1
|
Protective Actions of Ghrelin on Global Cerebral Ischemia-Induced Memory Deficits. NEUROPHYSIOLOGY+ 2014. [DOI: 10.1007/s11062-014-9454-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
2
|
Liu K, Yan M, Zheng X, Yang Y. The dynamic detection of NO during the ischemic postconditioning against global cerebral ischemia/reperfusion injury. Nitric Oxide 2014; 38:17-25. [PMID: 24534135 DOI: 10.1016/j.niox.2014.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 12/17/2022]
Abstract
Little is known about role of Nitric Oxide (NO) of ischemic postconditioning in global cerebral ischemia and reperfusion (I/R) injury. In this study, we detected the dynamic change of NO during the ischemic postconditioning against global cerebral I/R in vivo, and compared the effects of six postconditioning conditions with different numbers of cycles and periods for reperfusion/occlusion. The animals underwent postconditioning consisting of 3 or 10 cycles of 15-s reperfusion, followed by 15-s occlusion (post-3-15/15, post-10-15/15), or 3 or 10 cycles of 30-s reperfusion/30-s occlusion (post-3-30/30, post-10-30/30), or 3 or 10 cycles of 60-s reperfusion/15-s occlusion (post-3-60/15, post-10-60/15). The results showed that four groups increased NO concentration, while all groups improved CBF significantly. Different postconditioning groups had different effects on NO and CBF. Post-3-30/30 had the strongest effect on both. Also it reduced infarct size from 33.0% to 24.29%, and downregulated the cell death ratio from 6.71% to 1.04%, showing the strongest protective effect among tested conditions. And we found that post-3-30/30 was an optional method in ischemic postconditioning, which obviously induced a large amount of NO synthesis with a slow speed, increased CBF and reduced the brain injuries. Therefore we concluded that NO is a reliable candidate in mediating ischemic postconditioning neuroprotection.
Collapse
Affiliation(s)
- Kezhou Liu
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, China.
| | - Ming Yan
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, China
| | | | - Yong Yang
- College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, China.
| |
Collapse
|
3
|
Segawa S, Nishiura T, Furuta T, Ohsato Y, Tani M, Nishida K, Nagasawa K. Zinc is released by cultured astrocytes as a gliotransmitter under hypoosmotic stress-loaded conditions and regulates microglial activity. Life Sci 2013; 94:137-44. [PMID: 24252316 DOI: 10.1016/j.lfs.2013.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 10/22/2013] [Accepted: 11/07/2013] [Indexed: 12/26/2022]
Abstract
AIM Astrocytes contribute to the maintenance of brain homeostasis via the release of gliotransmitters such as ATP and glutamate. Here we examined whether zinc was released from astrocytes under stress-loaded conditions, and was involved in the regulation of microglial activity as a gliotransmitter. MAIN METHODS Hypoosmotic stress was loaded to astrocytes using balanced salt solution prepared to 214-314 mOsmol/L, and then intra- and extra-cellular zinc levels were assessed using Newport Green DCF diacetate (NG) and ICP-MS, respectively. Microglial activation by the astrocytic supernatant was assessed by their morphological changes and poly(ADP-ribose) (PAR) polymer accumulation. KEY FINDINGS Exposure of astrocytes to hypoosmotic buffer, increased the extracellular ATP level in osmolarity-dependent manners, indicating a load of hypoosmotic stress. In hypoosmotic stress-loaded astrocytes, there were apparent increases in the intra- and extra-cellular zinc levels. Incubation of microglia in the astrocytic conditioned medium transformed them into the activated "amoeboid" form and induced PAR formation. Administration of an extracellular zinc chelator, CaEDTA, to the astrocytic conditioned medium almost completely prevented the microglial activation. Treatment of astrocytes with an intracellular zinc chelator, TPEN, suppressed the hypoosmotic stress-increased intracellular, but not the extracellular, zinc level, and the increase in the intracellular zinc level was blocked partially by a nitric oxide synthase inhibitor, but not by CaEDTA, indicating that the mechanisms underlying the increases in the intra- and extra-cellular zinc levels might be different. SIGNIFICANCE These findings suggest that under hypoosmotic stress-loaded conditions, zinc is released from astrocytes and then plays a primary role in microglial activation as a gliotransmitter.
Collapse
Affiliation(s)
- Shohei Segawa
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takeshi Nishiura
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Takahiro Furuta
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuki Ohsato
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Misaki Tani
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kentaro Nishida
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kazuki Nagasawa
- Department of Environmental Biochemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| |
Collapse
|
4
|
Selakovic V, Korenic A, Radenovic L. Spatial and temporal patterns of oxidative stress in the brain of gerbils submitted to different duration of global cerebral ischemia. Int J Dev Neurosci 2011; 29:645-54. [PMID: 21382467 DOI: 10.1016/j.ijdevneu.2011.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 02/01/2011] [Accepted: 02/25/2011] [Indexed: 10/18/2022] Open
Abstract
The present study was undertaken to examine spatial and temporal patterns of oxidative stress rate in the brain of Mongolian gerbils submitted to different duration of global ischemia/reperfusion. The common carotid arteries of gerbils were occluded for 5, 10, or 15 min. We followed the temporal ischemia-induced oxidative stress rate, the most important factor that exacerbates brain damage by reperfusion, starting from 24 h up to 28 days after reperfusion. The spatial ischemia-induced oxidative stress distribution was measured parallely in different brain regions: forebrain cortex, striatum, hippocampus and cerebellum. Post-ischemic effects were followed in vivo by monitoring the neurological status of whole animals and at the intracellular level by standard biochemical assays in different brain regions. We measured superoxide production, superoxide dismutase activity, nitric oxide production, index of lipid peroxidation, and reduced glutathione. Our results revealed a pattern of dynamic changes in each oxidative stress parameter that corresponded with ischemia duration in all tested brain structures. The highest levels were obtained in the first 24h after the insult. After that, they slowly returned to nearly control values 28 days after reperfusion (with the exception of SOD activity that returned to control values at fourth day after reperfusion). The most sensitive oxidative stress parameter was index of lipid peroxidation. Our study confirmed spatial distribution of ischemia-induced oxidative stress. Tested brain structures showed different sensitivity to each oxidative stress parameter, although their basal levels were similar. These new findings could be valuable for creation and strategy of post-ischemic therapy.
