1
|
Singh A, Dhalayat K, Dhobale S, Ghosh B, Datta A, Borah A, Bhattacharya P. Unravelling the Brain Resilience Following Stroke: From injury to rewiring of the brain through pathway activation, drug targets, and therapeutic interventions. Ageing Res Rev 2025:102780. [PMID: 40409413 DOI: 10.1016/j.arr.2025.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 05/14/2025] [Accepted: 05/18/2025] [Indexed: 05/25/2025]
Abstract
Synaptic plasticity is a neuron's intrinsic ability to make new connections throughout life. The morphology and function of synapses are highly susceptible to any pathological condition. Ischemic stroke is a cerebrovascular event that affects various brain regions, resulting in the loss of neural networks. Stroke can alter both structural and functional plasticity of synapses, leading to long-term functional disability. Upon ischemic insult, numerous glutamate-mediated synaptic destruction pathways and glial-mediated phagocytic activity are triggered, resulting in excessive synapse loss, altering synaptic plasticity. The conventional stroke therapies to improve synaptic plasticity are still limited and ineffectual, leading to sub-optimal recovery in patients. Therefore, promoting synaptic plasticity to ameliorate sensory-motor function may be a promising strategy for long-term recovery in stroke patients. Here, we review the involvement of different molecular pathways of glutamate and glia-mediated synapse loss, current pharmacological targets, and the emerging novel approaches to improve synaptic plasticity and sensory-motor impairment post-stroke.
Collapse
Affiliation(s)
- Ankit Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Khalandar Dhalayat
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Shradhey Dhobale
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Bijoyani Ghosh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar-788011, Assam, India
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar-382355, Gujarat, India.
| |
Collapse
|
2
|
Ferreira M, Carneiro P, Costa VM, Carvalho F, Meisel A, Capela JP. Amphetamine and methylphenidate potential on the recovery from stroke and traumatic brain injury: a review. Rev Neurosci 2024; 35:709-746. [PMID: 38843463 DOI: 10.1515/revneuro-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/21/2024] [Indexed: 10/10/2024]
Abstract
The prevalence of stroke and traumatic brain injury is increasing worldwide. However, current treatments do not fully cure or stop their progression, acting mostly on symptoms. Amphetamine and methylphenidate are stimulants already approved for attention deficit hyperactivity disorder and narcolepsy treatment, with neuroprotective potential and benefits when used in appropriate doses. This review aimed to summarize pre-clinical and clinical trials testing either amphetamine or methylphenidate for the treatment of stroke and traumatic brain injury. We used PubMed as a database and included the following keywords ((methylphenidate) OR (Ritalin) OR (Concerta) OR (Biphentin) OR (amphetamine) OR (Adderall)) AND ((stroke) OR (brain injury) OR (neuroplasticity)). Overall, studies provided inconsistent results regarding cognitive and motor function. Neurite outgrowth, synaptic proteins, dendritic complexity, and synaptic plasticity increases were reported in pre-clinical studies along with function improvement. Clinical trials have demonstrated that, depending on the brain region, there is an increase in motor activity, attention, and memory due to the stimulation of the functionally depressed catecholamine system and the activation of neuronal remodeling proteins. Nevertheless, more clinical trials and pre-clinical studies are needed to understand the drugs' full potential for their use in these brain diseases namely, to ascertain the treatment time window, ideal dosage, long-term effects, and mechanisms, while avoiding their addictive potential.
Collapse
Affiliation(s)
- Mariana Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Carneiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Andreas Meisel
- Department of Neurology with Experimental Neurology, Center for Stroke Research Berlin, Neuroscience Clinical Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - João Paulo Capela
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO/REQUIMTE - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP3ID, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Porto, Portugal
| |
Collapse
|
3
|
Lee TH, Uchiyama S, Kusuma Y, Chiu HC, Navarro JC, Tan KS, Pandian JD, Guo L, Wong Y, Venketasubramanian N, for the Asian Stroke Advisory Panel. A Systematic Search and Review of Registered Pharmacological Therapies Investigated to Improve Outcomes after a Stroke. Cerebrovasc Dis Extra 2024; 14:158-164. [PMID: 39397604 PMCID: PMC11524610 DOI: 10.1159/000541703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/20/2024] [Indexed: 10/15/2024] Open
Abstract
INTRODUCTION Stroke burden is largely due to long-term impairments requiring prolonged care and loss of productivity. We aim to identify and assess studies of different registered pharmacological therapies as treatments for improving post-stroke impairments and/or disabilities. METHODS In a systematic search and review (PROSPERO registration: CRD42022376973), studies of treatments that have been investigated as recovery-enhancing or recovery-promoting treatments in adult patients who had suffered a stroke will be searched for, screened, and reviewed based on the following: participants (P): adult humans, aged 18 years or older, diagnosed with stroke; interventions (I): registered or marketed pharmacological therapies that have been investigated as recovery-enhancing or recovery-promoting treatments in stroke; comparators (C): active or placebo or no comparator; outcomes (O): stroke-related neurological impairments and functional/disability assessments. Data will be extracted from included papers, including patient demographics, study methods, keystroke inclusion criteria, details of intervention and control, and the reported outcomes. RESULT "The best available studies" based on study design, study size, and/or date of publication for different therapies and stroke subtypes will be selected and graded for level of evidence by consensus. CONCLUSION There are conflicting study results of pharmacological interventions after an acute stroke to enhance recovery. This systematic search and review will identify the best evidence and knowledge gaps in the pharmacological treatment of post-stroke patients as well as guide clinical decision-making and planning of future studies.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shinichiro Uchiyama
- Clinical Research Center for Medicine, International University of Health and Welfare, Center for Brain and Cerebral Vessels, Sanno Medical Center, Tokyo, Japan
| | - Yohanna Kusuma
- National Brain Centre, Jakarta, Indonesia
- Prof Dr. dr Mahar Mardjono–Airlangga University, Surabaya, Indonesia
- Deakin University School of Medicine, Royal Melbourne Hospital Department of Neurology, Parkville, VIC, Australia
- University of Melbourne Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
| | - Hou Chang Chiu
- Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | | | - Kay Sin Tan
- Division of Neurology, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | | | - Liang Guo
- Singapore Clinical Research Institute, Consortium for Clinical Research and Innovation, Singapore, Singapore
| | - Yoko Wong
- Singapore Clinical Research Institute, Consortium for Clinical Research and Innovation, Singapore, Singapore
| | | | - for the Asian Stroke Advisory Panel
- Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Clinical Research Center for Medicine, International University of Health and Welfare, Center for Brain and Cerebral Vessels, Sanno Medical Center, Tokyo, Japan
- National Brain Centre, Jakarta, Indonesia
- Prof Dr. dr Mahar Mardjono–Airlangga University, Surabaya, Indonesia
- Deakin University School of Medicine, Royal Melbourne Hospital Department of Neurology, Parkville, VIC, Australia
- University of Melbourne Faculty of Medicine, Dentistry and Health Sciences, Carlton, VIC, Australia
- Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
- Jose R. Reyes Memorial Medical Center, Manila, Philippines
- Division of Neurology, Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Christian Medical College and Hospital, Ludhiana, India
- Singapore Clinical Research Institute, Consortium for Clinical Research and Innovation, Singapore, Singapore
- Raffles Hospital, Singapore, Singapore
| |
Collapse
|
4
|
Carneiro P, Ferreira M, Marisa Costa V, Carvalho F, Capela JP. Protective effects of amphetamine and methylphenidate against dopaminergic neurotoxicants in SH-SY5Y cells. Curr Res Toxicol 2024; 6:100165. [PMID: 38562456 PMCID: PMC10982568 DOI: 10.1016/j.crtox.2024.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Full treatment of the second most common neurodegenerative disorder, Parkinson's disease (PD), is still considered an unmet need. As the psychostimulants, amphetamine (AMPH) and methylphenidate (MPH), were shown to be neuroprotective against stroke and other neuronal injury diseases, this study aimed to evaluate their neuroprotective potential against two dopaminergic neurotoxicants, 6-hydroxydopamine (6-OHDA) and paraquat (PQ), in differentiated human dopaminergic SH-SY5Y cells. Neither cytotoxicity nor mitochondrial membrane potential changes were seen following a 24-hour exposure to either therapeutic concentration of AMPH or MPH (0.001-10 μM). On the other hand, a 24-hour exposure to 6-OHDA (31.25-500 μM) or PQ (100-5000 μM) induced concentration-dependent mitochondrial dysfunction, assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and lysosomal damage, evaluated by the neutral red uptake assay. The lethal concentrations 25 and 50 retrieved from the concentration-toxicity curves in the MTT assay were 99.9 µM and 133.6 µM for 6-OHDA, or 422 µM and 585.8 µM for PQ. Both toxicants caused mitochondrial membrane potential depolarization, but only 6-OHDA increased reactive oxygen species (ROS). Most importantly, PQ-induced toxicity was partially prevented by 1 μM of AMPH or MPH. Nonetheless, neither AMPH nor MPH could prevent 6-OHDA toxicity in this experimental model. According to these findings, AMPH and MPH may provide some neuroprotection against PQ-induced neurotoxicity, but further investigation is required to determine the exact mechanism underlying this protection.
Collapse
Affiliation(s)
- Patrícia Carneiro
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Mariana Ferreira
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
| | - João Paulo Capela
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050‐313 Porto, Portugal
- FP3ID, Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia 296, 4200-150 Porto, Portugal
| |
Collapse
|
5
|
Au NPB, Wu T, Kumar G, Jin Y, Li YYT, Chan SL, Lai JHC, Chan KWY, Yu KN, Wang X, Ma CHE. Low-dose ionizing radiation promotes motor recovery and brain rewiring by resolving inflammatory response after brain injury and stroke. Brain Behav Immun 2024; 115:43-63. [PMID: 37774892 DOI: 10.1016/j.bbi.2023.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023] Open
Abstract
Traumatic brain injury (TBI) and stroke share a common pathophysiology that worsens over time due to secondary tissue injury caused by sustained inflammatory response. However, studies on pharmacological interventions targeting the complex secondary injury cascade have failed to show efficacy. Here, we demonstrated that low-dose ionizing radiation (LDIR) reduced lesion size and reversed motor deficits after TBI and photothrombotic stroke. Magnetic resonance imaging demonstrated significant reduction of infarct volume in LDIR-treated mice after stroke. Systems-level transcriptomic analysis showed that genes upregulated in LDIR-treated stoke mice were enriched in pathways associated with inflammatory and immune response involving microglia. LDIR induced upregulation of anti-inflammatory- and phagocytosis-related genes, and downregulation of key pro-inflammatory cytokine production. These findings were validated by live-cell assays, in which microglia exhibited higher chemotactic and phagocytic capacities after LDIR. We observed substantial microglial clustering at the injury site, glial scar clearance and reversal of motor deficits after stroke. Cortical microglia/macrophages depletion completely abolished the beneficial effect of LDIR on motor function recovery in stroke mice. LDIR promoted axonal projections (brain rewiring) in motor cortex and recovery of brain activity detected by electroencephalography recordings months after stroke. LDIR treatment delayed by 8 h post-injury still maintained full therapeutic effects on motor recovery, indicating that LDIR is a promising therapeutic strategy for TBI and stroke.
