1
|
Kho E, van den Dool REC, Mahes SS, Corsmit OT, Vlaar APJ, Koolbergen DR, Veelo DP, Sperna Weiland NH, Immink RV. Regulation of cerebrovascular resistance below the lower limit of cerebral autoregulation during induced hypotension: an observational study. Br J Anaesth 2025; 134:1009-1017. [PMID: 40023745 PMCID: PMC11947574 DOI: 10.1016/j.bja.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND To maintain adequate perfusion, cerebral blood flow (CBF) is preserved by changes in cerebrovascular resistance (CVR) inversely related to fluctuations in mean arterial blood pressure (MAP). It has been hypothesised that during progressive hypotension, a lower limit of cerebral autoregulation (LLCA) is reached beyond which cerebrovascular dilation becomes exhausted and CBF starts to decrease together with BP. We tested this hypothesis by assessing CVR above and below the LLCA. METHODS Radial arterial pressure, thermodilution cardiac output (CO), and mean middle cerebral artery blood velocity (MCAVmean) were recorded during sustained intraoperative hypotension clinically needed for off-pump aortic root aneurysm surgery. For each participant, the individual LLCA was determined. Systemic vascular resistance (SVR) and CVR were calculated, and changes below and above the LLCA were assessed with a generalised linear effect models. RESULTS For 50 participants undergoing aortic root surgery who met inclusion criteria, LLCA was located at 58 (12) mm Hg, with a corresponding MCAVmean of 32 (8) cm s-1 and CO of 5.1 (1.2) L min-1. Above the LLCA, the decline in CVR and SVR were similar, both with 19% per 10 mm Hg decrease in MAP (P<0.001). Below the LLCA, CVR declined at a lower rate (7% per 10 mm Hg), whereas the decrease in SVR was 13% per 10 mm Hg decrease in MAP (both P<0.001). CONCLUSIONS The continuing decline of CVR below the LLCA indicated that brain vasculature is still able to react on changing BP. This implies that LLCA should not be regarded as a fixed point but rather a transitional zone between exhausted and normally functioning autoregulation.
Collapse
Affiliation(s)
- Eline Kho
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands; Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Rokus E C van den Dool
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Sandjiv S Mahes
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Oskar T Corsmit
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Alexander P J Vlaar
- Department of Intensive Care, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands; Laboratory of Experimental Intensive Care and Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Dave R Koolbergen
- Cardio-thoracic Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Denise P Veelo
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Nicholaas H Sperna Weiland
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| | - Rogier V Immink
- Department of Anaesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Ayaz A, Rahimi A, Buwadi L, Wang YB, Zou L, Heath M. Rocking the cerebral blood flow: the influence of music listening and aerobic exercise on cortical hemodynamics and post-intervention executive function. Exp Brain Res 2025; 243:102. [PMID: 40131455 DOI: 10.1007/s00221-025-07054-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
A single bout of exercise transiently "boosts" executive function (EF) and is a benefit that may be linked to an increase in cerebral blood flow (CBF). In turn, some work has reported that music listening imparts a similar EF benefit and increases CBF. In the present work, we examined whether music listening provides an EF benefit comparable to aerobic exercise and whether combined music listening and aerobic exercise supports an additive benefit. To that end, healthy young adults (N = 22, 14 female, 19-28 years) completed 10-min single bouts of: (1) music listening (ML), (2) light intensity aerobic exercise (AE), (3) combined ML and AE (ML + AE), and (4) a non-AE and non-ML control condition. For all conditions, pre- and post-intervention EF was assessed via the antisaccade task (i.e., saccade mirror-symmetrical to a target) and transcranial Doppler ultrasound measured middle cerebral artery velocity (MCAv) to estimate CBF. Results showed that ML, AE and ML + AE conditions increased MCAv; however, only the latter two conditions produced a pre- to post-intervention reduction in antisaccade RTs and the benefit was not linked to a MCAv change. Moreover, frequentist and Bayesian statistics indicated that the reduction in antisaccade RTs was equivalent across AE and ML + AE conditions. Accordingly, a single bout of exercise - and not a single bout of music listening - supports a non-additive post-intervention EF benefit that is not related to an exercise-based increase in CBF. Such findings suggest that exercise serves as a simple and cost-effective tool that can "boost" EF in advance of occupational- or educational-demanding tasks.
Collapse
Affiliation(s)
- Azar Ayaz
- Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, ON, N6A 3K7, London, Canada
| | - Alma Rahimi
- Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, ON, N6A 3K7, London, Canada
| | - Lian Buwadi
- Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, ON, N6A 3K7, London, Canada
| | - Yu-Bu Wang
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Matthew Heath
- Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, ON, N6A 3K7, London, Canada.
- School of Kinesiology, University of Western Ontario, London, ON, N6A 3K7, Canada.
- Canadian Centre for Activity and Aging, University of Western Ontario, ON, N6A 3K7, London, Canada.
| |
Collapse
|
3
|
Leth-Olsen M, Døhlen G, Torp H, Nyrnes SA. Cerebral blood flow dynamics during cardiac surgery in infants. Pediatr Res 2025; 97:625-633. [PMID: 38570558 PMCID: PMC12014472 DOI: 10.1038/s41390-024-03161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/21/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND In this pilot study, we investigated continuous cerebral blood flow velocity measurements to explore cerebrovascular hemodynamics in infants with congenital heart disease undergoing cardiac surgery. METHODS A non-invasive transfontanellar cerebral Doppler monitor (NeoDoppler) was used to monitor 15 infants (aged eight days to nine months) during cardiac surgery with cardiopulmonary bypass. Numerical and visual analyses were conducted to assess trends and events in Doppler measurements together with standard monitoring equipment. The mean flow index, calculated as the moving Pearson correlation between mean arterial pressure and time averaged velocity, was utilized to evaluate dynamic autoregulation. Two levels of impaired autoregulation were defined (Mean flow index >0.3/0.45), and percentage of time above these limits were calculated. RESULTS High quality recordings were achieved during 90.6% of the monitoring period. There was a significant reduction in time averaged velocity in all periods of cardiopulmonary bypass. All patients showed a high percentage of time with impaired dynamic autoregulation, with Mean flow index >0.3 and 0.45: 73.71% ± 9.06% and 65.16% ± 11.27% respectively. Additionally, the system promptly detected hemodynamic events. CONCLUSION Continuous transfontanellar cerebral Doppler monitoring could become an additional tool in enhancing cerebral monitoring in infants during cardiac surgery. IMPACT This pilot study demonstrates the feasibility of continuous transfontanellar Doppler monitoring of cerebral blood flow velocities during cardiac surgery in infants. It also demonstrates a high proportion of time with impaired cerebral autoregulation during cardiac surgery based on the Mean flow index. Continuous transfontanellar Doppler could become a useful tool to improve cerebral monitoring and provide new pathophysiological insight.
Collapse
Affiliation(s)
- Martin Leth-Olsen
- Department of Circulation and Medical Imaging (ISB), Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
- Children's Clinic, St Olav's University Hospital, Trondheim, Norway.
| | - Gaute Døhlen
- Department of Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| | - Hans Torp
- Department of Circulation and Medical Imaging (ISB), Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Siri Ann Nyrnes
- Department of Circulation and Medical Imaging (ISB), Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Children's Clinic, St Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
4
|
Rahimi A, Ayaz A, Edgar C, Jeyarajan G, Putzer D, Robinson M, Heath M. Sub-symptom threshold aerobic exercise improves executive function during the early stage of sport-related concussion recovery. J Sports Sci 2025; 43:266-279. [PMID: 39936544 DOI: 10.1080/02640414.2025.2453337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
We examined whether persons with a sport-related concussion (SRC) derive a postexercise executive function (EF) benefit, and whether a putative benefit is related to an exercise-mediated increase in cerebral blood flow (CBF). Participants with an SRC completed the Buffalo Concussion Bike Test to determine the heart rate threshold (HRt) associated with symptom exacerbation and/or voluntary exhaustion. On a separate day, SRC participants - and healthy controls (HC group) - completed 20-min of aerobic exercise at 80% HRt while middle cerebral artery velocity (MCAv) was measured to estimate CBF. The antisaccade task (i.e. saccade mirror-symmetrical to target) was completed pre- and postexercise to evaluate EF. SRC and HC groups showed a comparable exercise-mediated increase in CBF (ps < .001), and both groups elicited a postexercise EF benefit (ps < .001); however, the benefit was unrelated to the magnitude of the MCAv change. Moreover, SRC symptomology was not increased when assessed immediately postexercise and showed a 24 h follow-up benefit. Accordingly, persons with an SRC demonstrated an EF benefit following a single bout of sub-symptom threshold aerobic exercise. Moreover, the exercise intervention did not result in symptom exacerbation and thus demonstrates that a tailored aerobic exercise program may support cognitive and symptom recovery following an SRC.
Collapse
Affiliation(s)
- Alma Rahimi
- Graduate Program in Neuroscience, University of Western Ontario, Canada
| | - Azar Ayaz
- Graduate Program in Neuroscience, University of Western Ontario, Canada
| | - Chloe Edgar
- School of Kinesiology, University of Western Ontario, Canada
| | | | - Darryl Putzer
- Schulich School of Medicine and Dentistry, University of Western Ontario, Canada
| | | | - Matthew Heath
- Graduate Program in Neuroscience, University of Western Ontario, Canada
- School of Kinesiology, University of Western Ontario, Canada
- Canadian Centre for Activity and Ageing, University of Western Ontario, Canada
| |
Collapse
|
5
|
Ayasse T, Gaugain S, de Roquetaillade C, Hermans-Didier A, Kindermans M, Chousterman BG, Barthélémy R. Association between cerebral oxygenation and usual parameters of cerebral perfusion in critically ill patients with acute brain injury. J Cereb Blood Flow Metab 2025:271678X241310780. [PMID: 39763378 PMCID: PMC11705312 DOI: 10.1177/0271678x241310780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/09/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025]
Abstract
In patients with acute brain injury (ABI), optimizing cerebral perfusion parameters relies on multimodal monitoring. This include data from systemic monitoring-mean arterial pressure (MAP), arterial carbon dioxide tension (PaCO2), arterial oxygen saturation (SaO2), hemoglobin levels (Hb), and temperature-as well as neurological monitoring-intracranial pressure (ICP), cerebral perfusion pressure (CPP), and transcranial Doppler (TCD) velocities. We hypothesized that these parameters alone were not sufficient to assess the risk of cerebral ischemia. We conducted a retrospective, single-center study of patients admitted in our ICU between 2015 and 2021. Patients with ABI and multimodal neuromonitoring were included. ABI included traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), intracranial hemorrhage and ischemic stroke. The relationship between jugular venous oxygen saturation (SjvO2) and cerebral perfusion parameters was analyzed. Patients were categorized into two groups based on SjvO2, with a threshold of 60% used to define cerebral ischemia. We compared the parameters used to optimize cerebral perfusion between groups and their diagnosis accuracy for cerebral ischemia was evaluated. Univariable and multivariable analyses were performed to assess the association between the guideline-recommended therapeutic targets and the risk of cerebral ischemia. 601 evaluations from 96 patients with simultaneous ICP, SjvO2 and TCD were analyzed. Poor relationships were found between SjvO2 and the parameters of cerebral perfusion. TCD flow velocities and PaCO2 were lower in the cerebral ischemia group while MAP, ICP and CPP were not different between groups. Most ischemic episodes occurred despite ICP < 22 mmHg and CPP ≥ 60 mmHg. For the diagnosis of cerebral ischemia, only TCD parameters and PaCO2 were associated with an area under the curve (AUC) > 0.5 but with a low accuracy. In multivariable analysis, the only guideline-recommended therapeutic target associated with a reduction of cerebral ischemia was a diastolic flow velocity (FV) > 20 cm.s-1.
Collapse
Affiliation(s)
- Timothée Ayasse
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
| | - Samuel Gaugain
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
| | - Charles de Roquetaillade
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
- Université de Paris, Inserm, UMRS 942 Mascot, Paris, France
| | - Alexis Hermans-Didier
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
- Université de Paris, Inserm, UMRS 942 Mascot, Paris, France
| | - Manuel Kindermans
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
| | - Benjamin G Chousterman
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
- Université de Paris, Inserm, UMRS 942 Mascot, Paris, France
| | - Romain Barthélémy
- AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France
- Université de Paris, Inserm, UMRS 942 Mascot, Paris, France
| |
Collapse
|
6
|
Jeyarajan G, Buwadi L, Ayaz A, Nagamatsu LS, Haile D, Zou L, Heath M. Passive and active exercise do not mitigate mental fatigue during a sustained vigilance task. Exp Brain Res 2024; 243:19. [PMID: 39653841 DOI: 10.1007/s00221-024-06950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 02/05/2025]
Abstract
Executive function (EF) is improved following a single bout of exercise and impaired when an individual experiences mental fatigue (MF). These performance outcomes have been linked to a bi-directional change in cerebral blood flow (CBF). Here, we sought to determine whether MF-induced by a sustained vigilance task (i.e., psychomotor vigilance task: PVT) is mitigated when preceded by a single bout of exercise. Participants completed 20-min single bouts of active exercise (cycle ergometry involving volitional muscle activation), passive exercise (cycle ergometry involving a mechanical flywheel) and a non-exercise control intervention. EF was assessed pre- and post-intervention via the antisaccade task. Following each intervention, a 20-min PVT was completed to induce and assess MF, and transcranial Doppler ultrasound of middle cerebral artery velocity (MCAv) was used to estimate intervention- and PVT-based changes in CBF. Active and passive exercise provided a post-intervention reduction in antisaccade reaction times; that is, exercise benefitted EF. Notably, however, frequentist and Bayesian statistics indicated the EF benefit did not mitigate MF during the PVT. As well, although exercise (active and passive) and the PVT respectively increased and decreased CBF, these changes were not correlated with behavioral measures of EF or MF. Accordingly, a postexercise EF benefit does not mitigate MF during a sustained vigilance task and a bi-directional change in CBF does not serve as a primary mechanism associated with EF and MF changes. Such results provide a framework for future work to explore how different exercise types, intensities and durations may impact MF.