Collapse
|
5
|
Ozden H, Durmaz R, Kanbak G, Uzuner K, Aral E, Kartkaya K, Kabay SC, Atasoy MA. Erythropoietin prevents nitric oxide and cathepsin-mediated neuronal death in focal brain ischemia. Brain Res 2010; 1370:185-93. [PMID: 21108937 DOI: 10.1016/j.brainres.2010.11.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 11/06/2010] [Accepted: 11/10/2010] [Indexed: 11/27/2022]
Abstract
We examined the preventive effect of human recombinant erythropoietin (HrEPO) on nitric oxide (NO)-mediated toxicity to neurons and cysteine protease release into cytoplasm, which is attributed to neuronal death in brain ischemia. Focal cerebral ischemia was induced by permanent occlusion of middle cerebral artery in two sets of rat. The first set was used to monitor NO concentration and cathepsin activity, while the second was used for histological examination with hematoxylin and eosin, and TUNEL staining. A group in both set was administered human recombinant erythropoietin (HrEPO). NO content, cathepsins B and L activity increased significantly in the post-ischemic cerebral tissue (p<0.05). HrEPO treatment reduced NO concentration and cathepsin activity to control level (p>0.05). A significant increase in the number of necrotic and apoptotic neurons was observed in the post-ischemic cerebral cortex (p<0.05). HrEPO treatment was markedly lowered both of these (p<0.05). It is concluded that HrEPO prevents neuronal death by protecting neuronal liposomes from NO-mediated toxicity and suppressing the release of cathepsins.
Collapse
Affiliation(s)
- Hilmi Ozden
- Department of Anatomy, Eskişehir Osmangazi University School of Medicine, 26480 Eskişehir, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Shin BY, Kim DH, Hyun SK, Jung HA, Kim JM, Park SJ, Kim SY, Cheong JH, Choi JS, Ryu JH. Alaternin attenuates delayed neuronal cell death induced by transient cerebral hypoperfusion in mice. Food Chem Toxicol 2010; 48:1528-36. [DOI: 10.1016/j.fct.2010.03.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 12/22/2009] [Accepted: 03/15/2010] [Indexed: 10/19/2022]
|
7
|
Selakovic V, Janac B, Radenovic L. MK-801 effect on regional cerebral oxidative stress rate induced by different duration of global ischemia in gerbils. Mol Cell Biochem 2010; 342:35-50. [PMID: 20422259 DOI: 10.1007/s11010-010-0466-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 04/12/2010] [Indexed: 12/19/2022]
Abstract
We investigated MK-801 effect on ischemia-induced oxidative stress-the most important factor that exacerbates brain damage by reperfusion. The common carotid arteries of gerbils were occluded for 5, 10, or 15 min. Immediately after the occlusion, MK-801 (3 mg/kg i.p.) or saline were given in normothermic conditions. The MK-801 effects were followed in vivo by monitoring the neurological status of animals and at the intracellular level by standard biochemical assays. We investigated nitric oxide levels, superoxide production, superoxide dismutase activity, index of lipid peroxidation (ILP), and reduced glutathione content in hippocampus, striatum, forebrain cortex, and cerebellum. The measurements took place at different times (1, 2, 4, 7, 14, and 28 days) after reperfusion. Increased duration of cerebral ischemia resulted in a progressive induction of oxidative stress. Our results revealed pattern of dynamic changes in each oxidative stress parameter level which corresponded with ischemia duration in all tested brain structures. Most sensitive oxidative stress parameters were ILP and superoxide production. Our study confirmed spatial distribution of ischemia-induced oxidative stress. Tested brain structures showed different sensitivity to each oxidative stress parameter. As judged by biochemical and neurological data, applied MK-801 showed neuroprotective efficiency by reduction of ischemia-induced oxidative stress in brain.
Collapse
|
8
|
Liu K, Li Q, Zhang L, Zheng X. The dynamic detection of NO during stroke and reperfusion in vivo. Brain Inj 2010; 23:450-8. [PMID: 19408167 DOI: 10.1080/02699050902838173] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Nitric oxide (NO) has been implicated as a mediator of synaptic transmission and a pathological factor in stroke/reperfusion. The purpose of this study was to detect the change of NO concentration in rat hippocampus during global cerebral ischemia and reperfusion in vivo and to reveal effects of different NO synthases (NOS). METHOD In the present study, the real-time record of NO levels in rat hippocampus was obtained by using a NO sensor during the global cerebral ischemia and the initial stage of reperfusion. The effects of two inhibitors of NOS on NO concentration were also observed. The two inhibitors were respectively administrated intravenously at the onset of reperfusion and 1 hour later. RESULTS The change of the NO concentration in the initial stage of reperfusion was 0.768 +/- 0.029 microM. 7-nitroindazole (7-NI, inhibitor of nNOS) had a strong inhibitive effect on NO synthesis at both time points, while 1400W dihydrochloride (1400W, inhibitor of iNOS) had no significant effect on the NO synthesis. CONCLUSIONS The in vivo detection revealed the real dynamic change of NO concentration, which is much more reliable than the in vitro method. The results showed that, during the initial stage of reperfusion, NO biosynthesis was mainly in an nNOS-dependent manner. Thus, the toxicity of NO in this process had a close relationship with the activity of nNOS but not iNOS.
Collapse
Affiliation(s)
- Kezhou Liu
- Department of Biomedical Engineering, Zhejiang University, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, Zhejiang, PR China
| | | | | | | |
Collapse
|
9
|
The Protective Effect of Dexanabinol (HU-211) on Nitric Oxide and Cysteine Protease-Mediated Neuronal Death in Focal Cerebral Ischemia. Neurochem Res 2008; 33:1683-91. [DOI: 10.1007/s11064-008-9605-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 01/23/2008] [Indexed: 11/26/2022]
|
10
|
Altuğ ME, Serarslan Y, Bal R, Kontaş T, Ekici F, Melek IM, Aslan H, Duman T. Caffeic acid phenethyl ester protects rabbit brains against permanent focal ischemia by antioxidant action: a biochemical and planimetric study. Brain Res 2008; 1201:135-42. [PMID: 18308295 DOI: 10.1016/j.brainres.2008.01.053] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 12/14/2022]
Abstract
The present study was conducted to investigate whether caffeic acid phenethyl ester (CAPE), an active component of propolis extract, has a protective effect on brain injury after focal permanent cerebral ischemia, and to determine the possible antioxidant mechanisms. Cerebral infarction in adult male New Zealand rabbits was induced by microsurgical procedures producing right focal permanent middle cerebral artery occlusion (pMCAO). CAPE was administered to the treatment group after pMCAO at a dose of 10 micromol kg(-1) once a day intraperitoneally for 7 days. Neurological deficits were evaluated, using a modified six-point scale. Spectrophotometric assay was used to determine the contents of malondialdehyde (MDA), glutathione (GSH), catalase (CAT), nitric oxide (NO) and xanthine oxidase (XO). In the ipsilateral hemisphere, the infarct volume of the brain was assessed in brain slices stained with heamatoxylen and eosin. The results showed that treatment with CAPE significantly reduced the percentage of infarction in the ipsilateral hemisphere compared with the ischemia group. CAPE treatment significantly attenuated the elevation of plasma MDA, CAT and XO content (p<0.05), whereas it significantly increased the levels of plasma GSH and NO (p<0.05). Therefore, subacute CAPE administration plays a protective role in focal pMCAO due to attenuation of lipid peroxidation and its antioxidant activity. All of these findings suggest that CAPE provides neuroprotection against cerebral ischemia injury through its antioxidant action.