Collapse
Affiliation(s)
| | - Tan Wu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Gajendra Kumar
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Yuting Jin
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | | | - Shun Lam Chan
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Joseph Ho Chi Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kannie Wai Yan Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Kwan Ngok Yu
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China; Department of Surgery, Chinese University of Hong Kong, Hong Kong, China
| | - Chi Him Eddie Ma
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
6
|
Zhou Y, Bhatt H, Mojica CA, Xin H, Pessina MA, Rosene DL, Moore TL, Medalla M. Mesenchymal-derived extracellular vesicles enhance microglia-mediated synapse remodeling after cortical injury in aging Rhesus monkeys. J Neuroinflammation 2023; 20:201. [PMID: 37660145 PMCID: PMC10475204 DOI: 10.1186/s12974-023-02880-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023] Open
Abstract
Understanding the microglial neuro-immune interactions in the primate brain is vital to developing therapeutics for cortical injury, such as stroke or traumatic brain injury. Our previous work showed that mesenchymal-derived extracellular vesicles (MSC-EVs) enhanced motor recovery in aged rhesus monkeys following injury of primary motor cortex (M1), by promoting homeostatic ramified microglia, reducing injury-related neuronal hyperexcitability, and enhancing synaptic plasticity in perilesional cortices. A focal lesion was induced via surgical ablation of pial blood vessels over lying the cortical hand representation of M1 of aged female rhesus monkeys, that received intravenous infusions of either vehicle (veh) or EVs 24 h and again 14 days post-injury. The current study used this same cohort to address how these injury- and recovery-associated changes relate to structural and molecular interactions between microglia and neuronal synapses. Using multi-labeling immunohistochemistry, high-resolution microscopy, and gene expression analysis, we quantified co-expression of synaptic markers (VGLUTs, GLURs, VGAT, GABARs), microglia markers (Iba1, P2RY12), and C1q, a complement pathway protein for microglia-mediated synapse phagocytosis, in perilesional M1 and premotor cortices (PMC). We compared this lesion cohort to age-matched non-lesion controls (ctr). Our findings revealed a lesion-related loss of excitatory synapses in perilesional areas, which was ameliorated by EV treatment. Further, we found region-dependent effects of EVs on microglia and C1q expression. In perilesional M1, EV treatment and enhanced functional recovery were associated with increased expression of C1q + hypertrophic microglia, which are thought to have a role in debris-clearance and anti-inflammatory functions. In PMC, EV treatment was associated with decreased C1q + synaptic tagging and microglia-spine contacts. Our results suggest that EV treatment may enhance synaptic plasticity via clearance of acute damage in perilesional M1, and thereby preventing chronic inflammation and excessive synaptic loss in PMC. These mechanisms may act to preserve synaptic cortical motor networks and a balanced normative M1/PMC synaptic function to support functional recovery after injury.
Collapse
Affiliation(s)
- Yuxin Zhou
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Hrishti Bhatt
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Chromewell A Mojica
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Hongqi Xin
- Department of Neurology, Henry Ford Health Systems, Detroit, MI, 48202, USA
| | - Monica A Pessina
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Douglas L Rosene
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Tara L Moore
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA
| | - Maria Medalla
- Department of Anatomy & Neurobiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Wong A, Bhuiyan MIH, Rothman J, Drew K, Pourrezaei K, Sun D, Barati Z. Near infrared spectroscopy detection of hemispheric cerebral ischemia following middle cerebral artery occlusion in rats. Neurochem Int 2023; 162:105460. [PMID: 36455748 PMCID: PMC10263189 DOI: 10.1016/j.neuint.2022.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Timely and sensitive in vivo estimation of ischemic stroke-induced brain infarction are necessary to guide diagnosis and evaluation of treatments' efficacy. The gold standard for estimation of the cerebral infarction volume is magnetic resonance imaging (MRI), which is expensive and not readily accessible. Measuring regional cerebral blood flow (rCBF) with Laser Doppler flowmetry (LDF) is the status quo for confirming reduced blood flow in experimental ischemic stroke models. However, rCBF reduction following cerebral artery occlusion often does not correlate with subsequent infarct volume. In the present study, we employed the continuous-wave near infrared spectroscopy (NIRS) technique to monitor cerebral oxygenation during 90 min of the intraluminal middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats (n = 8, male). The NIRS device consisted of a controller module and an optical sensor with two LED light sources and two photodiodes making up two parallel channels for monitoring left and right cerebral hemispheres. Optical intensity measurements were converted to deoxyhemoglobin (Hb) and oxyhemoglobin (HbO2) changes relative to a 2-min window prior to MCAO. Area under the curve (auc) for Hb and HbO2 was calculated for the 90-min occlusion period for each hemisphere (ipsilateral and contralateral). To obtain a measure of total ischemia, auc of the contralateral side was subtracted from the ipsilateral side resulting in ΔHb and ΔHbO2 parameters. Infarct volume (IV) was calculated by triphenyl tetrazolium chloride (TTC) staining at 24h reperfusion. Results showed a significant negative correlation (r = -0.81, p = 0.03) between ΔHb and infarct volume. In conclusion, our results show feasibility of using a noninvasive optical imaging instrument, namely NIRS, in monitoring cerebral ischemia in a rodent stroke model. This cost-effective, non-invasive technique may improve the rigor of experimental models of ischemic stroke by enabling in vivo longitudinal assessment of cerebral oxygenation and ischemic injury.
Collapse
Affiliation(s)
- Ardy Wong
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA
| | - Mohammad Iqbal Hossain Bhuiyan
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, PA, 15260, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Education and Clinical Center, Pennsylvania, PA, 15260, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, 79968, USA
| | | | - Kelly Drew
- Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, USA
| | - Kambiz Pourrezaei
- Drexel University School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, PA, 15260, USA; Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Education and Clinical Center, Pennsylvania, PA, 15260, USA
| | - Zeinab Barati
- Barati Medical LLC, Fairbanks, AK, USA; Center for Transformative Research in Metabolism, Institute of Arctic Biology, University of Alaska Fairbanks, USA.
| |
Collapse
|
8
|
Jiang XH, Li HF, Chen ML, Zhang YX, Chen HB, Chen RH, Xiao YC, Liu N. Treadmill exercise exerts a synergistic effect with bone marrow mesenchymal stem cell-derived exosomes on neuronal apoptosis and synaptic-axonal remodeling. Neural Regen Res 2022; 18:1293-1299. [PMID: 36453414 PMCID: PMC9838147 DOI: 10.4103/1673-5374.357900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Treadmill exercise and mesenchymal stem cell transplantation are both practical and effective methods for the treatment of cerebral ischemia. However, whether there is a synergistic effect between the two remains unclear. In this study, we established rat models of ischemia/reperfusion injury by occlusion of the middle cerebral artery for 2 hours and reperfusion for 24 hours. Rat models were perfused with bone marrow mesenchymal stem cell-derived exosomes (MSC-exos) via the tail vein and underwent 14 successive days of treadmill exercise. Neurological assessment, histopathology, and immunohistochemistry results revealed decreased neuronal apoptosis and cerebral infarct volume, evident synaptic formation and axonal regeneration, and remarkably recovered neurological function in rats subjected to treadmill exercise and MSC-exos treatment. These effects were superior to those in rats subjected to treadmill exercise or MSC-exos treatment alone. Mechanistically, further investigation revealed that the activation of JNK1/c-Jun signaling pathways regulated neuronal apoptosis and synaptic-axonal remodeling. These findings suggest that treadmill exercise may exhibit a synergistic effect with MSC-exos treatment, which may be related to activation of the JNK1/c-Jun signaling pathway. This study provides novel theoretical evidence for the clinical application of treadmill exercise combined with MSC-exos treatment for ischemic cerebrovascular disease.
Collapse
Affiliation(s)
- Xin-Hong Jiang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China,Fujian Institute of Cerebrovascular Disease, Fuzhou, Fujian Province, China,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hang-Feng Li
- Department of Neurology, Longyan First Hospital of Fujian Medical University, Longyan, Fujian Province, China
| | - Man-Li Chen
- Fujian Institute of Cerebrovascular Disease, Fuzhou, Fujian Province, China,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China,Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Yi-Xian Zhang
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China,Fujian Institute of Cerebrovascular Disease, Fuzhou, Fujian Province, China,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hong-Bin Chen
- Fujian Institute of Cerebrovascular Disease, Fuzhou, Fujian Province, China,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China,Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Rong-Hua Chen
- Fujian Institute of Cerebrovascular Disease, Fuzhou, Fujian Province, China,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China,Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Ying-Chun Xiao
- Fujian Institute of Cerebrovascular Disease, Fuzhou, Fujian Province, China,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China,Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Nan Liu
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China,Fujian Institute of Cerebrovascular Disease, Fuzhou, Fujian Province, China,Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, Fujian Province, China,Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China,Correspondence to: Nan Liu, .
| |
Collapse
|
9
|
El-Saiy KA, Sayed RH, El-Sahar AE, Kandil EA. Modulation of histone deacetylase, the ubiquitin proteasome system, and autophagy underlies the neuroprotective effects of venlafaxine in a rotenone-induced Parkinson's disease model in rats. Chem Biol Interact 2022; 354:109841. [PMID: 35104487 DOI: 10.1016/j.cbi.2022.109841] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by motor and non-motor symptoms. Impairment of the ubiquitin proteasome system (UPS) and autophagy has been suggested to contribute to α-synuclein accumulation, which is identified as the pathological hallmark of PD. Recently, alteration in histone-3 acetylation has also been found to be correlated to PD. Interestingly, the histone deacetylase 6 (HDAC6) enzyme, which regulates the acetylation of histone-3, was shown to be involved in autophagy. Venlafaxine is an antidepressant that was proposed to inhibit HDAC expression in depressive rats' hippocampi. In this study, we aimed to examine the ability of venlafaxine to inhibit striatal HDAC6 and to enhance α-synuclein clearance through the activation of the UPS and autophagy, in addition to treating depression, which is the most debilitating non-motor symptom, in a rotenone model of PD. Venlafaxine administration was noted to decrease α-synuclein accumulation and preserve dopaminergic neurons along with restoration of striatal dopamine levels and motor recovery. Its administration augmented the UPS and autophagic markers (beclin-1, p62, and LC3) with consequent modulation of apoptotic indicators (Bax/Bcl-2 ratio, cytochrome c, and caspase-3). Additionally, venlafaxine inhibited HDAC6 with further enhancement of autophagy and restoration of histone-3 acetylation with subsequent increases in survival gene expressions (Bcl-2 and brain-derived neurotrophic factor). Chloroquine (autophagy inhibitor) was used to indicate the proposed pathway. Moreover, venlafaxine hampered depressive symptoms and improved hippocampal noradrenaline and serotonin levels. Collectively, venlafaxine is suggested to display neuroprotective effects with improvement of motor and non-motor PD symptoms.