Collapse
Affiliation(s)
- Gianna Jeyarajan
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Lian Buwadi
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Azar Ayaz
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Lindsay S Nagamatsu
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Denait Haile
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
- Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
- Canadian Centre for Activity and Aging, University of Western Ontario, 1201 Western Rd, London, ON, N6G 1H1, Canada.
| |
Collapse
|
7
|
Wang Y, Payne SJ. Static autoregulation in humans. J Cereb Blood Flow Metab 2024; 44:1191-1207. [PMID: 37933742 PMCID: PMC11542139 DOI: 10.1177/0271678x231210430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
The process by which cerebral blood flow (CBF) remains approximately constant in response to short-term variations in arterial blood pressure (ABP) is known as cerebral autoregulation. This classic view, that it remains constant over a wide range of ABP, has however been challenged by a growing number of studies. To provide an updated understanding of the static cerebral pressure-flow relationship and to characterise the autoregulation curve more rigorously, we conducted a comprehensive literature research. Results were based on 143 studies in healthy individuals aged 18 to 65 years. The mean sensitivities of CBF to changes in ABP were found to be 1.47 ± 0.71%/% for decreased ABP and 0.37 ± 0.38%/% for increased ABP. The significant difference in CBF directional sensitivity suggests that cerebral autoregulation appears to be more effective in buffering increases in ABP than decreases in ABP. Regression analysis of absolute CBF and ABP identified an autoregulatory plateau of approximately 20 mmHg (ABP between 80 and 100 mmHg), which is much smaller than the widely accepted classical view. Age and sex were found to have no effect on autoregulation strength. This data-driven approach provides a quantitative method of analysing static autoregulation that can be easily updated as more experimental data become available.
Collapse
Affiliation(s)
- Yufan Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| |
Collapse
|
8
|
Qin W, Fukuie M, Hoshi D, Mori S, Tomoto T, Sugawara J, Tarumi T. Dynamic cerebral autoregulation during repeated handgrip exercise: comparisons with spontaneous rest and sit-stand maneuvers. J Appl Physiol (1985) 2024; 137:718-727. [PMID: 39116347 DOI: 10.1152/japplphysiol.00217.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Induced arterial pressure oscillation may improve the assessment of dynamic cerebral autoregulation (dCA) with transfer function analysis (TFA). This study investigated dCA during repeated handgrip exercise (RHE) compared with spontaneous rest and sit-stand maneuvers (SSM), often used in cerebrovascular research. After a 5-min rest, 20 healthy young adults (10 women and 10 men) underwent 5 min of RHE (30% maximal voluntary contraction) and SSM at 0.05 Hz and 0.10 Hz each in random order. Power spectral density (PSD) and TFA gain, phase, coherence of mean arterial pressure (MAP), and blood velocity in the middle cerebral artery (MCAvmean) were measured in very low (VLF: 0.02-0.07 Hz) and low (LF: 0.07-0.20 Hz) frequencies. End-tidal CO2 (EtCO2) was continuously recorded throughout data collection. Compared with rest, RHE increased the PSD of MAP and MCAvmean in VLF (444% and 273%, respectively) and LF (1,571% and 1,765%, respectively) (all P < 0.001). Coherence increased during RHE (VLF: 131%, LF: 128%) and SSM (VLF: 166%, LF: 136%) compared with rest (all P < 0.05). TFA gain and phase were similar between RHE and rest, but VLF gain was higher, whereas VLF and LF phases were lower during SSM than RHE (all P < 0.05). EtCO2 was higher during SSM than rest and RHE (both P < 0.05), with the individual EtCO2 changes positively correlated with VLF gain (r = 0.538, P < 0.001). These results indicate that RHE significantly increases arterial pressure oscillation and TFA coherence and may improve dCA assessment in individuals unable to perform repeated postural changes.NEW & NOTEWORTHY This is the first study investigating dynamic cerebral autoregulation (dCA) during light-intensity repeated handgrip exercise (RHE) compared with rest and sit-stand maneuvers (SSM) using transfer function analysis (TFA). Compared with rest, RHE significantly increased oscillations of arterial blood pressure and cerebral blood velocity and coherence, whereas SSM exhibited the highest oscillations and coherence. These findings suggest that RHE may serve as an alternative method for assessing dCA in individuals unable to perform repeated postural changes.
Collapse
Affiliation(s)
- Wenxing Qin
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Marina Fukuie
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Daisuke Hoshi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Shoya Mori
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tsubasa Tomoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| | - Jun Sugawara
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takashi Tarumi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| |
Collapse
|
9
|
Van Riesen J, Shirzad M, Edgar C, Tari B, Heath M. A 10-min reduction in cerebral blood flow does not alter post-intervention executive function: evidence from lower-body negative pressure. Exp Brain Res 2024; 242:2193-2205. [PMID: 39012475 DOI: 10.1007/s00221-024-06879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/19/2024] [Indexed: 07/17/2024]
Abstract
A single bout of exercise as well as exposure to a hypercapnic environment increases cerebral blood flow (CBF) and is an adaptation linked to a post-intervention executive function (EF) benefit. In the present investigation we sought to determine whether a transient reduction in CBF impairs EF. Accordingly, we employed 10-min -30 mmHg and -50 mmHg lower-body negative pressure (LBNP) interventions as well as a non-LBNP control condition. LBNP was employed because it sequesters blood in the lower legs and safely and reliably decreases CBF. Transcranial Doppler ultrasound was used to measure middle cerebral artery velocity (MCAv) to estimate CBF prior to and during LBNP conditions. As well, assessments of the inhibitory control component of EF (i.e., antipointing) were completed prior to (pre-) and immediately after (i.e., post-) each condition. Antipointing requires that an individual reach mirror-symmetrical to an exogenously presented target and is a task providing the resolution to detect subtle EF changes. Results showed that LBNP produced a 14% reduction in MCAv; however, null hypothesis, equivalence and Bayesian contrasts indicated that antipointing metrics did not vary from pre- to post-intervention, and LBNP-based changes in MCAv magnitude were not reliably correlated with antipointing planning times. Hence, a 10-min reduction in CBF did not impact the efficiency or effectiveness of an inhibitory control measure of EF.
Collapse
Affiliation(s)
- James Van Riesen
- Graduate Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Mustafa Shirzad
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Chloe Edgar
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Benjamin Tari
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Matthew Heath
- Graduate Program in Neuroscience, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
- Canadian Centre for Activity and Aging, The University of Western Ontario, 1201 Western Rd, London, ON, N6G 1H1, Canada.
| |
Collapse
|
10
|
Brunelli N, Altamura C, Marcosano M, Rossi SS, Costa CM, Fallacara A, Bach-Pages M, Silvestrini M, Mallio CA, Vernieri F. Cerebral vasomotor reactivity in the acute phase and after 6 months in non-disabling stroke/TIA: A prospective cohort study. J Stroke Cerebrovasc Dis 2024; 33:107841. [PMID: 38945417 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/16/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024] Open
Abstract
BACKGROUND AND AIM Cerebral Vasomotor Reactivity (VMR) is a property of cerebral hemodynamics that protects from cerebrovascular disease. We aimed to explore the VMR longitudinal changes in patients with acute non-disabling stroke/Transient Ischemic Attack (TIA) to understand its implication in stroke ethiopatogenesis. METHODS VMR by Transcranial Doppler Breath Holding test was performed at 48-72 h from stroke onset (T1) and after 6 months (T2) on MCA of the non-affected hemisphere and PCA of the affected hemisphere. RESULTS We consecutively enrolled 124 patients with a median age of 66.0 (IQR 54.75-74.25) years with a median NIHSS 2 (IQR 1-3). Both MCA (1.38 %/s SD 0.58) and PCA (1.35 %/s SD 0.75) BHI at T1 did not differ among different stroke subtypes (p=0.067 and p=0.350; N=124). MCA and PCA BHI decreased from T1 to T2 (respectively 1.39 %/s SD 0.56 vs 1.18%/s SD 0.44 and 1.30 %/s SD 0.69 vs 1.20 %/s SD 0.51; N=109) regardless of ethiopatogenesis (respectively p<0.0001 and p=0.111). CONCLUSION The VMR is higher in acute phase than at 6 months in patients with non-disabling stroke/TIA, regardless of etiopathogenesis. The higher VMR in acute phase could be sustained by an increased Cerebral Blood Flow due to collateral circulation activation supporting the ischemic zone.
Collapse
Affiliation(s)
- Nicoletta Brunelli
- Department of Medicine and Surgery, Unit of Headache and Neurosonology, Unit of Neurology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.
| | - Claudia Altamura
- Department of Medicine and Surgery, Unit of Headache and Neurosonology, Unit of Neurology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.
| | - Marilena Marcosano
- Department of Medicine and Surgery, Unit of Headache and Neurosonology, Unit of Neurology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.
| | - Sergio Soeren Rossi
- Department of Medicine and Surgery, Unit of Headache and Neurosonology, Unit of Neurology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.
| | | | | | - Marcel Bach-Pages
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | | | - Carlo Augusto Mallio
- Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy; Unit of Radiology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Rome, Italy.
| | - Fabrizio Vernieri
- Department of Medicine and Surgery, Unit of Headache and Neurosonology, Unit of Neurology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128 Roma, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200 00128 Roma, Italy.
| |
Collapse
|
11
|
Jeyarajan G, Ayaz A, Herold F, Zou L, Heath M. A single bout of aerobic exercise does not alter inhibitory control preparatory set cerebral hemodynamics: Evidence from the antisaccade task. Brain Cogn 2024; 179:106182. [PMID: 38824809 DOI: 10.1016/j.bandc.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024]
Abstract
A single bout of exercise improves executive function (EF) and is a benefit - in part -attributed to an exercise-mediated increase in cerebral blood flow enhancing neural efficiency. Limited work has used an event-related protocol to examine postexercise changes in preparatory phase cerebral hemodynamics for an EF task. This is salient given the neural efficiency hypothesis' assertion that improved EF is related to decreased brain activity. Here, event-related transcranial Doppler ultrasound was used to measure pro- (saccade to target) and antisaccades (saccade mirror-symmetrical target) preparatory phase middle cerebral artery velocity (MCAv) prior to and immediately after 15-min of aerobic exercise. Antisaccades produced longer reaction times (RT) and an increased preparatory phase MCAv than prosaccades - a result attributed to greater EF neural activity for antisaccades. Antisaccades selectively produced a postexercise RT reduction (ps < 0.01); however, antisaccade preparatory phase MCAv did not vary from pre- to postexercise (p=0.53) and did not correlate with the antisaccade RT benefit (p = 0.31). Accordingly, results provide no evidence that improved neural efficiency indexed via functional hyperemia is linked to a postexercise EF behavioural benefit. Instead, results support an evolving view that an EF benefit represents the additive interplay between interdependent exercise-mediated neurophysiological changes.
Collapse
Affiliation(s)
- Gianna Jeyarajan
- School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Azar Ayaz
- School of Kinesiology, University of Western Ontario, London, ON, Canada
| | - Fabian Herold
- Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Matthew Heath
- School of Kinesiology, University of Western Ontario, London, ON, Canada; Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
12
|
Carvalho LB, Kaffenberger T, Chambers B, Borschmann K, Levi C, Churilov L, Thijs V, Bernhardt J. Cerebral hemodynamic response to upright position in acute ischemic stroke. Front Neurol 2024; 15:1392773. [PMID: 39055319 PMCID: PMC11269199 DOI: 10.3389/fneur.2024.1392773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction Concerns exist that a potential mechanism for harm from upright activity (sitting, standing, and walking) early after an acute ischaemic stroke could be the reduction of cerebral perfusion during this critical phase. We aimed to estimate the effects of upright positions (sitting and standing) on cerebral hemodynamics within 48 h and later, 3-7 days post-stroke, in patients with strokes with and without occlusive disease and in controls. Methods We investigated MCAv using transcranial Doppler in 0° head position, then at 30°, 70°, 90° sitting, and 90° standing, at <48 h post-stroke, and later at 3-7 days post-stroke. Mixed-effect linear regression modeling was used to estimate differences in MCAv between the 0° and other positions and to compare MCAv changes across groups. Results A total of 42 stroke participants (anterior and posterior circulation) (13 with occlusive disease, 29 without) and 22 controls were recruited. Affected hemisphere MCAv decreased in strokes with occlusive disease (<48 h post-stroke): from 0° to 90° sitting (-9.9 cm/s, 95% CI[-16.4, -3.4]) and from 0° to 90° standing (-7.1 cm/s, 95%CI[-14.3, -0.01]). Affected hemisphere MCAv also decreased in strokes without occlusive disease: from 0° to 90° sitting (-3.3 cm/s, 95%CI[-5.6, -1.1]) and from 0° to 90° standing (-3.6 cm/s, 95%CI [-5.9, -1.3]) (p-value interaction stroke with vs. without occlusive disease = 0.07). A decrease in MCAv when upright was also observed in controls: from 0° to 90° sitting (-3.8 cm/s, 95%CI[-6.0, -1.63]) and from 0° to 90° standing (-3 cm/s, 95%CI[-5.2, -0.81]) (p-value interaction stroke vs. controls = 0.85). Subgroup analysis of anterior circulation stroke showed similar patterns of change in MCAv in the affected hemisphere, with a significant interaction between those with occlusive disease (n = 11) and those without (n = 26) (p = 0.02). Changes in MCAv from 0° to upright at <48 h post-stroke were similar to 3-7 days. No association between changes in MCAv at <48 h and the 30-day modified Rankin Scale was found. Discussion Moving to more upright positions <2 days post-stroke does reduce MCAv in the affected hemisphere; however, these changes were not significantly different for stroke participants (anterior and posterior circulation) with and without occlusive disease, nor for controls. The decrease in MCAv in anterior circulation stroke with occlusive disease significantly differed from without occlusive disease. However, the sample size was small, and more research is warranted to confirm these findings.
