1
|
Chen G, Zhang K, Sun M, Xie N, Wu L, Zhang G, Guo B, Huang C, Man Hoi MP, Zhang G, Shi C, Sun Y, Zhang Z, Wang Y. Multi-functional memantine nitrate attenuated cognitive impairment in models of vascular dementia and Alzheimer's disease through neuroprotection and increased cerebral blood flow. Neuropharmacology 2025; 272:110410. [PMID: 40081796 DOI: 10.1016/j.neuropharm.2025.110410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Alzheimer's disease (AD) and vascular dementia (VaD) are two prevalent forms of dementia. VaD is linked to cerebrovascular lesions, such as those from white matter ischemia and chronic cerebral hypoperfusion, which can also occur in AD. Nitric oxide (NO) regulates cerebral blood flow (CBF) in the central nervous system. Memantine is an NMDA receptor antagonist approved for AD treatment. This study investigated the efficacy and molecular mechanism of MN-08, a novel memantine nitrate, in one VaD model (2VO) and two AD models (APP/PS1 mice and Aβ1-42-induced mice). MN-08 increased CBF, ameliorated cognitive and memory functions in VaD and AD, and was more effective than memantine. MN-08 increased the survival rate of CA1 neurons and mitigated white matter lesions and axonal damage. Moreover, MN-08 protected neurons from OGD-induced loss and promoted axonal outgrowth in the hippocampus by upregulating phosphorylated Akt (p-Akt), glycogen synthase kinase-3β (p-GSK3β), and high-molecular-weight neurofilaments (p-NFH). The beneficial effects of MN-08 were attenuated by carboxy-PTIO, a potent NO scavenger, suggesting that MN-08-derived NO may alleviate cognitive impairment from cerebral hypoperfusion. Taken together, our studies demonstrate that MN-08 is a promising therapeutic agent for the treatment of dementia including VaD and AD.
Collapse
Affiliation(s)
- Guangying Chen
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Kexin Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Minghua Sun
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China; Department of Radiology, The Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Ningqing Xie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Liangmiao Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China; Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Guiliang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region, China
| | - Baojian Guo
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Chunhui Huang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Maggie Pui Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao Special Administrative Region, China
| | - Gaoxiao Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Changzheng Shi
- Department of Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Yewei Sun
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Zaijun Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Yuqiang Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, and Institute of New Drug Research, Jinan University College of Pharmacy, Guangzhou, 510632, China
| |
Collapse
|
2
|
Gargiulo S, Albanese S, Megna R, Gramanzini M, Marsella G, Vecchiarelli L. Veterinary medical care in rodent models of stroke: Pitfalls and refinements to balance quality of science and animal welfare. Neuroscience 2025; 572:269-302. [PMID: 39894435 DOI: 10.1016/j.neuroscience.2025.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 01/22/2025] [Indexed: 02/04/2025]
Abstract
Rodent models of cerebral ischemia provide a valuable contribution to a better understanding of stroke pathophysiology, to validate diagnostic methods, and to enable testing of new treatments for ischemia-reperfusion damage and comorbidities. However, ethical concerns have led to increased attention to the welfare aspects of such models. Supportive therapies are an essential part of the overall animal care and use program and should be tailored to the experimental model being studied, the regulatory requirements, and research objectives to achieve high-quality preclinical studies and ethical research practices. On the other hand, the use of veterinary medical treatments in preclinical models of stroke must balance the needs of animal care and potential sources of bias in experimental results. This report provides a systematic review of the scientific literature covering the relevant period from years 1988 to September 2024, with the aim to investigating veterinary medical interventions useful to minimize suffering in rodent models of stroke without producing experimental bias. The research findings, consolidated from 181 selected studies, published from 1991 to 2023, indicate the feasibility of implementing personalized protocols of anesthesia, analgesics, antibiotics, and other supportive therapies in rodent models of stroke, while avoiding scientific interferences. These data fill a gap in current knowledge and could be of interest for an interdisciplinary audience working with rodent models of stroke, stimulating further refinements to safeguard both animal welfare and the validity of experimental findings, and may promote the culture of ethical conduct in various research fields and disciplines.
Collapse
Affiliation(s)
- Sara Gargiulo
- Institute of Clinical Physiology, National Research Council, Via Fiorentina 1, 53100 Siena, Italy.
| | - Sandra Albanese
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy.
| | - Rosario Megna
- Institute of Biostructures and Bioimaging, National Research Council, 80131 Naples, Italy.
| | - Matteo Gramanzini
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council, L.go F. Vito, 00168 Rome, Italy.
| | - Gerardo Marsella
- Animal Care Unit, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Lidovina Vecchiarelli
- Animal Welfare at Animal and Plant Health Agency, Department for Environment Food and Rural Affairs, Midlands, UK.
| |
Collapse
|
3
|
Yang S, Yang Y, Zhou Y. Non-Invasive Monitoring of Cerebral Edema Using Ultrasonic Echo Signal Features and Machine Learning. Brain Sci 2024; 14:1175. [PMID: 39766374 PMCID: PMC11674144 DOI: 10.3390/brainsci14121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES Cerebral edema, a prevalent consequence of brain injury, is associated with significant mortality and disability. Timely diagnosis and monitoring are crucial for patient prognosis. There is a pressing clinical demand for a real-time, non-invasive cerebral edema monitoring method. Ultrasound methods are prime candidates for such investigations due to their non-invasive nature. METHODS Acute cerebral edema was introduced in rats by permanently occluding the left middle cerebral artery (MCA). Ultrasonic echo signals were collected at nine time points over a 24 h period to extract features from both the time and frequency domains. Concurrently, histomorphological changes were examined. We utilized support vector machine (SVM), logistic regression (LogR), decision tree (DT), and random forest (RF) algorithms for classifying cerebral edema types, and SVM, RF, linear regression (LR), and feedforward neural network (FNNs) for predicting the cerebral infarction volume ratio. RESULTS The integration of 16 ultrasonic features associated with cerebral edema development with the RF model enabled effective classification of cerebral edema types, with a high accuracy rate of 97.9%. Additionally, it provided an accurate prediction of the cerebral infarction volume ratio, with an R2 value of 0.8814. CONCLUSIONS Our proposed strategy classifies cerebral edema and predicts the cerebral infarction volume ratio with satisfactory precision. The fusion of ultrasound echo features with machine learning presents a promising non-invasive approach for the monitoring of cerebral edema.
Collapse
Affiliation(s)
- Shuang Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China; (S.Y.); (Y.Y.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yuanbo Yang
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China; (S.Y.); (Y.Y.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, China; (S.Y.); (Y.Y.)
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- National Medical Products Administration (NMPA), Key Laboratory for Quality Evaluation, Ultrasonic Surgical Equipment, 507 Gaoxin Ave., Donghu New Technology Development Zone, Wuhan 430075, China
| |
Collapse
|
4
|
Komatsu T, Ohta H, Takeda M, Matsumura Y, Yokoyama M, Wang Z, Okano HJ, Iguchi Y. Novel Rat Model of Embolic Cerebral Ischemia Using a Radiopaque Blood Clot and a Microcatheter Under Fluoroscopy. Transl Stroke Res 2024:10.1007/s12975-024-01312-2. [PMID: 39560687 DOI: 10.1007/s12975-024-01312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Conventional rat models of thromboembolic stroke do not allow control of infarct size or spontaneous recanalization. We aimed to develop a novel rat thromboembolic stroke model that ensures highly reproducible infarct sizes and locations within the MCA territory and does not require arterial ligation. Twenty male Sprague-Dawley rats and two sham-operated rats were included. A microcatheter was navigated from the caudal ventral artery to the internal carotid artery using digital subtraction angiography. A blood clot (diameter, 0.86 mm; length, 3 mm) containing zirconium dioxide was advanced in the catheter. Fluoroscopy was performed at 1, 3, 6, and 24 h after stroke model creation, and TTC staining was conducted at 24 h. Neurological deficit scores were measured. In all embolized rats, the ACA and MCA bifurcation were selective. Median operating time was 6 min. The position of the radiopaque blood clot remained unchanged for 24 h after model creation in 19/20 rats. Median infarct volume was 242 mm3 (IQR, 239-262 mm3). We present a novel rat model of highly reproducible focal infarct in only the MCA territory. Fluoroscopy effectively identified any blood clot migration. This model could contribute to the development of new thrombolytic agents.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| | - Hiroki Ohta
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Misato Takeda
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-Ku, Tokyo, 105-8461, Japan
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Masayuki Yokoyama
- Division of Medical Engineering, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Zuojun Wang
- Division of Artificial Intelligence in Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-Ku, Tokyo, 105-8461, Japan
| |
Collapse
|
5
|
Yan W, Wang C, Zhao Y, Jiang Y, Sun M. Involvement of Calpain in Neurovascular Unit Damage through Up-regulating PARP-NF-κB Signaling during Experimental Ischemic Stroke. Mol Neurobiol 2024; 61:8104-8122. [PMID: 38472651 DOI: 10.1007/s12035-024-04092-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/03/2024] [Indexed: 03/14/2024]
Abstract
Calpain and PARP-NF-κB signaling are reported to participate in the ischemic brain injury. In this study, it was investigated whether calpain was contributed to the neurovascular unit (NVU) damage through up-regulating PARP-NF-κB signaling during experimental ischemic stroke. Male Sprague-Dawley rats were suffered from 90 min of middle cerebral artery occlusion, followed by reperfusion. The NVU damage was evaluated by the permeability of blood-brain barrier (BBB), the degradation of proteins in extracellular matrix and tight junctions, and ultrastructural changes. The inflammatory response was determined by the expression of inflammatory genes driven by PARP-NF-κB signaling and the activities of myeloperoxidase (MPO). Treatment with MDL 28,170, a calpain inhibitor, improved neurological functions, reduced TUNEL staining index, lessened brain swelling, and decreased infarct volume in ischemic rats. Moreover, it reduced the BBB permeability, enhanced the levels of laminin, collagen IV and occludin, and attenuated the ultrastructural damage of NVU in penumbra and core after induction of ischemia. Meanwhile, it enhanced the levels of cytosolic IκBα, lessened the levels of nuclear PARP and NF-κB p65, reduced the levels of ICAM-1, TNF-α, IL-1β, MMP-9, and MMP-2,and suppressed the activities of MPO in penumbra and core. These data showed that calpain inhibition suppressed PARP-NF-κB signaling-mediated inflammatory response, reduced NVU damage, and protected brain against ischemic stroke, suggesting the involvement of calpain in the NVU damage through up-regulating PARP-NF-κB signaling during brain ischemia.