Collapse
Affiliation(s)
- Khalid A El-Saiy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Ayman E El-Sahar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Esraa A Kandil
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Grisley ED, Huber KN, Knapp AN, Butteiger DN, Banz WJ, MacLean JA, Wallace DG, Cheatwood JL. Effects of Dietary Soy Protein Isolate Versus Isoflavones Alone on Poststroke Skilled Ladder Rung Walking and Cortical mRNA Expression Differ in Adult Male Rats. J Med Food 2022; 25:158-165. [PMID: 34936814 PMCID: PMC8867101 DOI: 10.1089/jmf.2020.0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Dietary soy protein isolate (SPI) and the isoflavones daidzein and genistein have been shown to provide neuroprotection from stroke. However, the mechanisms remain uncertain. We sought to determine whether the addition of isoflavones to a diet containing caseinate (CAS) as the protein source would induce behavioral neuroprotection similar to that seen previously in rats fed SPI. Furthermore, we aimed to characterize the baseline and poststroke expression of mRNAs involved in pathways previously published as perhaps mediating soy-based neuroprotection from stroke and other markers of neuronal plasticity, oxidative stress, and inflammation. Adult male rats were fed a semipurified diet containing (1) sodium caseinate (CAS), (2) CAS plus daidzein and genistein (CAS+ISO), or (3) SPI for 2 weeks. A subset of rats was euthanized, and tissue was collected for quantitative real-time PCR (qPCR). Remaining rats underwent a middle cerebral artery occlusion to induce a stroke. Samples for qPCR were collected on day 3 poststroke. Rats fed SPI made fewer errors on the skilled ladder rung walking task after stroke compared to rats fed CAS (P < .05). Rats fed CAS+ISO were not different from rats fed CAS or SPI. Significant effects of diet were found at day 0 for Syp, Pparg, and Ywhae and at day 3 for Rtn4 expression. We concluded that the benefits of SPI are not solely attributable to daidzein and genistein.
Collapse
Affiliation(s)
- Elizabeth Dawn Grisley
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Kalene N. Huber
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Austen N. Knapp
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | | | - William J. Banz
- Department of Animal Science, Food, and Nutrition, Southern Illinois University, Carbondale, Illinois, USA
| | - James A. MacLean
- Department of Physiology, Southern Illinois University School of Medicine, Carbondale, Illinois, USA
| | - Douglas G. Wallace
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Joseph L. Cheatwood
- Department of Anatomy, Southern Illinois University School of Medicine, Carbondale, Illinois, USA.,Address correspondence to: Joseph L. Cheatwood, PhD, Department of Anatomy, Southern Illinois University School of Medicine, 1135 Lincoln Drive, Carbondale, IL 62901, USA,
| |
Collapse
|
11
|
Capizzi A, Woo J, Magat E. Poststroke aphasia treatment: A review of pharmacologic therapies and noninvasive brain stimulation techniques. THE JOURNAL OF THE INTERNATIONAL SOCIETY OF PHYSICAL AND REHABILITATION MEDICINE 2022. [DOI: 10.4103/jisprm.jisprm-000151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Sharma VK, Wong LK. Middle Cerebral Artery Disease. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Jitsuki S. [CRMP2 binding compound accelerates functional recovery from central nervous system damage]. Nihon Yakurigaku Zasshi 2022; 157:244-247. [PMID: 35781453 DOI: 10.1254/fpj.22011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Brain injury causes temporary or permanent impairment of brain function due to an accident or circulation disorders. Even after rehabilitation training, there are often persistent functional impairments. Recent advances in our understanding of the repair mechanisms of neural circuits after brain injury have led to the possibility that these mechanisms may offer potential therapeutic targets for drugs that promote functional recovery after brain injury. Neuroplasticity is believed to be important for the recovery process after brain injury in the brain regions associated with injured region for compensation. The effectiveness of drugs for restoring brain function after stroke investigated in a variety of animal models and clinical trials has been focused on drugs that act on the monoamine system to modulate neuroplasticity, as well as other targets such as NMDA receptors and CCR5. Recently, we focused on novel small compound, edonerpic maleate, as a drug which facilitates experience-dependent synaptic delivery of AMPA receptor. We found that edonerpic maleate binds to Collapsin-response mediator protein 2, a downstream molecule of Semaphorin and enhance synaptic plasticity by facilitating synaptic delivery of AMPA receptors, thereby promoting functional recovery in a rehabilitation-dependent manner after brain injury in rodents and non-human primates. Further investigations is needed to seek more appropriate drug targets from both preclinical animal studies and clinical trials, and to translate preclinical results into successful clinical trials.
Collapse
Affiliation(s)
- Susumu Jitsuki
- Department of Biochemistry, Mie University Graduate school of Medicine
| |
Collapse
|
14
|
Chang WH, Lee J, Shin YI, Ko MH, Kim DY, Sohn MK, Kim J, Kim YH. Cerebrolysin Combined with Rehabilitation Enhances Motor Recovery and Prevents Neural Network Degeneration in Ischemic Stroke Patients with Severe Motor Deficits. J Pers Med 2021; 11:jpm11060545. [PMID: 34208352 PMCID: PMC8231166 DOI: 10.3390/jpm11060545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/26/2022] Open
Abstract
The objective of this study was to evaluate whether Cerebrolysin combined with rehabilitation therapy supports additional motor recovery in stroke patients with severe motor impairment. This study analyzed the combined data from the two phase IV prospective, multicenter, randomized, double-blind, placebo-controlled trials. Stroke patients were included within seven days after stroke onset and were randomized to receive a 21-day treatment course of either Cerebrolysin or placebo with standardized rehabilitation therapy. Assessments were performed at baseline, immediately after the treatment course, and 90 days after stroke onset. The plasticity of the motor system was assessed by diffusion tensor imaging and resting state fMRI. In total, 110 stroke patients were included for the full analysis set (Cerebrolysin n = 59, placebo n = 51). Both groups showed significant motor recovery over time. Repeated-measures analysis of varianceshowed a significant interaction between time and type of intervention as measured by the Fugl–Meyer Assessment (p < 0.05). The Cerebrolysin group demonstrated less degenerative changes in the major motor-related white matter tracts over time than the placebo group. In conclusion, Cerebrolysin treatment as an add-on to a rehabilitation program is a promising pharmacologic approach that is worth considering in order to enhance motor recovery in ischemic stroke patients with severe motor impairment.
Collapse
Affiliation(s)
- Won Hyuk Chang
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (W.H.C.); (J.L.)
| | - Jungsoo Lee
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (W.H.C.); (J.L.)
| | - Yong-Il Shin
- Department of Rehabilitation Medicine, Pusan National University College of Medicine, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
| | - Myoung-Hwan Ko
- Department of Physical Medicine and Rehabilitation, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea;
| | - Deog Young Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Min Kyun Sohn
- Department of Rehabilitation Medicine, School of Medicine, Chungnam National University, Daejeon 35015, Korea;
| | - Jinuk Kim
- Department of Health Sciences and Technology, Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul 06351, Korea;
| | - Yun-Hee Kim
- Department of Physical and Rehabilitation Medicine, Center for Prevention and Rehabilitation, Heart Vascular and Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea; (W.H.C.); (J.L.)
- Department of Health Sciences and Technology, Department of Medical Device Management & Research, Department of Digital Health, SAIHST, Sungkyunkwan University, Seoul 06351, Korea;
- Correspondence: ; Tel.: +82-2-3410-2824
| |
Collapse
|
15
|
Prolonged deficit of low gamma oscillations in the peri-infarct cortex of mice after stroke. Exp Neurol 2021; 341:113696. [PMID: 33727098 DOI: 10.1016/j.expneurol.2021.113696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
Days and weeks after an ischemic stroke, the peri-infarct area adjacent to the necrotic tissue exhibits very intense synaptic reorganization aimed at regaining lost functions. In order to enhance functional recovery, it is important to understand the mechanisms supporting neural repair and neuroplasticity in the cortex surrounding the lesion. Brain oscillations of the local field potential (LFP) are rhythmic fluctuations of neuronal excitability that synchronize neuronal activity to organize information processing and plasticity. Although the oscillatory activity of the brain has been probed after stroke in both animals and humans using electroencephalography (EEG), the latter is ineffective to precisely map the oscillatory changes in the peri-infarct zone where synaptic plasticity potential is high. Here, we worked on the hypothesis that the brain oscillatory system is altered in the surviving peri-infarct cortex, which may slow down the functional repair and reduce the recovery. In order to document the relevance of this hypothesis, oscillatory power was measured at various distances from the necrotic core at 7 and 21 days after a permanent cortical ischemia induced in mice. Delta and theta oscillations remained at a normal power in the peri-infarct cortex, in contrast to low gamma oscillations that displayed a gradual decrease, when approaching the border of the lesion. A broadband increase of power was also observed in the homotopic contralateral sites. Thus, the proximal peri-infarct cortex could become a target of therapeutic interventions applied to correct the oscillatory regimen in order to boost post-stroke functional recovery.
Collapse
|
16
|
Lin DJ, Cramer SC. Principles of Neural Repair and Their Application to Stroke Recovery Trials. Semin Neurol 2021; 41:157-166. [PMID: 33663003 DOI: 10.1055/s-0041-1725140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Neural repair is the underlying therapeutic strategy for many treatments currently under investigation to improve recovery after stroke. Repair-based therapies are distinct from acute stroke strategies: instead of salvaging threatened brain tissue, the goal is to improve behavioral outcomes on the basis of experience-dependent brain plasticity. Furthermore, timing, concomitant behavioral experiences, modality specific outcome measures, and careful patient selection are fundamental concepts for stroke recovery trials that can be deduced from principles of neural repair. Here we discuss core principles of neural repair and their implications for stroke recovery trials, highlighting related issues from key studies in humans. Research suggests a future in which neural repair therapies are personalized based on measures of brain structure and function, genetics, and lifestyle factors.
Collapse
Affiliation(s)
- David J Lin
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts.,VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Department of VA Medical Center, Providence, Rhode Island
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles, California.,California Rehabilitation Institute, Los Angeles, California
| |
Collapse
|
17
|
MIYAZAKI T, ABE H, UCHIDA H, TAKAHASHI T. Translational medicine of the glutamate AMPA receptor. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2021; 97:1-21. [PMID: 33431723 PMCID: PMC7859086 DOI: 10.2183/pjab.97.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 05/05/2023]
Abstract
Psychiatric and neurological disorders severely hamper patient's quality of life. Despite their high unmet needs, the development of diagnostics and therapeutics has only made slow progress. This is due to limited evidence on the biological basis of these disorders in humans. Synapses are essential structural units of neurotransmission, and neuropsychiatric disorders are considered as "synapse diseases". Thus, a translational approach with synaptic physiology is crucial to tackle these disorders. Among a variety of synapses, excitatory glutamatergic synapses play central roles in neuronal functions. The glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) is a principal component of glutamatergic neurotransmission; therefore, it is considered to be a promising translational target. Here, we review the limitations of current diagnostics and therapeutics of neuropsychiatric disorders and advocate the urgent need for the promotion of translational medicine based on the synaptic physiology of AMPAR. Furthermore, we introduce our recent translational approach to these disorders by targeting at AMPARs.