Collapse
Affiliation(s)
- Muhammed Enes Altuğ
- Department of Surgery, Mustafa Kemal University Faculty of Veterinary Medicine, Tayfur Sökmen Kampusu, TR-31040 Hatay, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Yang Y, Ke-Zhou L, Ning GM, Wang ML, Zheng XX. Dynamics of nitric oxide and peroxynitrite during global brain ischemia/reperfusion in rat hippocampus: NO-sensor measurement and modeling study. Neurochem Res 2007; 33:73-80. [PMID: 17674204 DOI: 10.1007/s11064-007-9414-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 06/13/2007] [Indexed: 10/23/2022]
Abstract
The dynamics of nitric oxide (NO) and peroxynitrite concentration changes during brain ischemia/reperfusion are poorly understood. In this paper, a NO-selective sensor was used to measure NO concentration changes in the rat brain hippocampus during global brain ischemia/reperfusion. Four-vessel occlusion model of transient global brain ischemia was used. Global cerebral ischemia was induced by occluding both common carotid arteries with artery nips (for 20 min) and reperfusion was induced by loosening the artery nips. Results showed that the changes of NO concentration during global brain ischemia/reperfusion could be divided into different stages. Together with the effects of O2 tension changes and NO synthase (NOS) on nitric oxide levels, we determined five stages in the NO concentration profile: (1) acute O2-limited decrease stage; (2) O2-limited steady stage; (3) neuronal NOS activation stage; (4) acute O2-recovery elevation stage; and (5) O2-recovery steady stage. In addition, a chemical reaction network model was constructed to simulate the dynamics of peroxynitrite during the reperfusion stage, and the effects of a change in the NO formation rate on the dynamics of peroxynitrite were investigated specifically. Results show the rate of NO formation has a great influence on peroxynitrite dynamics.
Collapse
Affiliation(s)
- Yong Yang
- Department of Biomedical Engineering, Zhejiang University (yuqun campus), Hangzhou, 310027, PR China.
| | | | | | | | | |
Collapse
|
12
|
Jiang MH, Hada J. Early and sharp nitric oxide production and anoxic depolarization in the rat hippocampus during transient forebrain ischemia. Eur J Pharmacol 2007; 567:83-8. [PMID: 17451676 DOI: 10.1016/j.ejphar.2007.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Revised: 03/09/2007] [Accepted: 03/13/2007] [Indexed: 11/17/2022]
Abstract
This study was designed to characterize nitric oxide (NO) production and anoxic depolarization in the rat hippocampus during transient forebrain ischemia using two NO synthase (NOS) inhibitors, L-N(5)-(1-iminoethyl)ornithine (L-NIO), a relatively selective endothelial NOS (eNOS) inhibitor, and 7-nitroindazole, a relatively selective neuronal NOS (nNOS) inhibitor, and an NO scavenger, [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] (carboxy-PTIO). We measured the mean arterial blood pressure, hippocampal blood flow, NO concentration and direct current potential before, during and after transient forebrain ischemia, which was induced by 4-vessel occlusion for 10 min. Saline, L-NIO (20 mg/kg), 7-nitroindazole (25 mg/kg), L-NIO (20 mg/kg)+7-nitroindazole (25 mg/kg) or carboxy-PTIO (1 mg/kg) was administered intraperitoneally 20 min before the onset of ischemia. We observed early and sharp NO production in the hippocampus during ischemia in the saline group. This NO increase during ischemia was significantly reduced by L-NIO (20 mg/kg)+7-nitroindazole (25 mg/kg) or carboxy-PTIO (1 mg/kg), but not L-NIO (20 mg/kg) or 7-nitroindazole (25 mg/kg). On the other hand, NO production after ischemia was significantly reduced by 7-nitroindazole (25 mg/kg), L-NIO (20 mg/kg)+7-nitroindazole (25 mg/kg) or carboxy-PTIO (1 mg/kg), but not L-NIO (20 mg/kg). The peak latency of NO production during ischemia always preceded the onset latency of anoxic depolarization in both the saline group and the carboxy-PTIO group. In the carboxy-PTIO group, the onset latency of anoxic depolarization was significantly longer than that in the saline group. Moreover, carboxy-PTIO significantly reduced the anoxic depolarization amplitude, compared with that of the saline group. These results suggest that both NOS-dependent and-independent NO formation contributes to early and sharp NO production during ischemia, and that this NO increase is, at least in part, related to the triggering of anoxic depolarization.
Collapse
Affiliation(s)
- Min Hai Jiang
- Department of Neurology, Hangzhou First People's Hospital, 261, Huansha Road, Hangzhou, Zhejiang, 310006, China
| | | |
Collapse
|
13
|
Martínez-Murillo R, Fernández AP, Serrano J, Rodrigo J, Salas E, Mourelle M, Martínez A. The nitric oxide donor LA 419 decreases brain damage in a focal ischemia model. Neurosci Lett 2007; 415:149-53. [PMID: 17239538 DOI: 10.1016/j.neulet.2007.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/04/2007] [Accepted: 01/04/2007] [Indexed: 01/09/2023]
Abstract
Stroke affects a large number of people, especially in developed countries, but treatment options are limited. Over the years, it has become clear that nitric oxide (NO) plays a major role in this pathology and that treatments that either reduce or increase NO presence may provide an alternative route for reducing the sequelae of brain ischemia. The NO donor LA 419 previously has been shown to protect the brain tissue from ischemic damage in an experimental model of global brain ischemia. Here we study whether this holds true for focal ischemia, a condition closer to the more common form of human stroke. Ischemia was induced in rats by a stereotaxic injection of endothelin-1, a potent vasoconstrictor, in the striatum. Seven days after the injection, magnetic resonance imaging (MRI) found a significant elevation in apparent diffusion coefficient (ADC) in the injected striatum of untreated rats, due to ischemia-induced vascular edema. Animals that received LA 419 prior to injection with endothelin-1 showed an ADC undistinguishable from the contralateral striatum or from the striatum of rats not treated with LA 419. In addition, immunohistochemistry with antibodies against neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS), and nitrotyrosine showed a marked increase in the expression of these markers of NO production following ischemic treatment that was dampened by treatment with LA 419. In summary, our results clearly show that the NO donor LA 419 may be a useful compound for the prevention and/or treatment of focal brain ischemia.