Collapse
Affiliation(s)
- Wenhao Yan
- Department of Pediatrics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Chunyang Wang
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yumei Zhao
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yingying Jiang
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Ming Sun
- Department of Neuropharmacology, Beijing Key Laboratory of Central Nervous System Injury, Beijing Neurosurgical Institute, Capital Medical University, 119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| |
Collapse
|
6
|
Chen S, Fang S, Zhou Y, Huang Z, Yu S, Chen D, Wang Z, Xu Y, Liu P, Li Y, Lin W, Jiang L, Yuan C, Huang M. A low bleeding risk thrombolytic agent: citPA5. Cardiovasc Res 2024; 120:1191-1201. [PMID: 38546342 DOI: 10.1093/cvr/cvae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 06/07/2024] Open
Abstract
AIMS Alteplase is a cornerstone thrombolytic agent in clinical practice but presents a potential bleeding risk. Stroke patients need pre-screening to exclude haemorrhagic stroke before using alteplase. In this study, we develop a new thrombolytic agent citPA5, characterized by an enhanced safety profile and minimal bleeding tendency. METHODS AND RESULTS A clot lysis agent, named citPA5, is developed based on rtPA with point mutations to completely suppress its proteolytic activity in the absence of fibrin. In the presence of fibrin, citPA5 exhibited significantly higher fibrinolytic activity (a 15.8-fold increase of kcat/Km). Furthermore, citPA5 showed resistance to endogenous fibrinolysis inhibitor, PAI-1, resulting in enhanced potency. In a series of safety evaluation experiments, including thrombelastography assay, mice tail bleeding assay, and a murine intracerebral haemorrhage (ICH) model, citPA5 did not cause systemic bleeding or worsen ICH compared with alteplase. This highlights the low risk of bleeding associated with citPA5. Finally, we found that citPA5 effectively improved cerebral blood flow and reduced infarct volume in a carotid embolism-induced stroke model. CONCLUSION This clot lysis agent, citPA5, not only exhibits a low risk of bleeding but also demonstrates highly effective thrombolysis capabilities. As a result, citPA5 shows great potential for administration prior to the classification of stroke types, making it possible for use in ambulances at the onset of stroke when symptoms are identified. The findings presented in this study also suggest that this strategy could be applied to develop a new generation of fibrinolytic drugs that offer greater safety and specificity in targeting fibrin.
Collapse
Affiliation(s)
- Shanli Chen
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Sudan Fang
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Yang Zhou
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Zhiwei Huang
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Dan Chen
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Zhiyou Wang
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Yanyan Xu
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Peiwen Liu
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Yongkun Li
- Department of Neurology, Provincial Hospital Affiliated to Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Fujian Institute of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, No.2 Xueyuan Road, New District, Fuzhou 350108, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, No.2 Wulongjiang North Avenue, Fuzhou 350108, China
| |
Collapse
|
7
|
Shen N, Kong L, Wang X, Zhang Y, Li R, Tao C, Wang G, Xu P, Hu W. Elabela ameliorates neuronal pyroptosis and mitochondrial fission via APJ/ZBP1 signaling in ischemic stroke. Exp Neurol 2024; 378:114802. [PMID: 38679280 DOI: 10.1016/j.expneurol.2024.114802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Pyroptosis signifies a significant form of programmed neuronal demise subsequent to ischemic stroke. In our prior investigations, we demonstrated that the Elabela (ELA)-Apelin receptor (APJ) axis alleviated neuronal death by improving collateral circulation and mitigating ferroptosis in a murine model of middle cerebral artery occlusion (MCAO). However, the connection between ELA and neuronal pyroptosis remains further elucidation. Here, we observed an upregulation of ELA and APJ expression in both murine brain specimens and cultured HT-22 hippocampal neurons exposed to experimental ischemic stroke. ELA administration markedly diminished the infarct size in comparison to controls. ELA treatment ameliorated neurological deficits and anxiety-like symptoms in mice with stroke, concurrently inhibiting pyroptosis and mitochondria fission in neurons. Conversely, ELA knockdown yielded the opposite effects. Utilizing RNA-sequencing analysis, we identified a candidate for pyroptosis priming, Z-DNA-binding protein 1 (ZBP1), which was suppressed in ELA-treated HT-22 neurons during oxygen-glucose deprivation/reperfusion (OGD/R). Subsequent co-immunoprecipitation analyses demonstrated the binding between APJ and ZBP1. Specifically, APJ suppressed ZBP1 to inhibit NLRP3 inflammasome activation and dynamin-related protein 1-mediated mitochondrial fission in neurons. In summary, our findings suggest that ELA functions as a stroke-induced signal limiting neuronal pyroptosis and mitochondrial fission via APJ/ZBP1 signaling, thereby underscoring ELA as a potential therapeutic target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Nan Shen
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lingqi Kong
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinyue Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Rui Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Chunrong Tao
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guoping Wang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Pengfei Xu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Wei Hu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
8
|
Mosneag IE, Flaherty SM, Wykes RC, Allan SM. Stroke and Translational Research - Review of Experimental Models with a Focus on Awake Ischaemic Induction and Anaesthesia. Neuroscience 2024; 550:89-101. [PMID: 38065289 DOI: 10.1016/j.neuroscience.2023.11.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Animal models are an indispensable tool in the study of ischaemic stroke with hundreds of drugs emerging from the preclinical pipeline. However, all of these drugs have failed to translate into successful treatments in the clinic. This has brought into focus the need to enhance preclinical studies to improve translation. The confounding effects of anaesthesia on preclinical stroke modelling has been raised as an important consideration. Various volatile and injectable anaesthetics are used in preclinical models during stroke induction and for outcome measurements such as imaging or electrophysiology. However, anaesthetics modulate several pathways essential in the pathophysiology of stroke in a dose and drug dependent manner. Most notably, anaesthesia has significant modulatory effects on cerebral blood flow, metabolism, spreading depolarizations, and neurovascular coupling. To minimise anaesthetic complications and improve translational relevance, awake stroke induction has been attempted in limited models. This review outlines anaesthetic strategies employed in preclinical ischaemic rodent models and their reported cerebral effects. Stroke related complications are also addressed with a focus on infarct volume, neurological deficits, and thrombolysis efficacy. We also summarise routinely used focal ischaemic stroke rodent models and discuss the attempts to induce some of these models in awake rodents.
Collapse
Affiliation(s)
- Ioana-Emilia Mosneag
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom.
| | - Samuel M Flaherty
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| | - Robert C Wykes
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom; Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Stuart M Allan
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Foundation Trust, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Pushie MJ, Sylvain NJ, Hou H, George D, Kelly ME. Ion Dyshomeostasis in the Early Hyperacute Phase after a Temporary Large-Vessel Occlusion Stroke. ACS Chem Neurosci 2024; 15:2132-2143. [PMID: 38743904 DOI: 10.1021/acschemneuro.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
Element dysregulation is a pathophysiologic hallmark of ischemic stroke. Prior characterization of post-stroke element dysregulation in the photothrombotic model demonstrated significant element changes for ions that are essential for the function of the neurovascular unit. To characterize the dynamic changes during the early hyperacute phase (<6 h), we employed a temporary large-vessel occlusion stroke model. The middle cerebral artery was temporarily occluded for 30 min in male C57BL/6 mice, and coronal brain sections were prepared for histology and X-ray fluorescence microscopy from 5 to 120 min post-reperfusion. Ion dysregulation was already apparent by 5 min post-reperfusion, evidenced by reduced total potassium in the lesion. Later time points showed further dysregulation of phosphorus, calcium, copper, and zinc. By 60 min post-reperfusion, the central portion of the lesion showed pronounced element dysregulation and could be differentiated from a surrounding region of moderate dysregulation. Despite reperfusion, the lesion continued to expand dynamically with increasing severity of element dysregulation throughout the time course. Given that the earliest time point investigated already demonstrated signs of ion disruption, we anticipate such changes may be detectable even earlier. The profound ion dysregulation at the tissue level after reperfusion may contribute to hindering treatments aimed at functional recovery of the neurovascular unit.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Nicole J Sylvain
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Huishu Hou
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Dominic George
- Department of Physics, College of Arts and Science, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Michael E Kelly
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
10
|
Komatsu T, Ohta H, Takakura N, Hata J, Kitagawa T, Kurashina Y, Onoe H, Okano HJ, Iguchi Y. A Novel Rat Model of Embolic Cerebral Ischemia Using a Cell-Implantable Radiopaque Hydrogel Microfiber. Transl Stroke Res 2024; 15:636-646. [PMID: 36867349 DOI: 10.1007/s12975-023-01144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
The failure of neuroprotective treatment-related clinical trials, including stem cell therapies, may be partially due to a lack of suitable animal models. We have developed a stem cell-implantable radiopaque hydrogel microfiber that can survive for a long time in vivo. The microfiber is made of barium alginate hydrogel containing zirconium dioxide, fabricated in a dual coaxial laminar flow microfluidic device. We aimed to develop a novel focal stroke model using this microfiber. Using male Sprague-Dawley rats (n=14), a catheter (inner diameter, 0.42 mm; outer diameter, 0.55 mm) was navigated from the caudal ventral artery to the left internal carotid artery using digital subtraction angiography. A radiopaque hydrogel microfiber (diameter, 0.4 mm; length, 1 mm) was advanced through the catheter by slow injection of heparinized physiological saline to establish local occlusion. Both 9.4-T magnetic resonance imaging at 3 and 6 h and 2% 2,3,5-triphenyl tetrazolium chloride staining at 24 h after stroke model creation were performed. Neurological deficit score and body temperature were measured. The anterior cerebral artery-middle cerebral artery bifurcation was selectively embolized in all rats. Median operating time was 4 min (interquartile range [IQR], 3-8 min). Mean infarct volume was 388 mm3 (IQR, 354-420 mm3) at 24 h after occlusion. No infarction of the thalamus or hypothalamus was seen. Body temperature did not change significantly over time (P = 0.204). However, neurological deficit scores before and at 3, 6, and 24 h after model creation differed significantly (P < 0.001). We present a novel rat model of focal infarct restricted to the middle cerebral artery territory using a radiopaque hydrogel microfiber positioned under fluoroscopic guidance. By comparing the use of stem cell-containing versus non-containing fibers in this stroke model, it would be possible to determine the efficacy of "pure" cell transplantation in treating stroke.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461.
| | - Hiroki Ohta
- Division of Regenerative Medicine, Research Center for Medical Sciences, the Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Takakura
- School of integrated DESIGN Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Junichi Hata
- Department of Radiological Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Tomomichi Kitagawa
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461
| | - Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Kanagawa, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, the Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, the Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, Japan, 105-8461
| |
Collapse
|
11
|
Zhou C, Zhu X, Li J, Luo Y, Zhou Y. Dynamic assessment of brain perfusion in a middle cerebral artery occlusion rat model by contrast-enhanced ultrasound imaging: a pilot study. Acta Radiol 2023; 64:3042-3051. [PMID: 37872652 DOI: 10.1177/02841851231205163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
BACKGROUND The middle cerebral artery occlusion model (MCAo) is a commonly used animal model for cerebral ischemia studies but lacks accessible imaging techniques for the assessment of hemodynamic changes of the model. PURPOSE The study aims to explore the value of contrast-enhanced ultrasound (CEUS) in evaluating brain perfusion in the early stages after MCAo surgery. MATERIAL AND METHODS In total, 18 adult male Sprague-Dawley rats were subjected to right MCAo using an intraluminal filament model, and CEUS was performed at the three following timepoints: before (T0), immediately after (T1), and 6 h after permanent MCAo (T2). Twelve rats successfully completed the study, and their brains were removed and stained using 2, 3, 5-triphenyltetrazolium chloride (TTC). CEUS video images were visualized offline, and the time-intensity curves (TICs) were analyzed. Different cerebrovascular patterns and manifestations of the contrast enhancement in rat ischemic hemispheres were observed. Semi-quantitative parameters of TICs in ischemic areas (ROIi) and the surrounding normal- or hypo-perfused areas (ROIn) were calculated and compared between T0, T1, and T2, and also between ROIi and ROIn. RESULTS A significant correlation was found between the lesion volume (%) determined by TTC and CEUS parameters (r = -0.691, P = 0.013 for peak intensity; r = -0.742, P = 0.006 for area under the curve) at T2. After the same occlusion, there were differences in contrast perfusion in each group. CONCLUSION This study suggests that CEUS could be an effective imaging tool for studying cerebral ischemia and perfusion in small animals as long as the transcranial acoustic window allows it.
