs-derived GDNF in neuronal protection and brain recovery. These results provide evidence suggesting an important role of RA-derived GDNF in intrinsic brain repair and recovery after FIS, and thus targeting GDNF in RAs may be effective for stroke therapy.
Collapse
Affiliation(s)
- Zhe Zhang
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Grace Y Sun
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, Columbia, MO, 65211, USA.
- Dalton Cardiovascular Research Center, Department of Biomedical, Biological and Chemical Engineering, University of Missouri-Columbia, 134 Research Park Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
11
|
Villalva MD, Agarwal V, Ulanova M, Sachdev PS, Braidy N. Quantum dots as a theranostic approach in Alzheimer's disease: a systematic review. Nanomedicine (Lond) 2021; 16:1595-1611. [PMID: 34180261 DOI: 10.2217/nnm-2021-0104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Quantum dots (QDs) are nanoparticles that have an emerging application as theranostic agents in several neurodegenerative diseases. The advantage of QDs as nanomedicine is due to their unique optical properties that provide high sensitivity, stability and selectivity at a nanoscale range. Objective: To offer renewed insight into current QD research and elucidate its promising application in Alzheimer's disease (AD) diagnosis and therapy. Methods: A comprehensive literature search was conducted in PubMed and Google Scholar databases that included the following search terms: 'quantum dots', 'blood-brain barrier', 'cytotoxicity', 'toxicity' and 'Alzheimer's disease'; PRISMA guidelines were adhered to. Results: Thirty-four publications were selected to evaluate the ability of QDs to cross the blood-brain barrier, potential toxicity and current AD diagnostic and therapeutic applications. Conclusion: QD's unique optical properties and versatility to conjugate to various biomolecules, while maintaining a nanoscale size, render them a promising theranostic tool in AD.
Collapse
Affiliation(s)
- Maria D Villalva
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Marina Ulanova
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia.,Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| |
Collapse
|
12
|
Bondarenko O, Saarma M. Neurotrophic Factors in Parkinson's Disease: Clinical Trials, Open Challenges and Nanoparticle-Mediated Delivery to the Brain. Front Cell Neurosci 2021; 15:682597. [PMID: 34149364 PMCID: PMC8206542 DOI: 10.3389/fncel.2021.682597] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neurotrophic factors (NTFs) are small secreted proteins that support the development, maturation and survival of neurons. NTFs injected into the brain rescue and regenerate certain neuronal populations lost in neurodegenerative diseases, demonstrating the potential of NTFs to cure the diseases rather than simply alleviating the symptoms. NTFs (as the vast majority of molecules) do not pass through the blood-brain barrier (BBB) and therefore, are delivered directly into the brain of patients using costly and risky intracranial surgery. The delivery efficacy and poor diffusion of some NTFs inside the brain are considered the major problems behind their modest effects in clinical trials. Thus, there is a great need for NTFs to be delivered systemically thereby avoiding intracranial surgery. Nanoparticles (NPs), particles with the size dimensions of 1-100 nm, can be used to stabilize NTFs and facilitate their transport through the BBB. Several studies have shown that NTFs can be loaded into or attached onto NPs, administered systemically and transported to the brain. To improve the NP-mediated NTF delivery through the BBB, the surface of NPs can be functionalized with specific ligands such as transferrin, insulin, lactoferrin, apolipoproteins, antibodies or short peptides that will be recognized and internalized by the respective receptors on brain endothelial cells. In this review, we elaborate on the most suitable NTF delivery methods and envision "ideal" NTF for Parkinson's disease (PD) and clinical trial thereof. We shortly summarize clinical trials of four NTFs, glial cell line-derived neurotrophic factor (GDNF), neurturin (NRTN), platelet-derived growth factor (PDGF-BB), and cerebral dopamine neurotrophic factor (CDNF), that were tested in PD patients, focusing mainly on GDNF and CDNF. We summarize current possibilities of NP-mediated delivery of NTFs to the brain and discuss whether NPs have impact in improving the properties of NTFs and delivery across the BBB. Emerging delivery approaches and future directions of NTF-based nanomedicine are also discussed.
Collapse
Affiliation(s)
- Olesja Bondarenko
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Mart Saarma
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Alipour M, Jafarian M, Rastgoo R, Mokri A, Gorji A, Zarrindast MR, Lorestani F, Razaghi EM. Cabergoline in Treatment of Methamphetamine-Dependent Patients and Its Effect on Serum Level of Glial Cell-Derived Neurotrophic Factor: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Eur Addict Res 2021; 27:457-468. [PMID: 33857946 DOI: 10.1159/000515398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/22/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Methamphetamine use disorder is an important public health problem, especially in the younger generation, and associated with various psychiatric, cognitive, social, economic, and legal issues. Cabergoline, a drug with dopaminergic properties and long half-life, has been considered for the treatment of stimulant dependence. The systemic use of cabergoline has been shown to increase glial cell-derived neurotrophic factor (GDNF) expression. OBJECTIVE In this study, we investigated the effects of cabergoline on the serum level of GDNF and its effect on abstaining from methamphetamine in individuals treated for methamphetamine use disorder. METHOD Sixty male subjects with methamphetamine use disorder were randomly assigned to 2 groups receiving cabergoline and placebo, respectively. During a 12-week follow-up, we compared the serum level of GDNF, urine test results for methamphetamine use, and depression scale between the 2 groups. RESULTS We found that serum GDNF was lower in subjects who used methamphetamine than healthy subjects (p < 0.0001). However, the serum level of GDNF was not associated with cabergoline use. The rising number of cases testing positive in the placebo group showed a trend resulting in no significant difference between cases testing positive and negative (p = 0.585) at the end of week 12. In the verum group, however, the significantly high number of cases who tested negative - sober - for substances observed in early stages (weeks 7-8) continued to remain significantly higher till the end of the study (p = 0.043), resembling an association between treatment with cabergoline and remaining sober. Although reduced during treatment, recovery from depression was not associated with cabergoline treatment. CONCLUSION The findings of this study confirmed the effect of cabergoline in reducing methamphetamine use. However, a serum level of the GDNF increase, as seen in animal studies, was not associated with cabergoline treatment of human subjects. This study was registered at the Iranian Registry of Clinical Trials (TRN:IRCT2015050422077N1, October 06, 2015, https://en.irct.ir/trial/19134).
Collapse
Affiliation(s)
- Mohammadesmaeil Alipour
- Department of Neuroscience and Addiction Studies, MD, PhD Candidate in Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Janbazan Medical and Engineering Research Center, Tehran, Iran
| | - Maryam Jafarian
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Rastgoo
- Department of Neuroscience and Addiction Studies, MD, PhD Candidate in Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azarakhsh Mokri
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Epilepsy Research Center, Westfalische Wilhelms-Universität Münster, Münster, Germany
| | - Mohammad R Zarrindast
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Lorestani
- Department of Psychology, Faculty of Humaities, Saveh Islamic Azad University, Saveh, Iran
| | - Emran M Razaghi
- Department of Psychiatry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Hosseini R, Bigdeli MR, Khaksar S, Aliaghaei A. The Effect of Allograft Transplantation of Sertoli Cell on Expression of NF-кB, Bax Proteins, and Ischemic Tolerance in Rats with Focal Cerebral Ischemia. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2020; 19:98-114. [PMID: 33224215 PMCID: PMC7667533 DOI: 10.22037/ijpr.2020.15574.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
One of the newest methods to reduce cerebral ischemia damages is cell therapy. The aim of this study is to evaluate the effect of Sertoli cell transplantation on ischemia-induced injuries in animal models of stroke. Rats were divided into four groups: transplant+ischemia, ischemia, sham, and control. Sertoli cells were separated from the other testis of rats and cultured. Unilateral Sertoli cell transplantation was performed in the right striatum by using stereotaxic surgery. For induction of brain ischemia, middle cerebral artery occlusion surgery was used 14 days after transplantation. By using western blotting method, expression of nuclear factor kappa (NF-кB) and Bax were evaluated. In this study, a remarkable decrease in neurological deficits, infection, blood-brain barrier permeability, and brain edema was observed in the cell transplant recipient group in comparison with the ischemia group. Probably, a reduction in inflammation (NF-кB factor) and apoptosis (Bax) following injection of Sertoli cells result in amelioration of ischemic damages induced by MCAO surgery.