Collapse
Affiliation(s)
- Ricardo Martínez-Murillo
- Department of Neuroanatomy and Cell Biology, Instituto Cajal, CSIC, Avenida del Doctor Arce 37, 28002 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Han F, Shirasaki Y, Fukunaga K. Microsphere embolism-induced endothelial nitric oxide synthase expression mediates disruption of the blood-brain barrier in rat brain. J Neurochem 2006; 99:97-106. [PMID: 16987238 DOI: 10.1111/j.1471-4159.2006.04048.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Microsphere embolism (ME)-induced up-regulation of endothelial nitric oxide synthase (eNOS) in endothelial cells of brain microvessels was observed 2-48 h after ischemia. eNOS induction preceded disruption of the blood-brain barrier (BBB) observed 6-72 h after ischemia. In vascular endothelial cells, ME-induced eNOS expression was closely associated with protein tyrosine nitration, which is a marker of generation of peroxynitrite. Leakage of rabbit IgG from microvessels was also evident around protein tyrosine nitration-immunoreactive microvessels. To determine whether eNOS expression and protein tyrosine nitration in vascular endothelial cells mediates BBB disruption in the ME brain, we tested the effect of a novel calmodulin-dependent NOS inhibitor, 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate (DY-9760e), which inhibits eNOS activity and, in turn, protein tyrosine nitration. Concomitant with inhibition of protein tyrosine nitration in vascular endothelial cells, DY-9760e significantly inhibited BBB disruption as assessed by Evans blue (EB) excretion. DY-9760e also inhibited cleavage of poly (ADP-ribose) polymerase as a marker of the apoptotic pathway in vascular endothelial cells. Taken together with previous evidence in which DY-9760e inhibited brain edema, ME-induced eNOS expression in vascular endothelial cells likely mediates BBB disruption and, in turn, brain edema.
Collapse
Affiliation(s)
- Feng Han
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
15
|
Frederickson CJ, Giblin LJ, Krezel A, McAdoo DJ, Mueller RN, Muelle RN, Zeng Y, Balaji RV, Masalha R, Thompson RB, Fierke CA, Sarvey JM, de Valdenebro M, Prough DS, Zornow MH. Concentrations of extracellular free zinc (pZn)e in the central nervous system during simple anesthetization, ischemia and reperfusion. Exp Neurol 2006; 198:285-93. [PMID: 16443223 DOI: 10.1016/j.expneurol.2005.08.030] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 08/05/2005] [Accepted: 08/26/2005] [Indexed: 11/19/2022]
Abstract
"Free Zn2+" (rapidly exchangeable Zn2+) is stored along with glutamate in the presynaptic terminals of specific specialized (gluzinergic) cerebrocortical neurons. This synaptically releasable Zn2+ has been recognized as a potent modulator of glutamatergic transmission and as a key toxin in excitotoxic neuronal injury. Surprisingly (despite abundant work on bound zinc), neither the baseline concentration of free Zn2+ in the brain nor the presumed co-release of free Zn2+ and glutamate has ever been directly observed in the intact brain in vivo. Here, we show for the first time in dialysates of rat and rabbit brain and human CSF samples from lumbar punctures that: (i) the resting or "tonic" level of free Zn2+ signal in the extracellular fluid of the rat, rabbit and human being is approximately 19 nM (95% range: 5-25 nM). This concentration is 15,000-fold lower than the "300 microM" concentration which is often used as the "physiological" concentration of free zinc for stimulating neural tissue. (ii) During ischemia and reperfusion in the rabbit, free zinc and glutamate are (as has often been presumed) released together into the extracellular fluid. (iii) Unexpectedly, Zn2+ is also released alone (without glutamate) at a variable concentration for several hours during the reperfusion aftermath following ischemia. The source(s) of this latter prolonged release of Zn2+ is/are presumed to be non-synaptic and is/are now under investigation. We conclude that both Zn2+ and glutamate signaling occur in excitotoxicity, perhaps by two (or more) different release mechanisms.
Collapse
Affiliation(s)
- C J Frederickson
- NeuroBioTex, Inc., 101 Christopher Columbus Blvd., Galveston, TX 77550, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Radenovic L, Selakovic V. Differential effects of NMDA and AMPA/kainate receptor antagonists on nitric oxide production in rat brain following intrahippocampal injection. Brain Res Bull 2005; 67:133-41. [PMID: 16140172 DOI: 10.1016/j.brainresbull.2005.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/07/2005] [Accepted: 06/08/2005] [Indexed: 12/20/2022]
Abstract
Stimulation of glutamate receptors induces neuronal nitric oxide (NO) release, which in turn modulates glutamate transmission. The involvement of ionotropic glutamate NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainite (KA) receptors in the induction of NO production in the rat brain was examined after injection of kainate, non-NMDA receptor agonist, KA+6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), selective AMPA/KA receptor antagonist, or KA+2-amino-5-phosphonopentanoic acid (APV), selective NMDA receptor antagonist. Competitive glutamate receptor antagonists were injected with KA unilaterally into the CA3 region of the rat hippocampus. The accumulation of nitrite, the stable metabolite of NO, was measured by the Griess reaction at different times (5 min, 15 min, 2 h, 48 h and 7 days) in the ipsi- and contralateral hippocampus, forebrain cortex, striatum and cerebellum homogenates. The detected increase of NO production in distinct brain regions, which are functionally connected via afferents and efferents, suggests that these regions are affected by the injury. The effect of KA on nitrite production was blocked by the glutamate antagonists. Intrahippocampal KA+CNQX injection resulted in decrease of nitrite production, around control levels, in all tested brain structures. Significant decrease in nitrite levels was found only in comparison to KA-treated animals, i.e. the overall effect of selective AMPA/KA receptor antagonist was a decrease of KA-induced excitotoxicity. The accent effect of intrahippocampal KA+APV injection resulted, also, in decrease of nitrite production. However, this effect was detected after 5 min from the injection indicating the existence of an NMDA receptor-mediated component of basal nitrite production in physiological conditions and difference in mechanisms and time dynamics between CNQX and APV. The used antagonists showed same pattern in all tested brain structures. APV and CNQX both expressed sufficient neuroprotection in sense of reducing nitrite concentrations, but with differential effect in mechanisms and time dynamics. Our findings suggest that NMDA and AMPA/KA receptors are differentially involved in NO production.
Collapse
Affiliation(s)
- L Radenovic
- Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, p.f. 52, Studentski trg 16, 11000 Belgrade, Serbia and Montenegro.
| | | |
Collapse
|
17
|
Haga KK, Gregory LJ, Hicks CA, Ward MA, Beech JS, Bath PW, Williams SCR, O'Neill MJ. The neuronal nitric oxide synthase inhibitor, TRIM, as a neuroprotective agent: effects in models of cerebral ischaemia using histological and magnetic resonance imaging techniques. Brain Res 2004; 993:42-53. [PMID: 14642829 DOI: 10.1016/j.brainres.2003.08.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most neuroprotective compounds that appear promising in the pre-clinical phase of testing are subsequently dismissed as relatively ineffective when entered into large-scale clinical trials. Many pre-clinical studies of potential neuroprotective candidates evaluate efficacy in only one or possibly two different models of ischaemia. In this study we examined the effects of 1,2-trifluoromethylphenyl imidazole (TRIM), a novel neuronal nitric oxide synthase (nNOS) inhibitor, in three models of cerebral ischaemia (global gerbil, global rat and focal rat). In addition, to follow the progression of the pathology, we also compared traditional histology methods with more advanced magnetic resonance imaging (MRI) as endpoint measures for neurological damage and neuroprotection. TRIM (50 mg/kg i.p.) prevented ischaemia-induced hippocampal damage following global ischaemia in gerbils when administered before or immediately post-occlusion, but failed to protect when administration was delayed until 30 min post-occlusion. Further studies indicated that the compound (administered at 50 mg/kg, i.p., immediately after occlusion) also protected in a rat four-vessel occlusion (4-VO) model using both histological and diffusion-weighted (DW) imaging techniques. In a final study, TRIM (50 mg/kg i.p. 30 min after occlusion) provided a significant reduction in infarct volume at 4 and 24 h as measured using diffusion-weighted (DW) and proton density (PD)-weighted magnetic resonance imaging (MRI). This was confirmed using histological techniques. These studies confirm that nNOS inhibitors may have utility in stroke and provide evidence that combined magnetic resonance and histological methods can provide a powerful method of assessing neuronal damage in rodent models of cerebral ischaemia.