Collapse
Affiliation(s)
- Chenyun Zhou
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Xiaoxia Zhu
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Jin Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Yan Luo
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| | - Yuqing Zhou
- Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
12
|
Zhang A, Mandeville ET, Xu L, Stary CM, Lo EH, Lieber CM. Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 2023; 381:306-312. [PMID: 37471542 PMCID: PMC11412271 DOI: 10.1126/science.adh3916] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/19/2023] [Indexed: 07/22/2023]
Abstract
Implantable neuroelectronic interfaces have enabled advances in both fundamental research and treatment of neurological diseases but traditional intracranial depth electrodes require invasive surgery to place and can disrupt neural networks during implantation. We developed an ultrasmall and flexible endovascular neural probe that can be implanted into sub-100-micrometer-scale blood vessels in the brains of rodents without damaging the brain or vasculature. In vivo electrophysiology recording of local field potentials and single-unit spikes have been selectively achieved in the cortex and olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases.
Collapse
Affiliation(s)
- Anqi Zhang
- Department of Chemical Engineering and Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Emiri T Mandeville
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA 02129, USA
| | - Lijun Xu
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Creed M Stary
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Eng H Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, MA 02129, USA
| | - Charles M Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Li Y, Tan L, Yang C, He L, Liu L, Deng B, Liu S, Guo J. Distinctions between the Koizumi and Zea Longa methods for middle cerebral artery occlusion (MCAO) model: a systematic review and meta-analysis of rodent data. Sci Rep 2023; 13:10247. [PMID: 37353569 PMCID: PMC10290095 DOI: 10.1038/s41598-023-37187-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/17/2023] [Indexed: 06/25/2023] Open
Abstract
Ischemic stroke in rodents is usually induced by intraluminal middle cerebral artery occlusion (MCAO) via the common carotid artery plugging filament invented by Koizumi et al. (MCAO-KM), or the external carotid artery plugging filament created by Zea Longa et al. (MCAO-LG). A systematic review of the distinctions between them is currently lacking. Here, we performed a meta-analysis in terms of model establishment, cerebral blood flow (CBF), and cerebral ischemia-reperfusion injury (CIRI) between them, Weighted Mean Differences and Standardized Mean Difference were used to analyze the combined effects, Cochrane's Q test and the I2 statistic were applied to determine heterogeneity, sensitivity analysis and subgroup analysis were performed to explore the source of heterogeneity. Literature mining suggests that MCAO-KM brings shorter operation time (p = 0.007), higher probability of plugging filament (p < 0.001) and molding establishment (p = 0.006), lower possibility of subarachnoid hemorrhage (p = 0.02), larger infarct volume (p = 0.003), severer brain edema (p = 0.002), and neurological deficits (p = 0.03). Nevertheless, MCAO-LG shows a more adequate CBF after ischemia-reperfusion (p < 0.001), a higher model survival rate (p = 0.02), and a greater infarct rate (p = 0.007). In conclusion, the MCAO-KM method is simple to operate with a high modeling success rate, and is suitable for the study of brain edema under long-term hypoperfusion, while the MCAO-LG method is highly challenging for novices, and is suitable for the study of CIRI caused by complete ischemia-reperfusion. These findings are expected to benefit the selection of intraluminal filament MCAO models before undertaking ischemic stroke preclinical effectiveness trials.
Collapse
Affiliation(s)
- Yong Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Tan
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Caixia Yang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liying He
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bowen Deng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sijing Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlin Guo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
14
|
Wang Y, Zhang Q, Zhang S, Qi J, Li L. The superiority and feasibility of 2,3,5-triphenyltetrazolium chloride-stained brain tissues for molecular biology experiments based on microglial properties. Animal Model Exp Med 2023; 6:111-119. [PMID: 37140996 PMCID: PMC10158948 DOI: 10.1002/ame2.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/12/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND TTC (2,3,5-triphenyltetrazolium chloride) staining is the most commonly used method in identifying and assessing cerebral infarct volumes in the transient middle cerebral artery occlusion model. Given that microglia exhibit different morphologies in different regions after ischemic stroke, we demonstrate the superiority and necessity of using TTC-stained brain tissue to analyze the expression of various proteins or genes in different regions based on microglia character. METHODS We compared brain tissue (left for 10 min on ice) from the improved TTC staining method with penumbra from the traditional sampling method. We identified the feasibility and necessity of the improved staining method using real time (RT)-PCR, Western blot, and immunofluorescence analysis. RESULTS There was no protein and RNA degradation in the TTC-stained brain tissue group. However, the TREM2 specifically expressed on the microglia showed a significant difference between two groups in the penumbra region. CONCLUSIONS TTC-stained brain tissue can be used for molecular biology experiments without any restrictions. In addition, TTC-stained brain tissue shows greater superiority due to its precise positioning.
Collapse
Affiliation(s)
- Yajuan Wang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingrong Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuchi Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jiangtao Qi
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Zhang A, Mandeville ET, Xu L, Stary CM, Lo EH, Lieber CM. Ultra-flexible endovascular probes for brain recording through micron-scale vasculature. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533576. [PMID: 36993229 PMCID: PMC10055285 DOI: 10.1101/2023.03.20.533576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Implantable neuroelectronic interfaces have enabled significant advances in both fundamental research and treatment of neurological diseases, yet traditional intracranial depth electrodes require invasive surgery to place and can disrupt the neural networks during implantation. To address these limitations, we have developed an ultra-small and flexible endovascular neural probe that can be implanted into small 100-micron scale blood vessels in the brains of rodents without damaging the brain or vasculature. The structure and mechanical properties of the flexible probes were designed to meet the key constraints for implantation into tortuous blood vessels inaccessible with existing techniques. In vivo electrophysiology recording of local field potentials and single-unit spikes has been selectively achieved in the cortex and the olfactory bulb. Histology analysis of the tissue interface showed minimal immune response and long-term stability. This platform technology can be readily extended as both research tools and medical devices for the detection and intervention of neurological diseases.
Collapse
|
16
|
Hemodynamics and Tissue Optical Properties in Bimodal Infarctions Induced by Middle Cerebral Artery Occlusion. Int J Mol Sci 2022; 23:ijms231810318. [PMID: 36142225 PMCID: PMC9499323 DOI: 10.3390/ijms231810318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Various infarct sizes induced by middle cerebral artery occlusion (MCAO) generate inconsistent outcomes for stroke preclinical study. Monitoring cerebral hemodynamics may help to verify the outcome of MCAO. The aim of this study was to investigate the changes in brain tissue optical properties by frequency-domain near-infrared spectroscopy (FD-NIRS), and establish the relationship between cerebral hemodynamics and infarct variation in MCAO model. The rats were undergone transient MCAO using intraluminal filament. The optical properties and hemodynamics were measured by placing the FD-NIRS probes on the scalp of the head before, during, and at various time-courses after MCAO. Bimodal infarction severities were observed after the same 90-min MCAO condition. Significant decreases in concentrations of oxygenated hemoglobin ([HbO]) and total hemoglobin ([HbT]), tissue oxygenation saturation (StO2), absorption coefficient (μa) at 830 nm, and reduced scattering coefficient (μs’) at both 690 and 830 nm were detected during the occlusion in the severe infarction but not the mild one. Of note, the significant increases in [HbO], [HbT], StO2, and μa at both 690 and 830 nm were found on day 3; and increases in μs’ at both 690 and 830 nm were found on day 2 and day 3 after MCAO, respectively. The interhemispheric correlation coefficient (IHCC) was computed from low-frequency hemodynamic oscillation of both hemispheres. Lower IHCCs standing for interhemispheric desynchronizations were found in both mild and severe infarction during occlusion, and only in severe infarction after reperfusion. Our finding supports that sequential FD-NIRS parameters may associated with the severity of the infarction in MCAO model, and the consequent pathologies such as vascular dysfunction and brain edema. Further study is required to validate the potential use of FD-NIRS as a monitor for MCAO verification.
Collapse
|
17
|
Singh AA, Kharwar A, Dandekar MP. A Review on Preclinical Models of Ischemic Stroke: Insights Into the Pathomechanisms and New Treatment Strategies. Curr Neuropharmacol 2022; 20:1667-1686. [PMID: 34493185 PMCID: PMC9881062 DOI: 10.2174/1570159x19666210907092928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Stroke is a serious neurovascular problem and the leading cause of disability and death worldwide. The disrupted demand to supply ratio of blood and glucose during cerebral ischemia develops hypoxic shock, and subsequently necrotic neuronal death in the affected regions. Multiple causal factors like age, sex, race, genetics, diet, and lifestyle play an important role in the occurrence as well as progression of post-stroke deleterious events. These biological and environmental factors may be contributed to vasculature variable architecture and abnormal neuronal activity. Since recombinant tissue plasminogen activator is the only clinically effective clot bursting drug, there is a huge unmet medical need for newer therapies for the treatment of stroke. Innumerous therapeutic interventions have shown promise in the experimental models of stroke but failed to translate it into clinical counterparts. METHODS Original publications regarding pathophysiology, preclinical experimental models, new targets and therapies targeting ischemic stroke have been reviewed since the 1970s. RESULTS We highlighted the critical underlying pathophysiological mechanisms of cerebral stroke and preclinical stroke models. We discuss the strengths and caveats of widely used ischemic stroke models, and commented on the potential translational problems. We also describe the new emerging treatment strategies, including stem cell therapy, neurotrophic factors and gut microbiome-based therapy for the management of post-stroke consequences. CONCLUSION There are still many inter-linked pathophysiological alterations with regards to stroke, animal models need not necessarily mimic the same conditions of stroke pathology and newer targets and therapies are the need of the hour in stroke research.