Collapse
Affiliation(s)
- Roya Hosseini
- Department of Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Reza Bigdeli
- Department of Physiology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.,Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Abbas Aliaghaei
- Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Zaghmi A, Drouin-Ouellet J, Brambilla D, Gauthier MA. Treating brain diseases using systemic parenterally-administered protein therapeutics: Dysfunction of the brain barriers and potential strategies. Biomaterials 2020; 269:120461. [PMID: 33218788 DOI: 10.1016/j.biomaterials.2020.120461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
The parenteral administration of protein therapeutics is increasingly gaining importance for the treatment of human diseases. However, the presence of practically impermeable blood-brain barriers greatly restricts access of such pharmaceutics to the brain. Treating brain disorders with proteins thus remains a great challenge, and the slow clinical translation of these therapeutics may be largely ascribed to the lack of appropriate brain delivery system. Exploring new approaches to deliver proteins to the brain by circumventing physiological barriers is thus of great interest. Moreover, parallel advances in the molecular neurosciences are important for better characterizing blood-brain interfaces, particularly under different pathological conditions (e.g., stroke, multiple sclerosis, Parkinson's disease, and Alzheimer's disease). This review presents the current state of knowledge of the structure and the function of the main physiological barriers of the brain, the mechanisms of transport across these interfaces, as well as alterations to these concomitant with brain disorders. Further, the different strategies to promote protein delivery into the brain are presented, including the use of molecular Trojan horses, the formulation of nanosystems conjugated/loaded with proteins, protein-engineering technologies, the conjugation of proteins to polymers, and the modulation of intercellular junctions. Additionally, therapeutic approaches for brain diseases that do not involve targeting to the brain are presented (i.e., sink and scavenging mechanisms).
Collapse
Affiliation(s)
- A Zaghmi
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada
| | - J Drouin-Ouellet
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - D Brambilla
- Faculty of Pharmacy, Université de Montréal, CP 6128, succ. Centre-ville, Montréal, QC, H3C 3J7, Canada
| | - M A Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, Varennes, QC, J3X 1S2, Canada.
| |
Collapse
|
16
|
Sénécal V, Barat C, Tremblay MJ. The delicate balance between neurotoxicity and neuroprotection in the context of HIV-1 infection. Glia 2020; 69:255-280. [PMID: 32910482 DOI: 10.1002/glia.23904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) causes a spectrum of neurological impairments, termed HIV-associated neurocognitive disorder (HAND), following the infiltration of infected cells into the brain. Even though the implementation of antiretroviral therapy reduced the systemic viral load, the prevalence of HAND remains unchanged and infected patients develop persisting neurological disturbances affecting their quality of life. As a result, HAND have gained importance in basic and clinical researches, warranting the need of developing new adjunctive treatments. Nonetheless, a better understanding of the molecular and cellular mechanisms remains necessary. Several studies consolidated their efforts into elucidating the neurotoxic signaling leading to HAND including the deleterious actions of HIV-1 viral proteins and inflammatory mediators. However, the scope of these studies is not sufficient to address all the complexity related to HAND development. Fewer studies focused on an altered neuroprotective capacity of the brain to respond to HIV-1 infection. Neurotrophic factors are endogenous polyproteins involved in neuronal survival, synaptic plasticity, and neurogenesis. Any defects in the processing or production of these crucial factors might compose a risk factor rendering the brain more vulnerable to neuronal damages. Due to their essential roles, they have been investigated for their diverse interplays with HIV-1 infection. In this review, we present a complete description of the neurotrophic factors involved in HAND. We discuss emerging concepts for their therapeutic applications and summarize the complex mechanisms that down-regulate their production in favor of a neurotoxic environment. For certain factors, we finally address opposing roles that rather lead to increased inflammation.
Collapse
Affiliation(s)
- Vincent Sénécal
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du CHU de Québec-Université Laval, Pavillon CHUL, Québec, Quebec, Canada.,Département de Microbiologie-infectiologie et immunologie, Faculté de Médecine, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
17
|
Zhang N, Zhang Z, He R, Li H, Ding S. GLAST-CreER T2 mediated deletion of GDNF increases brain damage and exacerbates long-term stroke outcomes after focal ischemic stroke in mouse model. Glia 2020; 68:2395-2414. [PMID: 32497340 DOI: 10.1002/glia.23848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 01/01/2023]
Abstract
Focal ischemic stroke (FIS) is a leading cause of human death. Glial scar formation largely caused by reactive astrogliosis in peri-infarct region (PIR) is the hallmark of FIS. Glial cell-derived neurotrophic factor (GDNF) was originally isolated from a rat glioma cell-line supernatant and is a potent survival neurotrophic factor. Here, using CreERT2 -LoxP recombination technology, we generated inducible and astrocyte-specific GDNF conditional knockout (cKO), that is, GLAST-GDNF-/- cKO mice to investigate the effect of reactive astrocytes (RAs)-derived GDNF on neuronal death, brain damage, oxidative stress and motor function recovery after photothrombosis (PT)-induced FIS. Under non-ischemic conditions, we found that adult GLAST-GDNF-/- cKO mice exhibited significant lower numbers of Brdu+, Ki67+ cells, and DCX+ cells in the dentate gyrus (DG) in hippocampus than GDNF floxed (GDNFf/f ) control (Ctrl) mice, indicating endogenous astrocytic GDNF can promote adult neurogenesis. Under ischemic conditions, GLAST-GDNF-/- cKO mice had a significant increase in infarct volume, hippocampal damage and FJB+ degenerating neurons after PT as compared with the Ctrl mice. GLAST-GDNF-/- cKO mice also had lower densities of Brdu+ and Ki67+ cells in the PIR and exhibited larger behavioral deficits than the Ctrl mice. Mechanistically, GDNF deficiency in astrocytes increased oxidative stress through the downregulation of glucose-6-phosphate dehydrogenase (G6PD) in RAs. In summary, our study indicates that RAs-derived endogenous GDNF plays important roles in reducing brain damage and promoting brain recovery after FIS through neural regeneration and suggests that promoting anti-oxidant mechanism in RAs is a potential strategy in stroke therapy.
Collapse
Affiliation(s)
- Nannan Zhang
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Zhe Zhang
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Rui He
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Hailong Li
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| | - Shinghua Ding
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.,Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
18
|
Beker M, Caglayan AB, Beker MC, Altunay S, Karacay R, Dalay A, Altintas MO, Kose GT, Hermann DM, Kilic E. Lentivirally administered glial cell line-derived neurotrophic factor promotes post-ischemic neurological recovery, brain remodeling and contralesional pyramidal tract plasticity by regulating axonal growth inhibitors and guidance proteins. Exp Neurol 2020; 331:113364. [PMID: 32454038 DOI: 10.1016/j.expneurol.2020.113364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 01/01/2023]
Abstract
Owing to its potent longterm neuroprotective and neurorestorative properties, glial cell line-derived neurotrophic factor (GDNF) is currently studied in neurodegenerative disease clinical trials. However, little is known about the longterm effect of GDNF on neurological recovery, brain remodeling and neuroplasticity in the post-acute phase of ischemic stroke. In a comprehensive set of experiments, we examined the effects of lentiviral GDNF administration after ischemic stroke. GDNF reduced neurological deficits, neuronal injury, blood-brain barrier permeability in the acute phase in mice. As compared with control, enhanced motor-coordination and spontaneous locomotor activity were noted in GDNF-treated mice, which were associated with increased microvascular remodeling, increased neurogenesis and reduced glial scar formation in the peri-infarct tissue. We observed reduced brain atrophy and increased plasticity of contralesional pyramidal tract axons that crossed the midline in order to innervate denervated neurons in the ipsilesional red and facial nuclei. Contralesional axonal plasticity by GDNF was associated with decreased abundance of the axonal growth inhibitors brevican and versican in contralesional and ipsilesional brain tissue, reduced abundance of the growth repulsive guidance molecule ephrin b1 in contralesional brain tissue, increased abundance of the midline growth repulsive protein Slit1 in contralesional brain tissue and reduced abundance of Slit1's receptor Robo2 in ipsilesional brain tissue. These data indicate that GDNF potently induces longterm neurological recovery, peri-infarct brain remodeling and contralesional neuroplasticity, which are associated with the fine-tuned regulation of axonal growth inhibitors and guidance molecules that facilitate the growth of contralesional corticofugal axons in the direction to the ipsilesional hemisphere.
Collapse
Affiliation(s)
- Merve Beker
- Dept. of Medical Biology, International School of Medicine, University of Health Sciences Turkey, Istanbul, Turkey.; Dept. of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.; Dept. of Medical Biology, School of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ahmet B Caglayan
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mustafa C Beker
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Serdar Altunay
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Reyda Karacay
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Arman Dalay
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet O Altintas
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Gamze T Kose
- Dept. of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Dirk M Hermann
- Dept. of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ertugrul Kilic
- Research Institute for Health Sciences and Technologies (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Istanbul Medipol University, Istanbul, Turkey; Dept. of Physiology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
19
|
Cell Death Pathways in Ischemic Stroke and Targeted Pharmacotherapy. Transl Stroke Res 2020; 11:1185-1202. [PMID: 32219729 DOI: 10.1007/s12975-020-00806-z] [Citation(s) in RCA: 215] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is one of the significant causes of morbidity and mortality, affecting millions of people across the globe. Cell injury in the infarct region is an inevitable consequence of focal cerebral ischemia. Subsequent reperfusion exacerbates the harmful effect and increases the infarct volume. These cellular injuries follow either a regulated pathway involving tightly structured signaling cascades and molecularly defined effector mechanisms or a non-regulated pathway, also known as accidental cell death, where the process is biologically uncontrolled. Classical cell death pathways are long established and well reported in several articles that majorly define apoptotic cell death. A recent focus on cell death study also considers investigation on non-classical pathways that are tightly regulated, may or may not involve caspases, but non-apoptotic. Pathological cell death is a cardinal feature of different neurodegenerative diseases. Although ischemia cannot be classified as a neurodegenerative disease, it is a cerebrovascular event where the infarct region exhibits aberrant cell death. Over the past few decades, several therapeutic options have been implicated for ischemic stroke. However, their use has been hampered owing to the number of limitations that they possess. Ischemic penumbral neurons undergo apoptosis and become dysfunctional; however, they are salvageable. Thus, understanding the role of different cell death pathways is crucial to aid in the modern treatment of protecting apoptotic neurons.