Collapse
Affiliation(s)
- Kristin K Haga
- Department of Clinical Neuroscience, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Shibuta S, Varathan S, Mashimo T. The neuroprotective effect of ONO-1714 on NMDA-mediated cytotoxicity in vitro. J Neurol Sci 2003; 215:31-6. [PMID: 14568125 DOI: 10.1016/s0022-510x(03)00180-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report the effects of a newly developed NOS inhibitor on the neurotoxicity induced by NMDA on cultured fetal rat cortical neurons. To date, three different isoforms of NOS have been characterized. It has been considered that both neuronal NOS and inducible NOS activities are detrimental to the ischemic brain, whereas endothelial NOS plays a prominent role in maintaining cerebral blood flow and prevents neuronal injury during ischemia. ONO-1714 is a newly developed competitive NOS inhibitor that has selective inhibitory potency for iNOS than eNOS. However, its effect on nNOS has not been investigated yet. In this study, we investigated the neuroprotective effect of ONO-1714 on NMDA-induced neurotoxicity in our established model of primary cultured cortical neurons of rat foetus. Cortical neurons (prepared from E16 rat foetuses) were used after 13-14 days in culture. The cells were exposed to 30 muM NMDA for 24 h in the culture. To evaluate the neuroprotective effects of NOS inhibitors, ONO-1714 and L-NAME, neurons were exposed to various concentrations of an NOS inhibitor with 30 muM NMDA. The NMDA induced neurotoxicity was significantly attenuated by ONO-1714 in all concentrations, but not in low to moderate concentrations of L-NAME. These findings demonstrate that the neuroprotective effect of ONO-1714 was more potent than L-NAME. Moreover, ONO-1714 has a strong inhibitory effect on nNOS and would be a powerful tool for the protection of neurons against cerebral ischemia.
Collapse
Affiliation(s)
- Satoshi Shibuta
- Department of Anesthesiology and Acute Critical Medicine, Graduate School of Medicine, Osaka University (D7), 2-2 Yamadaoka, Osaka 565-0871, Suita, Japan.
| | | | | |
Collapse
|
19
|
Hashiguchi A, Kawano T, Yano S, Morioka M, Hamada J, Sato T, Shirasaki Y, Ushio Y, Fukunaga K. The neuroprotective effect of a novel calmodulin antagonist, 3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1h-indazole dihydrochloride 3.5 hydrate, in transient forebrain ischemia. Neuroscience 2003; 121:379-86. [PMID: 14521996 DOI: 10.1016/s0306-4522(03)00490-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A novel calmodulin (CaM) antagonist DY-9760e, (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate), with an apparent neuroprotective effect in vivo, potently inhibits CaM-dependent nitric oxide synthase in situ. In the present study, we determined whether DY-9760e inhibits nitric oxide (NO) production and protein nitration by peroxynitrite (ONOO(-)) formation in the hippocampal CA1 region of gerbils after transient forebrain ischemia. In freely moving gerbils, NO production after 10-minute forebrain ischemia was monitored consecutively with in vivo brain microdialysis. Pretreatment with DY-9760e (50 mg/kg i.p.) significantly decreased the increased levels of NO(x)(-) (NO metabolites, NO(2)(-) plus NO(3)(-)) immediately after, 24 h after cerebral ischemia-reperfusion to the control levels of sham-operated animals. Western blot and immunohistochemical analyses using an anti-nitrotyrosine antibody as a marker of ONOO(-) formation indicated a marked increase in nitrotyrosine immunoreactivity in the pyramidal neurons of the CA1 region 2 h after reperfusion, and DY-9760e significantly inhibited increased nitrotyrosine immunoreactivity. Coincident with the inhibition of the NO production and protein tyrosine nitration, pretreatment with DY-9760e rescued the delayed neuronal death in the hippocampal CA1 region. These results suggest that the inhibitory effects of DY-9760e on the NO-ONOO(-) pathway partly account for its neuroprotective effects in cerebral ischemia.
Collapse
Affiliation(s)
- A Hashiguchi
- Department of Pharmacology, Kumamoto University School of Medicine, Kumamoto-city, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Irmak MK, Fadillioglu E, Sogut S, Erdogan H, Gulec M, Ozer M, Yagmurca M, Gozukara ME. Effects of caffeic acid phenethyl ester and alpha-tocopherol on reperfusion injury in rat brain. Cell Biochem Funct 2003; 21:283-9. [PMID: 12910483 DOI: 10.1002/cbf.1024] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oxygen-derived free radicals have been implicated in the pathogenesis of cerebral injury after ischaemia-reperfusion. Caffeic acid phenethyl ester (CAPE), an active component of propolis extract, exhibits antioxidant properties. The purpose of the present study was to investigate the effects of ischaemia and subsequent reperfusion on rat brain and to investigate the effects of two free radical scavengers, CAPE and alpha-tocopherol, on this in vivo model of cerebral injury. Ischaemia was induced by bilateral occlusion of the carotid arteries for 20 min and reperfusion was achieved by releasing the occlusion to restore the circulation for 20 min. Control rats underwent a sham operation. CAPE at 10 micromol kg(-1) or alpha-tocopherol at 25 micromol kg(-1) was administered intraperitoneally before reperfusion. Reperfusion led to significant increase in the activity of xanthine oxidase and higher malondialdehyde levels in the brain. Acute administration of both CAPE and alpha-tocopherol suppressed ischaemia-reperfusion-induced cerebral lipid peroxidation and injury, but CAPE seems to offer a better therapeutic advantage over alpha-tocopherol.
Collapse
Affiliation(s)
- M Kemal Irmak
- Department of Histology and Embryology, Gulhane Military Medical Academy, Ankara, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Radenovic L, Vasiljevic I, Selakovic V, Jovanovic M. 7-nitroindazole reduces nitrite concentration in rat brain after intrahippocampal kainate-induced seizure. Comp Biochem Physiol C Toxicol Pharmacol 2003; 135:443-50. [PMID: 12965189 DOI: 10.1016/s1532-0456(03)00150-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Kainic acid is an endogenous excitotoxin acting on glutamate receptors, that leads to neurotoxic damage resembling the alterations observed in some neurological disorders. Stimulation of glutamate receptors induces neuronal nitric oxide (NO) release, which in turn modulates glutamate transmission. NO may be a key mediator of excitotoxic neuronal injury in the central nervous system. We investigated the effects of 7-nitroindazole, a selective neuronal nitric oxide synthase inhibitor in vivo, on nitrite concentration after kainic acid injection (0.6 mg/ml, pH 7.2) unilaterally into the CA3 region of the rat hippocampus. The accumulation of nitrite, the stable metabolite of NO, was measured by the Griess reaction at different times (5 min, 15 min, 2 h, 48 h and 7 days) following kainate injection in the ipsilateral and contralateral hippocampus, forebrain cortex, striatum and cerebellum homogenates. 7-Nitroindazole (100 microM) can effectively inhibit NO synthesis in rat brain after kainate-induced intrahippocampal neurotoxicity and suppressed nitrite accumulation. The present results suggest that neuronal NO synthase inhibitors may be useful in the treatment of neurological diseases where excitotoxic mechanisms play a role.