Collapse
Affiliation(s)
- Lilian B. Carvalho
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Tina Kaffenberger
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
| | - Brian Chambers
- Neurology Department, Austin Health, Melbourne, VIC, Australia
| | - Karen Borschmann
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
- Allied Health, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Christopher Levi
- John Hunter Hospital, University of Newcastle, Newcastle, NSW, Australia
| | - Leonid Churilov
- Department of Medicine (Austin Health) and Melbourne Brain Centre at Royal Melbourne Hospital, Melbourne Medical School, University of Melbourne, Melbourne, VIC, Australia
| | - Vincent Thijs
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
- Neurology Department, Austin Health, Melbourne, VIC, Australia
| | - Julie Bernhardt
- Stroke Theme, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Heidelberg, VIC, Australia
| |
Collapse
|
13
|
Persaud P, Belfry GR, Heath M. Menstrual cycle status does not impact exercise-based changes in cerebral blood flow or executive function benefits. J Sports Sci 2024; 42:1061-1071. [PMID: 39052669 DOI: 10.1080/02640414.2024.2382566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
A single bout of exercise enhances executive function (EF) and may relate to an increase in cerebral blood flow (CBF). A limitation in the current literature is that biologically female participants are underrepresented given some evidence that changes in hormone levels across the menstrual cycle impact physiological and psychological variables. Here, biologically female participants completed separate single bouts of moderate intensity exercise (80% of estimated lactate threshold) during the follicular (FOL) and luteal (LUT) phases of their menstrual cycle. In addition, biologically male participants completed a same duration/intensity exercise session. Middle cerebral artery velocity (MCAv) was used to estimate CBF and pre- and postexercise EF was assessed via the antisaccade task. Results showed that resting MCAv was larger in the LUT than FOL phase; however, the exercise-mediated increase in MCAv was equivalent between menstrual cycle phases, and between female and male participants. Antisaccade reaction times reliably decreased from pre- to postexercise and frequentist and non-frequentist statistics demonstrated that the magnitude of the decrease was equivalent across FOL and LUT phases, and between female and male participants. Thus, results evince that menstrual cycle status should not serve as a basis limiting biologically female participants' inclusion in research examining exercise and EF.
Collapse
Affiliation(s)
- Priyanka Persaud
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
| | - Glen R Belfry
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
- Canadian Centre for Activity and Aging, University of Western Ontario, London, ON, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, ON, Canada
- Canadian Centre for Activity and Aging, University of Western Ontario, London, ON, Canada
- Graduate Program in Neuroscience, University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
Jiang P, Zhang H, Wang X, Cao F, Li C. A case report of the treatment of carotid artery stenosis by staged angioplasty based on intraoperative TCD monitoring. Heliyon 2024; 10:e30003. [PMID: 38699032 PMCID: PMC11064445 DOI: 10.1016/j.heliyon.2024.e30003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/05/2024] Open
Abstract
Objective Cerebral hyperperfusion syndrome (CHS) is the most severe complication of carotid artery stenting (CAS) or endarterectomy (CEA). Staging treatment can effectively reduce the risk of CHS without increasing the risk of ischemic stroke. The first stage of balloon dilatation is critical for staged treatment. However, the successful criterion of the first stage balloon dilatation is still inconsistent. Method In the current study presents a case of a 61-year-old male with bilateral internal carotid subtotal occlusion, transcranial doppler (TCD) was used to measure middle cerebral artery (MCA) flow rate on the narrow side of surgery and the results are promising. Result Intraoperative TCD monitoring is expected to be an evaluation criterion for staged angioplasty for carotid artery stenosis. Conclusion The approach of blood flow velocity in the brain based on intraoperative measurement of TCD during the treatment of this patient is a new idea for staging treatment in the future.
Collapse
Affiliation(s)
- Peng Jiang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital,Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Houwen Zhang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xu Wang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital,Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Fangzheng Cao
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunrong Li
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital,Hangzhou Medical College), Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Regenhardt RW, Nolan NM, Das AS, Mahajan R, Monk AD, LaRose SL, Migdady I, Chen Y, Sheriff F, Bai X, Dmytriw AA, Patel AB, Snider SB, Vaitkevicius H. Transcranial Doppler cerebrovascular reactivity: Thresholds for clinical significance in cerebrovascular disease. J Neuroimaging 2024; 34:348-355. [PMID: 38553906 PMCID: PMC11220496 DOI: 10.1111/jon.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND AND PURPOSE Thresholds for abnormal transcranial Doppler cerebrovascular reactivity (CVR) studies are poorly understood, especially for patients with cerebrovascular disease. Using a real-world cohort with cerebral arterial stenosis, we sought to describe a clinically significant threshold for carbon dioxide reactivity (CO2R) and vasomotor range (VMR). METHODS CVR studies were performed during conditions of breathing room air normally, breathing 8% carbon dioxide air mixture, and hyperventilation. The mean and standard deviation (SD) of CO2R and VMR were calculated for the unaffected side in patients with unilateral stenosis; a deviation of 2 SDs below the mean was chosen as the threshold for abnormal. Receiver operating characteristic (ROC) curves for both sides for patients with unilateral and bilateral stenosis were evaluated for sensitivity (Sn) and specificity (Sp). RESULTS A total of 133 consecutive CVR studies were performed on 62 patients with stenosis with mean±SD age 55±16 years. Comorbidities included hypertension (60%), diabetes (15%), stroke (40%), and smoking (35%). In patients with unilateral stenosis, mean±SD CO2R for the unaffected side was 1.86±0.53%, defining abnormal CO2R as <0.80%. Mean±SD CO2R for the affected side was 1.27±0.90%. The CO2R threshold predicted abnormal acetazolamide single-photon emission computed tomography (SPECT) (Sn = .73, Sp = .79), CT/MRI perfusion abnormality (Sn = .42, Sp = .77), infarction on MRI (Sn = .45, Sp = .76), and pressure-dependent exam (Sn = .50, Sp = .76). For the unaffected side, mean±SD VMR was 39.5±15.8%, defining abnormal VMR as <7.9%. For the affected side, mean±SD VMR was 26.5±17.8%. The VMR threshold predicted abnormal acetazolamide SPECT (Sn = .46, Sp = .94), infarction on MRI (Sn = .27, Sp = .94), and pressure-dependent exam (Sn = .31, Sp = .90). CONCLUSIONS In patients with multiple vascular risk factors, a reasonable threshold for clinically significant abnormal CO2R is <0.80% and VMR is <7.9%. Noninvasive CVR may aid in diagnosing and risk stratifying patients with stenosis.
Collapse
Affiliation(s)
- Robert W Regenhardt
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Neal M Nolan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Alvin S Das
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rahul Mahajan
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew D Monk
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- NovaSignal, Los Angeles, California, USA
| | - Sarah L LaRose
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ibrahim Migdady
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Neurocritical Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yimin Chen
- Department of Neurology, Foshan Sanshui District People's Hospital, Foshan, China
| | - Faheem Sheriff
- Department of Neurology, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, El Paso, Texas, USA
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Adam A Dmytriw
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel B Snider
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henrikas Vaitkevicius
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Status Epilepticus Division, Marinus Pharmaceuticals, Radnor, Pennsylvania, USA
| |
Collapse
|
16
|
Crippa IA, Vincent JL, Zama Cavicchi F, Pozzebon S, Gaspard N, Maenhout C, Creteur J, Taccone FS. Estimated Cerebral Perfusion Pressure and Intracranial Pressure in Septic Patients. Neurocrit Care 2024; 40:577-586. [PMID: 37420137 DOI: 10.1007/s12028-023-01783-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/09/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Sepsis-associated brain dysfunction (SABD) is frequent and is associated with poor outcome. Changes in brain hemodynamics remain poorly described in this setting. The aim of this study was to investigate the alterations of cerebral perfusion pressure and intracranial pressure in a cohort of septic patients. METHODS We conducted a retrospective analysis of prospectively collected data in septic adults admitted to our intensive care unit (ICU). We included patients in whom transcranial Doppler recording performed within 48 h from diagnosis of sepsis was available. Exclusion criteria were intracranial disease, known vascular stenosis, cardiac arrhythmias, pacemaker, mechanical cardiac support, severe hypotension, and severe hypocapnia or hypercapnia. SABD was clinically diagnosed by the attending physician, anytime during the ICU stay. Estimated cerebral perfusion pressure (eCPP) and estimated intracranial pressure (eICP) were calculated from the blood flow velocity of the middle cerebral artery and invasive arterial pressure using a previously validated formula. Normal eCPP was defined as eCPP ≥ 60 mm Hg, low eCPP was defined as eCPP < 60 mm Hg; normal eICP was defined as eICP ≤ 20 mm Hg, and high eICP was defined as eICP > 20 mm Hg. RESULTS A total of 132 patients were included in the final analysis (71% male, median [interquartile range (IQR)] age was 64 [52-71] years, median [IQR] Acute Physiology and Chronic Health Evaluation II score on admission was 21 [15-28]). Sixty-nine (49%) patients developed SABD during the ICU stay, and 38 (29%) were dead at hospital discharge. Transcranial Doppler recording lasted 9 (IQR 7-12) min. Median (IQR) eCPP was 63 (58-71) mm Hg in the cohort; 44 of 132 (33%) patients had low eCPP. Median (IQR) eICP was 8 (4-13) mm Hg; five (4%) patients had high eICP. SABD occurrence and in-hospital mortality did not differ between patients with normal eCPP and patients with low eCPP or between patients with normal eICP and patients with high eICP. Eighty-six (65%) patients had normal eCPP and normal eICP, 41 (31%) patients had low eCPP and normal eICP, three (2%) patients had low eCPP and high eICP, and two (2%) patients had normal eCPP and high eICP; however, SABD occurrence and in-hospital mortality were not significantly different among these subgroups. CONCLUSIONS Brain hemodynamics, in particular CPP, were altered in one third of critically ill septic patients at a steady state of monitoring performed early during the course of sepsis. However, these alterations were equally common in patients who developed or did not develop SABD during the ICU stay and in patients with favorable or unfavorable outcome.
Collapse
Affiliation(s)
- Ilaria Alice Crippa
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium.
- Department of Anesthesiology and Intensive Care, Policlinico San Marco, Gruppo San Donato, Corso Europa 7, 24046, Zingonia, Italy.
| | - Jean-Louis Vincent
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Federica Zama Cavicchi
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Selene Pozzebon
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Christelle Maenhout
- Department of Neurology, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Jacques Creteur
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Erasme Hospital, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070, Brussels, Belgium
| |
Collapse
|
17
|
Caddy HT, Thomas HJ, Kelsey LJ, Smith KJ, Doyle BJ, Green DJ. Comparison of computational fluid dynamics with transcranial Doppler ultrasound in response to physiological stimuli. Biomech Model Mechanobiol 2024; 23:255-269. [PMID: 37805938 PMCID: PMC10902019 DOI: 10.1007/s10237-023-01772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023]
Abstract
Cerebrovascular haemodynamics are sensitive to multiple physiological stimuli that require synergistic response to maintain adequate perfusion. Understanding haemodynamic changes within cerebral arteries is important to inform how the brain regulates perfusion; however, methods for direct measurement of cerebral haemodynamics in these environments are challenging. The aim of this study was to assess velocity waveform metrics obtained using transcranial Doppler (TCD) with flow-conserving subject-specific three-dimensional (3D) simulations using computational fluid dynamics (CFD). Twelve healthy participants underwent head and neck imaging with 3 T magnetic resonance angiography. Velocity waveforms in the middle cerebral artery were measured with TCD ultrasound, while diameter and velocity were measured using duplex ultrasound in the internal carotid and vertebral arteries to calculate incoming cerebral flow at rest, during hypercapnia and exercise. CFD simulations were developed for each condition, with velocity waveform metrics extracted in the same insonation region as TCD. Exposure to stimuli induced significant changes in cardiorespiratory measures across all participants. Measured absolute TCD velocities were significantly higher than those calculated from CFD (P range < 0.001-0.004), and these data were not correlated across conditions (r range 0.030-0.377, P range 0.227-0.925). However, relative changes in systolic and time-averaged velocity from resting levels exhibited significant positive correlations when the distinct techniques were compared (r range 0.577-0.770, P range 0.003-0.049). Our data indicate that while absolute measures of cerebral velocity differ between TCD and 3D CFD simulation, physiological changes from resting levels in systolic and time-averaged velocity are significantly correlated between techniques.
Collapse
Affiliation(s)
- Harrison T Caddy
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Hannah J Thomas
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| | - Lachlan J Kelsey
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Kurt J Smith
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
- Cerebrovascular Health, Exercise, and Environmental Research Sciences Laboratory, University of Victoria, Victoria, Canada
| | - Barry J Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Nedlands, Australia and the UWA Centre for Medical Research, The University of Western Australia, Perth, Australia.
- School of Engineering, The University of Western Australia, Perth, Australia.
| | - Daniel J Green
- School of Human Sciences (Exercise and Sport Sciences), The University of Western Australia, Perth, Australia
| |
Collapse
|
18
|
Ryalino C, Sahinovic MM, Drost G, Absalom AR. Intraoperative monitoring of the central and peripheral nervous systems: a narrative review. Br J Anaesth 2024; 132:285-299. [PMID: 38114354 DOI: 10.1016/j.bja.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 12/21/2023] Open
Abstract
The central and peripheral nervous systems are the primary target organs during anaesthesia. At the time of the inception of the British Journal of Anaesthesia, monitoring of the central nervous system comprised clinical observation, which provided only limited information. During the 100 yr since then, and particularly in the past few decades, significant progress has been made, providing anaesthetists with tools to obtain real-time assessments of cerebral neurophysiology during surgical procedures. In this narrative review article, we discuss the rationale and uses of electroencephalography, evoked potentials, near-infrared spectroscopy, and transcranial Doppler ultrasonography for intraoperative monitoring of the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Christopher Ryalino
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Marko M Sahinovic
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Gea Drost
- Department of Neurology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands; Department of Neurosurgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Anthony R Absalom
- Department of Anaesthesiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Shirzad M, Van Riesen J, Behboodpour N, Heath M. 10-min exposure to a 2.5% hypercapnic environment increases cerebral blood blow but does not impact executive function. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:143-150. [PMID: 38245339 DOI: 10.1016/j.lssr.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 01/22/2024]
Abstract
Space travel and exploration are associated with increased ambient CO2 (i.e., a hypercapnic environment). Some work reported that the physiological changes (e.g., increased cerebral blood flow [CBF]) associated with a chronic hypercapnic environment contributes to a "space fog" that adversely impacts cognition and psychomotor performance, whereas other work reported no change or a positive change. Here, we employed the antisaccade task to evaluate whether transient exposure to a hypercapnic environment influences top-down executive function (EF). Antisaccades require a goal-directed eye movement mirror-symmetrical to a target and are an ideal tool for identifying subtle EF changes. Healthy young adults (aged 19-25 years) performed blocks of antisaccade trials prior to (i.e., pre-intervention), during (i.e., concurrent) and after (i.e., post-intervention) 10-min of breathing factional inspired CO2 (FiCO2) of 2.5% (i.e., hypercapnic condition) and during a normocapnic (i.e., control) condition. In both conditions, CBF, ventilatory and cardiorespiratory responses were measured. Results showed that the hypercapnic condition increased CBF, ventilation and end-tidal CO2 and thus demonstrated an expected physiological adaptation to increased FiCO2. Notably, however, null hypothesis and equivalence tests indicated that concurrent and post-intervention antisaccade reaction times were refractory to the hypercapnic environment; that is, transient exposure to a FiCO2 of 2.5% did not produce a real-time or lingering influence on an oculomotor-based measure of EF. Accordingly, results provide a framework that - in part - establishes the FiCO2 percentage and timeline by which high-level EF can be maintained. Future work will explore CBF and EF dynamics during chronic hypercapnic exposure as more direct proxy for the challenges of space flight and exploration.