Collapse
|
20
|
Yamaguchi S, Ito S, Masuda T, Couraud PO, Ohtsuki S. Novel cyclic peptides facilitating transcellular blood-brain barrier transport of macromolecules in vitro and in vivo. J Control Release 2020; 321:744-755. [PMID: 32135226 DOI: 10.1016/j.jconrel.2020.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/15/2022]
Abstract
Brain delivery of nanoparticles and macromolecular drugs depends on blood-brain barrier (BBB)-permeable carriers. In this study, we searched for cyclic heptapeptides facilitating BBB permeation of M13 phages by phage library screening using a transcellular permeability assay with hCMEC/D3 cell monolayers, a human BBB model. The M13 phage, which is larger than macromolecular drugs and nanoparticles, served as a model macromolecule. The screen identified cyclic heptapeptide SLSHSPQ (SLS) as a human BBB-permeable peptide. The SLS-displaying phage (SLS-phage) exhibited improved permeation across the cell monolayer of monkey and rat BBB co-culture models. The SLS-phage internalized into hCMEC/D3 cells via macropinocytosis and externalized via the exosome excretion pathway. SLS-phage distribution into brain parenchyma was observed in mice after intravenous administration. Moreover, liposome permeated across the BBB as cyclic SLS peptide conjugates. In conclusion, the cyclic SLS heptapeptide is a novel carrier candidate for brain delivery of macromolecular drugs and nanoparticles.
Collapse
Affiliation(s)
- Shunsuke Yamaguchi
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Japan Society for the Promotion of Science, Research Fellowship for Young Scientists, Chiyoda-ku, Tokyo, Japan
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Pierre-Olivier Couraud
- Institut Cochin, INSERM U1016, CNRS UMR8104, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
21
|
Chen YX, Wei CX, Lyu YQ, Chen HZ, Jiang G, Gao XL. Biomimetic drug-delivery systems for the management of brain diseases. Biomater Sci 2019; 8:1073-1088. [PMID: 31728485 DOI: 10.1039/c9bm01395d] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acting as a double-edged sword, the blood-brain barrier (BBB) is essential for maintaining brain homeostasis by restricting the entry of small molecules and most macromolecules from blood. However, it also largely limits the brain delivery of most drugs. Even if a drug can penetrate the BBB, its accumulation in the intracerebral pathological regions is relatively low. Thus, an optimal drug-delivery system (DDS) for the management of brain diseases needs to display BBB permeability, lesion-targeting capability, and acceptable safety. Biomimetic DDSs, developed by directly utilizing or mimicking the biological structures and processes, provide promising approaches for overcoming the barriers to brain drug delivery. The present review summarizes the biological properties and biomedical applications of the biomimetic DDSs including the cell membrane-based DDS, lipoprotein-based DDS, exosome-based DDS, virus-based DDS, protein template-based DDS and peptide template-based DDS for the management of brain diseases.
Collapse
Affiliation(s)
- Yao-Xing Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Chen-Xuan Wei
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Ying-Qi Lyu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China. and Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201210, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Xiao-Ling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
22
|
Mason B, Rollins LG, Asumadu E, Cange C, Walton N, Donaldson ST. Nesting Environment Provides Sex-Specific Neuroprotection in a Rat Model of Neonatal Hypoxic-Ischemic Injury. Front Behav Neurosci 2018; 12:221. [PMID: 30356904 PMCID: PMC6190890 DOI: 10.3389/fnbeh.2018.00221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/03/2018] [Indexed: 11/17/2022] Open
Abstract
Hypoxic-ischemic (HI) encephalopathy is a devastating injury that occurs when the fetal brain is deprived of oxygen and blood to a degree that may lead to neurological damage, seizing and cerebral palsy. In rodents, early environmental enrichment that promotes maternal care-taking behavior (mCTB) can improve neurobehavioral outcomes and protect against neurological decline. We hypothesized that an enhanced nesting environment would improve mCTB as measured by pup weight gain, and support greater HI recovery in developing rats. Pregnant dams (E15-16) were introduced to either control Standard Facility (SF) housing or closed nestbox (CN) conditions and maintained in larger cages through pup weaning. On postnatal day (PND) 7, male and female Long-Evans rat pups (N = 73) were randomly sorted into one of two surgical conditions: control and HI. HI pups received isoflurane anesthesia and right carotid artery ligation, a 2-h rest followed by 90 min exposure to a moist hypoxic (92% N, 8% O2) chamber. Pups (PND 8) were weighed daily, and tested on the Morris Water Maze (MWM) task (PND 35-50). Results demonstrate significant differences afforded to male and female pups based on weight measure, where CN-rearing modifies pre-weaning adolescent weights in females and increases post-weaning weights in males and females by an average of 10 g. Following successful MWM training and acquisition (PND 35-37), both male and female CN-raised animals demonstrated faster latency to find the hidden platform (HP) during HP trials (PND 38-42) and appeared to freely explore the MWM pool during an additional probe trial (PND 43). Moreover, after sacrifice (PND 60), CN rearing created sex-specific alterations in brain-derived neurotrophic factor (BDNF), glial-derived neurotrophic factor (GDNF) immunopositive cell staining of the dorsomedial striatum and CA1 of the hippocampus. CN-rearing afforded HI males higher BDNF levels in the striatum and produced greater GDNF levels in the hippocampus of HI-injured females. These results suggest that early life environmental enrichment positively modifies nesting environment, increases weight gain, as well as spatial learning and memory in a sex-specific directionality. Our findings also implicate correlative changes in corticolimbic neurotrophin protein levels in the CN-reared animals that may contribute to these benefits.
Collapse
Affiliation(s)
- Briana Mason
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - L. G. Rollins
- Clinical Psychology Program, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
- Warren Alpert Medical School, Department of Psychiatry, Brown University, Providence, RI, United States
| | - Evans Asumadu
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Christina Cange
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - Najah Walton
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| | - S. Tiffany Donaldson
- Developmental and Brain Sciences, Department of Psychology, University of Massachusetts Boston, Boston, MA, United States
| |
Collapse
|
23
|
MacDougall G, Anderton RS, Mastaglia FL, Knuckey NW, Meloni BP. Mitochondria and neuroprotection in stroke: Cationic arginine-rich peptides (CARPs) as a novel class of mitochondria-targeted neuroprotective therapeutics. Neurobiol Dis 2018; 121:17-33. [PMID: 30218759 DOI: 10.1016/j.nbd.2018.09.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/26/2018] [Accepted: 09/11/2018] [Indexed: 01/11/2023] Open
Abstract
Stroke is the second leading cause of death globally and represents a major cause of devastating long-term disability. Despite sustained efforts to develop clinically effective neuroprotective therapies, presently there is no clinically available neuroprotective agent for stroke. As a central mediator of neurodamaging events in stroke, mitochondria are recognised as a critical neuroprotective target, and as such, provide a focus for developing mitochondrial-targeted therapeutics. In recent years, cationic arginine-rich peptides (CARPs) have been identified as a novel class of neuroprotective agent with several demonstrated mechanisms of action, including their ability to target mitochondria and exert positive effects on the organelle. This review provides an overview on neuronal mitochondrial dysfunction in ischaemic stroke pathophysiology and highlights the potential beneficial effects of CARPs on mitochondria in the ischaemic brain following stroke.