Collapse
Affiliation(s)
- Lidija Radenovic
- Department of Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Studentski Trg 16, Belgrade 11000, Serbia and Montenegro.
| | | | | | | |
Collapse
|
22
|
Mishima K, Pu F, Kaneko T, Egashira N, Iwasaki K, Fujiwara M. Post-ischemic administration [correction of administeration] but not pre-ischemic administration [correction of administeration] of NG-nitro-L-arginine prevents spatial memory impairments and apoptosis by an inhibition of a delayed increase in NOx- in the hippocampus following repeated cerebral ischemia. Neuropharmacology 2003; 44:533-40. [PMID: 12646290 DOI: 10.1016/s0028-3908(02)00404-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present study, we investigated the effects of N(G)-nitro-L-arginine (L-NAME), an inhibitor of nitric oxide synthase, on repeated cerebral ischemia-induced impairment of spatial memory of the 8-arm radial maze in rats. Repeated ischemia (10 min ischemia x 2 times with 1 h interval) impaired the spatial memory in the 8-arm radial maze test and produced apoptosis in the hippocampus 7 days after final occlusion, and gradually increased the NO(x)(-) levels approximately 30-180 min after the second reperfusion. Post-ischemic administration of L-NAME at a dose of 50 mg/kg, i.p. 30 min following the second occlusion, significantly attenuated the repeated ischemia-induced impairment of spatial memory in the 8-arm radial maze test and suppressed apoptosis in the hippocampus, and also significantly suppressed a delayed increase in the NO(x)(-) levels induced by repeated ischemia. However, pre-ischemic administration of L-NAME at a dose of 50 mg/kg, i.p. 30 min before the first occlusion, caused about 90% mortality (the mortality rate of vehicle-treated group was 10%). These results suggest that the delayed generation of NO(x)(-) may cause spatial memory impairment and induction of apoptosis in the hippocampus in rats subjected to repeated ischemia.
Collapse
Affiliation(s)
- K Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Jiang MH, Kaku T, Hada J, Hayashi Y. Different effects of eNOS and nNOS inhibition on transient forebrain ischemia. Brain Res 2002; 946:139-47. [PMID: 12133603 DOI: 10.1016/s0006-8993(02)02870-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To clarify the functions of nitric oxide (NO) induced by either neuronal NO synthase (nNOS) or endothelial NO synthase (eNOS) after transient cerebral ischemia, we investigated the effects of L-N(5)-(1-iminoethyl)ornithine (L-NIO), a relatively selective eNOS inhibitor, and 7-nitroindazole (7-NI), a relatively selective nNOS inhibitor, on hippocampal dysfunction caused by cerebral ischemia. We measured mean arterial blood pressure (MABP), hippocampal blood flow, direct current (DC) potential, CA1 population spike (PS) and extracellular concentrations of glutamate from rat hippocampus after transient forebrain ischemia, which was induced by four-vessel occlusion for 10 min. L-NIO (20 mg/kg) and 7-NI (25 mg/kg) were administered intraperitoneally 20 min before ischemia. L-NIO, but not 7-NI, increased MABP before, during and after ischemia, compared with the vehicle group. 7-NI, but not L-NIO, reduced the amplitude of anoxic depolarization induced by ischemia. 7-NI recovered the PS amplitude in part 60 min after ischemia. 7-NI, but not L-NIO, reduced the ischemia-induced levels of glutamate. These results indicate that nNOS inhibition with 7-NI improves, at least in part, hippocampal dysfunction after ischemia, while eNOS inhibition with L-NIO worsens it.
Collapse
Affiliation(s)
- Min Hai Jiang
- Department of Physiology, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | | | | | | |
Collapse
|
24
|
Garnier Y, Löbbert T, Jensen A, Berger R. Lubeluzole pretreatment does not provide neuroprotection against transient global cerebral ischemia in fetal sheep near term. Pediatr Res 2002; 51:517-22. [PMID: 11919339 DOI: 10.1203/00006450-200204000-00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of the present study was to test the neuroprotective effect of the novel benzothiazol compound lubeluzole on neuronal cell damage in fetal sheep arising from global cerebral ischemia. Thirteen fetal sheep were prepared at a mean gestational age of 127 +/- 1 d (term is at 147 d). Six fetuses were treated with lubeluzole (0.33 mg/kg estimated body weight) before induction of global cerebral ischemia (-90, -60, and -30 min), while the remainder (n = 7) received solvent. Cerebral ischemia was induced by occluding both carotid arteries for 30 min. Cerebral blood flow was measured by injecting radio-labeled microspheres before (-90 min), during (+3 min and +27 min), and after (+40 min, +3 h, and +72 h) cerebral ischemia. Neuronal cell damage was assessed in the cerebrum and deeper brain structures by light microscopy. Values are given as means +/- SD. In control fetuses, blood flow to the cerebrum was reduced from 100 +/- 25 mL.100 g(-1) min(-1) to less than 20 mL.100 g(-1) min(-1) during ischemia. Shortly after ischemia, hyperperfusion occurred (217 +/- 66 mL.100 g(-1)min(-1)) followed by a tendency toward hypoperfusion (72 +/- 17 mL.100 g(-1) min(-1)) later on (+3 h). Significant differences in blood flow to the various brain structures between the control and study groups could not be observed. Neuronal cell damage was concentrated in the parasagittal regions of the cerebrum. Preischemic application of lubeluzole did not have any effect on the extent of neuronal cell damage. From these results, we conclude that pretreatment with lubeluzole fails to protect the brain of fetal sheep near term from injury after transient global cerebral ischemia. However, because the observation period lasted only 3 d, a possible effect of lubeluzole on pathophysiological mechanisms inducing delayed neuronal cell death cannot be fully excluded.