Collapse
Affiliation(s)
- Aditya A. Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Akash Kharwar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India
| | - Manoj P. Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India,Address correspondence to this author at the Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, TS 500037, India; Tel: +91-40-23074750; E-mail:
| |
Collapse
|
18
|
Friedrich J, Lindauer U, Höllig A. Procedural and Methodological Quality in Preclinical Stroke Research-A Cohort Analysis of the Rat MCAO Model Comparing Periods Before and After the Publication of STAIR/ARRIVE. Front Neurol 2022; 13:834003. [PMID: 35707032 PMCID: PMC9190283 DOI: 10.3389/fneur.2022.834003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/12/2022] [Indexed: 11/24/2022] Open
Abstract
The translation of preclinical stroke research into successful human clinical trials remains a challenging task. The first Stroke Therapy Academic Industry Roundtable (STAIR) recommendations for preclinical research and several other guidelines were published to address these challenges. Most guidelines recommend the use of physiological monitoring to detect the occurrence of undesired pathologies such as subarachnoid hemorrhage and to limit the variability of the infarct volume and–therefore-homogenize the experimental result for complete reporting particularly with respect to transparency and methodological rigor. From the years 2009 and 2019, 100 published articles each using a rat stroke model were analyzed to quantify parameters related to anesthesia, physiological monitoring, stroke model type, ischemia verification, and overall study quality over time. No significant difference in the frequency of cerebral blood flow (CBF) measurements over time (28/34% for 2009/2019) was found. Notably, significantly fewer studies reported temperature, blood pressure, and blood gas monitoring data in 2019 compared to 2009. On the other hand, an increase in general study quality parameters (e.g., randomization, reporting of approval) was seen. In conclusion, the frequency of periinterventional monitoring has decreased over time. Some general methodological quality aspects, however, partially have increased. CBF measurement–the gold standard for ischemia verification-was applied rarely. Despite the growing recognition of current guidelines such as STAIR and ARRIVE (both widely approved in 2019) reporting, methods and procedures mostly do not follow these guidelines. These deficits may contribute to the translational failure of preclinical stroke research in search for neuroprotective therapies.
Collapse
Affiliation(s)
| | - Ute Lindauer
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
19
|
He Y, Zhang Y, Li W, Li Q, Zhao B, Tang X, Chen D, Zhang T, Zhang T, Zhong Z. Evaluating blood-brain barrier disruption and infarction volume concurrently in rats subjected to ischemic stroke using an optical imaging system. J Neurosci Methods 2022; 378:109630. [DOI: 10.1016/j.jneumeth.2022.109630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
20
|
Chrishtop V, Nikonorova V, Gutsalova A, Rumyantseva T, Dukhinova M, Salmina А. Systematic comparison of basic animal models of cerebral hypoperfusion. Tissue Cell 2022; 75:101715. [DOI: 10.1016/j.tice.2021.101715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
21
|
Chen D, Liu P, Liu Y, Wang Z, Zhou Y, Jiang L, Yuan C, Li Y, Lin W, Huang M. A Clot-Homing Near-Infrared Probe for In Vivo Imaging of Murine Thromboembolic Models. Adv Healthc Mater 2022; 11:e2102213. [PMID: 34994110 DOI: 10.1002/adhm.202102213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/16/2021] [Indexed: 11/09/2022]
Abstract
Direct thrombus imaging contributes to early detection of thrombosis, and animal models with clinical relevance are vital in the development of new thrombolytics. Here, a facile clot-homing strategy is developed based on the finding that blood clot is negatively charged. Positively charged pentalysine moiety is coupled with phthalocyanine-based fluorophore , and its applications in murine thromboembolic models are described. The probe efficiently stains the cryosection of intracranial thrombi retrieved from patients with cardioembolic stroke. In vitro, the fibrin-rich clot is labeled by the probe at sub-nanomolar concentration. The probe-labeled clot is formed into microparticles (1-5 µm) and intravenously injected into mice for pulmonary embolism modeling. In vivo imaging demonstrates fast accumulation and retention of fluorescent clot microparticles in pulmonary vessels. Recombinant tissue-type plasminogen activator (rtPA) administration greatly reduces near-infrared signal in the lungs in a time-dependent manner. This probe is also tested in a stroke model. Middle cerebral artery is occluded by autologous thrombi formed under electric stimulation. In vivo imaging shows that the probe efficiently homes to thrombus at early stage. Hence, this probe has great potential in real-time imaging of thromboembolism in clinically relevant models, promoting bench-to-bedside translation. This clot-homing principle can be used in other applications.
Collapse
Affiliation(s)
- Dan Chen
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Peiwen Liu
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Yurong Liu
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Zhiyou Wang
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Yang Zhou
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Longguang Jiang
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Cai Yuan
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| | - Yongkun Li
- Department of Neurology Fujian Provincial Hospital, Shengli Clinical College of Fujian Medical University No. 134 Dong Street Fuzhou Fujian 350001 P. R. China
| | - Wei Lin
- Fujian Institute of integrated traditional Chinese and Western Medicine Fujian University of Traditionial Chinese Medicine No. 1 Qiuyang Road, Minhou District Fuzhou 350122 P. R. China
| | - Mingdong Huang
- College of Chemistry Fuzhou University No. 2 Wulongjiang North Avenue Fuzhou 350108 P. R. China
| |
Collapse
|
22
|
Wang R, Wang H, Liu Y, Chen D, Wang Y, Rocha M, Jadhav AP, Smith A, Ye Q, Gao Y, Zhang W. Optimized mouse model of embolic MCAO: From cerebral blood flow to neurological outcomes. J Cereb Blood Flow Metab 2022; 42:495-509. [PMID: 32312170 PMCID: PMC8985433 DOI: 10.1177/0271678x20917625] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The embolic middle cerebral artery occlusion (eMCAO) model mimics ischemic stroke due to large vessel occlusion in humans and is amenable to thrombolytic therapy with rtPA. However, two major obstacles, the difficulty of the eMCAO surgery and unpredictable occurrence of clot autolysis, had impeded its application in mice. In this study, we modified catheters to produce suitable fibrin-rich embolus and optimized the eMCAO model using cerebral blood flow (CBF) monitored by both laser Doppler flowmetry (LDF) and 2D laser speckle contrast imaging (LSCI) to confirm occlusion of MCA. The results showed that longer embolus resulted in higher mortality. There was a compensatory increase in MCA territory perfusion after eMCAO associated with decreased infarct volume; however, this was only partly dependent on recanalization as clot autolysis was only observed in ∼30% of mice. Cortical CBF monitoring with LSCI showed that the size of peri-core area at 3 h displayed the best correlation with infarct volume that is attributed to compensatory collateral blood flow. The peri-core area best predicted functional outcome after eMCAO. In summary, we developed a reliable eMCAO mouse model that better mimics embolic ischemic stroke in humans, which will increase the potential for successful translation of stroke neuroprotective therapies.
Collapse
Affiliation(s)
- Rongrong Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hailian Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaan Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Di Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yangfan Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Marcelo Rocha
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ashutosh P Jadhav
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda Smith
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Qing Ye
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, and Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenting Zhang
- Pittsburgh Institute of Brain Disorders & Recovery and UPMC Stroke Institute, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
23
|
Wang J, Li Y, Yu H, Li G, Bai S, Chen S, Zhang P, Tang Z. Dl-3-N-Butylphthalide Promotes Angiogenesis in an Optimized Model of Transient Ischemic Attack in C57BL/6 Mice. Front Pharmacol 2021; 12:751397. [PMID: 34658892 PMCID: PMC8513739 DOI: 10.3389/fphar.2021.751397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Transient ischemic attack (TIA) has been widely regarded as a clinical entity. Even though magnetic resonance imaging (MRI) results of TIA patients are negative, potential neurovascular damage might be present, and may account for long-term cognitive impairment. Animal models that simulate human diseases are essential tools for in-depth study of TIA. Previous studies have clarified that Dl-3-N-butylphthalide (NBP) promotes angiogenesis after stroke. However, the effects of NBP on TIA remain unknown. This study aims to develop an optimized TIA model in C57BL/6 mice to explore the microscopic evidence of ischemic injury after TIA, and investigate the therapeutic effects of NBP on TIA. C57BL/6 mice underwent varying durations (7, 8, 9 or 10 min) of middle cerebral artery occlusion (MCAO). Cerebral artery occlusion and reperfusion were assessed by laser speckle contrast imaging. TIA and ischemic stroke were distinguished by neurological testing and MRI examination at 24 h post-operation. Neuronal apoptosis was examined by TUNEL staining. Images of submicron cerebrovascular networks were obtained via micro-optical sectioning tomography. Subsequently, the mice were randomly assigned to a sham-operated group, a vehicle-treated TIA group or an NBP-treated TIA group. Vascular density was determined by immunofluorescent staining and fluorescein isothiocyanate method, and the expression of angiogenic growth factors were detected by western blot analysis. We found that an 8-min or shorter period of ischemia induced neither permanent neurological deficits nor MRI detectable brain lesions in C57BL/6 mice, but histologically caused neuronal apoptosis and cerebral vasculature abnormalities. NBP treatment increased the number of CD31+ microvessels and perfused microvessels after TIA. NBP also up-regulated the expression of VEGF, Ang-1 and Ang-2 and improved the cerebrovascular network. In conclusion, 8 min or shorter cerebral ischemia induced by the suture MCAO method is an appropriate TIA model in C57BL/6 mice, which conforms to the definition of human TIA, but causes microscopic neurovascular impairment. NBP treatment increased the expression of angiogenic growth factors, promoted angiogenesis and improved cerebral microvessels after TIA. Our study provides new insights on the pathogenesis and potential treatments of TIA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Komatsu T, Ohta H, Motegi H, Hata J, Terawaki K, Koizumi M, Muta K, Okano HJ, Iguchi Y. A novel model of ischemia in rats with middle cerebral artery occlusion using a microcatheter and zirconia ball under fluoroscopy. Sci Rep 2021; 11:12806. [PMID: 34140618 PMCID: PMC8211726 DOI: 10.1038/s41598-021-92321-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
The failure of neuroprotective treatment-related clinical trials may be partially caused by unestablished animal models. Existing animal models are less likely to provide occlusion confined to the middle cerebral artery (MCA), making transarterial intervention difficult. We aimed to develop a novel focal stroke model using a microcatheter and zirconium dioxide that is non-magnetic under fluoroscopic guidance, which can monitor MCA occlusion and can improve hemorrhagic complications. Using male Sprague Dawley rats (n = 10), a microcatheter was navigated from the caudal ventral artery to the left internal carotid artery using an X-ray fluoroscopy to establish local occlusion. All rat cerebral angiographies were successful. No rats had hemorrhagic complications. Eight (80%) rats underwent occlusion of the MCA bifurcation by zirconium dioxide. Accidentally, the left posterior cerebral artery was failure embolized in 2 rats (20%). The median operating time was 8 min. All rats of occlusion MCA revealed an incomplete hemiparesis on the right side with neurological deficit score ranging from 1 to 3 (median 1, interquartile range 1-3) at 24 h after the induction of ischemia. Moreover, 2% 2,3,5-triphenyl tetrazolium chloride staining showed that the median infarct volume (mm3) was 280 (interquartile range 267-333) 24 h after the left MCA bifurcation occlusion. We present a novel rat model for focal stroke using a microcatheter and zirconium dioxide which does not affect the MRI. The model is predictable which is well confined within the territory supplied by the MCA, and reproducibility of this model is 80%. Fluoroscopy was able to identify which the MCA occlusion and model success while creating the model. It permitted exclusion of animals with complications from the experiment.