Collapse
Affiliation(s)
- Gabriella MacDougall
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia.
| | - Ryan S Anderton
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; School of Heath Sciences, and Institute for Health Research, The University Notre Dame Australia, Fremantle, Australia
| | - Frank L Mastaglia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia
| | - Neville W Knuckey
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Bruno P Meloni
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia; Perron Institute for Neurological and Translational Science, Nedlands, Australia; Department of Neurosurgery, Sir Charles Gairdner Hospital, QEII Medical Centre, Nedlands, Western Australia, Australia
| |
Collapse
|
24
|
Neural Stem Cell-Conditioned Medium Ameliorated Cerebral Ischemia-Reperfusion Injury in Rats. Stem Cells Int 2018; 2018:4659159. [PMID: 29765412 PMCID: PMC5903322 DOI: 10.1155/2018/4659159] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 09/22/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Introduction Our previous study suggested that NSC-CM (neural stem cell-conditioned medium) inhibited cell apoptosis in vitro. In addition, many studies have shown that neurotrophic factors and microparticles secreted into a conditioned medium by NSCs had neuroprotective effects. Thus, we hypothesized that NSC-CM had the capacity of protecting against cerebral I/R injury. Methods Adult male Sprague-Dawley rats receiving middle cerebral artery occlusion surgery as an animal model of cerebral I/R injury were randomly assigned to two groups: the control group and NSC-CM-treated group. 1.5 ml NSC-CM or PBS (phosphate buffer saline) was administrated slowly by tail vein at 3 h, 24 h, and 48 h after ischemia onset. Results NSC-CM significantly ameliorated neurological defects and reduced cerebral infarct volume, accompanied by preserved mitochondrial ultrastructure. In addition, we also found that NSC-CM significantly inhibited cell apoptosis in the ischemic hemisphere via improving the expression of Bcl-2 (B-cell lymphoma-2). Conclusion NSC-CM might be an alternative and effective therapeutic intervention for ischemic stroke.
Collapse
|
25
|
Ma F, Xu F, Li R, Zheng Y, Wang F, wei N, zhong J, Tang Q, Zhu T, Wang Z, Zhu J. Sustained delivery of glial cell-derived neurotrophic factors in collagen conduits for facial nerve regeneration. Acta Biomater 2018; 69:146-155. [PMID: 29330037 DOI: 10.1016/j.actbio.2018.01.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 02/06/2023]
Abstract
Facial nerve injury caused by traffic accidents or operations may reduce the quality of life in patients, and recovery following the injury presents unique clinical challenges. Glial cell-derived neurotrophic factor (GDNF) is important in nerve regeneration; however, soluble GDNF rapidly diffuses into body fluids, making it difficult to achieve therapeutic efficacy. In this work, we developed a rat tail derived collagen conduit to connect nerve defects in a simple and safe manner. GDNF was immobilized in the collagen conduits via chemical conjugation to enable controlled release of GDNF. The GDNF delivery system prevented rapid diffusion from the site without impacting bioactivity of GDNF; degradation of the collagen conduit was inhibited owing to the chemical conjugation. The artificial nerve conduit was then used to examine facial nerve regeneration across a facial nerve defect. Following transplantation, the artificial nerve conduits degraded gradually without causing dislocations and serious inflammation, with good integration into the host tissue. Functional and histological tests indicated that the artificial nerve conduits were able to guide the axons to grow through the defect, reaching the distal stumps. The degree of nerve regeneration in the group that was treated with the artificial nerve conduit approached that of the autograft group, and exceeded that of the other conduit grafted groups. STATEMENT OF SIGNIFICANCE In this study, we developed artificial nerve conduits consisting of GDNF immobilized on collagen, with the aim of providing an environment for nerve regeneration. Our results show that the artificial nerve conduits guided the regeneration of axons to the distal nerve segment. GDNF was immobilized stably in the artificial nerve conduits, and therefore retained a sufficient concentration at the target site to effectively promote the regeneration process. The artificial nerve conduits exhibited good biocompatibility and facilitated nerve regeneration and functional recovery with an efficacy that was close to that of an autograft, and better than that of the other conduit grafted groups. Our approach provides an effective delivery system that overcomes the rapid diffusion of GDNF in body fluids, promoting peripheral nerve regeneration. The artificial nerve conduit therefore qualifies as a putative candidate material for the fabrication of peripheral nerve reconstruction devices.
Collapse
|
26
|
Şekerdağ E, Solaroğlu I, Gürsoy-Özdemir Y. Cell Death Mechanisms in Stroke and Novel Molecular and Cellular Treatment Options. Curr Neuropharmacol 2018; 16:1396-1415. [PMID: 29512465 PMCID: PMC6251049 DOI: 10.2174/1570159x16666180302115544] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/18/2017] [Accepted: 03/01/2018] [Indexed: 02/06/2023] Open
Abstract
As a result of ischemia or hemorrhage, blood supply to neurons is disrupted which subsequently promotes a cascade of pathophysiological responses resulting in cell loss. Many mechanisms are involved solely or in combination in this disorder including excitotoxicity, mitochondrial death pathways, and the release of free radicals, protein misfolding, apoptosis, necrosis, autophagy and inflammation. Besides neuronal cell loss, damage to and loss of astrocytes as well as injury to white matter contributes also to cerebral injury. The core problem in stroke is the loss of neuronal cells which makes recovery difficult or even not possible in the late states. Acute treatment options that can be applied for stroke are mainly targeting re-establishment of blood flow and hence, their use is limited due to the effective time window of thrombolytic agents. However, if the acute time window is exceeded, neuronal loss starts due to the activation of cell death pathways. This review will explore the most updated cellular death mechanisms leading to neuronal loss in stroke. Ischemic and hemorrhagic stroke as well as subarachnoid hemorrhage will be debated in the light of cell death mechanisms and possible novel molecular and cellular treatment options will be discussed.
Collapse
Affiliation(s)
- Emine Şekerdağ
- Address correspondence to this author at the Neuroscience Research Lab, Research Center for Translational Medicine, Koç University, Istanbul, Turkey; Tel: +90 850 250 8250; E-mail:
| | | | | |
Collapse
|
27
|
Chen F, Lu J, Chen F, Lin Z, Lin Y, Yu L, Su X, Yao P, Cai B, Kang D. Recombinant neuroglobin ameliorates early brain injury after subarachnoid hemorrhage via inhibiting the activation of mitochondria apoptotic pathway. Neurochem Int 2018; 112:219-226. [DOI: 10.1016/j.neuint.2017.07.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/17/2017] [Accepted: 07/29/2017] [Indexed: 01/17/2023]
|
28
|
Routes for Drug Translocation Across the Blood-Brain Barrier: Exploiting Peptides as Delivery Vectors. J Pharm Sci 2017; 106:2326-2334. [DOI: 10.1016/j.xphs.2017.04.080] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/17/2023]
|
29
|
Interaction of ARC and Daxx: A Novel Endogenous Target to Preserve Motor Function and Cell Loss after Focal Brain Ischemia in Mice. J Neurosci 2017; 36:8132-48. [PMID: 27488634 DOI: 10.1523/jneurosci.4428-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/07/2016] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED The aim of this study was to explore the signaling and neuroprotective effect of transactivator of transcription (TAT) protein transduction of the apoptosis repressor with CARD (ARC) in in vitro and in vivo models of cerebral ischemia in mice. In mice, transient focal cerebral ischemia reduced endogenous ARC protein in neurons in the ischemic striatum at early reperfusion time points, and in primary neuronal cultures, RNA interference resulted in greater neuronal susceptibility to oxygen glucose deprivation (OGD). TAT.ARC protein delivery led to a dose-dependent better survival after OGD. Infarct sizes 72 h after 60 min middle cerebral artery occlusion (MCAo) were on average 30 ± 8% (mean ± SD; p = 0.005; T2-weighted MRI) smaller in TAT.ARC-treated mice (1 μg intraventricularly during MCAo) compared with controls. TAT.ARC-treated mice showed better performance in the pole test compared with TAT.β-Gal-treated controls. Importantly, post-stroke treatment (3 h after MCAo) was still effective in affording reduced lesion volume by 20 ± 7% (mean ± SD; p < 0.05) and better functional outcome compared with controls. Delayed treatment in mice subjected to 30 min MCAo led to sustained neuroprotection and functional behavior benefits for at least 28 d. Functionally, TAT.ARC treatment inhibited DAXX-ASK1-JNK signaling in the ischemic brain. ARC interacts with DAXX in a CARD-dependent manner to block DAXX trafficking and ASK1-JNK activation. Our work identifies for the first time ARC-DAXX binding to block ASK1-JNK activation as an ARC-specific endogenous mechanism that interferes with neuronal cell death and ischemic brain injury. Delayed delivery of TAT.ARC may present a promising target for stroke therapy. SIGNIFICANCE STATEMENT Up to now, the only successful pharmacological target of human ischemic stroke is thrombolysis. Neuroprotective pharmacological strategies are needed to accompany therapies aiming to achieve reperfusion. We describe that apoptosis repressor with CARD (ARC) interacts and inhibits DAXX and proximal signals of cell death. In a murine stroke model mimicking human malignant infarction in the territory of the middle cerebral artery, TAT.ARC salvages brain tissue when given during occlusion or 3 h delayed with sustained functional benefits (28 d). This is a promising novel therapeutic approach because it appears to be effective in a model producing severe injury by interfering with an array of proximal signals and effectors of the ischemic cascade, upstream of JNK, caspases, and BIM and BAX activation.