Collapse
Affiliation(s)
- Yves Garnier
- Department of Obstetrics and Gynecology, Ruhr-Universität Bochum, Bochum, Germany
| | | | | | | |
Collapse
|
25
|
Griffiths C, Garthwaite G, Goodwin DA, Garthwaite J. Dynamics of nitric oxide during simulated ischaemia-reperfusion in rat striatal slices measured using an intrinsic biosensor, soluble guanylyl cyclase. Eur J Neurosci 2002; 15:962-8. [PMID: 11918655 DOI: 10.1046/j.1460-9568.2002.01930.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) may act as a toxin in several neuropathologies, including the brain damage resulting from cerebral ischaemia. Rat striatal slices were used to determine the mechanism of enhanced NO release following simulated ischaemia and, for estimating the NO concentrations, the activity of guanylyl cyclase served as a biosensor. Exposure of the slices for 10 min to an oxygen- and glucose-free medium caused a 70% fall in cGMP levels. On recovery, cGMP increased 2-fold above basal, where it remained for 40 min before declining. The pattern of changes matched those of cGMP or NO oxidation products measured during and after brain ischaemia in vivo. The increase observed during the recovery period was blocked by inhibition of NO synthase or NMDA receptors and was curtailed by tetrodotoxin, implying that it was caused by glutamate release leading to activation of the NMDA receptor-NO synthase pathway. Calibration of the cGMP levels against NO-stimulated guanylyl cyclase yielded a basal NO concentration of 0.6 nm. The peak NO concentration achieved on recovery from simulated ischaemia was estimated as 0.8 nm. These values are compatible with the low micromolar concentrations of NO oxidation products (chiefly nitrate) found by microdialysis in vivo, providing the NO inactivation rate (forming nitrate) is accounted for. NO at a concentration around 1 nm is unlikely to be toxic to cells. However, if the NO inactivation mechanism were to fail (as it can) the NO production rate normally providing only subnanomolar NO could readily generate toxic (microM) NO concentrations.
Collapse
Affiliation(s)
- Charmaine Griffiths
- The Wolfson Institute of Biomedical Research, University College London, Gower Street, London, WC1E 6BT, UK
| | | | | | | |
Collapse
|
26
|
Rosenblum WI, Kontos HA, Wei EP. Evidence for a K(ATP) ion channel link in the inhibition of hypercapnic dilation of pial arterioles by 7-nitroindazole and tetrodotoxin. Eur J Pharmacol 2001; 417:203-15. [PMID: 11334852 DOI: 10.1016/s0014-2999(01)00899-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
7-Nitroindazole, an inhibitor of neuronal nitric oxide synthase, reportedly inhibits hypercapnic dilation, but tetrodotoxin, an inhibitor of neuronal transmission, reportedly does not. Thus, evidence does not uniformly support the hypothesis of a neurogenic link to the hypercapnic response. Others suggest the hypercapnic response is mediated by a K(ATP) ion channel. In the following studies, we observed that topically administered tetrodotoxin inhibited dilations produced by hypercapnia. In addition, topical tetrodotoxin and either topical or intraperitoneal 7-nitroindazole, inhibited dilations produced by the K(ATP) channel openers, cromakalim and pinacidil. Inhibition of hypercapnic dilation and inhibition of dilation by the openers of the K(ATP) channel was immediately reversed by either L-lysine or L-arginine, amino acids previously shown to facilitate opening of the channel. The data strongly supports the previous conclusion that there is a K(ATP) ion channel link in the response of pial arterioles to hypercapnia. The location of the channel is not established by these data, nor is it known whether the action of tetrodotoxin on the channel was direct or indirect.
Collapse
Affiliation(s)
- W I Rosenblum
- Department of Pathology (Neuropathology), Medical College of Virginia at Virginia Commonwealth University, Box 980017, Richmond, VA 23298-0017, USA.
| | | | | |
Collapse
|
27
|
Pinard E, Engrand N, Seylaz J. Dynamic cerebral microcirculatory changes in transient forebrain ischemia in rats: involvement of type I nitric oxide synthase. J Cereb Blood Flow Metab 2000; 20:1648-58. [PMID: 11129781 DOI: 10.1097/00004647-200012000-00004] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The diameter of surface microvessels and the erythrocyte velocity and flux through intraparenchymal capillaries in the parietal cortex were measured during transient global cerebral ischemia and reperfusion using laser-scanning confocal fluorescence microscopy in anesthetized rats. The role of nitric oxide (NO) from neurons in the microcirculatory changes was also investigated using 7-nitro-indazole (7-NI, 25 mg/kg, i.p.). Wistar rats (4 per group) equipped with a closed cranial window were given fluorescein isothiocyanate (FITC)-Dextran and FITC-labeled erythrocytes intravenously to respectively visualize the microvessels and the erythrocytes in the capillaries. Experiments were videorecorded on-line. Forebrains were made ischemic for 15 minutes and then reperfused for 120 minutes under the microscope. Ischemia was associated with a flattened EEG, a low persistent blood flow, and a transient leakage of fluorescein across the arteriole wall. Unclamping the carotid arteries led to immediate high blood flow in the arterioles, but it was not until 5 minutes later that the arterioles dilated significantly (181% +/- 27%) and erythrocyte velocity in the capillaries increased significantly (460% +/- 263%). Neither nonperfused capillaries nor erythrocyte capillary recruitment occurred. 7-Nitro-indazole significantly reduced the arteriole dilatation and prevented the increase in erythrocyte velocity and flux through capillaries in early reperfusion. 7-Nitroindazole had no influence on the fluorescein leakage. The current study suggests a partial role for NO released from neurons in the postischemic microcirculatory changes and provides new findings on the timing of arteriole dilatation and blood-brain barrier opening, and on erythrocyte capillary circulation in global ischemia.
Collapse
Affiliation(s)
- E Pinard
- Department of Cerebrovascular Research, CNRS UPR 646, University of Paris 7, France
| | | | | |
Collapse
|
28
|
O'Neill MJ, Murray TK, McCarty DR, Hicks CA, Dell CP, Patrick KE, Ward MA, Osborne DJ, Wiernicki TR, Roman CR, Lodge D, Fleisch JH, Singh J. ARL 17477, a selective nitric oxide synthase inhibitor, with neuroprotective effects in animal models of global and focal cerebral ischaemia. Brain Res 2000; 871:234-44. [PMID: 10899290 DOI: 10.1016/s0006-8993(00)02471-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present studies, we have evaluated the effects of N-[4-(2-¿[(3-Chlorophenyl)methyl]amino¿ethyl)phenyl]-2-thiophenecarbo ximidamide dihydrochloride (ARL 17477) on recombinant human neuronal NOS (nNOS) and endothelial NOS (eNOS). We then carried out pharmacokinetic studies and measured cortical nitric oxide synthase (NOS) inhibition to determine that the compound crossed the blood brain barrier. Finally, the compound was evaluated in a model of global ischaemia in the gerbil and two models of transient focal ischaemia in the rat. The IC(50) values for ARL 17477 on human recombinant human nNOS and eNOS were 1 and 17 microM, respectively. ARL 17477 (50 mg/kg i.p.) produced a significant reduction in the ischaemia-induced hippocampal damage following global ischaemia when administered immediately post-occlusion, but failed to protect when administration was delayed until 30 min post-occlusion. In the endothelin-1 model of focal ischaemia, ARL 17477 (1 mg/kg i.v.) significantly attenuated the infarct volume when administered at either 0, 1 or 2 h post-endothelin-1 (P<0.05). In the intraluminal suture model, ARL 17477 at both 1 and 3 mg/kg i.v. failed to reduce the infarct volume measured at 1, 3 or 7 days post-occlusion. These results demonstrate that ARL 17477 protects against global ischaemia in gerbils and provides some reduction in infarct volume following transient middle cerebral artery occlusion in rats, indicating that nNOS inhibition may be a useful treatment of ischaemic conditions.