Collapse
Affiliation(s)
- Mustafa Shirzad
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - James Van Riesen
- Canadian Centre for Activity and Aging, University of Western Ontario, 1201 Western Rd, London, ON N6G 1H1, Canada
| | - Nikan Behboodpour
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, 1201 Western Rd, London, ON N6G 1H1, Canada; Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada.
| |
Collapse
|
20
|
Liao J, Misaki K, Uno T, Nambu I, Kamide T, Chen Z, Nakada M, Sakamoto J. Fluid dynamic analysis in predicting the recanalization of intracranial aneurysms after coil embolization - A study of spatiotemporal characteristics. Heliyon 2024; 10:e22801. [PMID: 38226254 PMCID: PMC10788401 DOI: 10.1016/j.heliyon.2023.e22801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/09/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024] Open
Abstract
Purpose Hemodynamics play a key role in the management of cerebral aneurysm recanalization after coil embolization; however, the most reliable hemodynamic parameter remains unknown. Previous studies have explored the use of both spatiotemporally averaged and maximal definitions for hemodynamic parameters, based on computational fluid dynamics (CFD) analysis, to build predictive models for aneurysmal recanalization. In this study, we aimed to assess the influence of different spatiotemporal characteristics of hemodynamic parameters on predictive performance. Methods Hemodynamics were simulated using CFD for 66 cerebral aneurysms from 65 patients. We evaluated 14 types of spatiotemporal definitions for two hemodynamic parameters in the pre-coiling model and five in virtual post-coiling model (VM) created by cutting the aneurysm from the pre-coiling model. A total of 91 spatiotemporal hemodynamic features were derived and utilized to develop univariate predictor (UP) and multivariate logistic regression (LR) models. The model's performance was assessed using two metrics: the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). Results Different spatiotemporal hemodynamic features exhibited a wide range of AUROC values ranging from 0.224 to 0.747, with 22 feature pairs showing a significant difference in AUROC value (P-value <0.05), despite being derived from the same hemodynamic parameter. PDave,q1 was identified as the strongest UP with AUROC/AUPRC values of 0.747/0.385, yielding sensitivity and specificity value of 0.889 and 0.614 at the optimal cut-off value, respectively. The LR model further improved the prediction performance, having AUROC/AUPRC values of 0.890/0.903. At the optimal cut-off value, the LR model achieved a specificity of 0.877, sensitivity of 0.719, outperforming the UP model. Conclusion Our research indicated that the characteristics of hemodynamic parameters in terms of space and time had a significant impact on the development of predictive model. Our findings suggest that LR model based on spatiotemporal hemodynamic features could be clinically useful in predicting recanalization after coil embolization in patients, without the need for invasive procedures.
Collapse
Affiliation(s)
- Jing Liao
- Division of Transdisciplinary Sciences, Graduate School of Frontier Science Initiative, Kanazawa University, Ishikawa, Japan
| | - Kouichi Misaki
- Department of Neurosurgery, Kanazawa University, Ishikawa, Japan
| | - Tekehiro Uno
- Department of Neurosurgery, Kanazawa University, Ishikawa, Japan
| | - Iku Nambu
- Department of Neurosurgery, Kanazawa University, Ishikawa, Japan
| | - Tomoya Kamide
- Department of Neurosurgery, Kanazawa University, Ishikawa, Japan
| | - Zhuoqing Chen
- Department of Nuclear Medicine, Kanazawa University, Ishikawa, Japan
| | | | - Jiro Sakamoto
- Division of Mechanical Science and Engineering, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
21
|
Meng L, Sun Y, Zhao X, Meng DM, Liu Z, Adams DC, McDonagh DL, Rasmussen M. Effects of phenylephrine on systemic and cerebral circulations in humans: a systematic review with mechanistic explanations. Anaesthesia 2024; 79:71-85. [PMID: 37948131 DOI: 10.1111/anae.16172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2023] [Indexed: 11/12/2023]
Abstract
We conducted a systematic review of the literature reporting phenylephrine-induced changes in blood pressure, cardiac output, cerebral blood flow and cerebral tissue oxygen saturation as measured by near-infrared spectroscopy in humans. We used the proportion change of the group mean values reported by the original studies in our analysis. Phenylephrine elevates blood pressure whilst concurrently inducing a reduction in cardiac output. Furthermore, despite increasing cerebral blood flow, it decreases cerebral tissue oxygen saturation. The extent of phenylephrine's influence on cardiac output (r = -0.54 and p = 0.09 in awake humans; r = -0.55 and p = 0.007 in anaesthetised humans), cerebral blood flow (r = 0.65 and p = 0.002 in awake humans; r = 0.80 and p = 0.003 in anaesthetised humans) and cerebral tissue oxygen saturation (r = -0.72 and p = 0.03 in awake humans; r = -0.24 and p = 0.48 in anaesthetised humans) appears closely linked to the magnitude of phenylephrine-induced blood pressure changes. When comparing the effects of phenylephrine in awake and anaesthetised humans, we found no evidence of a significant difference in cardiac output, cerebral blood flow or cerebral tissue oxygen saturation. There was also no evidence of a significant difference in effect on systemic and cerebral circulations whether phenylephrine was given by bolus or infusion. We explore the underlying mechanisms driving the phenylephrine-induced cardiac output reduction, cerebral blood flow increase and cerebral tissue oxygen saturation decrease. Individualised treatment approaches, close monitoring and consideration of potential risks and benefits remain vital to the safe and effective use of phenylephrine in acute care.
Collapse
Affiliation(s)
- L Meng
- Department of Anesthesia, Indiana University School of Medicine, IA, Indianapolis, USA
| | - Y Sun
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - X Zhao
- Department of Anesthesiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - D M Meng
- Choate Rosemary Hall School, CT, Wallingford, USA
| | - Z Liu
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, IA, Indianapolis, USA
| | - D C Adams
- Department of Anesthesia, Indiana University School of Medicine, IA, Indianapolis, USA
| | - D L McDonagh
- Departments of Anesthesiology and Pain Management, Neurological Surgery, Neurology and Neurotherapeutics, UT Southwestern Medical Center, TX, Dallas, USA
| | - M Rasmussen
- Department of Anesthesiology, Section of Neuroanesthesia, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
22
|
Mahler S, Huang YX, Liang M, Avalos A, Tyszka JM, Mertz J, Yang C. Assessing depth sensitivity in laser interferometry speckle visibility spectroscopy (iSVS) through source-to-detector distance variation and cerebral blood flow monitoring in humans and rabbits. BIOMEDICAL OPTICS EXPRESS 2023; 14:4964-4978. [PMID: 37791277 PMCID: PMC10545208 DOI: 10.1364/boe.498815] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 10/05/2023]
Abstract
Recently, speckle visibility spectroscopy (SVS) was non-invasively applied on the head to monitor cerebral blood flow. The technique, using a multi-pixel detecting device (e.g., camera), allows the detection of a larger number of speckles, increasing the proportion of light that is detected. Due to this increase, it is possible to collect light that has propagated deeper through the brain. As a direct consequence, cerebral blood flow can be monitored. However, isolating the cerebral blood flow from the other layers, such as the scalp or skull components, remains challenging. In this paper, we report our investigations on the depth-sensitivity of laser interferometry speckle visibility spectroscopy (iSVS). Specifically, we varied the depth of penetration of the laser light into the head by tuning the source-to-detector distance, and identified the transition point at which cerebral blood flow in humans and rabbits starts to be detected.
Collapse
Affiliation(s)
- Simon Mahler
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yu Xi Huang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Mingshu Liang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Alan Avalos
- Office of Laboratory Animal Resources (OLAR), California Institute of Technology, Pasadena, California 91125, USA
| | - Julian M. Tyszka
- Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - Jerome Mertz
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
- Neurophotonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Changhuei Yang
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
23
|
Bateman GA. A scoping review of the discrepancies in the measurement of cerebral blood flow in idiopathic intracranial hypertension: oligemia, euvolemia or hyperemia? Fluids Barriers CNS 2023; 20:63. [PMID: 37612708 PMCID: PMC10463926 DOI: 10.1186/s12987-023-00465-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND The literature regarding the global cerebral blood flow (CBF) in idiopathic intracranial hypertension (IIH) is divergent leading to skepticism about the significance of blood flow to the disease's underlying pathophysiology. METHODS The purpose of the current paper is to perform a PRISMA scoping review of the literature describing the CBF in IIH. The review investigated the PUBMED and Scopus data bases looking at case mix, technique and the methodologies employed by the studies selected. DISCUSSION Many studies indicate that the flow in IIH is normal but others show the flow to be altered. These later studies show a range of flows from a reduction of 20% to an increase of 50% compared to control values. Obesity is a common finding in IIH and is known to reduce CBF, anemia occurs in approximately 20% of IIH patients and is a potent cause of an increased CBF. Thus, variations in case mix may have a significant effect on the final outcome in those studies which are underpowered. The varying techniques which have been used to estimate CBF have differing strengths and weaknesses which may also have a bearing on the outcome. Some papers have significant confounding methodological issues. CONCLUSIONS This review suggests each of the variables investigated are responsible for the divergent CBF findings in IIH.
Collapse
Affiliation(s)
- Grant A Bateman
- Department of Medical Imaging, John Hunter Hospital, Locked Bag 1, Newcastle Region Mail Center, Newcastle, NSW, 2310, Australia.
- Newcastle University Faculty of Health, Callaghan Campus, Newcastle, NSW, Australia.
| |
Collapse
|
24
|
Fico BG, Miller KB, Rivera-Rivera LA, Corkery AT, Pearson AG, Loggie NA, Howery AJ, Rowley HA, Johnson KM, Johnson SC, Wieben O, Barnes JN. Cerebral hemodynamics comparison using transcranial doppler ultrasound and 4D flow MRI. Front Physiol 2023; 14:1198615. [PMID: 37304825 PMCID: PMC10250020 DOI: 10.3389/fphys.2023.1198615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction: Age-related changes in cerebral hemodynamics are controversial and discrepancies may be due to experimental techniques. As such, the purpose of this study was to compare cerebral hemodynamics measurements of the middle cerebral artery (MCA) between transcranial Doppler ultrasound (TCD) and four-dimensional flow MRI (4D flow MRI). Methods: Twenty young (25 ± 3 years) and 19 older (62 ± 6 years) participants underwent two randomized study visits to evaluate hemodynamics at baseline (normocapnia) and in response to stepped hypercapnia (4% CO2, and 6% CO2) using TCD and 4D flow MRI. Cerebral hemodynamic measures included MCA velocity, MCA flow, cerebral pulsatility index (PI) and cerebrovascular reactivity to hypercapnia. MCA flow was only assessed using 4D flow MRI. Results: MCA velocity between the TCD and 4D flow MRI methods was positively correlated across the normocapnia and hypercapnia conditions (r = 0.262; p = 0.004). Additionally, cerebral PI was significantly correlated between TCD and 4D flow MRI across the conditions (r = 0.236; p = 0.010). However, there was no significant association between MCA velocity using TCD and MCA flow using 4D flow MRI across the conditions (r = 0.079; p = 0.397). When age-associated differences in cerebrovascular reactivity using conductance were compared using both methodologies, cerebrovascular reactivity was greater in young adults compared to older adults when using 4D flow MRI (2.11 ± 1.68 mL/min/mmHg/mmHg vs. 0.78 ± 1.68 mL/min/mmHg/mmHg; p = 0.019), but not with TCD (0.88 ± 1.01 cm/s/mmHg/mmHg vs. 0.68 ± 0.94 cm/s/mmHg/mmHg; p = 0.513). Conclusion: Our results demonstrated good agreement between the methods at measuring MCA velocity during normocapnia and in response to hypercapnia, but MCA velocity and MCA flow were not related. In addition, measurements using 4D flow MRI revealed effects of aging on cerebral hemodynamics that were not apparent using TCD.