Collapse
Affiliation(s)
- Teppei Komatsu
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan.
| | - Hiroki Ohta
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Haruhiko Motegi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan
| | - Junichi Hata
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Koshiro Terawaki
- Department of Radiological Science, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Makoto Koizumi
- Laboratory Animal Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Kanako Muta
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3-25-8 Nishishimbashi, Minato-ku, Tokyo, 105-8461, Japan
| |
Collapse
|
25
|
Trotman-Lucas M, Gibson CL. A review of experimental models of focal cerebral ischemia focusing on the middle cerebral artery occlusion model. F1000Res 2021; 10:242. [PMID: 34046164 PMCID: PMC8127011 DOI: 10.12688/f1000research.51752.2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Cerebral ischemic stroke is a leading cause of death and disability, but current pharmacological therapies are limited in their utility and effectiveness.
In vitro and
in vivo models of ischemic stroke have been developed which allow us to further elucidate the pathophysiological mechanisms of injury and investigate potential drug targets.
In vitro models permit mechanistic investigation of the biochemical and molecular mechanisms of injury but are reductionist and do not mimic the complexity of clinical stroke.
In vivo models of ischemic stroke directly replicate the reduction in blood flow and the resulting impact on nervous tissue. The most frequently used
in vivo model of ischemic stroke is the intraluminal suture middle cerebral artery occlusion (iMCAO) model, which has been fundamental in revealing various aspects of stroke pathology. However, the iMCAO model produces lesion volumes with large standard deviations even though rigid surgical and data collection protocols are followed. There is a need to refine the MCAO model to reduce variability in the standard outcome measure of lesion volume. The typical approach to produce vessel occlusion is to induce an obstruction at the origin of the middle cerebral artery and reperfusion is reliant on the Circle of Willis (CoW). However, in rodents the CoW is anatomically highly variable which could account for variations in lesion volume. Thus, we developed a refined approach whereby reliance on the CoW for reperfusion was removed. This approach improved reperfusion to the ischemic hemisphere, reduced variability in lesion volume by 30%, and reduced group sizes required to determine an effective treatment response by almost 40%. This refinement involves a methodological adaptation of the original surgical approach which we have shared with the scientific community via publication of a visualised methods article and providing hands-on training to other experimental stroke researchers.
Collapse
Affiliation(s)
| | - Claire L Gibson
- School of Psychology, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
26
|
Kumar R, Saraswat K, Rizvi SI. Glucosamine Displays a Potent Caloric Restriction Mimetic Effect in Senescent Rats by Activating Mitohormosis. Rejuvenation Res 2021; 24:220-226. [PMID: 33478352 DOI: 10.1089/rej.2020.2399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is strongly correlated with several noncommunicable disorders such as diabetes, obesity, cardiovascular disease, and neurodegenerative conditions. Glucosamine (2-amino-2-deoxy-d-glucose, GlcN) is a naturally occurring amino sugar and is reported to act as a caloric restriction mimetic (CRM). In young and d-galactose-induced accelerated rat aging models, we tested a persistent oral dietary dose of GlcN and evaluated various aging biomarkers in erythrocytes and plasma. A significant increase in the reactive oxygen species (ROS) was observed in GlcN-treated young and accelerated senescent rat model. Increased value of ferric reducing ability of plasma (FRAP), superoxide dismutase, catalase, and plasma membrane redox system (PMRS) was observed. We suggest that GlcN induces a mitohormetic impact by a transient increase in ROS. Our findings indicate that GlcN may be a successful CRM.
Collapse
Affiliation(s)
- Raushan Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Komal Saraswat
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
27
|
Wu SP, Wang N, Zhao L. Network Pharmacology Reveals the Mechanism of Activity of Tongqiao Huoxue Decoction Extract Against Middle Cerebral Artery Occlusion-Induced Cerebral Ischemia-Reperfusion Injury. Front Pharmacol 2021; 11:572624. [PMID: 33519437 PMCID: PMC7844429 DOI: 10.3389/fphar.2020.572624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/13/2020] [Indexed: 01/14/2023] Open
Abstract
Several clinical therapies such as tissue repair by replacing injured tissues with functional ones have been reported; however, there is great potential for exploring traditional herbal-induced regeneration with good safety. Tongqiao Huoxue Decoction (TQHXD), a well-known classical traditional Chinese medicinal formula, has been widely used for clinical treatment of stroke. However, biological activity and mechanisms of action of its constituents toward conferring protection against cerebral ischemia-reperfusion (I/R) injury remain unclear. In this present study, we evaluated TQHXD quality using HPLC; then, it was screened for its potential active ingredients using a series of indices, such as their drug-likeness and oral bioavailability. Subsequently, we analyzed the potential mechanisms of TQHXD anti-I/R using gene ontology functional enrichment analyses. The network pharmacological approach enabled us to screen 265 common targets associated with I/R, indicating that TQHXD had remarkable protective effects on infarction volume, neurological function scores, and blood-brain barrier (BBB) injury. In addition, TQHXD significantly promoted the recovery of regional cerebral blood flow (rCBF) 7 days after reperfusion compared to rats in the vehicle group. Immunofluorescence results revealed a significantly higher CD34 expression in TQHXD-treated rats 7 days after reperfusion. TQHXD is not merely effective but eventually develops a secretory profile composed of VEGF and cerebral blood flow, a typical signature termed the angiogenesis-associated phenotype. Mechanistically, our data revealed that TQHXD (6 g/kg) treatment resulted in a marked increase in expression of p-focal adhesion kinase (FAK) and p-Paxillin proteins. However, Ki8751-mediated inhibition of VEGFR2 activity repealed its angiogenesis and protective effects and decreased both p-FAK and p-Paxillin protein levels. Taken together, these findings affirmed the potential of TQHXD as a drug for the management of stroke, which might be exerted by increasing the angiogenesis via the VEGF pathway. Therefore, these results provide proof-of-concept evidence that angiogenesis is a major contributor to TQHXD-treated I/R and that TQHXD is a promising traditional ethnic medicine for the management of this condition.
Collapse
Affiliation(s)
- Si-Peng Wu
- Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ning Wang
- Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei, China.,Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
| | - Li Zhao
- Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University of Chinese Medicine, Hefei, China.,Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
| |
Collapse
|
28
|
Liebenstund L, Coburn M, Fitzner C, Willuweit A, Langen KJ, Liu J, Veldeman M, Höllig A. Predicting experimental success: a retrospective case-control study using the rat intraluminal thread model of stroke. Dis Model Mech 2020; 13:dmm044651. [PMID: 33093066 PMCID: PMC7790196 DOI: 10.1242/dmm.044651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/13/2020] [Indexed: 12/23/2022] Open
Abstract
The poor translational success rate of preclinical stroke research may partly be due to inaccurate modelling of the disease. We provide data on transient middle cerebral artery occlusion (tMCAO) experiments, including detailed intraoperative monitoring to elaborate predictors indicating experimental success (ischemia without occurrence of confounding pathologies). The tMCAO monitoring data (bilateral cerebral blood flow, CBF; heart rate, HR; and mean arterial pressure, MAP) of 16 animals with an 'ideal' outcome (MCA-ischemia), and 48 animals with additional or other pathologies (subdural haematoma or subarachnoid haemorrhage), were checked for their prognostic performance (receiver operating characteristic curve and area under the curve, AUC). Animals showing a decrease in the contralateral CBF at the time of MCA occlusion suffered from unintended pathologies. Implementation of baseline MAP, in addition to baseline HR (AUC, 0.83, 95% c.i. 0.68 to 0.97), increased prognostic relevance (AUC, 0.89, 95% c.i. 0.79 to 0.98). Prediction performance improved when two additional predictors referring to differences in left and right CBF were considered (AUC, 1.00, 95% c.i. 1.0 to 1.0). Our data underline the importance of peri-interventional monitoring to verify a successful experimental performance in order to ensure a disease model as homogeneous as possible.
Collapse
Affiliation(s)
- Lisa Liebenstund
- Department of Anesthesiology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, D-52074 Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, D-52074 Aachen, Germany
| | - Christina Fitzner
- Department of Anesthesiology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, D-52074 Aachen, Germany
- 3CARE, Cardiovascular Critical Care & Anesthesia Research, University Hospital Aachen, RWTH Aachen University, D-52047 Aachen, Germany
| | - Antje Willuweit
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, D-52047 Aachen, Germany
| | - Jingjin Liu
- Department of Anesthesiology, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, D-52074 Aachen, Germany
| | - Michael Veldeman
- Department of Neurosurgery, University Hospital Aachen, RWTH Aachen University, D-52047 Aachen, Germany
| | - Anke Höllig
- Department of Neurosurgery, University Hospital Aachen, RWTH Aachen University, D-52047 Aachen, Germany
| |
Collapse
|
29
|
Alam JJ, Krakovsky M, Germann U, Levy A. Continuous administration of a p38α inhibitor during the subacute phase after transient ischemia-induced stroke in the rat promotes dose-dependent functional recovery accompanied by increase in brain BDNF protein level. PLoS One 2020; 15:e0233073. [PMID: 33275615 PMCID: PMC7717516 DOI: 10.1371/journal.pone.0233073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/20/2020] [Indexed: 12/17/2022] Open
Abstract
There is unmet need for effective stroke therapies. Numerous neuroprotection attempts for acute cerebral ischemia have failed and as a result there is growing interest in developing therapies to promote functional recovery through increasing synaptic plasticity. For this research study, we hypothesized that in addition to its previously reported role in mediating cell death during the acute phase, the alpha isoform of p38 mitogen-activated protein kinase, p38α, may also contribute to interleukin-1β-mediated impairment of functional recovery during the subacute phase after acute ischemic stroke. Accordingly, an oral, brain-penetrant, small molecule p38α inhibitor, neflamapimod, was evaluated as a subacute phase stroke treatment to promote functional recovery. Neflamapimod administration to rats after transient middle cerebral artery occlusion at two dose levels was initiated outside of the previously characterized therapeutic window for neuroprotection of less than 24 hours for p38α inhibitors. Six-week administration of neflamapimod, starting at 48 hours after reperfusion, significantly improved behavioral outcomes assessed by the modified neurological severity score at Week 4 and at Week 6 post stroke in a dose-dependent manner. Neflamapimod demonstrated beneficial effects on additional measures of sensory and motor function. It also resulted in a dose-related increase in brain-derived neurotrophic factor (BDNF) protein levels, a previously reported potential marker of synaptic plasticity that was measured in brain homogenates at sacrifice. Taken together with literature evidence on the role of p38α-dependent suppression by interleukin-1β of BDNF-mediated synaptic plasticity and BDNF production, our findings support a mechanistic model in which inhibition of p38α promotes functional recovery after ischemic stroke by blocking the deleterious effects of interleukin-1β on synaptic plasticity. The dose-related in vivo efficacy of neflamapimod offers the possibility of having a therapy for stroke that could be initiated outside the short time window for neuroprotection and for improving recovery after a completed stroke.
Collapse
Affiliation(s)
- John J. Alam
- EIP Pharma, Inc., Boston, Massachusetts, United States of America
- * E-mail:
| | | | - Ursula Germann
- EIP Pharma, Inc., Boston, Massachusetts, United States of America
| | | |
Collapse
|
30
|
Postnov DD, Tang J, Erdener SE, Kılıç K, Boas DA. Dynamic light scattering imaging. SCIENCE ADVANCES 2020; 6:6/45/eabc4628. [PMID: 33158865 PMCID: PMC7673709 DOI: 10.1126/sciadv.abc4628] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/17/2020] [Indexed: 05/18/2023]
Abstract
We introduce dynamic light scattering imaging (DLSI) to enable the wide-field measurement of the speckle temporal intensity autocorrelation function. DLSI uses the full temporal sampling of speckle fluctuations and a comprehensive model to identify the dynamic scattering regime and obtain a quantitative image of the scatterer dynamics. It reveals errors in the traditional theory of laser Doppler flowmetry and laser speckle contrast imaging and provides guidance on the best model to use in cerebral blood flow imaging.