Collapse
|
30
|
Vascular Endothelial Growth Factor Isoform-B Stimulates Neurovascular Repair After Ischemic Stroke by Promoting the Function of Pericytes via Vascular Endothelial Growth Factor Receptor-1. Mol Neurobiol 2017; 55:3611-3626. [PMID: 28290152 DOI: 10.1007/s12035-017-0478-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/01/2017] [Indexed: 12/14/2022]
Abstract
Ischemic stroke triggers endogenous angiogenic mechanisms, which correlates with longer survival in patients. As such, promoting angiogenesis appears to be a promising approach. Experimental studies investigated mostly the potent angiogenic factor vascular endothelial growth factor isoform-A (VEGF-A). However, VEGF-A increases the risk of destabilizing the brain microvasculature, thus hindering the translation of its usage in clinics. An attractive alternative VEGF isoform-B (VEGF-B) was recently reported to act as a survival factor rather than a potent angiogenic factor. In this study, we investigated the therapeutic potential of VEGF-B in ischemic stroke using different in vivo and in vitro approaches. We showed that the delayed intranasal administration of VEGF-B reduced neuronal damage and inflammation. Unexpectedly, VEGF-B stimulated the formation of stable brain microvasculature within the injured region by promoting the interaction between endothelial cells and pericytes. Our data indicate that the effects of VEGF-B were mediated via its specific receptor VEGF receptor-1 (VEGFR-1) that is predominately expressed in brain pericytes. Importantly, VEGF-B promoted the survival of pericytes, and not brain endothelial cells, by inducing expression of the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) and the main protein involved in energy homeostasis AMP-activated protein kinase α (AMPKα). Moreover, we showed that VEGF-B stimulated the pericytic release of factors stimulating a "reparative angiogenesis" that does not compromise microvasculature stability. Our study unraveled hitherto unknown role of VEGF-B/VEGFR-1 signaling in regulating the function of pericytes. Furthermore, our findings suggest that brain microvasculature stabilization via VEGF-B constitutes a safe therapeutic approach for ischemic stroke.
Collapse
|
31
|
Lou G, Zhang Q, Xiao F, Xiang Q, Su Z, Huang Y. Intranasal TAT-haFGF Improves Cognition and Amyloid-β Pathology in an AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2016; 51:985-90. [PMID: 26890786 DOI: 10.3233/jad-151121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neurotoxic amyloid-β (Aβ) peptide causing cognitive function disabilities is one of the most characteristic pathological features in Alzheimer's disease (AD). A novel fusion protein, TAT-haFGF, was administrated to AβPP/PS1 transgenic mice by intravenous (IV) injection and intranasal (IN) delivery, respectively, for 5 weeks to compare the pharmacodynamics between the two routes of administration. Our results showed that IN administration of TAT-haFGF improved cognition and reduced Aβ plaques more significantly in AβPP/PS1 mice, when compared with IV injection. Our new findings suggest that TAT-haFGF might be a promising new therapy to attenuate AD pathological process.
Collapse
Affiliation(s)
- Guofeng Lou
- Institute of Biomedicine & Department of Cell Biology, Jinan University, Guangzhou, China
| | - Qihao Zhang
- Institute of Biomedicine & Department of Cell Biology, Jinan University, Guangzhou, China
| | - Fei Xiao
- Department of Pharmacology, Jinan University, Guangzhou, China
| | - Qi Xiang
- Institute of Biomedicine & Department of Cell Biology, Jinan University, Guangzhou, China
| | - Zhijian Su
- Institute of Biomedicine & Department of Cell Biology, Jinan University, Guangzhou, China
| | - Yadong Huang
- Institute of Biomedicine & Department of Cell Biology, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Becerra-Calixto A, Cardona-Gómez GP. Neuroprotection Induced by Transplanted CDK5 Knockdown Astrocytes in Global Cerebral Ischemic Rats. Mol Neurobiol 2016; 54:6681-6696. [PMID: 27744570 DOI: 10.1007/s12035-016-0162-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/23/2016] [Indexed: 11/29/2022]
Abstract
Cerebral ischemia is a cerebrovascular episode that generates a high incidence of death and physical and mental disabilities worldwide. Excitotoxicity, release of free radicals, and exacerbated immune response cause serious complications in motor and cognitive areas during both short and long time frames post-ischemia. CDK5 is a kinase that is widely involved in the functions of neurons and astrocytes, and its over-activation is implicated in neurodegenerative processes. In this study, we evaluated the brain parenchymal response to the transplantation of CDK5-knockdown astrocytes into the somatosensory cortex after ischemia in rats. Male Wistar rats were subjected to the two-vessel occlusion (2VO) model of global cerebral ischemia and immediately transplanted with shCDK5miR- or shSCRmiR-transduced astrocytes or with untransduced astrocytes (Control). Our findings showed that animals transplanted with shCDK5miR astrocytes recovered motor and neurological performance better than with those transplanted with WT or shSCRmiR astrocytes. Cell transplantation produced an overall prevention of neuronal loss, and CDK5-knockdown astrocytes significantly increased the immunoreactivity (IR) of endogenous GFAP in branches surrounding blood vessels, accompanied by the upregulation of PECAM-1 IR in the walls of vessels in the motor and somatosensory regions and by an increase in Ki67 IR in the subventricular zone (SVZ), partially associated with the production of BDNF. Together, our data suggest that transplantation of shCDK5miR astrocytes protects the neurovascular unit in ischemic rats, allowing the motor and neurological function recovery.
Collapse
Affiliation(s)
- Andrea Becerra-Calixto
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, School of Medicine, SIU, University of Antioquia UdeA, Calle 70 No. 52-21, Medellin, Colombia.
| |
Collapse
|
33
|
Ilchibaeva TV, Tsybko AS, Kozhemyakina RV, Popova NK, Naumenko VS. Glial cell line-derived neurotrophic factor in genetically defined fear-induced aggression. Eur J Neurosci 2016; 44:2467-2473. [DOI: 10.1111/ejn.13365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/08/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Tatiana V. Ilchibaeva
- Department of Behavioral Neurogenomics; Federal Research Center Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Lavrentyeva av. 10 Novosibirsk 630090 Russia
| | - Anton S. Tsybko
- Department of Behavioral Neurogenomics; Federal Research Center Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Lavrentyeva av. 10 Novosibirsk 630090 Russia
| | - Rimma V. Kozhemyakina
- Laboratory of Evolutionary Genetics; Federal Research Center Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Novosibirsk Russia
| | - Nina K. Popova
- Department of Behavioral Neurogenomics; Federal Research Center Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Lavrentyeva av. 10 Novosibirsk 630090 Russia
| | - Vladimir S. Naumenko
- Department of Behavioral Neurogenomics; Federal Research Center Institute of Cytology and Genetics; Siberian Division of the Russian Academy of Science; Lavrentyeva av. 10 Novosibirsk 630090 Russia
| |
Collapse
|
34
|
Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides. Acta Pharm Sin B 2016; 6:352-8. [PMID: 27471676 PMCID: PMC4951590 DOI: 10.1016/j.apsb.2016.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/24/2016] [Accepted: 04/07/2016] [Indexed: 01/20/2023] Open
Abstract
Brain delivery of macromolecular therapeutics (e.g., proteins) remains an unsolved problem because of the formidable blood–brain barrier (BBB). Although a direct pathway of nose-to-brain transfer provides an answer to circumventing the BBB and has already been intensively investigated for brain delivery of small drugs, new challenges arise for intranasal delivery of proteins because of their larger size and hydrophilicity. In order to overcome the barriers and take advantage of available pathways (e.g., epithelial tight junctions, uptake by olfactory neurons, transport into brain tissues, and intra-brain diffusion), a low molecular weight protamine (LMWP) cell-penetrating peptide was utilized to facilitate nose-to-brain transport. Cell-penetrating peptides (CPP) have been widely used to mediate macromolecular delivery through many kinds of biobarriers. Our results show that conjugates of LMWP–proteins are able to effectively penetrate into the brain after intranasal administration. The CPP-based intranasal method highlights a promising solution for protein therapy of brain diseases.
Collapse
|
35
|
Liu Y, Wang S, Luo S, Li Z, Liang F, Zhu Y, Pei Z, Huang R. Intravenous PEP-1-GDNF is protective after focal cerebral ischemia in rats. Neurosci Lett 2016; 617:150-5. [DOI: 10.1016/j.neulet.2016.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/17/2023]
|
36
|
Abstract
INTRODUCTION Ischemic stroke is caused by reduced blood supply and leads to loss of brain function. The reduced oxygen and nutrient supply stimulates various physiological responses, including induction of growth factors. Growth factors prevent neuronal cell death, promote neovascularization, and induce cell growth. However, the concentration of growth factors is not sufficient to recover brain function after the ischemic damage, suggesting that delivery of growth factors into the ischemic brain may be a useful treatment for ischemic stroke. AREAS COVERED In this review, various approaches for the delivery of growth factors to ischemic brain tissue are discussed, including local and targeting delivery systems. EXPERT OPINION To develop growth factor therapy for ischemic stroke, important considerations should be taken into account. First, growth factors may have possible side effects. Thus, concentration of growth factors should be restricted to the ischemic tissues by local administration or targeted delivery. Second, the duration of growth factor therapy should be optimized. Growth factor proteins may be degraded too fast to have a high enough therapeutic effect. Therefore, delivery systems for controlled release or gene delivery may be useful. Third, the delivery systems to the brain should be optimized according to the delivery route.