Collapse
Affiliation(s)
- Brandon G. Fico
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Kathleen B. Miller
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Leonardo A. Rivera-Rivera
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Adam T. Corkery
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew G. Pearson
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Nicole A. Loggie
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Anna J. Howery
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| | - Howard A. Rowley
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin M. Johnson
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran’s Hospital, Madison, WI, United States
| | - Oliver Wieben
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jill N. Barnes
- Department of Kinesiology, Bruno Balke Biodynamics Laboratory, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
25
|
Tang ECH, Lau AYL, AU D, Ju Y, Lam BYK, Wong A, Au L, Mok VCT. Effects of Acupuncture upon cerebral hemodynamics in cerebral small vessel disease: A pilot study. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 4:100168. [PMID: 37397268 PMCID: PMC10313857 DOI: 10.1016/j.cccb.2023.100168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/20/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023]
Abstract
Background and aims Recent preclinical studies and meta-analysis of clinical trials suggested that acupuncture may improve cognition in cerebral small vessel disease (CSVD). We investigated the cerebral hemodynamics of acupuncture in subjects with CSVD and compared its impact upon the cerebral hemodynamics in normal elderly subjects. Methods 10 subjects with CSVD (CSVD group) and 10 aged-matched control subjects who had no or insignificant CSVD (control group) were recruited. A single session of acupuncture was applied for 30 min in both groups. We assessed the effect of our acupuncture intervention on cerebral hemodynamics by transcranial Doppler ultrasound (TCD). Peak systolic velocity (PSV) and pulsatility index (PI) of the middle cerebral artery (MCA) were assessed. Results We observed that PSV increased by a maximum of 39% at 20 min (p<0.05), while there was no significant change in PI in the CSVD group during the acupuncture session. In the control group, although we observed no significant change in PSV during the acupuncture session, there was a significant decrease in PI by a maximum of 22% at 20 min (p<0.05). No adverse events were reported during or after the procedure. Conclusion This study suggested that our acupuncture prescription was associated with an increase in cerebral blood flow in subjects with established moderate to severe CSVD yet without apparent impact on distal vascular resistance. While, in subjects with no or insignificant CSVD, it may reduce cerebral small vessel distal vascular resistance. A larger study is needed to confirm our findings.
Collapse
Affiliation(s)
- Endy-Chun-hung Tang
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Gerald Choa Neuroscience Institute, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Alexander-Yuk-lun Lau
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Gerald Choa Neuroscience Institute, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- The Hong Kong Institute of Integrative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Flat 4L, 4/F, Day Treatment Block, Shatin, Hong Kong SAR, China
| | - David AU
- The Hong Kong Institute of Integrative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Flat 4L, 4/F, Day Treatment Block, Shatin, Hong Kong SAR, China
| | - Yanli Ju
- The Hong Kong Institute of Integrative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Flat 4L, 4/F, Day Treatment Block, Shatin, Hong Kong SAR, China
| | - Bonnie-Yin-Ka Lam
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Gerald Choa Neuroscience Institute, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- The Hong Kong Institute of Integrative Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Flat 4L, 4/F, Day Treatment Block, Shatin, Hong Kong SAR, China
| | - Adrian Wong
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Gerald Choa Neuroscience Institute, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Lisa Au
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Gerald Choa Neuroscience Institute, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Vincent-Chung-tong Mok
- Lau Tat-chuen Research Centre of Brain Degenerative Diseases in Chinese, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Therese Pei Fong Chow Research Centre for Prevention of Dementia, Gerald Choa Neuroscience Institute, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
26
|
Sathialingam E, Cowdrick KR, Liew AY, Fang Z, Lee SY, McCracken CE, Akbik F, Samuels OB, Kandiah P, Sadan O, Buckley EM. Microvascular cerebral blood flow response to intrathecal nicardipine is associated with delayed cerebral ischemia. Front Neurol 2023; 14:1052232. [PMID: 37006474 PMCID: PMC10064128 DOI: 10.3389/fneur.2023.1052232] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/06/2023] [Indexed: 03/19/2023] Open
Abstract
One of the common complications of non-traumatic subarachnoid hemorrhage (SAH) is delayed cerebral ischemia (DCI). Intrathecal (IT) administration of nicardipine, a calcium channel blocker (CCB), upon detection of large-artery cerebral vasospasm holds promise as a treatment that reduces the incidence of DCI. In this observational study, we prospectively employed a non-invasive optical modality called diffuse correlation spectroscopy (DCS) to quantify the acute microvascular cerebral blood flow (CBF) response to IT nicardipine (up to 90 min) in 20 patients with medium-high grade non-traumatic SAH. On average, CBF increased significantly with time post-administration. However, the CBF response was heterogeneous across subjects. A latent class mixture model was able to classify 19 out of 20 patients into two distinct classes of CBF response: patients in Class 1 (n = 6) showed no significant change in CBF, while patients in Class 2 (n = 13) showed a pronounced increase in CBF in response to nicardipine. The incidence of DCI was 5 out of 6 in Class 1 and 1 out of 13 in Class 2 (p < 0.001). These results suggest that the acute (<90 min) DCS-measured CBF response to IT nicardipine is associated with intermediate-term (up to 3 weeks) development of DCI.
Collapse
Affiliation(s)
- Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Kyle R. Cowdrick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Amanda Y. Liew
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
| | - Seung Yup Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Electrical and Computer Engineering, Kennesaw State University, Marietta, GA, United States
| | - Courtney E. McCracken
- Center for Research and Evaluation, Kaiser Permanente Georgia, Atlanta, GA, United States
| | - Feras Akbik
- Division of Neurocritical Care, Department of Neurology and Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Owen B. Samuels
- Division of Neurocritical Care, Department of Neurology and Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Prem Kandiah
- Division of Neurocritical Care, Department of Neurology and Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Ofer Sadan
- Division of Neurocritical Care, Department of Neurology and Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, United States
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, United States
- Children's Research Scholar, Children's Healthcare of Atlanta, Atlanta, GA, United States
- *Correspondence: Erin M. Buckley
| |
Collapse
|
27
|
Cerebral blood flow and immediate and sustained executive function benefits following single bouts of passive and active exercise. Brain Cogn 2023; 166:105953. [PMID: 36702069 DOI: 10.1016/j.bandc.2023.105953] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/26/2023]
Abstract
Passive exercise occurs when an individual's limbs are moved via an external force and is a modality that increases cerebral blood flow (CBF) and provides an immediate postexercise executive function (EF) benefit. To our knowledge, no work has examined for how long passive exercise benefits EF. Here, healthy young adults (N = 22; 7 female) used a cycle ergometer to complete three 20-min conditions: passive exercise (via mechanically driven flywheel), a traditional light intensity (37 W) "active" exercise condition (i.e., via volitional pedalling) and a non-exercise control condition. An estimate of CBF was obtained via transcranial Doppler ultrasound measurement of middle cerebral artery blood velocity (MCAv) and antisaccades (i.e., saccade mirror-symmetrical to a target) were completed prior to and immediately, 30- and 60-min following each condition to assess EF. Passive and active exercise increased MCAv; however, the increase was larger in the latter condition. In terms of antisaccades, passive and active exercise provided an immediate postexercise reaction time benefit. At the 30-min assessment, the benefit was observed for active but not passive exercise and neither produced a benefit at the 60-min assessment. Thus, passive exercise provided an evanescent EF "boost" and is a finding that may reflect a smaller cortical hemodynamic response.
Collapse
|
28
|
Dynamic cerebral autoregulation during step-wise increases in blood pressure during anaesthesia: A nonrandomised interventional trial. Eur J Anaesthesiol 2023; 40:407-417. [PMID: 36655712 PMCID: PMC10155696 DOI: 10.1097/eja.0000000000001798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Classically, cerebral autoregulation (CA) entails cerebral blood flow (CBF) remaining constant by cerebrovascular tone adapting to fluctuations in mean arterial pressure (MAP) between ∼60 and ∼150 mmHg. However, this is not an on-off mechanism; previous work has suggested that vasomotor tone is proportionally related to CA function. During propofol-based anaesthesia, there is cerebrovascular vasoconstriction, and static CA remains intact. Sevoflurane-based anaesthesia induces cerebral vasodilation and attenuates CA dose-dependently. It is unclear how this translates to dynamic CA across a range of blood pressures in the autoregulatory range. OBJECTIVE The aim of this study was to quantify the effect of step-wise increases in MAP between 60 and 100 mmHg, using phenylephrine, on dynamic CA during propofol- and sevoflurane-based anaesthesia. DESIGN A nonrandomised interventional trial. SETTING Single centre enrolment started on 11 January 2019 and ended on 23 September 2019. PATIENTS We studied American Society of Anesthesiologists (ASA) I/II patients undergoing noncardiothoracic, nonneurosurgical and nonlaparoscopic surgery under general anaesthesia. INTERVENTION In this study, cerebrovascular tone was manipulated in the autoregulatory range by increasing MAP step-wise using phenylephrine in patients receiving either propofol- or sevoflurane-based anaesthesia. MAP and mean middle cerebral artery blood velocity (MCA Vmean ) were measured in ASA I and II patients, anaesthetised with either propofol ( n = 26) or sevoflurane ( n = 28), during 10 mmHg step-wise increments of MAP between 60 and 100 mmHg. Static CA was determined by plotting 2-min averaged MCA Vmean versus MAP. Dynamic CA was determined using transfer function analysis and expressed as the phase lead (°) between MAP and MCA Vmean oscillations, created with positive pressure ventilation with a frequency of 6 min -1 . MAIN OUTCOMES The primary outcome of this study was the response of dynamic CA during step-wise increases in MAP during propofol- and sevoflurane-based anaesthesia. RESULTS MAP levels achieved per step-wise increments were comparable between anaesthesia regiment (63 ± 3, 72 ± 2, 80 ± 2, 90 ± 2, 100 ± 3 mmHg, and 61 ± 4, 71 ± 2, 80 ± 2, 89 ± 2, 98 ± 4 mmHg for propofol and sevoflurane, respectively). MCA Vmean increased more during step-wise MAP increments for sevoflurane compared to propofol ( P ≤0.001). Dynamic CA improved during propofol (0.73° mmHg -1 , 95% CI 0.51 to 0.95; P ≤ 0.001)) and less pronounced during sevoflurane-based anaesthesia (0.21° mmHg -1 (95% CI 0.01 to 0.42, P = 0.04). CONCLUSIONS During general anaesthesia, dynamic CA is dependent on MAP, also within the autoregulatory range. This phenomenon was more pronounced during propofol anaesthesia than during sevoflurane. TRIAL REGISTRATION NCT03816072 ( https://clinicaltrials.gov/ct2/show/NCT03816072 ).
Collapse
|
29
|
Soejima T, Ueda K, Hasegawa S, Motoe H, Okada K, Ito YM, Hoshino K, Morimoto Y. Change in cerebral circulation during the induction of anesthesia with remimazolam. J Anesth 2023; 37:92-96. [PMID: 36355203 DOI: 10.1007/s00540-022-03135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022]
Abstract
PURPOSE Remimazolam is a new ultra-short-acting benzodiazepine with unknown effects on cerebral circulation. We measured total cerebral hemoglobin concentrations, which reflect cerebral blood volume (CBV), and cerebral oxygen saturation, using time-domain near-infrared spectroscopy, which can measure the absolute values of cerebral hemoglobin concentrations. We also measured cerebral blood flow velocity (CBFV) in the middle cerebral artery using transcranial Doppler as an indicator of cerebral blood flow (CBF). We did so to examine the effect of remimazolam on cerebral circulation in humans, as assessed CBV, CBF, and cerebral oxygen saturation. METHODS This was a prospective, observational study. Fifteen patients without serious complications scheduled for general anesthesia were recruited. We measured total cerebral hemoglobin concentrations, CBFV, and cerebral oxygen saturation throughout the anesthetic induction course with remimazolam. RESULTS Total cerebral hemoglobin concentrations did not change during the process (p = 0.51). In contrast, the mean CBFV was reduced by 11% (significant, p = 0.04). The drop in mean blood pressure following the induction of anesthesia was 17%; however, it was within the range of cerebrovascular autoregulation. Moreover, cerebral oxygen saturation increased by 4% (statistically significant, p < 0.01). CONCLUSIONS We found that anesthetic induction with remimazolam did not alter CBV and reduced CBF in uncomplicated patients.
Collapse
Affiliation(s)
- Takashi Soejima
- Department of Anesthesiology, Hokkaido University Hospital, N14, W5, Kita-Ku, Sapporo, 060-8648, Japan.
| | - Kentaro Ueda
- Department of Anesthesiology, Hokkaido University Hospital, N14, W5, Kita-Ku, Sapporo, 060-8648, Japan
| | - Sakae Hasegawa
- Department of Anesthesiology, Hokkaido University Hospital, N14, W5, Kita-Ku, Sapporo, 060-8648, Japan
| | - Hiromitsu Motoe
- Department of Anesthesiology, Hokkaido University Hospital, N14, W5, Kita-Ku, Sapporo, 060-8648, Japan
| | - Kazufumi Okada
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Yoichi M Ito
- Data Science Center, Promotion Unit, Institute of Health Science Innovation for Medical Care, Hokkaido University Hospital, Sapporo, Japan
| | - Koji Hoshino
- Department of Anesthesiology, Hokkaido University Hospital, N14, W5, Kita-Ku, Sapporo, 060-8648, Japan
| | - Yuji Morimoto
- Department of Anesthesiology, Hokkaido University Hospital, N14, W5, Kita-Ku, Sapporo, 060-8648, Japan
| |
Collapse
|
30
|
Favilla CG, Mullen MT, Kahn F, Rasheed IYD, Messe SR, Parthasarathy AB, Yodh AG. Dynamic cerebral autoregulation measured by diffuse correlation spectroscopy. J Cereb Blood Flow Metab 2023:271678X231153728. [PMID: 36703572 PMCID: PMC10369149 DOI: 10.1177/0271678x231153728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dynamic cerebral autoregulation (dCA) can be derived from spontaneous oscillations in arterial blood pressure (ABP) and cerebral blood flow (CBF). Transcranial Doppler (TCD) measures CBF-velocity and is commonly used to assess dCA. Diffuse correlation spectroscopy (DCS) is a promising optical technique for non-invasive CBF monitoring, so here we aimed to validate DCS as a tool for quantifying dCA. In 33 healthy adults and 17 acute ischemic stroke patients, resting-state hemodynamic were monitored simultaneously with high-speed (20 Hz) DCS and TCD. dCA parameters were calcaulated by a transfer function analysis using a Fourier decomposition of ABP and CBF (or CBF-velocity). Strong correlation was found between DCS and TCD measured gain (magnitude of regulation) in healthy volunteers (r = 0.73, p < 0.001) and stroke patients (r = 0.76, p = 0.003). DCS-gain retained strong test-retest reliability in both groups (ICC 0.87 and 0.82, respectively). DCS and TCD-derived phase (latency of regulation) did not significantly correlate in healthy volunteers (r = 0.12, p = 0.50) but moderately correlated in stroke patients (r = 0.65, p = 0.006). DCS-derived phase was reproducible in both groups (ICC 0.88 and 0.90, respectively). High-frequency DCS is a promising non-invasive bedside technique that can be leveraged to quantify dCA from resting-state data, but the discrepancy between TCD and DCS-derived phase requires further investigation.