Collapse
Affiliation(s)
- Dmitry D Postnov
- Neurophotonics Center, Boston University, Boston, MA 02215, USA
- Biomedical Sciences Institute, Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen 2200, Denmark
| | - Jianbo Tang
- Neurophotonics Center, Boston University, Boston, MA 02215, USA
| | | | - Kıvılcım Kılıç
- Neurophotonics Center, Boston University, Boston, MA 02215, USA
| | - David A Boas
- Neurophotonics Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
31
|
CYP3A Excipient-Based Microemulsion Prolongs the Effect of Magnolol on Ischemia Stroke Rats. Pharmaceutics 2020; 12:pharmaceutics12080737. [PMID: 32764430 PMCID: PMC7464078 DOI: 10.3390/pharmaceutics12080737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Magnolol, which is a CYP3A substrate, is a well-known agent that can facilitate neuroprotection and reduce ischemic brain damage. However, a well-controlled release formulation is needed for the effective delivery of magnolol due to its poor water solubility. In this study, we have developed a formulation for a CYP3A-excipient microemulsion, which can be administrated intraperitoneally to increase the solubility and bioavailability of magnolol and increase its neuroprotective effect against ischemic brain injury. The results showed a significant improvement in the area under the plotted curve of drug concentration versus time curve (AUC0–t) and mean residence time (MRT) of magnolol in microemulsion compared to when it was dissolved in dimethyl sulfoxide (DMSO). Both magnolol in DMSO and microemulsion, administrated after the onset of ischemia, showed a reduced visual brain infarct size. As such, this demonstrates a therapeutic effect on ischemic brain injury caused by occlusion, however it is important to note that a pharmacological effect cannot be concluded by this study. Ultimately, our study suggests that the excipient inhibitor-based microemulsion formulation could be a promising concept for the substrate drugs of CYP3A.
Collapse
|
32
|
Yeh CF, Chuang TY, Hung YW, Lan MY, Tsai CH, Huang HX, Lin YY. Development of a Modified Surgical Technique for Simulating Ischemic Cerebral Cortex Injury in Rats. In Vivo 2019; 33:1175-1181. [PMID: 31280207 DOI: 10.21873/invivo.11588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Middle cerebral artery occlusion (MCAO) in rodents is an essential animal model for research focusing on ischemic stroke. To date, several kinds of surgical methods for MCAO have been developed and the craniotomy method has the advantage of direct visualization of the middle cerebral artery (MCA). MCAO at a more proximal site produces better surgical results, but it is a more invasive technique. The aim of this study was to evolve the surgical technique for simulating ischemic cerebral cortex injury in rats. MATERIALS AND METHODS To approach proximal MCA with a less invasive procedure, a modified surgical technique for MCAO in rats was developed. Besides, rats receiving the modified and conventional method were compared with regard to infarct volume and by behavioral tests. RESULTS Following craniotomy, we proposed that the inferior edge of the craniotomy should be enlarged with fine forceps. This modified surgical method induces larger infarct volume, significant behavioral impairment and can induce ischemic stroke. Additionally, it does not significantly increase the operation time, and has produced no obvious complications. CONCLUSION This modified surgical technique may serve as a practical method for performing MCAO.
Collapse
Affiliation(s)
- Chien-Fu Yeh
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Department of Otorhinolaryngology, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C
| | - Tung-Yueh Chuang
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C
| | - Yu-Wen Hung
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan, R.O.C
| | - Ming-Ying Lan
- Department of Otorhinolaryngology, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C
| | - Ching-Han Tsai
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C
| | - Hao-Xiang Huang
- Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C
| | - Yung-Yang Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan, R.O.C. .,Department of Critical Care Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C.,Institute of Physiology, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, R.O.C.,Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan, R.O.C
| |
Collapse
|
33
|
Microcirculatory Changes in Experimental Models of Stroke and CNS-Injury Induced Immunodepression. Int J Mol Sci 2019; 20:ijms20205184. [PMID: 31635068 PMCID: PMC6834192 DOI: 10.3390/ijms20205184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
Stroke is the second-leading cause of death globally and the leading cause of disability in adults. Medical complications after stroke, especially infections such as pneumonia, are the leading cause of death in stroke survivors. Systemic immunodepression is considered to contribute to increased susceptibility to infections after stroke. Different experimental models have contributed significantly to the current knowledge of stroke pathophysiology and its consequences. Each model causes different changes in the cerebral microcirculation and local inflammatory responses after ischemia. The vast majority of studies which focused on the peripheral immune response to stroke employed the middle cerebral artery occlusion method. We review various experimental stroke models with regard to microcirculatory changes and discuss the impact on local and peripheral immune response for studies of CNS-injury (central nervous system injury) induced immunodepression.
Collapse
|
34
|
Zeb A, Cha JH, Noh AR, Qureshi OS, Kim KW, Choe YH, Shin D, Shah FA, Majid A, Bae ON, Kim JK. Neuroprotective effects of carnosine-loaded elastic liposomes in cerebral ischemia rat model. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00462-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Han SS, Jin Z, Lee BS, Han JS, Choi JJ, Park SJ, Chung HM, Mukhtar AS, Moon SH, Kang SW. Reproducible hindlimb ischemia model based on photochemically induced thrombosis to evaluate angiogenic effects. Microvasc Res 2019; 126:103912. [PMID: 31433972 DOI: 10.1016/j.mvr.2019.103912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/28/2019] [Accepted: 08/17/2019] [Indexed: 01/04/2023]
Abstract
Critical limb ischemia is one of the most common types of peripheral arterial disease. Preclinical development of ischemia therapeutics relies on the availability of a relevant and reproducible in vivo disease model. Thus, establishing appropriate animal disease models is essential for the development of new therapeutic strategies. Currently, the most commonly employed model of hindlimb ischemia is the surgical induction method with ligation of the femoral artery and its branches after skin incision. However, the efficiency of the method is highly variable depending on the availability of skilled technicians. In addition, after surgical procedures, animals can quickly and spontaneously recover from damage, limiting observations of the therapeutic effect of potential agents. The aim of this study was to develop a hindlimb ischemia mouse model with similarities to human ischemic disease. To that end, a photochemical reaction was used to induce thrombosis in the hindlimb. After the photochemical reaction was induced by light irradiation, thrombotic plugs and adjacent red blood cell stasis were observed in hindlimb vessels in the light-irradiated zone. Additionally, the photochemically induced thrombosis maintained the ischemic condition and did not cause notable side effects in mice.
Collapse
Affiliation(s)
- Sang-Soo Han
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon, Republic of Korea; Applied Bioresources Research Division, Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resource (NNIBR), Sangju, Republic of Korea
| | - Zhen Jin
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Byoung-Seok Lee
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ji-Seok Han
- Department of Toxicological Evaluation and Research, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Jong-Jin Choi
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Soon-Jung Park
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | | | - Sung-Hwan Moon
- Department of Medicine, School of Medicine, Konkuk University, Seoul, Republic of Korea; Research Institute, T&R Biofab Co. Ltd, 237, Siheung 15073, Republic of Korea.
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, Daejeon, Republic of Korea; Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
36
|
Wu SP, Li D, Wang N, Hou JC, Zhao L. YiQi Tongluo Granule against Cerebral Ischemia/Reperfusion Injury in Rats by Freezing GluN2B and CaMK II through NMDAR/ERK1/2 Signaling. Chem Pharm Bull (Tokyo) 2019; 67:244-252. [DOI: 10.1248/cpb.c18-00806] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Si-peng Wu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Dan Li
- Jing-Jin-Ji Joint Innovation Pharmaceutical (Beijing) Co., Ltd
| | - Ning Wang
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Jin-cai Hou
- Key Laboratory of Xin’an Medicine, Ministry of Education
| | - Li Zhao
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- Key Laboratory of Xin’an Medicine, Ministry of Education
| |
Collapse
|
37
|
Yeh SJ, Tang SC, Tsai LK, Jeng JS, Chen CL, Hsieh ST. Neuroanatomy- and Pathology-Based Functional Examinations of Experimental Stroke in Rats: Development and Validation of a New Behavioral Scoring System. Front Behav Neurosci 2018; 12:316. [PMID: 30618667 PMCID: PMC6305474 DOI: 10.3389/fnbeh.2018.00316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/03/2018] [Indexed: 11/13/2022] Open
Abstract
In experimental stroke studies, a neuroanatomy-based functional examination of behaviors is critical to predict the pathological extent of infarcts because brain-imaging studies are not always available. However, there is a lack of systematic studies to examine the efficiency of a behavioral test for this purpose. Our work aimed to design a new score for this goal in stroke rats, by simplifying the Garcia score (with subscore 1–6) and adding circling as subscore 7. MRI and 2,3,5-triphenyltetrazolium chloride staining were used to determine the pathological extent after transient middle cerebral artery occlusion. The modified summations of subscores were designed according to the predictability of each subscore for locations and sizes of infarcts in one group of stroke rats, and were validated in another group. The original Garcia score was able to predict the pathological extent of edema-adjusted infarct size ≥30%, and the summation of subscore 4, 6, and 7 (4: climbing, 6: vibrissae sensation, 7: circling) also could predict it well. The original Garcia score failed to predict infarct at the primary motor cortex, while the summation of subscore 4, 6, and 7 potentially could predict not only the primary motor cortex, but also the forelimb, hindlimb, and barrel field regions of the primary sensory cortex. Accordingly, this neuroanatomy-correlated functional assessment system composed of subscore 4, 6, and 7 was proposed, with less examination time and better inter-rater reliability than the original Garcia score. In summary, this new scoring system, summation (4,6,7) score, examined motor and sensory functions based on neuroanatomical involvement, having the potential to predict the pathological extent and specific relevant brain areas of infarcts, respectively.
Collapse
Affiliation(s)
- Shin-Joe Yeh
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Sung-Chun Tang
- Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Kai Tsai
- Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sung-Tsang Hsieh
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center of Precision Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
38
|
Jahan R, Villablanca JP, Harris RJ, Duarte-Vogel S, Williams CK, Vinters HV, Rao N, Enzmann DR, Ellingson BM. Selective middle cerebral artery occlusion in the rabbit: Technique and characterization with pathologic findings and multimodal MRI. J Neurosci Methods 2018; 313:6-12. [PMID: 30529458 DOI: 10.1016/j.jneumeth.2018.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND A reliable animal model of ischemic stroke is vital for pre-clinical evaluation of stroke therapies. We describe a reproducible middle cerebral artery (MCA) embolic occlusion in the French Lop rabbit characterized with multimodal MRI and histopathologic tissue analysis. NEW METHOD Fluoroscopic-guided microcatheter placement was performed in five consecutive subjects with angiographic confirmation of MCA occlusion with autologous clot. Multimodal MRI was obtained prior to occlusion and up to six hours post after which repeat angiography confirmed sustained occlusion. The brain was harvested for histopathologic examination. RESULTS Angiography confirmed successful MCA catheterization and durable (>6 h) MCA occlusion in all animals. There was increase of ADC volume over time and variable final core volume presumably related to individual variation in collateral flow. FLAIR hyperintensity indicative of cytotoxic edema and parenchymal contrast enhancement reflective of blood brain barrier disruption was observed over time. Tissue staining of the ischemic brain showed edema and structural alterations consistent with infarction. COMPARISON WITH EXISTING METHODS This study describes a technique of selective catheterization and embolic occlusion of the MCA in the rabbit with MRI characterization of evolution of ischemia in the model. CONCLUSIONS We demonstrate the feasibility of a rabbit model of embolic MCA occlusion with angiographic documentation. Serial MR imaging demonstrated changes comparable to those observed in human ischemic stroke, confirmed histopathologically.