Collapse
Affiliation(s)
- Taiyoun Rhim
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Republic of Korea
| | - Minhyung Lee
- a Department of Bioengineering, College of Engineering , Hanyang University , Seoul , Republic of Korea
| |
Collapse
|
37
|
Sebastiani A, Gölz C, Werner C, Schäfer MKE, Engelhard K, Thal SC. Proneurotrophin Binding to P75 Neurotrophin Receptor (P75ntr) Is Essential for Brain Lesion Formation and Functional Impairment after Experimental Traumatic Brain Injury. J Neurotrauma 2015; 32:1599-607. [PMID: 25879397 DOI: 10.1089/neu.2014.3751] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Traumatic brain injury (TBI) initiates an excessive mediator release of e.g. neurotrophins, which promote neuronal survival, differentiation, and modulate synaptic plasticity. Paradoxically, mature forms of neurotrophins promote neuronal survival, whereas unprocessed forms of neurotrophins induce cell death through p75 neurotrophin receptor (p75NTR) signaling. p75NTR is widely expressed during synaptogenesis and is subsequently downregulated in adulthood. Repair mechanisms after acute cerebral insults can reactivate its expression. Therefore, the influence of p75NTR on secondary brain damage was addressed. mRNA levels of p75NTR and its ligands were quantified in brain tissue up to 7 days after experimental TBI (controlled cortical impact; CCI). Brain damage, motor function and inflammatory marker gene expression were determined in mice lacking the proneurotrophin-binding site of the p75NTR protein (NGFR(-/-)) and wild type littermates (NGFR(+/+)) 24 h and 5 days after CCI. In addition, the effect of TAT-Pep5 (pharmacological inhibitor of the intracellular p75NTR death domain) on lesion volume was evaluated 24 h after insult. p75NTR mRNA levels were induced nine-fold by TBI. In NGFR(-/-) mice, lesion volume was reduced by 29% at 24 h and by 21% 5 days after CCI. Motor coordination was significantly improved 24 h after trauma compared with the wild type. Pharmacological inhibition of the p75NTR signaling reduced lesion volume by 18%. The present study presents first time evidence that genetic mutation of the neurotrophin interaction site of p75NTR strongly limits post-traumatic cell death. In addition, we revealed pharmacological targeting of the intracellular p75NTR cell death domain as a promising approach to limit acute brain damage.
Collapse
Affiliation(s)
- Anne Sebastiani
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| | - Christian Werner
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| | - Kristin Engelhard
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| | - Serge C Thal
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University , Mainz, Germany
| |
Collapse
|
38
|
Wu Y, Luo X, Liu X, Liu D, Wang X, Guo Z, Zhu L, Tian Q, Yang X, Wang JZ. Intraperitoneal Administration of a Novel TAT-BDNF Peptide Ameliorates Cognitive Impairments via Modulating Multiple Pathways in Two Alzheimer's Rodent Models. Sci Rep 2015; 5:15032. [PMID: 26463268 PMCID: PMC4604491 DOI: 10.1038/srep15032] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/02/2015] [Indexed: 12/11/2022] Open
Abstract
Although Alzheimer’s disease (AD) has been reported for more than 100 years, there is still a lack of effective cures for this devastating disorder. Among the various obstacles that hold back drug development, the blood-brain barrier (BBB) is one of them. Here, we constructed a novel fusion peptide by linking the active domain of brain-derived neurotrophic factor (BDNF) with an HIV-encoded transactivator of transcription (TAT) that has a strong membrane-penetrating property. After intraperitoneal injection, the eGFP-TAT could be robustly detected in different brain regions. By using scopolamine-induced rats and APPswe mice representing AD-like cholinergic deficits and amyloidosis, respectively, we found that intraperitoneal administration of the peptide significantly improved spatial memory with activation of the TrkB/ERK1/2/Akt pathway and restoration of several memory-associated proteins in both models. Administration of the peptide also modulated β-amyloid and tau pathologies in APPswe mice, and it increased the amount of M receptor with modulation of acetylcholinesterase in scopolamine-induced rats. We conclude that intraperitoneal administration of our TAT-BDNF peptide could efficiently target multiple molecular pathways in the brain and improve the cognitive functions in AD-like rodent models.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Department of Anesthesiology, Wuhan Children Hospital, Wuhan 430030 China
| | - Xiaobin Luo
- Shenzhen/Guangzhou Kai-Tuo Biotech, Guangzhou, 510800, China
| | - Xinhua Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Deyi Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiong Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ziyuan Guo
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingqiang Zhu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qing Tian
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,Co-innovation Center of Neuroregeneration, Nantong 226001, China
| |
Collapse
|
39
|
Pandey AK, Bhattacharya P, Shukla SC, Paul S, Patnaik R. Resveratrol inhibits matrix metalloproteinases to attenuate neuronal damage in cerebral ischemia: a molecular docking study exploring possible neuroprotection. Neural Regen Res 2015; 10:568-75. [PMID: 26170816 PMCID: PMC4424748 DOI: 10.4103/1673-5374.155429] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2015] [Indexed: 11/04/2022] Open
Abstract
The main pathophysiology of cerebral ischemia is the structural alteration in the neurovascular unit, coinciding with neurovascular matrix degradation. Resveratrol has been reported to be one of the most potent chemopreventive agents that can inhibit cellular processes associated with ischemic stroke. Matrix metalloproteinases (MMPs) has been considered as a potential drug target for the treatment of cerebral ischemia. To explore this, we tried to investigate the interaction of resveratrol with MMPs through molecular docking studies. At 30 minutes before and 2 hours after cerebral ischemia/reperfusion induced by occlusion of the middle cerebral artery, 40 mg/kg resveratrol was intraperitoneally administered. After resveratrol administration, neurological function and brain edema were significantly alleviated, cerebral infarct volume was significantly reduced, and nitrite and malondialdehyde levels in the cortical and striatal regions were significantly decreased. The molecular docking study of resveratrol and MMPs revealed that resveratrol occupied the active site of MMP-2 and MMP-9. The binding energy of the complexes was -37.848672 kJ/mol and -36.6345 kJ/mol for MMP-2 and MMP-9, respectively. In case of MMP-2, Leu 164, Ala 165 and Thr 227 were engaged in H-Bonding with resveratrol and in case of MMP-9, H-bonding was found with Glu 402, Ala 417 and Arg 424 residues. These findings collectively reveal that resveratrol exhibits neuroprotective effects on cerebral ischemia through inhibiting MMP-2 and MMP-9 activity.
Collapse
Affiliation(s)
- Anand Kumar Pandey
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Pallab Bhattacharya
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India ; Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Swet Chand Shukla
- School of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Sudip Paul
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India ; Department of Biomedical Engineering, North Eastern Hill University (NEHU), Shillong, India
| | - Ranjana Patnaik
- School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| |
Collapse
|
40
|
Peluffo H, Unzueta U, Negro-Demontel ML, Xu Z, Váquez E, Ferrer-Miralles N, Villaverde A. BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnol Adv 2015; 33:277-87. [PMID: 25698504 DOI: 10.1016/j.biotechadv.2015.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 01/14/2015] [Accepted: 02/09/2015] [Indexed: 01/17/2023]
Abstract
The increasing incidence of diseases affecting the central nervous system (CNS) demands the urgent development of efficient drugs. While many of these medicines are already available, the Blood Brain Barrier and to a lesser extent, the Blood Spinal Cord Barrier pose physical and biological limitations to their diffusion to reach target tissues. Therefore, efforts are needed not only to address drug development but specially to design suitable vehicles for delivery into the CNS through systemic administration. In the context of the functional and structural versatility of proteins, recent advances in their biological fabrication and a better comprehension of the physiology of the CNS offer a plethora of opportunities for the construction and tailoring of plain nanoconjugates and of more complex nanosized vehicles able to cross these barriers. We revise here how the engineering of functional proteins offers drug delivery tools for specific CNS diseases and more transversally, how proteins can be engineered into smart nanoparticles or 'artificial viruses' to afford therapeutic requirements through alternative administration routes.