Collapse
Affiliation(s)
| | - Michael T Mullen
- Department of Neurology, 6558Temple University, Philadelphia, USA
| | - Farhan Kahn
- Department of Neurology, 6572University of Pennsylvania, Philadelphia, USA
| | | | - Steven R Messe
- Department of Neurology, 6572University of Pennsylvania, Philadelphia, USA
| | | | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
31
|
Gan L, Yin X, Huang J, Jia B. Transcranial Doppler analysis based on computer and artificial intelligence for acute cerebrovascular disease. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:1695-1715. [PMID: 36899504 DOI: 10.3934/mbe.2023077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cerebrovascular disease refers to damage to brain tissue caused by impaired intracranial blood circulation. It usually presents clinically as an acute nonfatal event and is characterized by high morbidity, disability, and mortality. Transcranial Doppler (TCD) ultrasonography is a non-invasive method for the diagnosis of cerebrovascular disease that uses the Doppler effect to detect the hemodynamic and physiological parameters of the major intracranial basilar arteries. It can provide important hemodynamic information that cannot be measured by other diagnostic imaging techniques for cerebrovascular disease. And the result parameters of TCD ultrasonography such as blood flow velocity and beat index can reflect the type of cerebrovascular disease and serve as a basis to assist physicians in the treatment of cerebrovascular diseases. Artificial intelligence (AI) is a branch of computer science which is used in a wide range of applications in agriculture, communications, medicine, finance, and other fields. In recent years, there are much research devoted to the application of AI to TCD. The review and summary of related technologies is an important work to promote the development of this field, which can provide an intuitive technical summary for future researchers. In this paper, we first review the development, principles, and applications of TCD ultrasonography and other related knowledge, and briefly introduce the development of AI in the field of medicine and emergency medicine. Finally, we summarize in detail the applications and advantages of AI technology in TCD ultrasonography including the establishment of an examination system combining brain computer interface (BCI) and TCD ultrasonography, the classification and noise cancellation of TCD ultrasonography signals using AI algorithms, and the use of intelligent robots to assist physicians in TCD ultrasonography and discuss the prospects for the development of AI in TCD ultrasonography.
Collapse
Affiliation(s)
- Lingli Gan
- Department of Neurology, Chongqing General Hospital, Chongqing 401147, China
| | - Xiaoling Yin
- Department of Neurosurgery, Chongqing General Hospital, Chongqing 401147, China
| | - Jiating Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Bin Jia
- Department of Neurosurgery, Chongqing General Hospital, Chongqing 401147, China
| |
Collapse
|
32
|
The impact of cerebral vasomotor reactivity on cerebrovascular diseases and cognitive impairment. J Neural Transm (Vienna) 2022; 129:1321-1330. [PMID: 36205784 PMCID: PMC9550758 DOI: 10.1007/s00702-022-02546-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
The regulation of cerebral blood flow (CBF) is a complex and tightly controlled function ensuring delivery of oxygen and nutrients and removal of metabolic wastes from brain tissue. Cerebral vasoreactivity (CVR) refers to the ability of the nervous system to regulate CBF according to metabolic demands or changes in the microenvironment. This can be assessed through a variety of nuclear medicine and imaging techniques and protocols. Several studies have investigated the association of CVR with physiological and pathological conditions, with particular reference to the relationship with cognitive impairment and cerebrovascular disorders (CVD). A better understanding of the interaction between CVR and cognitive dysfunction in chronic and particularly acute CVD could help improving treatment and rehabilitation strategies in these patients. In this paper, we reviewed current knowledge on CVR alterations in the context of acute and chronic CVD and cognitive dysfunction. Alterations in CVR and hemodynamics have been described in patients with both neurodegenerative and vascular cognitive impairment, and the severity of these alterations seems to correlate with CVR derailment. Furthermore, an increased risk of cognitive impairment progression has been associated with alterations in CVR parameters and hemodynamics. Few studies have investigated these associations in acute cerebrovascular disorders and the results are inconsistent; thus, further research on this topic is encouraged.
Collapse
|
33
|
Shirzad M, Tari B, Dalton C, Van Riesen J, Marsala MJ, Heath M. Passive exercise increases cerebral blood flow velocity and supports a postexercise executive function benefit. Psychophysiology 2022; 59:e14132. [PMID: 35781673 DOI: 10.1111/psyp.14132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/16/2022]
Abstract
Executive function entails high-level cognitive control supporting activities of daily living. Literature has shown that a single-bout of exercise involving volitional muscle activation (i.e., active exercise) improves executive function and that an increase in cerebral blood flow (CBF) may contribute to this benefit. It is, however, unknown whether non-volitional exercise (i.e., passive exercise) wherein an individual's limbs are moved via an external force elicits a similar executive function benefit. This is a salient question given that proprioceptive and feedforward drive from passive exercise increases CBF independent of the metabolic demands of active exercise. Here, in a procedural validation participants (n = 2) used a cycle ergometer to complete separate 20-min active and passive (via mechanically driven flywheel) exercise conditions and a non-exercise control condition. Electromyography showed that passive exercise did not increase agonist muscle activation or increase ventilation or gas exchange variables (i.e., V̇O2 and V̇CO2 ). In a main experiment participants (n = 28) completed the same exercise and control conditions and transcranial Doppler ultrasound showed that active and passive exercise (but not the control condition) increased CBF through the middle cerebral artery (ps <.001); albeit the magnitude was less during passive exercise. Notably, antisaccade reaction times prior to and immediately after each condition showed that active (p < .001) and passive (p = .034) exercise improved an oculomotor-based measure of executive function, whereas no benefit was observed in the control condition (p = .85). Accordingly, results evince that passive exercise 'boosts' an oculomotor-based measure of executive function and supports convergent evidence that increased CBF mediates this benefit.
Collapse
Affiliation(s)
- Mustafa Shirzad
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Benjamin Tari
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Connor Dalton
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - James Van Riesen
- Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| | - Michael J Marsala
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, London, Ontario, Canada.,Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada.,Canadian Centre for Activity and Aging, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
34
|
Moncion K, Allison EY, Al-Khazraji BK, MacDonald MJ, Roig M, Tang A. What are the effects of acute exercise and exercise training on cerebrovascular hemodynamics following stroke? A systematic review and meta-analysis. J Appl Physiol (1985) 2022; 132:1379-1393. [PMID: 35482325 DOI: 10.1152/japplphysiol.00872.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Limited data exist regarding the effects of acute exercise and exercise training on cerebrovascular hemodynamic variables post-stroke. PURPOSE This systematic review and meta-analysis 1) examined the effects of acute exercise and exercise training on cerebrovascular hemodynamic variables reported in the stroke exercise literature; and 2) synthesized the peak middle cerebral artery blood velocity (MCAv) achieved during an acute bout of moderate-intensity exercise in individuals post-stroke. METHODS Six databases (MEDLINE, EMBASE, Web of Science, CINAHL, PsycINFO, AMED) were searched from inception to December 1st 2021, for studies that examined the effect of acute exercise or exercise training on cerebrovascular hemodynamics in adults post-stroke. Two reviewers conducted title and abstract screening, full-text evaluation, data extraction, and quality appraisal. Random effects models were used in meta-analysis. RESULTS Nine studies, including 4 acute exercise (n=61) and 5 exercise training studies (n=193), were included. Meta-analyses were not statistically feasible for several cerebrovascular hemodynamic variables. Descriptive analysis reveals that exercise training may increase cerebral blood flow and cerebrovascular reactivity to carbon dioxide among individuals post-stroke. Meta-analysis of three acute exercise studies revealed no significant changes in MCAv during acute moderate intensity exercise (n=48 participants, mean difference = 5.2 cm/s, 95% CI [-0.6, 11.0], P=0.08) compared to resting MCAv values. CONCLUSION This review suggests that individuals post-stroke may have attenuated cerebrovascular hemodynamics as measured by the MCAv during acute moderate-intensity exercise. Higher quality research utilizing agreed upon hemodynamic variables are needed to synthesize the effects of exercise training on cerebrovascular hemodynamics post-stroke.
Collapse
Affiliation(s)
- Kevin Moncion
- School of Rehabilitation Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elric Y Allison
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Baraa K Al-Khazraji
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Maureen J MacDonald
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Marc Roig
- School of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Montreal, Québec, Canada
| | - Ada Tang
- School of Rehabilitation Sciences, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
35
|
Al-Kawaz M, Cho SM, Gottesman RF, Suarez JI, Rivera-Lara L. Impact of Cerebral Autoregulation Monitoring in Cerebrovascular Disease: A Systematic Review. Neurocrit Care 2022; 36:1053-1070. [PMID: 35378665 DOI: 10.1007/s12028-022-01484-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 03/01/2022] [Indexed: 12/16/2022]
Abstract
Cerebral autoregulation (CA) prevents brain injury by maintaining a relatively constant cerebral blood flow despite fluctuations in cerebral perfusion pressure. This process is disrupted consequent to various neurologic pathologic processes, which may result in worsening neurologic outcomes. Herein, we aim to highlight evidence describing CA changes and the impact of CA monitoring in patients with cerebrovascular disease, including ischemic stroke, intracerebral hemorrhage (ICH), and aneurysmal subarachnoid hemorrhage (aSAH). The study was preformed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. English language publications were identified through a systematic literature conducted in Ovid Medline, PubMed, and Embase databases. The search spanned the dates of each database's inception through January 2021. We selected case-control studies, cohort observational studies, and randomized clinical trials for adult patients (≥ 18 years) who were monitored with continuous metrics using transcranial Doppler, near-infrared spectroscopy, and intracranial pressure monitors. Of 2799 records screened, 48 studies met the inclusion criteria. There were 23 studies on ischemic stroke, 18 studies on aSAH, 5 studies on ICH, and 2 studies on systemic hypertension. CA impairment was reported after ischemic stroke but generally improved after tissue plasminogen activator administration and successful mechanical thrombectomy. Persistent impairment in CA was associated with hemorrhagic transformation, malignant cerebral edema, and need for hemicraniectomy. Studies that investigated large ICHs described bilateral CA impairment up to 12 days from the ictus, especially in the presence of small vessel disease. In aSAH, impairment of CA was associated with angiographic vasospasm, delayed cerebral ischemia, and poor functional outcomes at 6 months. This systematic review highlights the available evidence for CA disruption during cerebrovascular diseases and its possible association with long-term neurological outcome. CA may be disrupted even before acute stroke in patients with untreated chronic hypertension. Monitoring CA may help in establishing individualized management targets in patients with cerebrovascular disease.
Collapse
Affiliation(s)
- Mais Al-Kawaz
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Sung-Min Cho
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca F Gottesman
- Stroke Branch, National Institute of Neurological Disorders and Stroke Intramural Program, National Institutes of Health, Bethesda, MD, USA
| | - Jose I Suarez
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lucia Rivera-Lara
- Division of Stroke and Neurocritical Care, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
36
|
Ong J, Tavakkoli A, Strangman G, Zaman N, Kamran SA, Zhang Q, Ivkovic V, Lee AG. Neuro-ophthalmic Imaging and Visual Assessment Technology for Spaceflight Associated Neuro-ocular Syndrome (SANS). Surv Ophthalmol 2022; 67:1443-1466. [DOI: 10.1016/j.survophthal.2022.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 12/11/2022]
|
37
|
Kato T, Kurazumi T, Konishi T, Takko C, Ogawa Y, Iwasaki KI. Effects of -10° and -30° head-down tilt on cerebral blood velocity, dynamic cerebral autoregulation, and noninvasively estimated intracranial pressure. J Appl Physiol (1985) 2022; 132:938-946. [PMID: 35201934 PMCID: PMC8993530 DOI: 10.1152/japplphysiol.00283.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/03/2022] Open
Abstract
Steady-state cerebral blood flow (CBF) and dynamic cerebral autoregulation are reportedly maintained during -10° head-down tilt (HDT) despite slight increases in intracranial pressure (ICP). However, the higher ICP during -30° HDT may alter steady-state CBF and dynamic cerebral autoregulation. The present study hypothesized that steady-state CBF and dynamic cerebral autoregulation would be altered by higher ICP during -30° HDT than during 0° and -10° HDT. Seventeen healthy participants were positioned horizontal (0°) and in -10° HDT and -30° HDT for 10 min in random order on separate days. The arterial blood pressure waveform was obtained using a finger blood pressure device and the cerebral blood velocity waveform in the middle cerebral artery was obtained using transcranial Doppler sonography (TCD) for the last 6 min in each position. ICP was estimated using noninvasive ICP (nICP) based on TCD. Dynamic cerebral autoregulation was evaluated by spectral and transfer function analysis. Although nICP was significantly higher during -30° HDT (12.4 mmHg) than during -10° HDT (8.9 mmHg), no significant differences in steady-state mean cerebral blood velocity or transfer function gain in any frequency ranges were seen among all angles of HDT. Counter to our hypothesis, the present results suggest that steady-state CBF and dynamic cerebral autoregulation may be preserved during short-term -30° HDT despite the higher ICP compared with that during -10° HDT.NEW & NOTEWORTHY This appears to be the first study to evaluate steady-state cerebral blood flow (CBF), dynamic cerebral autoregulation, and intracranial pressure (ICP) during -30° head-down tilt (HDT) compared with those during -10° HDT using noninvasive measurements. The results suggest that steady-state CBF and dynamic cerebral autoregulation are preserved despite the higher ICP during short-term -30° HDT compared with -10° HDT.
