1
|
Gao A, Xie K, Gupta S, Ahmad G, Witting PK. Cyclic Nitroxide 4-Methoxy-Tempo May Decrease Serum Amyloid A-Mediated Renal Fibrosis and Reorganise Collagen Networks in Aortic Plaque. Int J Mol Sci 2024; 25:7863. [PMID: 39063104 PMCID: PMC11277023 DOI: 10.3390/ijms25147863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Acute-phase serum amyloid A (SAA) can disrupt vascular homeostasis and is elevated in subjects with diabetes, cardiovascular disease, and rheumatoid arthritis. Cyclic nitroxides (e.g., Tempo) are a class of piperidines that inhibit oxidative stress and inflammation. This study examined whether 4-methoxy-Tempo (4-MetT) inhibits SAA-mediated vascular and renal dysfunction. Acetylcholine-mediated vascular relaxation and aortic guanosine-3',5'-cyclic monophosphate (cGMP) levels both diminished in the presence of SAA. 4-MetT dose-dependently restored vascular function with corresponding increases in cGMP. Next, male ApoE-deficient mice were administered a vehicle (control, 100 µL PBS) or recombinant SAA (100 µL, 120 µg/mL) ± 4-MetT (at 15 mg/kg body weight via i.p. injection) with the nitroxide administered before (prophylaxis) or after (therapeutic) SAA. Kidney and hearts were harvested at 4 or 16 weeks post SAA administration. Renal inflammation increased 4 weeks after SAA treatment, as judged by the upregulation of IFN-γ and concomitant increases in iNOS, p38MAPK, and matrix metalloproteinase (MMP) activities and increased renal fibrosis (Picrosirius red staining) in the same kidneys. Aortic root lesions assessed at 16 weeks revealed that SAA enhanced lesion size (vs. control; p < 0.05), with plaque presenting with a diffuse fibrous cap (compared to the corresponding aortic root from control and 4-MetT groups). The extent of renal dysfunction and aortic lesion size was largely unchanged in 4-MetT-supplemented mice, although renal fibrosis diminished at 16 weeks, and aortic lesions presented with redistributed collagen networks. These outcomes indicate that SAA stimulates renal dysfunction through promoting the IFN-γ-iNOS-p38MAPK axis, manifesting as renal damage and enhanced atherosclerotic lesions, while supplementation with 4-MetT only affected some of these pathological changes.
Collapse
Affiliation(s)
| | | | | | | | - Paul K. Witting
- Redox Biology Group, Discipline of Pathology, Faculty of Medicine and Health, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (A.G.); (K.X.); (S.G.); (G.A.)
| |
Collapse
|
2
|
Ren YT, Tian HP, Xu JL, Liu MQ, Cai K, Chen SL, Ni XB, Li YR, Hou W, Chen LJ. Extensive genetic diversity of severe fever with thrombocytopenia syndrome virus circulating in Hubei Province, China, 2018-2022. PLoS Negl Trop Dis 2023; 17:e0011654. [PMID: 37721962 PMCID: PMC10538666 DOI: 10.1371/journal.pntd.0011654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/28/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV), an etiological agent causing febrile human disease was identified as an emerging tick-borne bunyavirus. The clinical disease characteristics and case fatality rates of SFTSV may vary across distinct regions and among different variant genotypes. From 2018 to 2022, we surveyed and recruited 202 severe fever with thrombocytopenia syndrome (SFTS) patients in Hubei Province, a high-incidence area of the epidemic, and conducted timely and systematic research on the disease characteristics, SFTSV diversity, and the correlation between virus genome variation and clinical diseases. Our study identified at least 6 genotypes of SFTSV prevalent in Hubei Province based on the analysis of the S, M, and L genome sequences of 88 virus strains. Strikingly, the dominant genotype of SFTSV was found to change during the years, indicating a dynamic shift in viral genetic diversity in the region. Phylogenetic analysis revealed the genetic exchange of Hubei SFTSV strains was relatively frequent, including 3 reassortment strains and 8 recombination strains. Despite the limited sample size, SFTSV C1 genotype may be associated with higher mortality compared to the other four genotypes, and the serum amyloid A (SAA) level, an inflammatory biomarker, was significantly elevated in these patients. Overall, our data summarize the disease characteristics of SFTSV in Hubei Province, highlight the profound changes in viral genetic diversity, and indicate the need for in-depth monitoring and exploration of the relationship between viral mutations and disease severity.