Collapse
Affiliation(s)
- Hugo Peluffo
- Neuroinflammation Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - María Luciana Negro-Demontel
- Neuroinflammation Gene Therapy Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay; Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | - Zhikun Xu
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Esther Váquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Department de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
41
|
Curcio M, Salazar IL, Inácio AR, Duarte EP, Canzoniero LMT, Duarte CB. Brain ischemia downregulates the neuroprotective GDNF-Ret signaling by a calpain-dependent mechanism in cultured hippocampal neurons. Cell Death Dis 2015; 6:e1645. [PMID: 25675305 PMCID: PMC4669807 DOI: 10.1038/cddis.2014.578] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/08/2014] [Accepted: 11/14/2014] [Indexed: 01/07/2023]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) has an important role in neuronal survival through binding to the GFRα1 (GDNF family receptor alpha-1) receptor and activation of the receptor tyrosine kinase Ret. Transient brain ischemia alters the expression of the GDNF signaling machinery but whether the GDNF receptor proteins are also affected, and the functional consequences, have not been investigated. We found that excitotoxic stimulation of cultured hippocampal neurons leads to a calpain-dependent downregulation of the long isoform of Ret (Ret51), but no changes were observed for Ret9 or GFRα1 under the same conditions. Cleavage of Ret51 by calpains was selectively mediated by activation of the extrasynaptic pool of N-methyl-d-aspartate receptors and leads to the formation of a stable cleavage product. Calpain-mediated cleavage of Ret51 was also observed in hippocampal neurons subjected to transient oxygen and glucose deprivation (OGD), a model of global brain ischemia, as well as in the ischemic region in the cerebral cortex of mice exposed to transient middle cerebral artery occlusion. Although the reduction of Ret51 protein levels decreased the total GDNF-induced receptor activity (as determined by assessing total phospho-Ret51 protein levels) and their downstream signaling activity, the remaining receptors still showed an increase in phosphorylation after incubation of hippocampal neurons with GDNF. Furthermore, GDNF protected hippocampal neurons when present before, during or after OGD, and the effects under the latter conditions were more significant in neurons transfected with human Ret51. These results indicate that the loss of Ret51 in brain ischemia partially impairs the neuroprotective effects of GDNF.
Collapse
Affiliation(s)
- M Curcio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - I L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Coimbra, Portugal
| | - A R Inácio
- Wallenberg Neuroscience Center, Lund University, Lund 221 84, Sweden
| | - E P Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra 3004-517, Portugal
| | - L M T Canzoniero
- Department of Science and Technology, University of Sannio, Benevento 82100, Italy
| | - C B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-504, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra 3004-517, Portugal
| |
Collapse
|
42
|
Gotanda Y, Wei FY, Harada H, Ohta K, Nakamura KI, Tomizawa K, Ushijima K. Efficient transduction of 11 poly-arginine peptide in an ischemic lesion of mouse brain. J Stroke Cerebrovasc Dis 2014; 23:2023-2030. [PMID: 25081308 DOI: 10.1016/j.jstrokecerebrovasdis.2014.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 02/08/2014] [Accepted: 02/26/2014] [Indexed: 11/25/2022] Open
Abstract
Direct intracellular delivery of intact proteins has been successfully achieved by tagging cell-penetrating peptide (CPP), which consists of short positively charged amino acids, such as 11 poly-arginine (11R); however, in vivo delivery of the proteins to the brain has remained challenging because it is unclear whether CPP would enable proteins to cross the blood-brain barrier (BBB). In this study, we conducted an in vivo kinetic study to investigate the efficiency of 11R-mediated peptide delivery in the normal and ischemic brain. The 11R was observed in the microvessels and neurons surrounding the microvessels throughout the brain 1 hour after systemic administration, but the signal of the peptide was faint after 2 hours. In a transient middle cerebral artery occlusion mouse model, 11R was markedly enhanced and remained detectable in the cells on the ipsilateral side for as long as 8 hours after administration compared with the contralateral side. These results suggest that 11R is capable of in vivo delivery to the brain by passing through the BBB. Furthermore, 11R-mediated protein transduction could be used for the delivery of therapeutic molecules in cerebral ischemia.
Collapse
Affiliation(s)
- Yuki Gotanda
- Department of Anesthesiology, Kurume University School of Medicine, Fukuoka, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideki Harada
- Department of Anesthesiology, Kurume University School of Medicine, Fukuoka, Japan
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Fukuoka, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Fukuoka, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kazuo Ushijima
- Department of Anesthesiology, Kurume University School of Medicine, Fukuoka, Japan
| |
Collapse
|
43
|
Neuroprotective effect of TAT-14-3-3ε fusion protein against cerebral ischemia/reperfusion injury in rats. PLoS One 2014; 9:e93334. [PMID: 24671253 PMCID: PMC3966873 DOI: 10.1371/journal.pone.0093334] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 03/05/2014] [Indexed: 01/18/2023] Open
Abstract
Stroke is the major cause of death and disability worldwide, and the thrombolytic therapy currently available was unsatisfactory. 14-3-3ε is a well characterized member of 14-3-3 family, and has been reported to protect neurons against apoptosis in cerebral ischemia. However, it cannot transverse blood brain barrier (BBB) due to its large size. A protein transduction domain (PTD) of HIV TAT protein, is capable of delivering a large variety of proteins into the brain. In this study, we generated a fusion protein TAT-14-3-3ε, and evaluated its potential neuroprotective effect in rat focal ischemia/reperfusion (I/R) model. Western blot analysis validated the efficient transduction of TAT-14-3-3ε fusion protein into brain via a route of intravenous injection. TAT-14-3-3ε pre-treatment 2 h before ischemia significantly reduced cerebral infarction volume and improved neurologic score, while post-treatment 2 h after ischemia was less effective. Importantly, pre- or post-ischemic treatment with TAT-14-3-3ε significantly increased the number of surviving neurons as determined by Nissl staining, and attenuated I/R-induced neuronal apoptosis as showed by the decrease in apoptotic cell numbers and the inhibition of caspase-3 activity. Moreover, the introduction of 14-3-3ε into brain by TAT-mediated delivering reduced the formation of autophagosome, attenuated LC3B-II upregulation and reversed p62 downregulation induced by ischemic injury. Such inhibition of autophagy was reversed by treatment with an autophagy inducer rapamycin (RAP), which also attenuated the neuroprotective effect of TAT-14-3-3ε. Conversely, autophagy inhibitor 3-methyladenine (3-MA) inhibited I/R-induced the increase in autophagic activity, and attenuated I/R-induced brain infarct. These results suggest that TAT-14-3-3ε can be efficiently transduced into brain and exert significantly protective effect against brain ischemic injury through inhibiting neuronal apoptosis and autophagic activation.
Collapse
|
44
|
Meloni BP, Craig AJ, Milech N, Hopkins RM, Watt PM, Knuckey NW. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures. Cell Mol Neurobiol 2014; 34:173-81. [PMID: 24213248 PMCID: PMC11488960 DOI: 10.1007/s10571-013-9999-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 10/17/2013] [Indexed: 02/04/2023]
Abstract
Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to deliver neuroprotective drugs to the CNS following injury and/or potential neuroprotectants in their own right.
Collapse
Affiliation(s)
- Bruno P Meloni
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia and Australian Neuromuscular Research Institute, A Block, 4th Floor, QEII Medical Centre, Verdun St, Nedlands, WA, 6009, Australia,
| | | | | | | | | | | |
Collapse
|
45
|
Gu Y, Chen J, Shen J. Herbal medicines for ischemic stroke: combating inflammation as therapeutic targets. J Neuroimmune Pharmacol 2014; 9:313-39. [PMID: 24562591 DOI: 10.1007/s11481-014-9525-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/27/2014] [Indexed: 12/23/2022]
Abstract
Stroke is a debilitating disease for which limited therapeutic approaches are available currently. Thus, there is an urgent need for developing novel therapies for stroke. Astrocytes, endothelial cells and pericytes constitute a neurovascular network for metabolic requirement of neurons. During ischemic stroke, these cells contribute to post-ischemic inflammation at multiple stages of ischemic cascades. Upon ischemia onset, activated resident microglia and astrocytes, and infiltrated immune cells release multiple inflammation factors including cytokines, chemokines, enzymes, free radicals and other small molecules, not only inducing brain damage but affecting brain repair. Recent progress indicates that anti-inflammation is an important therapeutic strategy for stroke. Given a long history with direct experience in the treatment of human subjects, Traditional Chinese Medicine and its related natural compounds are recognized as important sources for drug discovery. Last decade, a great progress has been made to identify active compounds from herbal medicines with the properties of modulating post-ischemic inflammation for neuroprotection. Herein, we discuss the inflammatory pathway in early stage and secondary response to injured tissues after stroke from initial artery occlusion to brain repair, and review the active ingredients from natural products with anti-inflammation and neuroprotection effects as therapeutic agents for ischemic stroke. Further studies on the post-ischemic inflammatory mechanisms and corresponding drug candidates from herbal medicine may lead to the development of novel therapeutic strategies in stroke treatment.