Collapse
Affiliation(s)
- Reza Jahan
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.
| | - J Pablo Villablanca
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Robert J Harris
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Sandra Duarte-Vogel
- Division of Laboratory Animal Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Christopher K Williams
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Harry V Vinters
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Neal Rao
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Dieter R Enzmann
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| | - Benjamin M Ellingson
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
39
|
Zhai Z, Feng J. Left-right asymmetry influenced the infarct volume and neurological dysfunction following focal middle cerebral artery occlusion in rats. Brain Behav 2018; 8:e01166. [PMID: 30451395 PMCID: PMC6305934 DOI: 10.1002/brb3.1166] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/22/2018] [Accepted: 10/27/2018] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE To investigate the differential effects of left versus right cerebral hemisphere on the infarct volume and behavioral function following focal cerebral ischemia in rats. METHODS AND MATERIALS Middle cerebral artery occlusion (MCAO) was induced in the right-handed rats by filament insertion for 1.5 hr, and then reperfusion was established according to Zea-Longa method. A total of 36 male Sprague Dawley rats were randomly divided into a left MCAO group or a right MCAO group. The modified neurological severity scores (mNSS), tapered beam-walking test, and Morris water maze experiment were all carried out to evaluate the sensorimotor and cognitive outcomes at the 1d, 3d, and 7d after MCAO, respectively. Infarct volume of the brains was measured by triphenyltetrazolium chloride (TTC) staining. RESULTS The sensorimotor function was more worse in the left MCAO group than that in the right MCAO group at the 1d, 3d, and 7d after MCAO (p < 0.05). While the cognitive function was much better in the left MCAO group than that in the right MCAO group at the 1d and 3d after MCAO (p < 0.05). But no significant difference was achieved in cognitive function between the two groups at 7d after MCAO (p > 0.05). There was no significant difference in total infarct volume between the two groups at the 1d, 3d, and 7d after MCAO, respectively (p > 0.05). CONCLUSION The infarct volume is not affected significantly by the left or right MCAO model in the early days. The lesions in the left hemisphere produce more severe sensorimotor impairments, while more severe cognitive impairments are produced by the right hemispherical lesions. These findings suggest that it is structural and functional asymmetry between the two hemispheres other than infarct volume that affects the outcomes of rat MCAO.
Collapse
Affiliation(s)
- Zhiyong Zhai
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
40
|
Song H, Mylvaganam SM, Wang J, Mylvaganam SMK, Wu C, Carlen PL, Eubanks JH, Feng J, Zhang L. Contributions of the Hippocampal CA3 Circuitry to Acute Seizures and Hyperexcitability Responses in Mouse Models of Brain Ischemia. Front Cell Neurosci 2018; 12:278. [PMID: 30210302 PMCID: PMC6123792 DOI: 10.3389/fncel.2018.00278] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/08/2018] [Indexed: 12/29/2022] Open
Abstract
The hippocampal circuitry is widely recognized as susceptible to ischemic injury and seizure generation. However, hippocampal contribution to acute non-convulsive seizures (NCS) in models involving middle cerebral artery occlusion (MCAO) remains to be determined. To address this, we occluded the middle cerebral artery in adult C57 black mice and monitored electroencephalographic (EEG) discharges from hippocampal and neocortical areas. Electrographic discharges in the absence of convulsive motor behaviors were observed within 90 min following occlusion of the middle cerebral artery. Hippocampal discharges were more robust than corresponding cortical discharges in all seizure events examined, and hippocampal discharges alone or with minimal cortical involvement were also observed in some seizure events. Seizure development was associated with ipsilateral hippocampal injuries as determined by subsequent histological examinations. We also introduced hypoxia-hypoglycemia episodes in mouse brain slices and examined regional hyperexcitable responses ex vivo. Extracellular recordings showed that the hippocampal CA3 region had a greater propensity for exhibiting single/multiunit activities or epileptiform field potentials following hypoxic-hypoglycemic (HH) episodes compared to the CA1, dentate gyrus, entorhinal cortical (EC) or neocortical regions. Whole-cell recordings revealed that CA3 pyramidal neurons exhibited excessive excitatory postsynaptic currents, attenuated inhibitory postsynaptic currents and intermittent or repetitive spikes in response to HH challenge. Together, these observations suggest that hippocampal discharges, possibly as a result of CA3 circuitry hyperexcitability, are a major component of acute NCS in a mouse model of MCAO.
Collapse
Affiliation(s)
- Hongmei Song
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | | | - Justin Wang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | | | - Chiping Wu
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Peter L. Carlen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - James H. Eubanks
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Liang Zhang
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Department of Medicine (Neurology), University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Gubskiy IL, Namestnikova DD, Cherkashova EA, Chekhonin VP, Baklaushev VP, Gubsky LV, Yarygin KN. MRI Guiding of the Middle Cerebral Artery Occlusion in Rats Aimed to Improve Stroke Modeling. Transl Stroke Res 2018; 9:417-425. [PMID: 29178027 PMCID: PMC6061245 DOI: 10.1007/s12975-017-0590-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/11/2017] [Accepted: 11/17/2017] [Indexed: 01/30/2023]
Abstract
The middle cerebral artery occlusion (MCAO) model in rats closely imitates ischemic stroke and is widely used. Existing instrumental methods provide a certain level of MCAO guidance, but monitoring of the MCA-occluding intraluminal filament position and possible complications can be improved. The goal of this study was to develop a MRI-based method of simultaneous control of the filament position, blood flow in the intracranial vessels, and hemorrhagic complications. Rats were subjected to either MRI-guided MCAO (group 1, n = 51) or MCAO without MRI control (group 2, n = 38). After operation, group 1 rats were transferred into a MRI scanner for the control of the filament position and possible complications. Ninety minutes after the onset of MCAO, the filament was removed in rats of both groups and MRI control of the infarct volume and hemorrhagic complications performed. High-resolution T1- and T2-weighted imaging performed immediately after filament insertion provided visualization of the filament position, blood flow in brain arteries, and complications related to inappropriate filament insertion. It permitted replacement of wrongly positioned filaments and exclusion of animals with complications from the experiment. MRI-based MCAO guiding provided real-time intra-operational monitoring of crucial parameters determining MCAO suitability for stroke modeling, including better assessment of the operation outcomes in individual animals and significant enhancement of the model success rate. The possibility of simultaneous visualization of the filament, blood flow in the arteries, brain tissue, and hemorrhagic complications is the principal advantage of the proposed method over other instrumental methods of MCAO quality control. Graphical Abstract MRI-guided middle cerebral artery occlusion technique permits intra-operational monitoring via direct non-invasive simultaneous visualization of the filament, blood flow in the arteries, brain tissue, and hemorrhagic complications. It provides better assessment of MCAO outcomes in individual animals and significant enhancement of MCAO success rate.
Collapse
Affiliation(s)
- Ilya L Gubskiy
- Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russia.
| | - Daria D Namestnikova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Elvira A Cherkashova
- Department of Neurology, Neurosurgery and Medical Genetics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir P Chekhonin
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Vladimir P Baklaushev
- Federal Research Clinical Center of Specialized Medical Care and Medical Technologies of the FMBA of Russia, Moscow, Russia
| | - Leonid V Gubsky
- Research Institute of Cerebrovascular Pathology and Stroke, Pirogov Russian National Research Medical University, Moscow, Russia
| | | |
Collapse
|
42
|
JM-20 Treatment After MCAO Reduced Astrocyte Reactivity and Neuronal Death on Peri-infarct Regions of the Rat Brain. Mol Neurobiol 2018; 56:502-512. [DOI: 10.1007/s12035-018-1087-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 04/12/2018] [Indexed: 02/06/2023]
|
43
|
Ingberg E, Dock H, Theodorsson E, Theodorsson A, Ström JO. Effect of laser Doppler flowmetry and occlusion time on outcome variability and mortality in rat middle cerebral artery occlusion: inconclusive results. BMC Neurosci 2018; 19:24. [PMID: 29673328 PMCID: PMC5909274 DOI: 10.1186/s12868-018-0425-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/12/2018] [Indexed: 12/26/2022] Open
Abstract
Background Stroke is among the leading causes of death and disability. Although intense research efforts have provided promising treatment options in animals, most clinical trials in humans have failed and the therapeutic options are few. Several factors have been suggested to explain this translational difficulty, particularly concerning methodology and study design. Consistent infarcts and low mortality might be desirable in some, but not all, studies. Here, we aimed to investigate whether the use of laser Doppler flowmetry (LDF) and the occlusion time (60 vs. 45 min) affected outcome variability and mortality in a rat stroke model. Eighty ovariectomized female Wistar rats were subjected to ischemic stroke using intraluminal filament middle cerebral artery occlusion with or without LDF and with occlusion times of 45 or 60 min. Outcome was evaluated by triphenyl tetrazolium chloride staining of brain slices to measure infarct size and a modified sticky tape test. Results Neither LDF nor occlusion times of 45 versus 60 min significantly affected mortality, outcome variability or outcome severity. Conclusions Due to the unexpectedly high mortality and variability the statistical power was very low and thus the results were inconclusive. Electronic supplementary material The online version of this article (10.1186/s12868-018-0425-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edvin Ingberg
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden. .,Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Hua Dock
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Annette Theodorsson
- Department of Neurosurgery and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jakob O Ström
- Department of Clinical Chemistry and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Neurology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
44
|
Rewell SSJ, Jeffreys AL, Sastra SA, Cox SF, Fernandez JA, Aleksoska E, van der Worp HB, Churilov L, Macleod MR, Howells DW. Hypothermia revisited: Impact of ischaemic duration and between experiment variability. J Cereb Blood Flow Metab 2017; 37:3380-3390. [PMID: 28084873 PMCID: PMC5624387 DOI: 10.1177/0271678x16688704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To assess the true effect of novel therapies for ischaemic stroke, a positive control that can validate the experimental model and design is vital. Hypothermia may be a good candidate for such a positive control, given the convincing body of evidence from animal models of ischaemic stroke. Taking conditions under which substantial efficacy had been seen in a meta-analysis of hypothermia for focal ischaemia in animal models, we undertook three randomised and blinded studies examining the effect of hypothermia induced immediately following the onset of middle cerebral artery occlusion on infarct volume in rats (n = 15, 23, 264). Hypothermia to a depth of 33℃ and maintained for 130 min significantly reduced infarct volume compared to normothermia treatment (by 27-63%) and depended on ischaemic duration (F(3,244) = 21.242, p < 0.05). However, the protective effect varied across experiments with differences in both the size of the infarct observed in normothermic controls and the time to reach target temperature. Our results highlight the need for sample size and power calculations to take into account variations between individual experiments requiring induction of focal ischaemia.