Collapse
Affiliation(s)
- Tomokazu Kato
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takuya Kurazumi
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Toru Konishi
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
- Air Staff Office, Japan Air Self-Defense Force, Tokyo, Japan
| | - Chiharu Takko
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yojiro Ogawa
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Ken-Ichi Iwasaki
- Division of Hygiene, Department of Social Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
38
|
Cerebral Arterial Asymmetries in the Neonate: Insight into the Pathogenesis of Stroke. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neonatal and adult strokes are more common in the left than in the right cerebral hemisphere in the middle cerebral arterial territory, and adult extracranial and intracranial vessels are systematically left-dominant. The aim of the research reported here was to determine whether the asymmetric vascular ground plan found in adults was present in healthy term neonates (n = 97). A new transcranial Doppler ultrasonography dual-view scanning protocol, with concurrent B-flow and pulsed wave imaging, acquired multivariate data on the neonatal middle cerebral arterial structure and function. This study documents for the first-time systematic asymmetries in the middle cerebral artery origin and distal trunk of healthy term neonates and identifies commensurately asymmetric hemodynamic vulnerabilities. A systematic leftward arterial dominance was found in the arterial caliber and cortically directed blood flow. The endothelial wall shear stress was also asymmetric across the midline and varied according to vessels’ geometry. We conclude that the arterial structure and blood supply in the brain are laterally asymmetric in newborns. Unfavorable shearing forces, which are a by-product of the arterial asymmetries described here, might contribute to a greater risk of cerebrovascular pathology in the left hemisphere.
Collapse
|
39
|
A perspective on spaceflight associated neuro-ocular syndrome causation secondary to elevated venous sinus pressure. NPJ Microgravity 2022; 8:3. [PMID: 35169156 PMCID: PMC8847421 DOI: 10.1038/s41526-022-00188-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 01/21/2022] [Indexed: 11/17/2022] Open
Abstract
Spaceflight associated neuro-ocular syndrome (SANS) alters the vision of astronauts during long-duration spaceflights. There is controversy regarding SANS being similar to patients with idiopathic intracranial hypertension (IIH). IIH has been shown to be due to an elevation in venous sinus pressure. The literature suggests an increase in jugular vein pressure secondary to a headward shift of fluid occurs in SANS but this may not be enough to significantly alter the intracranial pressure (ICP). The literature regarding cardiac output and cerebral blood flow (CBF) in long-duration spaceflight is contradictory, however, more recent data suggests increased flow. Recent modelling has shown that an increase in CBF can significantly increase sinus pressure. The purpose of the present paper is to review the SANS vascular dynamics literature and through mathematical modelling suggest the possible underlying cause of SANS as an elevation in venous sinus pressure, secondary to the redistribution of fluids towards the head, together with a significant increase in pressure drop across the venous system related to the CBF.
Collapse
|
40
|
Gargadennec T, Ferraro G, Chapusette R, Chapalain X, Bogossian E, Van Wettere M, Peluso L, Creteur J, Huet O, Sadeghi N, Taccone FS. Detection of cerebral hypoperfusion with a dynamic hyperoxia test using brain oxygenation pressure monitoring. Crit Care 2022; 26:35. [PMID: 35130953 PMCID: PMC8822803 DOI: 10.1186/s13054-022-03918-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction
Brain multimodal monitoring including intracranial pressure (ICP) and brain tissue oxygen pressure (PbtO2) is more accurate than ICP alone in detecting cerebral hypoperfusion after traumatic brain injury (TBI). No data are available for the predictive role of a dynamic hyperoxia test in brain-injured patients from diverse etiology.
Aim
To examine the accuracy of ICP, PbtO2 and the oxygen ratio (OxR) in detecting regional cerebral hypoperfusion, assessed using perfusion cerebral computed tomography (CTP) in patients with acute brain injury.
Methods
Single-center study including patients with TBI, subarachnoid hemorrhage (SAH) and intracranial hemorrhage (ICH) undergoing cerebral blood flow (CBF) measurements using CTP, concomitantly to ICP and PbtO2 monitoring. Before CTP, FiO2 was increased directly from baseline to 100% for a period of 20 min under stable conditions to test the PbtO2 catheter, as a standard of care. Cerebral monitoring data were recorded and samples were taken, allowing the measurement of arterial oxygen pressure (PaO2) and PbtO2 at FiO2 100% as well as calculation of OxR (= ΔPbtO2/ΔPaO2). Regional CBF (rCBF) was measured using CTP in the tissue area around intracranial monitoring by an independent radiologist, who was blind to the PbtO2 values. The accuracy of different monitoring tools to predict cerebral hypoperfusion (i.e., CBF < 35 mL/100 g × min) was assessed using area under the receiver-operating characteristic curves (AUCs).
Results
Eighty-seven CTPs were performed in 53 patients (median age 52 [41–63] years—TBI, n = 17; SAH, n = 29; ICH, n = 7). Cerebral hypoperfusion was observed in 56 (64%) CTPs: ICP, PbtO2 and OxR were significantly different between CTP with and without hypoperfusion. Also, rCBF was correlated with ICP (r = − 0.27; p = 0.01), PbtO2 (r = 0.36; p < 0.01) and OxR (r = 0.57; p < 0.01). Compared with ICP alone (AUC = 0.65 [95% CI, 0.53–0.76]), monitoring ICP + PbO2 (AUC = 0.78 [0.68–0.87]) or ICP + PbtO2 + OxR (AUC = 0.80 (0.70–0.91) was significantly more accurate in predicting cerebral hypoperfusion. The accuracy was not significantly different among different etiologies of brain injury.
Conclusions
The combination of ICP and PbtO2 monitoring provides a better detection of cerebral hypoperfusion than ICP alone in patients with acute brain injury. The use of dynamic hyperoxia test could not significantly increase the diagnostic accuracy.
Collapse
|
41
|
Egger ST, Bobes J, Seifritz E, Vetter S, Schuepbach D. Functional transcranial Doppler: Selection of methods for statistical analysis and representation of changes in flow velocity. Health Sci Rep 2021; 4:e400. [PMID: 34632099 PMCID: PMC8493565 DOI: 10.1002/hsr2.400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/10/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION Transcranial Doppler (TCD) is a method used to study cerebral hemodynamics. In the majority of TCD studies, regression analysis and analysis of variance are the most frequently applied statistical methods. However, due to the dynamic and interdependent nature of flow velocity, nonparametric tests may allow for better statistical analysis and representation of results. METHOD The sample comprised 30 healthy participants, aged 33.87 ± 7.48 years; with 33% (n = 10) females. During a visuo-motor task, the mean flow velocity (MFV) in the middle cerebral artery (MCA) was measured using TCD. The MFV was converted to values relative to the resting state. The results obtained were analyzed using the general linear model (GLM) and the general additional model (GAM). The fit indices of both analysis methods were compared with each other. RESULTS Both MCAs showed a steady increase in MFV during the visuo-motor task, smoothly returning to resting state values. During the first 20 seconds of the visuo-motor task, the MFV increased by a factor of 1.06 ± 0.07 in the right-MCA and by a factor of 1.08 ± 0.07 in the left-MCA. GLM and GAM showed a statistically significant change in MFV (GLM:F(2, 3598) = 16.76, P < .001; GAM:F(2, 3598) = 21.63, P < .001); together with effects of hemispheric side and gender (GLM:F(4, 3596) = 7.83, P < .005; GAM:F(4, 3596) = 2.13, P = .001). Comparing the models using the χ2 test for goodness of fit yields a significant difference χ2 (9.9556) = 0.6836, P < .001. CONCLUSIONS Both the GLM and GAM yielded valid statistical models of MFV in the MCA in healthy subjects. However, the model using the GAM resulted in improved fit indices. The GAM's advantage becomes even clearer when the MFV curves are visualized; yielding a more realistic approach to brain hemodynamics, thus allowing for an improvement in the interpretation of the mathematical and statistical results. Our results demonstrate the utility of the GAM for the analysis and representation of hemodynamic parameters.
Collapse
Affiliation(s)
- Stephan T. Egger
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity of Zürich, Faculty of Medicine, Psychiatric University Hospital of ZurichZurichSwitzerland
- Department of Psychiatry, ISPA, INEUROPA, CIBERSAMUniversity of Oviedo, Faculty of MedicineOviedoSpain
| | - Julio Bobes
- Department of Psychiatry, ISPA, INEUROPA, CIBERSAMUniversity of Oviedo, Faculty of MedicineOviedoSpain
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity of Zürich, Faculty of Medicine, Psychiatric University Hospital of ZurichZurichSwitzerland
| | - Stefan Vetter
- Department of Psychiatry, Psychotherapy and PsychosomaticsUniversity of Zürich, Faculty of Medicine, Psychiatric University Hospital of ZurichZurichSwitzerland
| | - Daniel Schuepbach
- Department of General Psychiatry, Center of Psychosocial Medicine, University of HeidelbergUniversity of HeidelbergHeidelbergGermany
- Departmet of Psychiatry and PsychotherapyKlinikum am WeissenhofWeinsbergGermany
| |
Collapse
|
42
|
Tari B, Shirzad M, Behboodpour N, Belfry GR, Heath M. Exercise intensity-specific changes to cerebral blood velocity do not modulate a postexercise executive function benefit. Neuropsychologia 2021; 161:108018. [PMID: 34487738 DOI: 10.1016/j.neuropsychologia.2021.108018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022]
Abstract
Executive function is transiently improved (i.e., <60-min) following a single bout of aerobic exercise. A candidate mechanism for this improvement is an exercise-mediated increase in cerebral blood flow (CBF). Further, it has been proposed that an increase in CBF across the continuum of increasing exercise intensities improves the magnitude of a postexercise executive function benefit (i.e., drive theory); however, this proposal has not been empirically tested. Here, participants completed four experimental sessions: a V̇O2peak test to determine cardiorespiratory fitness and estimated lactate threshold (LT), followed by separate 10-min sessions of light- (i.e., 25 W), moderate- (i.e., 80% estimated LT), and heavy-intensity (i.e., 15% of the difference between LT and V̇O2peak) aerobic exercise. An estimate of CBF during exercise was achieved via transcranial Doppler ultrasound and near-infrared spectroscopy to quantify blood velocity (BV) through the middle cerebral artery and deoxygenated hemoglobin (HHb), respectively. Executive function was assessed before and after each session via the executive-mediated antisaccade task (i.e., saccade mirror-symmetrical to a target). Results demonstrated that BV increased in relation to increasing exercise intensity, whereas HHb decreased by a comparable magnitude independent of intensity. In terms of executive function, null hypothesis and equivalence tests indicated a comparable magnitude postexercise reduction in antisaccade reaction time across exercise intensities. Accordingly, the magnitude of CBF change during exercise does not impact the magnitude of a postexercise executive function benefit.
Collapse
Affiliation(s)
- Benjamin Tari
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Mustafa Shirzad
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Nikan Behboodpour
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Glen R Belfry
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, 1201 Western Rd, London, ON, N6G 1H1, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, 1201 Western Rd, London, ON, N6G 1H1, Canada; Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| |
Collapse
|
43
|
Tari B, Shirzad M, Badcock NA, Belfry GR, Heath M. 'Delaying' a saccade: Preparatory phase cortical hemodynamics evince the neural cost of response inhibition. Brain Cogn 2021; 154:105808. [PMID: 34634572 DOI: 10.1016/j.bandc.2021.105808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/12/2021] [Accepted: 09/26/2021] [Indexed: 11/30/2022]
Abstract
Minimally delayed (MD) saccades require inhibition of a prepotent response until a target is extinguished, and unlike the more extensively studied antisaccade task, do not require the additional cognitive component of vector inversion (i.e., 180° target spatial transposition). Here, participants completed separate blocks of MD and prepotent stimulus-driven saccades (i.e., respond at target onset) while cortical hemodynamics were measured via functional transcranial Doppler ultrasound. MD saccades produced longer and more variable reaction times (RT). In turn, MD and stimulus-driven saccade preparatory phase cortical hemodynamics increased and decreased, respectively, relative to baseline and the two conditions differed from one another throughout the preparatory phase. The longer RTs and increased cortical hemodynamics of MD saccades is taken to evince response complexity and the increased neural activity to accommodate response inhibition. To our knowledge, such findings provide the first work to examine the neural foundations of MD saccades.
Collapse
Affiliation(s)
- Benjamin Tari
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Mustafa Shirzad
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada
| | - Nicholas A Badcock
- School of Psychological Science, University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Glen R Belfry
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, 1201 Western Rd, London, ON N6G 1H1, Canada
| | - Matthew Heath
- School of Kinesiology, Faculty of Health Sciences, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada; Canadian Centre for Activity and Aging, University of Western Ontario, 1201 Western Rd, London, ON N6G 1H1, Canada; Graduate Program in Neuroscience, University of Western Ontario, 1151 Richmond St, London, ON N6A 3K7, Canada.
| |
Collapse
|
44
|
Cao R, Tran A, Li J, Xu Z, Sun N, Zuo Z, Hu S. Hemodynamic and oxygen-metabolic responses of the awake mouse brain to hypercapnia revealed by multi-parametric photoacoustic microscopy. J Cereb Blood Flow Metab 2021; 41:2628-2639. [PMID: 33899557 PMCID: PMC8504963 DOI: 10.1177/0271678x211010352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022]
Abstract
A widely used cerebrovascular stimulus and common pathophysiologic condition, hypercapnia is of great interest in brain research. However, it remains controversial how hypercapnia affects brain hemodynamics and energy metabolism. By using multi-parametric photoacoustic microscopy, the multifaceted responses of the awake mouse brain to different levels of hypercapnia are investigated. Our results show significant and vessel type-dependent increases of the vessel diameter and blood flow in response to the hypercapnic challenges, along with a decrease in oxygen extraction fraction due to elevated venous blood oxygenation. Interestingly, the increased blood flow and decreased oxygen extraction are not commensurate with each other, which leads to reduced cerebral oxygen metabolism. Further, time-lapse imaging over 2-hour chronic hypercapnic challenges reveals that the structural, functional, and metabolic changes induced by severe hypercapnia (10% CO2) are not only more pronounced but more enduring than those induced by mild hypercapnia (5% CO2), indicating that the extent of brain's compensatory response to chronic hypercapnia is inversely related to the severity of the challenge. Offering quantitative, dynamic, and CO2 level-dependent insights into the hemodynamic and metabolic responses of the brain to hypercapnia, these findings might provide useful guidance to the application of hypercapnia in brain research.