Collapse
Affiliation(s)
- Tomoyuki MIYAZAKI
- Yokohama City University Graduate School of Medicine, Department of Physiology, Yokohama, Kanagawa, Japan
| | - Hiroki ABE
- Yokohama City University Graduate School of Medicine, Department of Physiology, Yokohama, Kanagawa, Japan
| | - Hiroyuki UCHIDA
- Keio University School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Takuya TAKAHASHI
- Yokohama City University Graduate School of Medicine, Department of Physiology, Yokohama, Kanagawa, Japan
| |
Collapse
|
18
|
Xiang W, Long Z, Zeng J, Zhu X, Yuan M, Wu J, Wu Y, Liu L. Mechanism of Radix Rhei Et Rhizome Intervention in Cerebral Infarction: A Research Based on Chemoinformatics and Systematic Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6789835. [PMID: 34531920 PMCID: PMC8440083 DOI: 10.1155/2021/6789835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/13/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To explore the therapeutic targets, network modules, and coexpressed genes of Radix Rhei Et Rhizome intervention in cerebral infarction (CI), and to predict significant biological processes and pathways through network pharmacology. To explore the differential proteins of Radix Rhei Et Rhizome intervention in CI, conduct bioinformatics verification, and initially explain the possible therapeutic mechanism of Radix Rhei Et Rhizome intervention in CI through proteomics. METHODS The TCM database was used to predict the potential compounds of Radix Rhei Et Rhizome, and the PharmMapper was used to predict its potential targets. GeneCards and OMIM were used to search for CI-related genes. Cytoscape was used to construct a protein-protein interaction (PPI) network and to screen out core genes and detection network modules. Then, DAVID and Metascape were used for enrichment analysis. After that, in-depth analysis of the proteomics data was carried out to further explore the mechanism of Radix Rhei Et Rhizome intervention in CI. RESULTS (1) A total of 14 Radix Rhei Et Rhizome potential components and 425 potential targets were obtained. The core components include sennoside A, palmidin A, emodin, toralactone, and so on. The potential targets were combined with 297 CI genes to construct a PPI network. The targets shared by Radix Rhei Et Rhizome and CI include ALB, AKT1, MMP9, IGF1, CASP3, etc. The biological processes that Radix Rhei Et Rhizome may treat CI include platelet degranulation, cell migration, fibrinolysis, platelet activation, hypoxia, angiogenesis, endothelial cell apoptosis, coagulation, and neuronal apoptosis. The signaling pathways include Ras, PI3K-Akt, TNF, FoxO, HIF-1, and Rap1 signaling pathways. (2) Proteomics shows that the top 20 proteins in the differential protein PPI network were Syp, Syn1, Mbp, Gap43, Aif1, Camk2a, Syt1, Calm1, Calb1, Nsf, Nefl, Hspa5, Nefh, Ncam1, Dcx, Unc13a, Mapk1, Syt2, Dnm1, and Cltc. Differential protein enrichment results show that these proteins may be related to synaptic vesicle cycle, vesicle-mediated transport in synapse, presynaptic endocytosis, synaptic vesicle endocytosis, axon guidance, calcium signaling pathway, and so on. CONCLUSION This study combined network pharmacology and proteomics to explore the main material basis of Radix Rhei Et Rhizome for the treatment of CI such as sennoside A, palmidin A, emodin, and toralactone. The mechanism may be related to the regulation of biological processes (such as synaptic vesicle cycle, vesicle-mediated transport in synapse, presynaptic endocytosis, and synaptic vesicle endocytosis) and signaling pathways (such as Ras, PI3K-Akt, TNF, FoxO, HIF-1, Rap1, and axon guidance).
Collapse
Affiliation(s)
- Wang Xiang
- The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Province, China
| | - Zhiyong Long
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Jinsong Zeng
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xiaofei Zhu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Mengxia Yuan
- Shantou University Medical College, Shantou University, Shantou, Guangdong, China
| | - Jiamin Wu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghe Wu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Liang Liu
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
19
|
Treatment with Mesenchymal-Derived Extracellular Vesicles Reduces Injury-Related Pathology in Pyramidal Neurons of Monkey Perilesional Ventral Premotor Cortex. J Neurosci 2020; 40:3385-3407. [PMID: 32241837 DOI: 10.1523/jneurosci.2226-19.2020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Functional recovery after cortical injury, such as stroke, is associated with neural circuit reorganization, but the underlying mechanisms and efficacy of therapeutic interventions promoting neural plasticity in primates are not well understood. Bone marrow mesenchymal stem cell-derived extracellular vesicles (MSC-EVs), which mediate cell-to-cell inflammatory and trophic signaling, are thought be viable therapeutic targets. We recently showed, in aged female rhesus monkeys, that systemic administration of MSC-EVs enhances recovery of function after injury of the primary motor cortex, likely through enhancing plasticity in perilesional motor and premotor cortices. Here, using in vitro whole-cell patch-clamp recording and intracellular filling in acute slices of ventral premotor cortex (vPMC) from rhesus monkeys (Macaca mulatta) of either sex, we demonstrate that MSC-EVs reduce injury-related physiological and morphologic changes in perilesional layer 3 pyramidal neurons. At 14-16 weeks after injury, vPMC neurons from both vehicle- and EV-treated lesioned monkeys exhibited significant hyperexcitability and predominance of inhibitory synaptic currents, compared with neurons from nonlesioned control brains. However, compared with vehicle-treated monkeys, neurons from EV-treated monkeys showed lower firing rates, greater spike frequency adaptation, and excitatory:inhibitory ratio. Further, EV treatment was associated with greater apical dendritic branching complexity, spine density, and inhibition, indicative of enhanced dendritic plasticity and filtering of signals integrated at the soma. Importantly, the degree of EV-mediated reduction of injury-related pathology in vPMC was significantly correlated with measures of behavioral recovery. These data show that EV treatment dampens injury-related hyperexcitability and restores excitatory:inhibitory balance in vPMC, thereby normalizing activity within cortical networks for motor function.SIGNIFICANCE STATEMENT Neuronal plasticity can facilitate recovery of function after cortical injury, but the underlying mechanisms and efficacy of therapeutic interventions promoting this plasticity in primates are not well understood. Our recent work has shown that intravenous infusions of mesenchymal-derived extracellular vesicles (EVs) that are involved in cell-to-cell inflammatory and trophic signaling can enhance recovery of motor function after injury in monkey primary motor cortex. This study shows that this EV-mediated enhancement of recovery is associated with amelioration of injury-related hyperexcitability and restoration of excitatory-inhibitory balance in perilesional ventral premotor cortex. These findings demonstrate the efficacy of mesenchymal EVs as a therapeutic to reduce injury-related pathologic changes in the physiology and structure of premotor pyramidal neurons and support recovery of function.
Collapse
|
20
|
Laube C, van den Bos W, Fandakova Y. The relationship between pubertal hormones and brain plasticity: Implications for cognitive training in adolescence. Dev Cogn Neurosci 2020; 42:100753. [PMID: 32072931 PMCID: PMC7005587 DOI: 10.1016/j.dcn.2020.100753] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Adolescence may mark a sensitive period for the development of higher-order cognition through enhanced plasticity of cortical circuits. At the same time, animal research indicates that pubertal hormones may represent one key mechanism for closing sensitive periods in the associative neocortex, thereby resulting in decreased plasticity of cortical circuits in adolescence. In the present review, we set out to solve some of the existing ambiguity and examine how hormonal changes associated with pubertal onset may modulate plasticity in higher-order cognition during adolescence. We build on existing age-comparative cognitive training studies to explore how the potential for change in neural resources and behavioral repertoire differs across age groups. We review animal and human brain imaging studies, which demonstrate a link between brain development, neurochemical mechanisms of plasticity, and pubertal hormones. Overall, the existent literature indicates that pubertal hormones play a pivotal role in regulating the mechanisms of experience-dependent plasticity during adolescence. However, the extent to which hormonal changes associated with pubertal onset increase or decrease brain plasticity may depend on the specific cognitive domain, the sex, and associated brain networks. We discuss implications for future research and suggest that systematical longitudinal assessments of pubertal change together with cognitive training interventions may be a fruitful way toward a better understanding of adolescent plasticity. As the age of pubertal onset is decreasing across developed societies, this may also have important educational and clinical implications, especially with respect to the effects that earlier puberty has on learning.
Collapse
Affiliation(s)
- Corinna Laube
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | | | - Yana Fandakova
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.
| |
Collapse
|
21
|
Leemburg S, Gao B, Cam E, Sarnthein J, Bassetti CL. Power spectrum slope is related to motor function after focal cerebral ischemia in the rat. Sleep 2019; 41:5079131. [PMID: 30165388 DOI: 10.1093/sleep/zsy132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Indexed: 11/14/2022] Open
Abstract
Electroencephalography (EEG) changes across vigilance states have been observed after ischemic stroke in patients and experimental stroke models, but their relation to functional recovery remains unclear. Here, we evaluate motor function, as measured by single pellet reaching (SPR), as well as local EEG changes in nonrapid eye movement (NREM), rapid eye movement (REM), and wakefulness during a 30 day recovery period after middle cerebral artery occlusion or sham surgery in rats. Small cortical infarcts resulted in poor SPR performance and induced widespread changes in EEG spectra in the ipsilesional hemisphere in all vigilance states, without causing major changes in sleep-wake architecture. Ipsilesional 1-4 Hz power was increased after stroke, whereas power in higher frequencies was reduced, resulting in a steeper slope of the power spectrum. Microelectrode array analysis of ipsilesional M1 showed that these spectral changes were present on the microelectrode level throughout M1 and were not related to increased synchronization between electrodes. Spectrum slope was significantly correlated with poststroke motor function and may thus be a useful readout of recovery-related plasticity.