Collapse
Affiliation(s)
- Yu-ting Ren
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hong-pan Tian
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jia-le Xu
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Man-qing Liu
- Division of Virology, Wuhan Center for Disease Control & Prevention, Wuhan, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control & Prevention, Wuhan, China
| | - Shu-liang Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xue-bing Ni
- State Key Laboratory of Emerging Infectious Diseases and Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Yi-rong Li
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wei Hou
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
- School of Public Health, Wuhan University, Wuhan, China
| | - Liang-jun Chen
- State Key Laboratory of Virology/Department of Laboratory Medicine/Hubei Provincial Key Laboratory of Allergy and Immunology, Zhongnan Hospital/School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Avdeeva AS. Inflammatory markers in rheumatic diseases. RHEUMATOLOGY SCIENCE AND PRACTICE 2022. [DOI: 10.47360/1995-4484-2022-561-569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Immune-mediated rheumatic diseases (IMRDs) are a broad group of pathological conditions based on impaired immunological tolerance to one’s own tissues leading to inflammation and irreversible organ damage. Laboratory diagnosis of IMRDs includes a wide range of biomarkers (autoantibodies, acute phase proteins, cytokines, markers of endothelial damage, components of the complement system, immunoglobulins, cryoglobulins, lymphocyte subpopulations, indicators of bone metabolism, apoptosis markers, genetic markers, etc). One of the leading aspects of laboratory diagnosis of IMRDs is the study of the level of inflammation markers in the blood (erythrocyte sedimentation rate, C-reactive protein (CRP), serum amyloid protein (CAA), ferritin, procalcitonin, apolipoprotein AI, calprotectin, etc). The analysis of inflammation markers makes it possible to assess the disease activity, the nature of the progression and the prognosis of the outcomes of a chronic inflammatory process, as well as the effectiveness of the therapy. The review presents the latest data on the role of the most frequently studied inflammatory markers such as CRP, CAA and ferritin.
Collapse
|
4
|
Booyens RM, Engelbrecht AM, Strauss L, Pretorius E. To clot, or not to clot: The dilemma of hormone treatment options for menopause. Thromb Res 2022; 218:99-111. [PMID: 36030662 DOI: 10.1016/j.thromres.2022.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 12/01/2022]
Abstract
Untreated menopause may have serious health implications, but treatments can have dangerous side effects. We evaluate menopausal symptoms as well as available treatments -the routes of administration and their effect on blood coagulation. Menopausal females may experience hot flushes, vulva- and vaginal atrophy and osteoporosis. Many treatments are available to relieve these symptoms such as Conjugated Equine Estrogen and bioidentical hormones. The routes of administration include oral and transdermal. Hormones that are administered orally undergo a hepatic first pass metabolism. The by-products have a lower efficacy and possibly enhanced side effects. Furthermore, hormone treatments influence the coagulation cascade through coagulation factors or their regulators. Increased coagulation poses a risk for venous thromboembolism. Currently a definite conclusion on whether the side effects from hormone treatments exceed the risk of untreated menopause cannot be made. However, a more individualised approach to hormone treatments may be the most feasible solution to this dilemma.