Collapse
Affiliation(s)
- Yong Gu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | | | | |
Collapse
|
46
|
Naumenko VS, Bazovkina DV, Semenova AA, Tsybko AS, Il'chibaeva TV, Kondaurova EM, Popova NK. Effect of glial cell line-derived neurotrophic factor on behavior and key members of the brain serotonin system in mouse strains genetically predisposed to behavioral disorders. J Neurosci Res 2013; 91:1628-38. [PMID: 24105724 DOI: 10.1002/jnr.23286] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/13/2013] [Accepted: 07/25/2013] [Indexed: 12/26/2022]
Abstract
The effect of glial cell line-derived neurotrophic factor (GDNF) on behavior and on the serotonin (5-HT) system of a mouse strain predisposed to depressive-like behavior, ASC/Icg (Antidepressant Sensitive Cataleptics), in comparison with the parental "nondepressive" CBA/Lac mice was studied. Within 7 days after acute administration, GDNF (800 ng, i.c.v.) decreased cataleptic immobility but increased depressive-like behavioral traits in both investigated mouse strains and produced anxiolytic effects in ASC mice. The expression of the gene encoding the key enzyme for 5-HT biosynthesis in the brain, tryptophan hydroxylase-2 (Tph-2), and 5-HT1A receptor gene in the midbrain as well as 5-HT2A receptor gene in the frontal cortex were increased in GDNF-treated ASC mice. At the same time, GDNF decreased 5-HT1A and 5-HT2A receptor gene expression in the hippocampus of ASC mice. GDNF failed to change Tph2, 5-HT1A , or 5-HT2A receptor mRNA levels in CBA mice as well as 5-HT transporter gene expression and 5-HT1A and 5-HT2A receptor functional activity in both investigated mouse strains. The results show 1) a GDNF-induced increase in the expression of key genes of the brain 5-HT system, Tph2, 5-HT1A , and 5-HT2A receptors, and 2) significant genotype-dependent differences in the 5-HT system response to GDNF treatment. The data suggest that genetically defined cross-talk between neurotrophic factors and the brain 5-HT system underlies the variability in behavioral response to GDNF.
Collapse
Affiliation(s)
- Vladimir S Naumenko
- Department of Behavioral Neurogenomics, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Science, Novosibirsk, Russia
| | | | | | | | | | | | | |
Collapse
|
47
|
Cellular Uptake Mechanism and Therapeutic Utility of a Novel Peptide in Targeted-Delivery of Proteins into Neuronal Cells. Pharm Res 2013; 30:2108-17. [DOI: 10.1007/s11095-013-1068-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 04/24/2013] [Indexed: 12/22/2022]
|
48
|
Guo F, Wang H, Li L, Zhou H, Wei H, Jin W, Wang Q, Xiong L. A novel domain of amino-Nogo-A protects HT22 cells exposed to oxygen glucose deprivation by inhibiting NADPH oxidase activity. Cell Mol Neurobiol 2013; 33:443-52. [PMID: 23354671 PMCID: PMC11498015 DOI: 10.1007/s10571-013-9911-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 01/16/2013] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate the protective effect of the M9 region (residues 290-562) of amino-Nogo-A fused to the human immunodeficiency virus trans-activator TAT in an in vitro model of ischemia-reperfusion induced by oxygen-glucose deprivation (OGD) in HT22 hippocampal neurons, and to investigate the role of NADPH oxidase in this protection. Transduction of TAT-M9 was analyzed by immunofluorescence staining and western blot. The biologic activity of TAT-M9 was assessed by its effects against OGD-induced HT22 cell damage, compared with a mutant M9 fusion protein or vehicle. Cellular viability and lactate dehydrogenase (LDH) release were assessed. Neuronal apoptosis was evaluated by flow cytometry. The Bax/Bcl-2 ratio was determined by western blotting. Reactive oxygen species (ROS) levels and NADPH oxidase activity were also measured in the presence or absence of an inhibitor or activator of NADPH oxidase. Our results confirmed the delivery of the protein into HT22 cells by immunofluorescence and western blot. Addition of 0.4 μmol/L TAT-M9 to the culture medium effectively improved neuronal cell viability and reduced LDH release induced by OGD. The fusion protein also protected HT22 cells from apoptosis, suppressed overexpression of Bax, and inhibited the reduction in Bcl-2 expression. Furthermore, TAT-M9, as well as apocynin, decreased NADPH oxidase activity and ROS content. The protective effects of the TAT-M9 were reversed by TBCA, an agonist of NADPH oxidase. In conclusion, TAT-M9 could be successfully transduced into HT22 cells, and protected HT22 cells against OGD damage by inhibiting NADPH oxidase-mediated oxidative stress. These findings suggest that the TAT-M9 protein may be an efficient therapeutic agent for neuroprotection.
Collapse
Affiliation(s)
- Fan Guo
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Huiwen Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Liya Li
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Heng Zhou
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Haidong Wei
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Weilin Jin
- Institute of Neurosciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Qiang Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| | - Lize Xiong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, 710032 Shaanxi China
| |
Collapse
|
49
|
Ren G, He Z, Cong P, Chen H, Guo Y, Yu J, Liu Z, Ji Q, Song Z, Chen Y. Peripheral administration of TAT-obestatin can influence the expression of liporegulatory genes but fails to affect food intake in mice. Peptides 2013; 42:8-14. [PMID: 23313740 DOI: 10.1016/j.peptides.2013.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/03/2013] [Accepted: 01/03/2013] [Indexed: 12/14/2022]
Abstract
Obestatin is a 23-amino-acid peptide originally regarded as an anorexigenic factor. However, most of the subsequent studies failed to confirm the initially reported anorexigenic properties of obestatin. Obestatin is incapable of crossing the blood brain barrier (BBB), which may affect its biological function. Here, we report the physiological effects of obestatin in mice after intraperitoneal administration of obestatin conjugated to the cell-permeable peptide TAT, which is capable of delivering different types of proteins through the BBB. Acute peripheral administration of 1 μmol/kg of TAT-obestatin did not influence the 24 h cumulative food intake and body weight gain of mice that were fasted for 18 h. Fed mice were injected intraperitoneally with 100 nmol/kg of TAT-obestatin daily for 25 d. Compared with control groups, on day 3, the gain in body weight was significantly altered; on day 7, abdominal fat mass was remarkably reduced; however, on day 25, there was a surprisingly notable increase in abdominal and epididymal fat mass. In comparison with control groups, on day 25, the expression levels of adiponectin, ADD1, C/EBPα, PPARG and GLUT4 were significantly up-regulated in liver tissues; in white adipose tissue, the expression level of C/EBPα was significantly up-regulated, but adiponectin and GLUT4 were significantly down-regulated. In addition, GPR39, the suspected receptor of obestatin, was up-regulated in white adipose tissue on day 25. These findings suggest that TAT-obestatin might play a role in white adipose tissue metabolism, but its physiological effects on food intake and body weight gain regulation remain unclear.
Collapse
Affiliation(s)
- Guangcai Ren
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang J, Chao F, Han F, Zhang G, Xi Q, Li J, Jiang H, Wang J, Yu G, Tian M, Zhang H. PET demonstrates functional recovery after transplantation of induced pluripotent stem cells in a rat model of cerebral ischemic injury. J Nucl Med 2013; 54:785-92. [PMID: 23503731 DOI: 10.2967/jnumed.112.111112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED The purpose of this study was to determine the functionality of the transplanted induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) in a rat model of cerebral ischemia with use of (18)F-FDG small-animal PET imaging. METHODS Middle cerebral artery occlusion was used to establish cerebral ischemia. Twenty-four male rats were randomly assigned to 1 of 3 groups: iPSC treatment, ESC treatment, and the control phosphate-buffered saline (PBS) injection. After neurologic function tests and baseline (18)F-FDG small-animal PET had been performed, 1.0 × 10(6) suspended iPSCs or ESCs were injected stereotactically into the left lateral ventricle. The treatment response was evaluated weekly by (18)F-FDG PET scans and neurologic function tests. Histologic analyses and autoradiographic imaging were performed 4 wk after stem cell transplantation. RESULTS Compared with the PBS injection group, higher (18)F-FDG accumulation in the ipsilateral cerebral infarction was observed in both the iPSC and the ESC treatment groups during the 4-wk period (P < 0.05). (18)F-FDG accumulation in the ipsilateral cerebral infarction increased steadily over time in the iPSC treatment group. At 1 and 2 wk after stem cell transplantation, significant recovery of glucose metabolism was found in the ESC treatment group (P < 0.05) and then decreased gradually. The neurologic score in both stem cell-treated groups was significantly lower than that in the PBS group, indicating functional improvement. Immunohistochemical analysis demonstrated that transplanted stem cells survived and migrated close to the ischemic region, and most of the stem cells expressed protein markers for cells of interest. CONCLUSION (18)F-FDG small-animal PET demonstrated metabolic recovery after iPSC and ESC transplantation in the rat model of cerebral ischemia. iPSCs could be considered a potentially better therapeutic approach than ESCs and are worthy of further translational investigation.
Collapse
Affiliation(s)
- Jiachuan Wang
- Department of Nuclear Medicine, Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|