Collapse
Affiliation(s)
- Susan Leemburg
- Department of Neurology, University Hospital Zurich, Zürich, Switzerland
| | - Bo Gao
- Department of Neurology, University Hospital Zurich, Zürich, Switzerland.,Department of Neurology, Inselspital, University Hospital, Bern, Switzerland
| | - Ertugrul Cam
- Department of Neurology, University Hospital Zurich, Zürich, Switzerland.,Department of Neurology, Inselspital, University Hospital, Bern, Switzerland
| | - Johannes Sarnthein
- Department of Neurology, University Hospital Zurich, Zürich, Switzerland
| | - Claudio L Bassetti
- Department of Neurology, University Hospital Zurich, Zürich, Switzerland.,Department of Neurology, Inselspital, University Hospital, Bern, Switzerland
| |
Collapse
|
22
|
Chidambaram SB, Rathipriya AG, Bolla SR, Bhat A, Ray B, Mahalakshmi AM, Manivasagam T, Thenmozhi AJ, Essa MM, Guillemin GJ, Chandra R, Sakharkar MK. Dendritic spines: Revisiting the physiological role. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:161-193. [PMID: 30654089 DOI: 10.1016/j.pnpbp.2019.01.005] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 01/04/2019] [Accepted: 01/12/2019] [Indexed: 12/11/2022]
Abstract
Dendritic spines are small, thin, specialized protrusions from neuronal dendrites, primarily localized in the excitatory synapses. Sophisticated imaging techniques revealed that dendritic spines are complex structures consisting of a dense network of cytoskeletal, transmembrane and scaffolding molecules, and numerous surface receptors. Molecular signaling pathways, mainly Rho and Ras family small GTPases pathways that converge on actin cytoskeleton, regulate the spine morphology and dynamics bi-directionally during synaptic activity. During synaptic plasticity the number and shapes of dendritic spines undergo radical reorganizations. Long-term potentiation (LTP) induction promote spine head enlargement and the formation and stabilization of new spines. Long-term depression (LTD) results in their shrinkage and retraction. Reports indicate increased spine density in the pyramidal neurons of autism and Fragile X syndrome patients and reduced density in the temporal gyrus loci of schizophrenic patients. Post-mortem reports of Alzheimer's brains showed reduced spine number in the hippocampus and cortex. This review highlights the spine morphogenesis process, the activity-dependent structural plasticity and mechanisms by which synaptic activity sculpts the dendritic spines, the structural and functional changes in spines during learning and memory using LTP and LTD processes. It also discusses on spine status in neurodegenerative diseases and the impact of nootropics and neuroprotective agents on the functional restoration of dendritic spines.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India.
| | - A G Rathipriya
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Srinivasa Rao Bolla
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, Damam, Saudi Arabia
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Arehally Marappa Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSSAHER), Mysuru, Karnataka 570015, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
| | - Gilles J Guillemin
- Neuropharmacology Group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramesh Chandra
- Department of Chemistry, Ambedkar Centre for BioMedical Research, Delhi University, Delhi 110007, India
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK S7N 5C9, Canada.
| |
Collapse
|
23
|
Chen Z, Xu N, Dai X, Zhao C, Wu X, Shankar S, Huang H, Wang Z. Interleukin-33 reduces neuronal damage and white matter injury via selective microglia M2 polarization after intracerebral hemorrhage in rats. Brain Res Bull 2019; 150:127-135. [PMID: 31129170 DOI: 10.1016/j.brainresbull.2019.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 05/12/2019] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Interleukin-33 (IL-33) is closely related to the regulation of immunological cells, and its receptor ST2 is a member of the interleukin-1 (IL-1) receptor family. Inflammatory responses play critical roles in neuronal damage and white matter injury (WMI) post intracerebral hemorrhage (ICH). In this study, we tried to explore the role of IL-33 in neuronal damage and WMI after ICH and the underlying mechanisms. The in vivo ICH model was performed by autologous whole blood injection into the right basal ganglia in rats. Immunoblotting, immunofluorescence, brain water content measurement, FJB staining, and TUNEL staining were applied in this study. IL-33 expression was increased in whole brain tissues post-ICH, mainly rapidly increased in ipsilateral astrocyte and microglia, but stayed at a low level in neurons. Intracerebroventricular infusion of IL-33 after ICH attenuated short-term and long-term neurological deficits, WMI, neuronal degeneration, cell death and promoted the transformation of microglia phenotype from M1 to M2 in brain tissues after ICH. These results suggest that IL-33 reduces neuronal damage and WMI by promoting microglia M2 polarization after ICH, thereby improving the outcomes of neurological function.
Collapse
Affiliation(s)
- Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Na Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, 200032, China.
| | - Xuejiao Dai
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan province, 410008, China.
| | - Chongshun Zhao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| | - Sandhya Shankar
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | - Huachen Huang
- Department of Neurology, First affiliate Hospital, Harbin Medical University, Harbin, Heilongjiang, 150001, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
24
|
Qiao Y, Ma Q, Zhai H, Li Y, Tang M. Exposure to female estrous is beneficial for male mice against transient ischemic stroke. Neurol Res 2019; 41:536-543. [PMID: 30810516 DOI: 10.1080/01616412.2019.1580461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Exposure to female estrous, a natural rewarding experience, alleviates anxiety and depression, and the contribution of this behavior to stroke outcome is unknown. The aim of this study was to evaluate whether exposure to female estrous is beneficial to recovery following transient ischemic stroke in male mice. METHODS Cerebral ischemia was induced in male ICR mice with thread occlusion of the middle cerebral artery (MCAO) for 30 min followed by reperfusion. MCAO mice were randomly divided into MCAO group and Estrous Female Exposure (EFE) group. The mice in the EFE group were subjected to estrous female mouse interaction from day 1 until the end of the experiment. Mortality was recorded during the investigation. Behavioral functions were assessed by a beam-walking test and corner test from day 1 to day 10 after MCAO. Serum testosterone levels were analyzed with ELISA, and the expression levels of growth-associated protein-43 (GAP-43) and synaptophysin in the cortex of the ischemic hemisphere were determined by western blot on day 7 after MCAO. RESULTS Exposure to female estrous reduced the mortality induced by cerebral ischemic lesions. The beam-walking test demonstrated that exposure to female estrous significantly improved motor function recovery. The serum testosterone levels and ischemic cortex GAP-43 expression were significantly higher in MCAO male mice exposed to female estrous. CONCLUSION Exposure to female estrous reduces mortality and improves functional recovery in MCAO male mice. The study provides the first evidence to support the importance of female interaction to male stroke rehabilitation. ABBREVIATIONS GAP-43: growth-associated protein-43; SYP: Synaptophysin; MCAO: middle cerebral artery occlusion; OVXs: ovariectomies; CCA: common carotid artery; ECA: external carotid artery; EFE: estrous female exposure; TTC: 2,3,5-triphenyltetrazolium chloride; PAGE: polyacrylamide gel electrophoresis; PVDF: polyvinylidene difluoride; ANOVA: analysis of variance; LSD: least significant difference.
Collapse
Affiliation(s)
- Yuan Qiao
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China.,b Institute of Chinese Materia Medica , Shaanxi Provincial Academy of Traditional Chinese Medicine , Xi'an , China
| | - Qing Ma
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Haifeng Zhai
- c National Institute on Drug Dependence , Peking University , Beijing , China
| | - Ya Li
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| | - Minke Tang
- a School of Chinese Materia Medica , Beijing University of Chinese Medicine , Beijing , China
| |
Collapse
|
25
|
Abstract
Many neuroprotective strategies have failed to translate to clinical trials, perhaps because of a failure to preserve white matter function. Ubiquitin C-terminal hydrolase L1 (UCHL1), a neuron-specific protein essential for axonal function, is deactivated by reactive lipids produced after cerebral ischemia. Mutation of the cysteine residue 152-reactive lipid-binding site of UCHL1 decreased axonal injury after hypoxia and ischemia in vitro and in vivo, preserved axonal conductance and synaptic function, and improved motor behavior after ischemia in mice. These results suggest that UCHL1 may play an important role in maintaining axonal function after cerebral ischemia. Restoration of UCHL1 activity or prevention of degradation of UCHL1 activity by preventing binding of substrates to cysteine residue 152 could be useful approaches for treatment of stroke. Ubiquitin C-terminal hydrolase L1 (UCHL1) is a unique brain-specific deubiquitinating enzyme. Mutations in and aberrant function of UCHL1 have been linked to many neurological disorders. UCHL1 activity protects neurons from hypoxic injury, and binding of stroke-induced reactive lipid species to the cysteine 152 (C152) of UCHL1 unfolds the protein and disrupts its function. To investigate the role of UCHL1 and its adduction by reactive lipids in inhibiting repair and recovery of function following ischemic injury, a knock-in (KI) mouse expressing the UCHL1 C152A mutation was generated. Neurons derived from KI mice had less cell death and neurite injury after hypoxia. UCHL1 C152A KI and WT mice underwent middle cerebral artery occlusion (MCAO) or sham surgery. White matter injury was significantly decreased in KI compared with WT mice 7 d after MCAO. Histological analysis revealed decreased tissue loss at 21 d after injury in KI mice. There was also significantly improved sensorimotor recovery in postischemic KI mice. K63- and K48-linked polyubiquitinated proteins were increased in penumbra of WT mouse brains but not in KI mouse brains at 24 h post MCAO. The UCHL1 C152A mutation preserved excitatory synaptic drive to pyramidal neurons and their excitability in the periinfarct zone; axonal conduction velocity recovered by 21 d post MCAO in KI mice in corpus callosum. These results demonstrate that UCHL1 activity is an important determinant of function after ischemia and further demonstrate that the C152 site of UCHL1 plays a significant role in functional recovery after stroke.
Collapse
|
26
|
Chen ZQ, Yu H, Li HY, Shen HT, Li X, Zhang JY, Zhang ZW, Wang Z, Chen G. Negative regulation of glial Tim-3 inhibits the secretion of inflammatory factors and modulates microglia to antiinflammatory phenotype after experimental intracerebral hemorrhage in rats. CNS Neurosci Ther 2019; 25:674-684. [PMID: 30677253 PMCID: PMC6515709 DOI: 10.1111/cns.13100] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/19/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
AIMS To investigate the critical role of Tim-3 in the polarization of microglia in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). METHODS An in vivo ICH model was established by autologous whole blood injection into the right basal ganglia in rats. The primary cultured microglia were treated with oxygen-hemoglobin (OxyHb) to mimic ICH in vitro. In this experiment, specific siRNA for Tim-3 and recombinant human TIM-3 were exploited both in vivo and in vitro. RESULTS Tim-3 was increased in the brain after ICH, which mainly distributed in microglia, but not neurons and astrocytes. However, the blockade of Tim-3 by siRNA markedly reduced secretion of inflammatory factors, neuronal degeneration, neuronal cell death, and brain edema. Meanwhile, downregulation of Tim-3 promoted the transformation of microglia phenotype from M1 to M2 after ICH. Furthermore, upregulation of Tim-3 can increase the interaction between Tim-3 and Galectin-9 (Gal-9) and activate Toll-like receptor 4 (TLR-4) pathway after ICH. Increasing the expression of Tim-3 may be related to the activation of HIF-1α. CONCLUSION Tim-3 may be an important link between neuroinflammation and microglia polarization through Tim-3/Gal-9 and TLR-4 signaling pathways which induced SBI after ICH.
Collapse
Affiliation(s)
- Zhou-Qing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yu
- Department of Neurosurgery, Nantong No.1 People Hospital, Nantong, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hai-Tao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ju-Yi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhu-Wei Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
27
|
Let-7i inhibition enhances progesterone-induced functional recovery in a mouse model of ischemia. Proc Natl Acad Sci U S A 2018; 115:E9668-E9677. [PMID: 30237284 DOI: 10.1073/pnas.1803384115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Progesterone (P4) is a potent neuroprotectant and a promising therapeutic for stroke treatment. However, the underlying mechanism(s) remain unclear. Our laboratory recently reported that brain-derived neurotrophic factor (BDNF) is a critical mediator of P4's protective actions and that P4-induced BDNF release from cortical astrocytes is mediated by a membrane-associated progesterone receptor, Pgrmc1. Here, we report that the microRNA (miRNA) let-7i is a negative regulator of Pgrmc1 and BDNF in glia and that let-7i disrupts P4-induced BDNF release and P4's beneficial effects on cell viability and markers of synaptogenesis. Using an in vivo model of ischemia, we demonstrate that inhibiting let-7i enhances P4-induced neuroprotection and facilitates functional recovery following stroke. The discovery of such factors that regulate the cytoprotective effects of P4 may lead to the development of biomarkers to differentiate/predict those likely to respond favorably to P4 versus those that do not.