Collapse
Affiliation(s)
- M J O'Neill
- Eli Lilly and Co. Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham, GU20 6PH, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Adachi N, Lei B, Soutani M, Arai T. Different roles of neuronal and endothelial nitric oxide synthases on ischemic nitric oxide production in gerbil striatum. Neurosci Lett 2000; 288:151-4. [PMID: 10876083 DOI: 10.1016/s0304-3940(00)01222-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The production of nitric oxide (NO) in gerbil striatum during ischemia and reperfusion was monitored by measuring total NO metabolites in dialysates, and the effects of 7-nitroindazole (7-NI), a selective inhibitor of neuronal NO synthase, and N(G)-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor of NO synthase, were examined. The effects of these agents on ischemic neuronal damage were histologically evaluated 7 days after transient ischemia for 5 or 10 min. 7-NI and L-NAME decreased the NO production to similar extents in non-ischemic gerbils. 7-NI inhibited the increased NO production after 5 min of ischemia, and partly attenuated the increase in NO production after 10 min of ischemia, but had no effect on the increase after 15 min of ischemia. L-NAME completely abolished the increased NO production after different durations of ischemia. The extent of ischemic neuronal damage by 5-min ischemia was aggravated by either 7-NI or L-NAME, while damage by 10-min ischemia was marked in all groups. These results indicate that neuronal and endothelial NO synthases make different contributions to the post-ischemic NO production and the histological outcomes in gerbil striatum.
Collapse
Affiliation(s)
- N Adachi
- Department of Anesthesiology and Resuscitology, Ehime University School of Medicine, Shitsukawa, Shigenobu-cho, Onsen-gun, 791-0295, Ehime, Japan
| | | | | | | |
Collapse
|
30
|
Chiueh CC, Andoh T, Lai AR, Lai E, Krishna G. Neuroprotective strategies in Parkinson's disease: protection against progressive nigral damage induced by free radicals. Neurotox Res 2000; 2:293-310. [PMID: 16787846 DOI: 10.1007/bf03033799] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Brain undergoes neurodegeneration when excess free radicals overwhelm antioxidative defense systems during senescence, head trauma and/or neurotoxic insults. A site-specific accumulation of ferrous citrate-iron complexes in the substantia nigra dopaminergic neurons could lead to exaggerated dopamine turnover, dopamine auto-oxidation, free radical generation, and oxidant stress. Eventually, this iron-catalyzed dopamine auto-oxidation results in the accumulation of neuromelanin, a progressive loss of nigral neurons, and the development of Parkinson's disease when brain dopamine depletion is greater than 80%. Emerging evidence indicates that free radicals such as hydroxyl radicals ((.-)OH) and nitric oxide ((.-)NO) may play opposite role in cell and animal models of parkinsonism. (.-)OH is a cytotoxic oxidant whereas oNO is an atypical neuroprotective antioxidant. (.-)NO and S-nitrosoglutathione (GSNO) protect nigral neurons against oxidative stress caused by 1-methyl-4-phenylpyridinium (MPP(+)), dopamine, ferrous citrate, hemoglobin, sodium nitroprusside and peroxynitrite. MPP(+), the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), increases the nigral uptake of iron complexes and dopamine overflow leading to the generation of (.-)OH, protein oxidation, lipid peroxidation, and associated retrograde degeneration. In addition to GSNO, MPP(+)-induced oxidative neurotoxicity can be prevented by antioxidants including selegiline, 7-nitroindazole, 17beta-estradiol, melatonin, alpha-phenyl-tert-butylnitrone and U78517F. Similar to selegiline, 7-nitroindazole is a MAO-B inhibitor, which blocks the bio-activation of MPTP and oxidative stress. Freshly prepared but not light exposed, (.-)NO-exhausted GSNO is about 100 times more potent than the classic antioxidant glutathione. Via S-nitrosylation, GSNO also inhibits proteolysis and cytotoxicity caused by caspases and HIV-1 protease. Furthermore, in addition to protection against serum deprivation stress, the induction of neuronal NOS1 in human cells increases tolerance to MPP(+)-induced neuro-toxicity since newly synthesized (.-)NO prevents apoptosis possibly through up-regulation of bcl-2 and down regulation of p66(shc). In conclusion, reactive oxygen species are unavoidable by-products of iron-catalyzed dopamine auto-oxidation, which can initiate lipid peroxidation, protein oxidation, DNA damage, and nigral loss, all of which can be prevented by endogenous and exogenous (.-)NO. Natural and man-made antioxidants can be employed as part of preventative or neuroprotective treatments in Parkinson's disease and perhaps dementia complexes as well. For achieving neuroprotection and neuro-rescue in early clinical parkinsonian stages, a cocktail therapy of multiple neuroprotective agents may be more effective than the current treatment with extremely high doses of a single antioxidative agent.
Collapse
Affiliation(s)
- C C Chiueh
- Unit on Neurodegeneration and Neuroprotection, Laboratory of Clinical Science, National Institute of Mental Health, NIH, Building 10, Room 3D-41, Bethesda, MD 20892-1264, USA.
| | | | | | | | | |
Collapse
|
31
|
Jiang MH, Kaku T, Hada J, Hayashi Y. 7-Nitroindazole reduces nitric oxide concentration in rat hippocampus after transient forebrain ischemia. Eur J Pharmacol 1999; 380:117-21. [PMID: 10513570 DOI: 10.1016/s0014-2999(99)00555-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the effects of 7-nitroindazole, a specific inhibitor of neuronal nitric oxide (NO) synthase, on NO concentration and on blood flow in rat hippocampus after transient forebrain ischemia which was induced by 4-vessel occlusion for 10 min. NO concentration was measured directly by an NO-selective electrode method. Hippocampal blood flow was also estimated by laser Doppler flowmetry. 7-Nitroindazole [0 (vehicle), 12.5, 25, 50 or 100 mg/kg] was administered intraperitoneally 20 min before ischemia. 7-Nitroindazole at any dose used did not affect basal NO levels before ischemia. 7-Nitroindazole (25, 50 and 100 mg/kg) reduced the NO concentration significantly during post-ischemic early reperfusion. Before 10 min of ischemia and during post-ischemic early reperfusion, there were no significant differences in hippocampal basal blood flow and reactive hyperemia between vehicle- and 7-nitroindazole-treated groups. These results demonstrate that the neuronal NO synthase inhibitor, 7-nitroindazole, can effectively inhibit NO synthesis in rat hippocampus during post-ischemic early reperfusion.
Collapse
Affiliation(s)
- M H Jiang
- Department of Physiology, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | |
Collapse
|