Collapse
Affiliation(s)
- Sarah SJ Rewell
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Amy L Jeffreys
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Steven A Sastra
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Susan F Cox
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - John A Fernandez
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Elena Aleksoska
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - H Bart van der Worp
- Department of Neurology and Neurosurgery, Brain Center Rudolf Magus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Malcolm R Macleod
- Department of Clinical Neurosciences, University of Edinburgh, Edinburgh, UK
| | - David W Howells
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Heidelberg, Australia
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania
- David W Howells, School of Medicine, Faculty of Health, University of Tasmania, Medical Science Precinct, 17 Liverpool Street, Hobart, Tasmania, Australia.
| |
Collapse
|
45
|
García-Pupo L, Sánchez JR, Ratman D, Pérez-Novo C, Declerck K, De Bosscher K, Markakis MN, Beemster G, Zaldo A, Nuñez Figueredo Y, Delgado-Hernández R, Vanden Berghe W. Semi-synthetic sapogenin exerts neuroprotective effects by skewing the brain ischemia reperfusion transcriptome towards inflammatory resolution. Brain Behav Immun 2017; 64:103-115. [PMID: 28390980 DOI: 10.1016/j.bbi.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 10/19/2022] Open
Abstract
Stroke represents one of the first causes of mortality and morbidity worldwide. We evaluated the therapeutic potential of a novel semi-synthetic spirosteroid sapogenin derivative "S15" in a transient middle cerebral artery occlusion (tMCAO) focal ischemia model in rat. S15-treated rats had significantly reduced infarct volumes and improved neurological functions at 24h post-reperfusion, compared with ischemia. Corresponding gene expression changes in brain were characterized by mRNA sequencing and qPCR approaches. Next, we applied geneset, pathway and transcription factor motif enrichment analysis to identify relevant signaling networks responsible for neuronal damage upon ischemia-reperfusion or neuroprotection upon pretreatment with S15. As expected, ischemia-reperfusion brain damage strongly modulates transcriptional programs associated with immune responses, increased differentiation of immune cells as well as reduced (cat)ion transport and synaptic activity. Interestingly, S15-dependent neuroprotection regulates inflammation-associated genes involved in phagosome specific resolution of tissue damage, chemotaxis and anti-inflammatory alternative activation of microglia. Altogether our transcriptome wide RNA sequencing and integrated pathway analysis provides new clues in the neuroprotective properties of a novel spirosteroid S15 or neuronal damage in rat brains subjected to ischemia, which opens new perspectives for successful treatment of stroke.
Collapse
Affiliation(s)
- Laura García-Pupo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - Jeney Ramírez Sánchez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - Dariusz Ratman
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Claudina Pérez-Novo
- Proteinscience, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Ken Declerck
- Proteinscience, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Marios Nektarios Markakis
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171 G.U.613, 2020 Antwerp, Belgium
| | - Gerrit Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Campus Groenenborger, Groenenborgerlaan 171 G.U.613, 2020 Antwerp, Belgium
| | - Armando Zaldo
- Centro de Estudios de Productos Naturales, Facultad de Química, Universidad de la Habana, Zapata s/n entre G y Carlitos Aguirre, Vedado, Plaza de la Revolución, CP 10400 La Habana, Cuba.
| | - Yanier Nuñez Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - René Delgado-Hernández
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), BioCubaFarma, Ave 26, No. 1605 Boyeros y Puentes Grandes, CP 10600 La Habana, Cuba.
| | - Wim Vanden Berghe
- Proteinscience, Proteomics and Epigenetic Signaling, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| |
Collapse
|
46
|
Neuroprotective effects of AT1 receptor antagonists after experimental ischemic stroke: what is important? Naunyn Schmiedebergs Arch Pharmacol 2017; 390:949-959. [PMID: 28669009 DOI: 10.1007/s00210-017-1395-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 06/16/2017] [Indexed: 12/25/2022]
Abstract
The present study conducted in rats defines the requirements for neuroprotective effects of systemically administered AT1 receptor blockers (ARBs) in acute ischaemic stroke. The inhibition of central effects to angiotensin II (ANG II) after intravenous (i.v.) treatment with candesartan (0.3 and 3 mg/kg) or irbesartan and losartan (3 and 30 mg/kg) was employed to study the penetration of these ARBs across the blood-brain barrier. Verapamil and probenecid were used to assess the role of the transporters, P-glycoprotein and the multidrug resistance-related protein 2, in the entry of losartan and irbesartan into the brain. Neuroprotective effects of i.v. treatment with the ARBs were investigated after transient middle cerebral artery occlusion (MCAO) for 90 min. The treatment with the ARBs was initiated 3 h after the onset of MCAO and continued for two consecutive days. Blood pressure was continuously recorded before and during MCAO until 5.5 h after the onset of reperfusion. The higher dose of candesartan completely abolished, and the lower dose of candesartan and higher doses of irbesartan and losartan partially inhibited the drinking response to intracerebroventricular ANG II. Only 0.3 mg/kg candesartan improved the recovery from ischaemic stroke, and 3 mg/kg candesartan did not exert neuroprotective effects due to marked blood pressure reduction during reperfusion. Both doses of irbesartan and losartan had not any effect on the stroke outcome. An effective, long-lasting blockade of brain AT1 receptors after systemic treatment with ARBs without extensive blood pressure reductions is the prerequisite for neuroprotective effects in ischaemic stroke.
Collapse
|
47
|
Cuccione E, Versace A, Cho TH, Carone D, Berner LP, Ong E, Rousseau D, Cai R, Monza L, Ferrarese C, Sganzerla EP, Berthezène Y, Nighoghossian N, Wiart M, Beretta S, Chauveau F. Multi-site laser Doppler flowmetry for assessing collateral flow in experimental ischemic stroke: Validation of outcome prediction with acute MRI. J Cereb Blood Flow Metab 2017; 37:2159-2170. [PMID: 27466372 PMCID: PMC5464709 DOI: 10.1177/0271678x16661567] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
High variability in infarct size is common in experimental stroke models and affects statistical power and validity of neuroprotection trials. The aim of this study was to explore cerebral collateral flow as a stratification factor for the prediction of ischemic outcome. Transient intraluminal occlusion of the middle cerebral artery was induced for 90 min in 18 Wistar rats. Cerebral collateral flow was assessed intra-procedurally using multi-site laser Doppler flowmetry monitoring in both the lateral middle cerebral artery territory and the borderzone territory between middle cerebral artery and anterior cerebral artery. Multi-modal magnetic resonance imaging was used to assess acute ischemic lesion (diffusion-weighted imaging, DWI), acute perfusion deficit (time-to-peak, TTP), and final ischemic lesion at 24 h. Infarct volumes and typology at 24 h (large hemispheric versus basal ganglia infarcts) were predicted by both intra-ischemic collateral perfusion and acute DWI lesion volume. Collateral flow assessed by multi-site laser Doppler flowmetry correlated with the corresponding acute perfusion deficit using TTP maps. Multi-site laser Doppler flowmetry monitoring was able to predict ischemic outcome and perfusion deficit in good agreement with acute MRI. Our results support the additional value of cerebral collateral flow monitoring for outcome prediction in experimental ischemic stroke, especially when acute MRI facilities are not available.
Collapse
Affiliation(s)
- Elisa Cuccione
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy.,2 PhD Program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Versace
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy
| | - Tae-Hee Cho
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | - Davide Carone
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy
| | - Lise-Prune Berner
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | - Elodie Ong
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | - David Rousseau
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France
| | - Ruiyao Cai
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy
| | - Laura Monza
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy
| | - Carlo Ferrarese
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy.,5 Milan Center for Neuroscience (NeuroMi), Milan, Italy
| | - Erik P Sganzerla
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy.,5 Milan Center for Neuroscience (NeuroMi), Milan, Italy
| | - Yves Berthezène
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | - Norbert Nighoghossian
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France.,4 Hospices Civils de Lyon, France
| | - Marlène Wiart
- 3 Université de Lyon, CREATIS; CNRS UMR5220; Inserm U1044; INSA-Lyon; Université Lyon 1, Lyon, France
| | - Simone Beretta
- 1 Department of Medicine and Surgery, Laboratory of Experimental Stroke Research, University of Milano-Bicocca, Monza, Italy.,5 Milan Center for Neuroscience (NeuroMi), Milan, Italy
| | - Fabien Chauveau
- 6 Université de Lyon, Lyon Neuroscience Research Center, BioRaN team; CNRS UMR5292; Inserm U1028; Université Lyon 1, Lyon, France
| |
Collapse
|
48
|
Durukan Tolvanen A, Tatlisumak E, Pedrono E, Abo-Ramadan U, Tatlisumak T. TIA model is attainable in Wistar rats by intraluminal occlusion of the MCA for 10 min or shorter. Brain Res 2017; 1663:166-173. [DOI: 10.1016/j.brainres.2017.03.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/15/2017] [Accepted: 03/06/2017] [Indexed: 10/20/2022]
|
49
|
Wu S, Yue Y, Peng A, Zhang L, Xiang J, Cao X, Ding H, Yin S. Myricetin ameliorates brain injury and neurological deficits via Nrf2 activation after experimental stroke in middle-aged rats. Food Funct 2016; 7:2624-34. [PMID: 27171848 DOI: 10.1039/c6fo00419a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The aim of our study was to investigate the protective effects and underlying mechanisms of myricetin, a bioactive food compound, on brain injury and neurological deficits after ischemic stroke. Treatment of myricetin significantly attenuated oxygen-glucose deprivation (OGD)-induced cell death in SHSY5Y cells in vitro. In a rat model of cerebral ischemia, myricetin was administered intragastrically at 2 h before and every day after middle cerebral artery occlusion (MCAO). The effects of myricetin were evaluated by various biochemical assays and neurobehavioral tests. Treatment with myricetin resulted in decreased infarction volume, reduced neuronal loss as well as lessened production of reactive oxygen species (ROS) and malondialdehyde following MCAO. We also found evidence that myricetin treatment could enhance the activity of antioxidant enzymes and mitochondrial function. Meanwhile, myricetin treatment reversed the suppression of Nrf2 nuclear translocation, and increased HO-1 expression in the ipsilateral ischemic brain and in the normal brain. Moreover, our results suggested that myricetin treatment resulted in significant improvement in neurological function. In conclusion, treatment with myricetin attenuates brain injury and neurological deficits in a rat model of cerebral ischemia via improvement of mitochondrial function and activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Shuangchan Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Spatiotemporal characterization of brain infarction by sequential multimodal MR imaging following transient focal ischemia in a Rat model of intra-arterial middle cerebral artery occlusion. Eur Radiol 2016; 26:4505-4514. [DOI: 10.1007/s00330-016-4290-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|