Collapse
|
28
|
Chronic amphetamine enhances visual input to and suppresses visual output from the superior colliculus in withdrawal. Neuropharmacology 2018; 138:118-129. [DOI: 10.1016/j.neuropharm.2018.05.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/01/2018] [Accepted: 05/30/2018] [Indexed: 11/23/2022]
|
29
|
Hypoxic postconditioning enhances functional recovery following endothelin-1 induced middle cerebral artery occlusion in conscious rats. Exp Neurol 2018; 306:177-189. [DOI: 10.1016/j.expneurol.2018.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/19/2018] [Accepted: 05/16/2018] [Indexed: 12/30/2022]
|
30
|
Gower A, Tiberi M. The Intersection of Central Dopamine System and Stroke: Potential Avenues Aiming at Enhancement of Motor Recovery. Front Synaptic Neurosci 2018; 10:18. [PMID: 30034335 PMCID: PMC6043669 DOI: 10.3389/fnsyn.2018.00018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022] Open
Abstract
Dopamine, a major neurotransmitter, plays a role in a wide range of brain sensorimotor functions. Parkinson's disease and schizophrenia are two major human neuropsychiatric disorders typically associated with dysfunctional dopamine activity levels, which can be alleviated through the druggability of the dopaminergic systems. Meanwhile, several studies suggest that optimal brain dopamine activity levels are also significantly impacted in other serious neurological conditions, notably stroke, but this has yet to be fully appreciated at both basic and clinical research levels. This is of utmost importance as there is a need for better treatments to improve recovery from stroke. Here, we discuss the state of knowledge regarding the modulation of dopaminergic systems following stroke, and the use of dopamine boosting therapies in animal stroke models to improve stroke recovery. Indeed, studies in animals and humans show stroke leads to changes in dopamine functioning. Moreover, evidence from animal stroke models suggests stimulation of dopamine receptors may be a promising therapeutic approach for enhancing motor recovery from stroke. With respect to the latter, we discuss the evidence for several possible receptor-linked mechanisms by which improved motor recovery may be mediated. One avenue of particular promise is the subtype-selective stimulation of dopamine receptors in conjunction with physical therapy. However, results from clinical trials so far have been more mixed due to a number of potential reasons including, targeting of the wrong patient populations and use of drugs which modulate a wide array of receptors. Notwithstanding these issues, it is hoped that future research endeavors will assist in the development of more refined dopaminergic therapeutic approaches to enhance stroke recovery.
Collapse
Affiliation(s)
- Annette Gower
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| | - Mario Tiberi
- Ottawa Hospital Research Institute (Neuroscience Program), Ottawa, ON, Canada.,University of Ottawa Brain and Mind Institute, Ottawa, ON, Canada.,Departments of Medicine, Cellular and Molecular Medicine, and Psychiatry, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
31
|
Zhu MY. Noradrenergic Modulation on Dopaminergic Neurons. Neurotox Res 2018; 34:848-859. [DOI: 10.1007/s12640-018-9889-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
32
|
Sherif RN. Effect of cerebrolysin on the cerebellum of diabetic rats: An imunohistochemical study. Tissue Cell 2017; 49:726-733. [DOI: 10.1016/j.tice.2017.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 10/13/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
|
33
|
Lake EMR, Bazzigaluppi P, Stefanovic B. Functional magnetic resonance imaging in chronic ischaemic stroke. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0353. [PMID: 27574307 DOI: 10.1098/rstb.2015.0353] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 11/12/2022] Open
Abstract
Ischaemic stroke is the leading cause of adult disability worldwide. Effective rehabilitation is hindered by uncertainty surrounding the underlying mechanisms that govern long-term ischaemic injury progression. Despite its potential as a sensitive non-invasive in vivo marker of brain function that may aid in the development of new treatments, blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has found limited application in the clinical research on chronic stage stroke progression. Stroke affects each of the physiological parameters underlying the BOLD contrast, markedly complicating the interpretation of BOLD fMRI data. This review summarizes current progress on application of BOLD fMRI in the chronic stage of ischaemic injury progression and discusses means by which more information may be gained from such BOLD fMRI measurements. Concomitant measurements of vascular reactivity, neuronal activity and metabolism in preclinical models of stroke are reviewed along with illustrative examples of post-ischaemic evolution in neuronal, glial and vascular function. The realization of the BOLD fMRI potential to propel stroke research is predicated on the carefully designed preclinical research establishing an ischaemia-specific quantitative model of BOLD signal contrast to provide the framework for interpretation of fMRI findings in clinical populations.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Evelyn M R Lake
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Paolo Bazzigaluppi
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Fundamental Neurobiology, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada Heart and Stroke Foundation Centre for Stroke Recovery, Ottawa, Canada
| |
Collapse
|
34
|
Viale L, Catoira NP, Di Girolamo G, González CD. Pharmacotherapy and motor recovery after stroke. Expert Rev Neurother 2017; 18:65-82. [DOI: 10.1080/14737175.2018.1400910] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Luciano Viale
- Centro Asistencial Universitario, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Natalia Paola Catoira
- Residencia de Investigación en Salud, Gobierno de la Ciudad Autónoma de Buenos Aires, CABA, Argentina
- Segunda Cátedra de Farmacología, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
| | - Guillermo Di Girolamo
- Segunda Cátedra de Farmacología, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
- Instituto de Investigaciones Cardiológicas ¨Prof. Dr. Alberto C. Taquini¨, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
| | - Claudio Daniel González
- Segunda Cátedra de Farmacología, Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad de Buenos Aires, CABA, Argentina
| |
Collapse
|
35
|
Obi K, Amano I, Takatsuru Y. Role of dopamine on functional recovery in the contralateral hemisphere after focal stroke in the somatosensory cortex. Brain Res 2017; 1678:146-152. [PMID: 29079503 DOI: 10.1016/j.brainres.2017.10.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/03/2017] [Accepted: 10/22/2017] [Indexed: 01/05/2023]
Abstract
Functional recovery after a stroke is important for patients' quality of life. Not only medical care during the acute phase, but also rehabilitation during the chronic phase after a stroke is important. However, the mechanisms underlying functional recovery, particularly the chronic phase after stroke, are still not fully understood. Thus, further basic study on brain after focal stroke is necessary. In this study, we found that the concentration of dopamine (DA) increased during first week after a stroke in the hemisphere contralateral in the site of stroke by in vivo microdialysis. When we applied haloperidol (HPD), a potent DA receptor blocker, functional recovery was inhibited. Interestingly, administration of aripiprazole (ARP), a novel partial agonist of the DA receptor, during the chronic phase improved the remodeling of neuronal circuits in somatosensory cortex (SSC). These findings indicate that the DAergic system play a critical role in functional compensation by the non-infarcted hemisphere after a focal stroke in SSC. It is also revealed that administration of HPD/ARP to stroke patients affects functional recovery after a stroke, and stimulation of the DAergic system during the chronic phase of stroke potentially benefits stroke patients.
Collapse
Affiliation(s)
- Kisho Obi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Izuki Amano
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yusuke Takatsuru
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan.
| |
Collapse
|
36
|
Li Y, Gao X, Wang Q, Yang Y, Liu H, Zhang B, Li L. Retinoic acid protects from experimental cerebral infarction by upregulating GAP-43 expression. ACTA ACUST UNITED AC 2017; 50:e5561. [PMID: 28380213 PMCID: PMC5423748 DOI: 10.1590/1414-431x20175561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/16/2017] [Indexed: 01/31/2023]
Abstract
The aim of this study was to investigate whether exogenous retinoic acid (RA) can upregulate the mRNA and protein expression of growth-associated protein 43 (GAP-43), thereby promoting brain functional recovery in a rat distal middle cerebral artery occlusion (MCAO) model of ischemia. A total of 216 male Sprague Dawley rats weighing 300–320 g were divided into 3 groups: sham-operated group, MCAO+vehicle group and MCAO+RA group. Focal cortical infarction was induced with a distal MCAO model. The expression of GAP-43 mRNA and protein in the ipsilateral perifocal region was assessed using qPCR and immunocytochemistry at 1, 3, 7, 14, 21, and 28 days after distal MCAO. In addition, an intraperitoneal injection of RA was given 12 h before MCAO and continued every day until the animal was sacrificed. Following ischemia, the expression of GAP-43 first increased considerably and then decreased. Administration of RA reduced infarction volume, promoted neurological functional recovery and upregulated expression of GAP-43. Administration of RA can ameliorate neuronal damage and promote nerve regeneration by upregulating the expression of GAP-43 in the perifocal region after distal MCAO.
Collapse
Affiliation(s)
- Y Li
- Department of Geriatrics, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - X Gao
- Department of Neurology, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - Q Wang
- Department of Neurology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Y Yang
- Department of Geriatrics, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - H Liu
- Department of Geriatrics, Southern Medical University Zhu Jiang Hospital, Guangzhou, China
| | - B Zhang
- The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - L Li
- Department of Neurology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
37
|
Treble-Barna A, Wade SL, Martin LJ, Pilipenko V, Yeates KO, Taylor HG, Kurowski BG. Influence of Dopamine-Related Genes on Neurobehavioral Recovery after Traumatic Brain Injury during Early Childhood. J Neurotrauma 2017; 34:1919-1931. [PMID: 28323555 DOI: 10.1089/neu.2016.4840] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present study examined the association of dopamine-related genes with short- and long-term neurobehavioral recovery, as well as neurobehavioral recovery trajectories over time, in children who had sustained early childhood traumatic brain injuries (TBI) relative to children who had sustained orthopedic injuries (OI). Participants were recruited from a prospective, longitudinal study evaluating outcomes of children who sustained a TBI (n = 68) or OI (n = 72) between the ages of 3 and 7 years. Parents completed ratings of child executive function and behavior at the immediate post-acute period (0-3 months after injury); 6, 12, and 18 months after injury; and an average of 3.5 and 7 years after injury. Thirty-two single nucleotide polymorphisms (SNPs) in dopamine-related genes (dopamine receptor D2 [DRD2], solute carrier family 6 member 3 [SLC6A3], solute carrier family 18 member A2 [SLC18A2], catechol-o-methyltransferase [COMT], and ankyrin repeat and kinase domain containing 1 [ANKK1]) were examined in association with short- and long-term executive function and behavioral adjustment, as well as their trajectories over time. After controlling for premorbid child functioning, genetic variation within the SLC6A3 (rs464049 and rs460000) gene was differentially associated with neurobehavioral recovery trajectories over time following TBI relative to OI, with rs464049 surviving multiple testing corrections. In addition, genetic variation within the ANKK1 (rs1800497 and rs2734849) and SLC6A3 (rs464049, rs460000, and rs1042098) genes was differentially associated with short- and long-term neurobehavioral recovery following TBI, with rs460000 and rs464049 surviving multiple testing corrections. The findings provide preliminary evidence that genetic variation in genes involved in DRD2 expression and density (ANKK1) and dopamine transport (SLC6A3) plays a role in neurobehavioral recovery following pediatric TBI.