Collapse
Affiliation(s)
- Rui Cao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Angela Tran
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Zhiqiang Xu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Naidi Sun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Song Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
45
|
Tomoto T, Tarumi T, Chen J, Pasha EP, Cullum CM, Zhang R. Cerebral Vasomotor Reactivity in Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2021; 77:191-202. [PMID: 32716360 DOI: 10.3233/jad-200194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cerebral blood flow (CBF) is sensitive to changes in arterial CO2, referred to as cerebral vasomotor reactivity (CVMR). Whether CVMR is altered in patients with amnestic mild cognitive impairment (aMCI), a prodromal stage of Alzheimer disease (AD), is unclear. OBJECTIVE To determine whether CVMR is altered in aMCI and is associated with cognitive performance. METHODS Fifty-three aMCI patients aged 55 to 80 and 22 cognitively normal subjects (CN) of similar age, sex, and education underwent measurements of CBF velocity (CBFV) with transcranial Doppler and end-tidal CO2 (EtCO2) with capnography during hypocapnia (hyperventilation) and hypercapnia (rebreathing). Arterial pressure (BP) was measured to calculate cerebrovascular conductance (CVCi) to normalize the effect of changes in BP on CVMR assessment. Cognitive function was assessed with Mini-Mental State Examination (MMSE) and neuropsychological tests focused on memory (Logical Memory, California Verbal Learning Test) and executive function (Delis-Kaplan Executive Function Scale; DKEFS). RESULTS At rest, CBFV and MMSE did not differ between groups. CVMR was reduced by 13% in CBFV% and 21% in CVCi% during hypocapnia and increased by 22% in CBFV% and 20% in CVCi% during hypercapnia in aMCI when compared to CN (all p < 0.05). Logical Memory recall scores were positively correlated with hypocapnia (r = 0.283, r = 0.322, p < 0.05) and negatively correlated with hypercapnic CVMR measured in CVCi% (r = -0.347, r = -0.446, p < 0.01). Similar correlations were observed in D-KEFS Trail Making scores. CONCLUSION Altered CVMR in aMCI and its associations with cognitive performance suggests the presence of cerebrovascular dysfunction in older adults who have high risks for AD.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Jason Chen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA
| | - Evan P Pasha
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - C Munro Cullum
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, TX, USA.,Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
46
|
Variation in perioperative cerebral and hemodynamic monitoring during carotid endarterectomy. Ann Vasc Surg 2021; 77:153-163. [PMID: 34461241 DOI: 10.1016/j.avsg.2021.06.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/29/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hemodynamic disturbances cause half of the perioperative strokes following carotid endarterectomy (CEA). Guidelines strongly recommend strict pre- and postoperative blood pressure (BP) monitoring in CEA patients, but do not provide firm practical recommendations. Although in the Netherlands 50 centres perform CEA, no national protocol on perioperative hemodynamic, and cerebral monitoring exists. To assess current monitoring policies of all Dutch CEA-centres, a national survey was conducted. METHODS Between May and July 2017 all 50 Dutch CEA-centres were invited to complete a 42-question survey addressing perioperative hemodynamic and cerebral monitoring during CEA. Nonresponders received a reminder after 1 and 2 months. By November 2017 the survey was completed by all centres. RESULTS Preoperative baseline BP was based on a single bilateral BP-measurement at the outpatient-clinic in the majority of centres (n = 28). In 43 centres (86%) pre-operative monitoring (transcranial Doppler (TCD, n = 6), electroencephalography (EEG, n = 11), or TCD + EEG (n = 26)) was performed as a baseline reference. Intraoperatively, large diversity for type of anaesthesia (general: 45 vs. local [LA]:5) and target systolic BP (>100 mm hg - 160 mm hg [n = 12], based on preoperative outpatient-clinic or admission BP [n = 18], other [n = 20]) was reported. Intraoperative cerebral monitoring included EEG + TCD (n = 28), EEG alone (n = 13), clinical neurological examination with LA (n = 5), near-infrared spectroscopy with stump pressure (n = 1), and none due to standard shunting (n = 3). Postoperatively, significant variation was reported in standard duration of admission at a recovery or high-care unit (range 3-48 hr, mean:12 hr), maximum accepted systolic BP (range >100 mm hg - 180 mm Hg [n = 32]), postoperative cerebral monitoring (standard TCD [n = 16], TCD on indication [n = 5] or none [n = 24]) and in timing of postoperative cerebral monitoring (range directly postoperative - 24 hr postoperative; median 3 hr). CONCLUSIONS In Dutch centres performing CEA the perioperative hemodynamic and cerebral monitoring policies are widely diverse. Diverse policies may theoretically lead to over- or under treatment. The results of this national audit may serve as the baseline dataset for development of a standardized and detailed (inter)national protocol on perioperative hemodynamic and cerebral monitoring during CEA.
Collapse
|
47
|
Mazumder D, Wu MM, Ozana N, Tamborini D, Franceschini MA, Carp SA. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow. NEUROPHOTONICS 2021; 8:035005. [PMID: 34395719 PMCID: PMC8358828 DOI: 10.1117/1.nph.8.3.035005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/15/2021] [Indexed: 05/05/2023]
Abstract
Significance: Time domain diffuse correlation spectroscopy (TD-DCS) can offer increased sensitivity to cerebral hemodynamics and reduced contamination from extracerebral layers by differentiating photons based on their travel time in tissue. We have developed rigorous simulation and evaluation procedures to determine the optimal time gate parameters for monitoring cerebral perfusion considering instrumentation characteristics and realistic measurement noise. Aim: We simulate TD-DCS cerebral perfusion monitoring performance for different instrument response functions (IRFs) in the presence of realistic experimental noise and evaluate metrics of sensitivity to brain blood flow, signal-to-noise ratio (SNR), and ability to reject the influence of extracerebral blood flow across a variety of time gates to determine optimal operating parameters. Approach: Light propagation was modeled on an MRI-derived human head geometry using Monte Carlo simulations for 765- and 1064-nm excitation wavelengths. We use a virtual probe with a source-detector separation of 1 cm placed in the pre-frontal region. Performance metrics described above were evaluated to determine optimal time gate(s) for different IRFs. Validation of simulation noise estimates was done with experiments conducted on an intralipid-based liquid phantom. Results: We find that TD-DCS performance strongly depends on the system IRF. Among Gaussian pulse shapes, ∼ 300 ps pulse length appears to offer the best performance, at wide gates (500 ps and larger) with start times 400 and 600 ps after the peak of the TPSF at 765 and 1064 nm, respectively, for a 1-s integration time at photon detection rates seen experimentally (600 kcps at 765 nm and 4 Mcps at 1064 nm). Conclusions: Our work shows that optimal time gates satisfy competing requirements for sufficient sensitivity and sufficient SNR. The achievable performance is further impacted by system IRF with ∼ 300 ps quasi-Gaussian pulse obtained using electro-optic laser shaping providing the best results.
Collapse
Affiliation(s)
- Dibbyan Mazumder
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Dibbyan Mazumder,
| | - Melissa M. Wu
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Nisan Ozana
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Davide Tamborini
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Maria Angela Franceschini
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Stefan A. Carp
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
48
|
Liu X, Akiyoshi K, Nakano M, Brady K, Bush B, Nadkarni R, Venkataraman A, Koehler RC, Lee JK, Hogue CW, Czosnyka M, Smielewski P, Brown CH. Determining Thresholds for Three Indices of Autoregulation to Identify the Lower Limit of Autoregulation During Cardiac Surgery. Crit Care Med 2021; 49:650-660. [PMID: 33278074 PMCID: PMC7979429 DOI: 10.1097/ccm.0000000000004737] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Monitoring cerebral autoregulation may help identify the lower limit of autoregulation in individual patients. Mean arterial blood pressure below lower limit of autoregulation appears to be a risk factor for postoperative acute kidney injury. Cerebral autoregulation can be monitored in real time using correlation approaches. However, the precise thresholds for different cerebral autoregulation indexes that identify the lower limit of autoregulation are unknown. We identified thresholds for intact autoregulation in patients during cardiopulmonary bypass surgery and examined the relevance of these thresholds to postoperative acute kidney injury. DESIGN A single-center retrospective analysis. SETTING Tertiary academic medical center. PATIENTS Data from 59 patients was used to determine precise cerebral autoregulation thresholds for identification of the lower limit of autoregulation. These thresholds were validated in a larger cohort of 226 patients. METHODS AND MAIN RESULTS Invasive mean arterial blood pressure, cerebral blood flow velocities, regional cortical oxygen saturation, and total hemoglobin were recorded simultaneously. Three cerebral autoregulation indices were calculated, including mean flow index, cerebral oximetry index, and hemoglobin volume index. Cerebral autoregulation curves for the three indices were plotted, and thresholds for each index were used to generate threshold- and index-specific lower limit of autoregulations. A reference lower limit of autoregulation could be identified in 59 patients by plotting cerebral blood flow velocity against mean arterial blood pressure to generate gold-standard Lassen curves. The lower limit of autoregulations defined at each threshold were compared with the gold-standard lower limit of autoregulation determined from Lassen curves. The results identified the following thresholds: mean flow index (0.45), cerebral oximetry index (0.35), and hemoglobin volume index (0.3). We then calculated the product of magnitude and duration of mean arterial blood pressure less than lower limit of autoregulation in a larger cohort of 226 patients. When using the lower limit of autoregulations identified by the optimal thresholds above, mean arterial blood pressure less than lower limit of autoregulation was greater in patients with acute kidney injury than in those without acute kidney injury. CONCLUSIONS This study identified thresholds of intact and impaired cerebral autoregulation for three indices and showed that mean arterial blood pressure below lower limit of autoregulation is a risk factor for acute kidney injury after cardiac surgery.
Collapse
Affiliation(s)
- Xiuyun Liu
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kei Akiyoshi
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mitsunori Nakano
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Saitama Medical Center, Jichi Medical University, Saitama, Japan 330-8503
| | - Ken Brady
- Northwestern University, Ann & Robert H. Lurie Children’s Hospital of Chicago, Department of Anesthesiology, Chicago, Illinois, USA
| | - Brian Bush
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rohan Nadkarni
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Archana Venkataraman
- Department of Electrical and Computer Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Raymond C. Koehler
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles W. Hogue
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgey, Cambridge University Hospitals, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| | - Peter Smielewski
- Brain Physics Laboratory, Division of Neurosurgey, Cambridge University Hospitals, University of Cambridge, Cambridge, UK
| | - Charles H. Brown
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Kussman BD, Imaduddin SM, Gharedaghi MH, Heldt T, LaRovere K. Cerebral Emboli Monitoring Using Transcranial Doppler Ultrasonography in Adults and Children: A Review of the Current Technology and Clinical Applications in the Perioperative and Intensive Care Setting. Anesth Analg 2021; 133:379-392. [PMID: 33764341 DOI: 10.1213/ane.0000000000005417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Transcranial Doppler (TCD) ultrasonography is the only noninvasive bedside technology for the detection and monitoring of cerebral embolism. TCD may identify patients at risk of acute and chronic neurologic injury from gaseous or solid emboli. Importantly, a window of opportunity for intervention-to eliminate the source of the emboli and thereby prevent subsequent development of a clinical or subclinical stroke-may be identified using TCD. In this review, we discuss the application of TCD sonography in the perioperative and intensive care setting in adults and children known to be at increased risk of cerebral embolism. The major challenge for evaluation of emboli, especially in children, is the need to establish the ground truth and define true emboli identified by TCD. This requires the development and validation of a predictive TCD emboli monitoring technique so that appropriately designed clinical studies intended to identify specific modifiable factors and develop potential strategies to reduce pathologic cerebral embolic burden can be performed.
Collapse
Affiliation(s)
- Barry D Kussman
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Syed M Imaduddin
- Department of Electrical Engineering and Computer Science, the Institute for Medical Engineering and Science, and the Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Mohammad Hadi Gharedaghi
- From the Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts.,Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Thomas Heldt
- Department of Electrical Engineering and Computer Science, the Institute for Medical Engineering and Science, and the Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Kerri LaRovere
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts.,Department of Neurology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Williams JS, Dunford EC, Cheng JL, Moncion K, Valentino SE, Droog CA, Cherubini JM, King TJ, Noguchi KS, Wiley E, Turner JR, Tang A, Al-Khazraji BK, MacDonald MJ. The impact of the 24-h movement spectrum on vascular remodeling in older men and women: a review. Am J Physiol Heart Circ Physiol 2021; 320:H1136-H1155. [PMID: 33449851 DOI: 10.1152/ajpheart.00754.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aging is associated with increased risk of cardiovascular and cerebrovascular events, which are preceded by early, negative remodeling of the vasculature. Low physical activity is a well-established risk factor associated with the incidence and development of disease. However, recent physical activity literature indicates the importance of considering the 24-h movement spectrum. Therefore, the purpose of this review was to examine the impact of the 24-h movement spectrum, specifically physical activity (aerobic and resistance training), sedentary behavior, and sleep, on cardiovascular and cerebrovascular outcomes in older adults, with a focus on recent evidence (<10 yr) and sex-based considerations. The review identifies that both aerobic training and being physically active (compared with sedentary) are associated with improvements in endothelial function, arterial stiffness, and cerebrovascular function. Additionally, there is evidence of sex-based differences in endothelial function: a blunted improvement in aerobic training in postmenopausal women compared with men. While minimal research has been conducted in older adults, resistance training does not appear to influence arterial stiffness. Poor sleep quantity or quality are associated with both impaired endothelial function and increased arterial stiffness. Finally, the review highlights mechanistic pathways involved in the regulation of vascular and cerebrovascular function, specifically the balance between pro- and antiatherogenic factors, which mediate the relationship between the 24-h movement spectrum and vascular outcomes. Finally, this review proposes future research directions: examining the role of duration and intensity of training, combining aerobic and resistance training, and exploration of sex-based differences in cardiovascular and cerebrovascular outcomes.
Collapse
Affiliation(s)
- Jennifer S Williams
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Emily C Dunford
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Jem L Cheng
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kevin Moncion
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Sydney E Valentino
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Connor A Droog
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Joshua M Cherubini
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Trevor J King
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Kenneth S Noguchi
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Elise Wiley
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Joshua R Turner
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Ada Tang
- MacStroke Canada, School of Rehabilitation Sciences, McMaster University, Hamilton, Ontario, Canada
| | | | - Maureen J MacDonald
- Vascular Dynamics Lab, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|