Collapse
Affiliation(s)
- Amery Treble-Barna
- 1 Division of Physical Medicine and Rehabilitation, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Shari L Wade
- 2 Division of Physical Medicine and Rehabilitation, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Lisa J Martin
- 3 Division of Human Genetics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Valentina Pilipenko
- 3 Division of Human Genetics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Keith Owen Yeates
- 4 Department of Psychology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta, Canada
| | - H Gerry Taylor
- 5 Division of Developmental and Behavioral Pediatrics and Psychology, Department of Pediatrics, Case Western Reserve University and Rainbow Babies and Children's Hospital , Cleveland, Ohio
| | - Brad G Kurowski
- 2 Division of Physical Medicine and Rehabilitation, Department of Pediatrics, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| |
Collapse
|
38
|
Law HCH, Szeto SSW, Quan Q, Zhao Y, Zhang Z, Krakovska O, Lui LT, Zheng C, Lee SMY, Siu KWM, Wang Y, Chu IK. Characterization of the Molecular Mechanisms Underlying the Chronic Phase of Stroke in a Cynomolgus Monkey Model of Induced Cerebral Ischemia. J Proteome Res 2017; 16:1150-1166. [PMID: 28102082 DOI: 10.1021/acs.jproteome.6b00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stroke is one of the main causes of mortality and long-term disability worldwide. The pathophysiological mechanisms underlying this disease are not well understood, particularly in the chronic phase after the initial ischemic episode. In this study, a Macaca fascicularis stroke model consisting of two sample groups, as determined by MRI-quantified infarct volumes as a measure of the stroke severity 28 days after the ischemic episode, was evaluated using qualitative and quantitative proteomics analyses. By using multiple online multidimensional liquid chromatography platforms, 8790 nonredundant proteins were identified that condensed to 5223 protein groups at 1% global false discovery rate (FDR). After the application of a conservative criterion (5% local FDR), 4906 protein groups were identified from the analysis of cerebral cortex. Of the 2068 quantified proteins, differential proteomic analyses revealed that 31 and 23 were dysregulated in the elevated- and low-infarct-volume groups, respectively. Neurogenesis, synaptogenesis, and inflammation featured prominently as the cellular processes associated with these dysregulated proteins. Protein interaction network analysis revealed that the dysregulated proteins for inflammation and neurogenesis were highly connected, suggesting potential cross-talk between these processes in modulating the cytoskeletal structure and dynamics in the chronic phase poststroke. Elucidating the long-term consequences of brain tissue injuries from a cellular prospective, as well as the molecular mechanisms that are involved, would provide a basis for the development of new potentially neurorestorative therapies.
Collapse
Affiliation(s)
- Henry C H Law
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Samuel S W Szeto
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Quan Quan
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Yun Zhao
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Olga Krakovska
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University , Toronto, Ontario M3J 1P3, Canada
| | - Leong Ting Lui
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| | - Chengyou Zheng
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Simon M-Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Avenue Padre Tomás Pereira S.J., Taipa, Macau 999078, China
| | - K W Michael Siu
- Department of Chemistry and Centre for Research in Mass Spectrometry, York University , Toronto, Ontario M3J 1P3, Canada.,Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario N9B 3P4, Canada
| | - Yuqiang Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine, College of Pharmacy, Jinan University , Guangzhou 510632, China
| | - Ivan K Chu
- Department of Chemistry, The University of Hong Kong , Hong Kong, China
| |
Collapse
|
39
|
Effect of short-term exercise training on brain-derived neurotrophic factor signaling in spontaneously hypertensive rats. J Hypertens 2017; 35:279-290. [DOI: 10.1097/hjh.0000000000001164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Funck T, Al‐Kuwaiti M, Lepage C, Zepper P, Minuk J, Schipper HM, Evans AC, Thiel A. Assessing neuronal density in peri-infarct cortex with PET: Effects of cortical topology and partial volume correction. Hum Brain Mapp 2017; 38:326-338. [PMID: 27614005 PMCID: PMC6866936 DOI: 10.1002/hbm.23363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 08/05/2016] [Accepted: 08/18/2016] [Indexed: 01/02/2023] Open
Abstract
The peri-infarct cortex (PIC) is the site of long-term physiologic changes after ischemic stroke. Traditional methods for delineating the peri-infarct gray matter (GM) have used a volumetric Euclidean distance metric to define its extent around the infarct. This metric has limitations in the case of cortical stroke, i.e., those where ischemia leads to infarction in the cortical GM, because the vascularization of the cerebral cortex follows the complex, folded topology of the cortical surface. Instead, we used a geodesic distance metric along the cortical surface to subdivide the PIC into equidistant rings emanating from the infarct border and compared this new approach to a Euclidean distance metric definition. This was done in 11 patients with [F-18]-Flumazenil ([18-F]-FMZ) positron emission tomography (PET) scans at 2 weeks post-stroke and at 6 month follow-up. FMZ is a PET radiotracer with specific binding to the alpha subunits of the type A γ-aminobutyric acid (GABAA) receptor. Additionally, we used partial-volume correction (PVC) of the PET images to compensate for potential cortical thinning and long-term neuronal loss in follow-up images. The difference in non-displaceable binding potential (BPND ) between the stroke unaffected and affected hemispheres was 35% larger in the geodesic versus the Euclidean peri-infarct models in initial PET images and 48% larger in follow-up PET images. The inter-hemispheric BPND difference was approximately 17-20% larger after PVC when compared to uncorrected PET images. PET studies of peri-infarct GM in cortical strokes should use a geodesic model and include PVC as a preprocessing step. Hum Brain Mapp 38:326-338, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Thomas Funck
- Montreal Neurological Institute, McGill UniversityMontrealCanada
- Jewish General HospitalLady Davis InstituteMontrealCanada
| | - Mohammed Al‐Kuwaiti
- Montreal Neurological Institute, McGill UniversityMontrealCanada
- Jewish General HospitalLady Davis InstituteMontrealCanada
| | - Claude Lepage
- Montreal Neurological Institute, McGill UniversityMontrealCanada
| | - Peter Zepper
- Department of NeurologyTechnische Universität MünchenMunichGermany
| | - Jeffrey Minuk
- Jewish General HospitalLady Davis InstituteMontrealCanada
| | | | - Alan C. Evans
- Montreal Neurological Institute, McGill UniversityMontrealCanada
| | - Alexander Thiel
- Montreal Neurological Institute, McGill UniversityMontrealCanada
- Jewish General HospitalLady Davis InstituteMontrealCanada
| |
Collapse
|
41
|
Imaging the Transformation of Ipsilateral Internal Capsule Following Focal Cerebral Ischemia in Rat by Diffusion Kurtosis Imaging. J Stroke Cerebrovasc Dis 2017; 26:42-48. [DOI: 10.1016/j.jstrokecerebrovasdis.2016.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/13/2022] Open
|
42
|
Liu PK, Liu CH. Epigenetics of amphetamine-induced sensitization: HDAC5 expression and microRNA in neural remodeling. J Biomed Sci 2016; 23:90. [PMID: 27931227 PMCID: PMC5146867 DOI: 10.1186/s12929-016-0294-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/26/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Histone deacetylase (HDAC) activities modify chromatin structure and play a role in learning and memory during developmental processes. Studies of adult mice suggest HDACs are involved in neural network remodeling in brain repair, but its function in drug addiction is less understood. We aimed to examine in vivo HDAC5 expression in a preclinical model of amphetamine-induced sensitization (AIS) of behavior. We generated specific contrast agents to measure HDAC5 levels by in vivo molecular contrast-enhanced (MCE) magnetic resonance imaging (MRI) in amphetamine-naïve mice as well as in mice with AIS. To validate the MRI results we used ex vivo methods including in situ hybridization, RT-PCR, immunohistochemistry, and transmision electron microscopy. METHODS We compared the expression of HDAC5 mRNA in an acute exposure paradigm (in which animals experienced a single drug exposure [A1]) and in a chronic-abstinence-challenge paradigm (in which animals were exposed to the drug once every other day for seven doses, then underwent 2 weeks of abstinence followed by a challenge dose [A7WA]). Control groups for each of these exposure paradigms were given saline. To delineate how HDAC5 expression was related to AIS, we compared the expression of HDAC5 mRNA at sequences where no known microRNA (miR) binds (hdac5AS2) and at sequences where miR-2861 is known to bind (miD2861). We synthesized and labeled phosphorothioated oligonucleic acids (sODN) of hdac5AS2 or miD2861 linked to superparamagentic iron oxide nanoparticles (SPION), and generated HDAC5-specific contrast agents (30 ± 20 nm, diameter) for MCE MRI; the same sequences were used for primers for TaqMan® analysis (RT-qPCR) in ex vivo validation. In addition, we used subtraction R2* maps to identify regional HDAC5 expression. RESULTS Naïve C57black6 mice that experience acute exposure to amphetamine (4 mg/kg, by injection intraperitoneally) show expression of both total and phosphorylated (S259) HDAC5 antigens in GFAP+ and GFAP- cells, but the appearance of these cells was attenuated in the chronic paradigm. We found that MCE MRI reports HDAC5 mRNA with precision in physiological conditions because the HDAC5 mRNA copy number reported by TaqMan analysis was positively correlated (with a linear coefficient of 1.0) to the ΔR2* values (the frequency of signal reduction above background, 1/s) measured by MRI. We observed SPION-mid2861 as electron dense nanoparticles (EDNs) of less than 30 nm in the nucleus of the neurons, macrophages, and microglia, but not in glia and endothelia. We found no preferential distribution in any particular type of neural cells, but observed scattered EDNs of 60-150 nm (dia) in lysosomes. In the acute paradigm, mice pretreated with miD2861 (1.2 mmol/kg, i.p./icv) exhibited AIS similar to that exibited by mice in the chronic exposure group, which exhibited null response to mid2861 pretreatment. Moreover, SPION-miD2861 identified enhanced HDAC5 expression in the lateral septum and the striatum after amphetamine, where we found neurprogenitor cells coexpressing NeuN and GFAP. CONCLUSIONS We conclude that miD2681 targets HDAC5 mRNA with precision similar to that of RT-PCR. Our MCE MRI detects RNA-bound nanoparticles (NPs) in vivo, and ex vivo validation methods confirm that EDNs do not accumulate in any particular cell type. As HDAC5 expression may help nullify AIS and identify progenitor cells, the precise delivery of miD2861 may serve as a vehicle for monitoring network remodeling with target specificity and signal sensitivity after drug exposure that identifies brain repair processes in adult animals.
Collapse
Affiliation(s)
- Philip K Liu
- Department of Radiology, Molecular Contrast-Enhanced MRI Laboratory at the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and the Harvard Medical School, CNY149 (2301) Thirteenth Street, Charlestown, MA, 02129, USA.
| | - Christina H Liu
- Department of Radiology, Molecular Contrast-Enhanced MRI Laboratory at the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and the Harvard Medical School, CNY149 (2301) Thirteenth Street, Charlestown, MA, 02129, USA
| |
Collapse
|
43
|
Moore TL, Pessina MA, Finklestein SP, Killiany RJ, Bowley B, Benowitz L, Rosene DL. Inosine enhances recovery of grasp following cortical injury to the primary motor cortex of the rhesus monkey. Restor Neurol Neurosci 2016; 34:827-48. [PMID: 27497459 PMCID: PMC6503840 DOI: 10.3233/rnn-160661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Inosine, a naturally occurring purine nucleoside, has been shown to stimulate axonal growth in cell culture and promote corticospinal tract axons to sprout collateral branches after stroke, spinal cord injury and TBI in rodent models. OBJECTIVE To explore the effects of inosine on the recovery of motor function following cortical injury in the rhesus monkey. METHODS After being trained on a test of fine motor function of the hand, monkeys received a lesion limited to the area of the hand representation in primary motor cortex. Beginning 24 hours after this injury and continuing daily thereafter, monkeys received orally administered inosine (500 mg) or placebo. Retesting of motor function began on the 14th day after injury and continued for 12 weeks. RESULTS During the first 14 days after surgery, there was evidence of significant recovery within the inosine-treated group on measures of fine motor function of the hand, measures of hand strength and digit flexion. While there was no effect of treatment on the time to retrieve a reward, the treated monkeys returned to asymptotic levels of grasp performance significantly faster than the untreated monkeys. Additionally, the treated monkeys evidenced a greater degree of recovery in terms of maturity of grasp pattern. CONCLUSION These findings demonstrate that inosine can enhance recovery of function following cortical injury in monkeys.
Collapse
Affiliation(s)
- Tara L. Moore
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Monica A. Pessina
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | | | - Ronald J. Killiany
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Bethany Bowley
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
| | - Larry Benowitz
- Department of Neurosurgery and F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Douglas L. Rosene
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| |
Collapse
|
44
|
Abstract
ABSTRACT:Despite much progress in stroke prevention and acute intervention, recovery and rehabilitation have traditionally received relatively little scientific attention. There is now increasing interest in the development of stroke recovery drugs and innovative rehabilitation techniques to promote functional recovery after completed stroke. Experimental work over the past two decades indicates that pharmacologic intervention to enhance recovery may be possible in the subacute stage, days to weeks poststroke, after irreversible injury has occurred. This paper discusses the concept of “rehabilitation pharmacology” and reviews the growing literature from animal studies and pilot clinical trials on noradrenergic pharmacotherapy, a new experimental strategy in stroke rehabilitation. Amphetamine, a monoamine agonist that increases brain norepinephrine levels, is the most extensively studied drug shown to promote recovery of function in animal models of focal brain injury. Further research is needed to investigate the mechanisms and clinical efficacy of amphetamine and other novel therapeutic interventions on the recovery process.
Collapse
|
45
|
Hasbani MJ, Underhill SM, De Erausquin G, Goldberg MP. Synapse Loss and Regeneration: A Mechanism for Functional Decline and Recovery after Cerebral Ischemia? Neuroscientist 2016. [DOI: 10.1177/107385840000600208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Little is known of the mechanisms governing functional recovery after ischemic brain injury, and there is no clinical therapy established to restore neurologic function after ischemic injury is complete. Even so, pronounced spontaneous recovery of function is often observed in a subset of patients. Resolution of neurological deficits after ischemia must occur through replacement of lost tissue via production of new neurons, or through changes in the structure, function, or connectivity of surviving neurons. This review focuses on the neuronal synapse as a potential locus for functional recovery. Selective disruption of synaptic elements is a characteristic feature of hypoxic-ischemic brain injury, such as that seen in ischemic stroke or cardiac arrest. Ischemic damage to synapses occurs even in the absence of neuronal loss, and therefore might underlie the clinical disability observed in patients following mild or transient ischemia. We review evidence that recovery of lost synapses occurs after ischemic injury and that this recovery may be a necessary step for restoration of neurological function. The process of synapse loss and recovery can be examined in neuronal cultures and experimental stroke models. Such studies may help to gain a better understanding of the extracellular factors and intracellular cascades that facilitate recovery of synapses, and may result in therapeutic approaches to improve function after cerebral ischemia.
Collapse
Affiliation(s)
- M. Josh Hasbani
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Suzanne M. Underhill
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Gabriel De Erausquin
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| | - Mark P. Goldberg
- Department of Neurology and Neuroscience Program, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
46
|
Zepeda R, Contreras V, Pissani C, Stack K, Vargas M, Owen GI, Lazo OM, Bronfman FC. Venlafaxine treatment after endothelin-1-induced cortical stroke modulates growth factor expression and reduces tissue damage in rats. Neuropharmacology 2016; 107:131-145. [PMID: 26965219 DOI: 10.1016/j.neuropharm.2016.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 02/02/2023]
Abstract
Neuromodulators, such as antidepressants, may contribute to neuroprotection by modulating growth factor expression to exert anti-inflammatory effects and to support neuronal plasticity after stroke. Our objective was to study whether early treatment with venlafaxine, a serotonin-norepinephrine reuptake inhibitor, modulates growth factor expression and positively contributes to reducing the volume of infarcted brain tissue resulting in increased functional recovery. We studied the expression of BDNF, FGF2 and TGF-β1 by examining their mRNA and protein levels and cellular distribution using quantitative confocal microscopy at 5 days after venlafaxine treatment in control and infarcted brains. Venlafaxine treatment did not change the expression of these growth factors in sham rats. In infarcted rats, BDNF mRNA and protein levels were reduced, while the mRNA and protein levels of FGF2 and TGF-β1 were increased. Venlafaxine treatment potentiated all of the changes that were induced by cortical stroke alone. In particular, increased levels of FGF2 and TGF-β1 were observed in astrocytes at 5 days after stroke induction, and these increases were correlated with decreased astrogliosis (measured by GFAP) and increased synaptophysin immunostaining at twenty-one days after stroke in venlafaxine-treated rats. Finally, we show that venlafaxine reduced infarct volume after stroke resulting in increased functional recovery, which was measured using ladder rung motor tests, at 21 days after stroke. Our results indicate that the early oral administration of venlafaxine positively contributes to neuroprotection during the acute and late events that follow stroke.
Collapse
Affiliation(s)
- Rodrigo Zepeda
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Contreras
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Pissani
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherine Stack
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Vargas
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gareth I Owen
- Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Oscar M Lazo
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Francisca C Bronfman
- MINREB and Center for Aging and Regeneration (CARE UC), Faculty of Biological Sciences, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
47
|
Fonteles AA, de Souza CM, de Sousa Neves JC, Menezes APF, Santos do Carmo MR, Fernandes FDP, de Araújo PR, de Andrade GM. Rosmarinic acid prevents against memory deficits in ischemic mice. Behav Brain Res 2016; 297:91-103. [PMID: 26456521 DOI: 10.1016/j.bbr.2015.09.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/17/2015] [Accepted: 09/23/2015] [Indexed: 01/21/2023]
Abstract
Polyphenols have neuroprotective effects after brain ischemia. It has been demonstrated that rosmarinic acid (RA), a natural phenolic compound, possesses antioxidant and anti-inflammatory properties. To evaluate the effectiveness of RA against memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) mice were treated with RA (0.1, 1, and 20mg/kg/day, i.p. before ischemia and during 5 days). Animals were evaluated for locomotor activity and working memory 72 h after pMCAO, and spatial and recognition memories 96 h after pMCAO. In addition, in another set of experiments brain infarction, neurological deficit score and myeloperoxidase (MPO) activity were evaluates 24h after the pMCAO. Finally, immunohistochemistry, and western blot, and ELISA assay were used to analyze glial fibrillary acidic protein (GFAP), and synaptophysin (SYP) expression, and BDNF level, respectively. The working, spatial, and recognition memory deficits were significantly improved with RA treatment (20mg/kg). RA reduced infarct size and neurological deficits caused by acute ischemia. The mechanism for RA neuroprotection involved, neuronal loss suppression, and increase of synaptophysin expression, and increase of BDNF. Furthermore, the increase of MPO activity and GFAP immunireactivity were prevented in MCAO group treated with RA. These results suggest that RA exerts memory protective effects probably due to synaptogenic activity and anti-inflammatory action.
Collapse
Affiliation(s)
- Analu Aragão Fonteles
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Fortaleza, Brazil; Institute of Biomedicine of Brazilian Semi-Arid, Fortaleza, Brazil
| | - Carolina Melo de Souza
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Ana Paula Fontenele Menezes
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | | | - Francisco Diego Pinheiro Fernandes
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Patrícia Rodrigues de Araújo
- Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Geanne Matos de Andrade
- Post-Graduate Programme in Pharmacology, Department of Physiology and Pharmacology, Fortaleza, Brazil; Post-Graduate Programme in Medical Sciences, Department of Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Brazil; Institute of Biomedicine of Brazilian Semi-Arid, Fortaleza, Brazil.
| |
Collapse
|
48
|
Walker-Batson D, Mehta J, Smith P, Johnson M. Amphetamine and other pharmacological agents in human and animal studies of recovery from stroke. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:225-30. [PMID: 25896190 DOI: 10.1016/j.pnpbp.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 11/15/2022]
Abstract
Neuromodulation with pharmacological agents, including drugs of abuse such as amphetamine, when paired with behavioral experience, has been shown to positively modify outcomes in animal models of stroke. A number of clinical studies have tested the efficacy of a variety of drugs to enhance recovery of language deficit post-stroke. The purpose of this paper is to: (1) present pertinent animal studies supporting the use of dextro-amphetamine sulfate (AMPH) to enhance recovery after experimental lesions with emphasis on the importance of learning dependent activity for lasting recovery; (2) briefly review neuropharmacological explorations in the treatment of aphasia; (3) present a pilot study in aphasia exploring a drug combination of AMPH and donepezil hydrochloride paired with behavioral treatment to facilitate recovery; and (4) conclude with comments regarding the role of adjunctive pharmacotherapy in the rehabilitation of aphasia, particularly AMPH.
Collapse
Affiliation(s)
- D Walker-Batson
- The Stroke Center-Dallas, T. Boone Pickens Institute of Health Sciences, Texas Woman's University, 5500 Southwestern Medical Avenue, Dallas, TX 75235, United States.
| | - J Mehta
- The Stroke Center-Dallas, T. Boone Pickens Institute of Health Sciences, Texas Woman's University, 5500 Southwestern Medical Avenue, Dallas, TX 75235, United States
| | - P Smith
- Department of Physical Therapy, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75235, United States
| | - M Johnson
- Department of Neurology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-8897, United States
| |
Collapse
|
49
|
The potential utility of some legal highs in CNS disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:267-74. [PMID: 26232510 DOI: 10.1016/j.pnpbp.2015.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 07/24/2015] [Accepted: 07/26/2015] [Indexed: 12/21/2022]
Abstract
Over the last decade there has been an explosion of new drugs of abuse, so called legal highs or novel psychoactive substances (NPS). Many of these abused drugs have unknown pharmacology, but their biological effects can be anticipated from their molecular structure and possibly also from online user reports. When considered with the findings that some prescription medications are increasingly abused and that some abused drugs have been tested clinically one could argue that there has been a blurring of the line between drugs of abuse and clinically used drugs. In this review we examine these legal highs/NPS and consider whether, based on their known or predicted pharmacology, some might have the potential to be clinically useful in CNS disorders.
Collapse
|
50
|
|