Collapse
Affiliation(s)
- Renata M Booyens
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Ledivia Strauss
- Functional Medicine Practice, A1 Polo Village Offices, Kliprug Minor Rd, Val De Vie Winelands Lifestyle Estate, 7646, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
5
|
Visser MJE, Tarr G, Pretorius E. Thrombosis in Psoriasis: Cutaneous Cytokine Production as a Potential Driving Force of Haemostatic Dysregulation and Subsequent Cardiovascular Risk. Front Immunol 2021; 12:688861. [PMID: 34335591 PMCID: PMC8324086 DOI: 10.3389/fimmu.2021.688861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
Psoriasis (PsO) is a common T cell-mediated inflammatory disorder of the skin with an estimated prevalence of 2%. The condition manifests most commonly as erythematous plaques covered with scales. The aetiology of PsO is multifactorial and disease initiation involves interactions between environmental factors, susceptibility genes, and innate and adaptive immune responses. The underlying pathology is mainly driven by interleukin-17. In addition, various inflammatory mediators from specific T helper (TH) cell subsets, namely TH1, TH17, and TH22, are overexpressed in cutaneous lesions and may also be detected in the peripheral blood of psoriatic patients. Moreover, these individuals are also at greater risk, compared to the general population, of developing multiple comorbid conditions. Cardiovascular disease (CVD) has been recognised as a prominent comorbidity of PsO. A potential mechanism contributing to this association may be the presence of a hypercoagulable state in these individuals. Inflammation and coagulation are closely related. The presence of chronic, low-grade systemic inflammation may promote thrombosis – one of the major determinants of CVD. A pro-inflammatory milieu may induce the expression of tissue factor, augment platelet activity, and perturb the vascular endothelium. Altogether, these changes will result in a prothrombotic state. In this review, we describe the aetiology of PsO, as well as the pathophysiology of the condition. We also consider its relationship to CVD. Given the systemic inflammatory nature of PsO, we evaluate the potential contribution of prominent inflammatory mediators (implicated in PsO pathogenesis) to establishing a prothrombotic state in psoriatic patients.
Collapse
Affiliation(s)
- Maria J E Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| | - Gareth Tarr
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa.,Division of Rheumatology, Institute of Orthopaedics and Rheumatology, Winelands Mediclinic Orthopaedic Hospital, Stellenbosch, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
6
|
Visser MJE, Venter C, Roberts TJ, Tarr G, Pretorius E. Psoriatic disease is associated with systemic inflammation, endothelial activation, and altered haemostatic function. Sci Rep 2021; 11:13043. [PMID: 34158537 PMCID: PMC8219816 DOI: 10.1038/s41598-021-90684-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
Psoriasis is a chronic, immune-mediated inflammatory skin disease, affecting approximately 2% of the general population, which can be accompanied by psoriatic arthritis (PsA). The condition has been associated with an increased cardiovascular burden. Hypercoagulability is a potential underlying mechanism that may contribute to the increased risk of major cardiovascular events in psoriatic individuals. Whole blood samples were collected from 20 PsA patients and 20 healthy individuals. The concentrations of inflammatory molecules (C-reactive protein, serum amyloid A, soluble intercellular adhesion molecule-1, soluble vascular cell adhesion molecule-1, and soluble P-selectin) were determined by enzyme-linked immunosorbent assays. In addition, clotting efficiency was evaluated by thromboelastography. The fibrin network architecture was also assessed by scanning electron microscopy. Elevated levels of circulating inflammatory molecules were significantly associated with the presence of psoriatic disease. Furthermore, an increased tendency towards thrombus formation was significantly predictive of disease presence. Scanning electron microscopy revealed that fibrin clots were denser in psoriatic individuals, compared to healthy controls, with an increased fibrin fibre diameter associated with psoriatic disease. Our results add to the accumulating evidence of the systemic nature of psoriasis and the subsequent risk of cardiovascular comorbidities, potentially due to an acquired hypercoagulability. We suggest that haemostatic function should be monitored carefully in psoriatic patients that present with severe disease, due to the pre-eminent risk of developing thrombotic complications.
Collapse
Affiliation(s)
- Maria J E Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 MATIELAND, Stellenbosch, 7602, South Africa
| | - Chantelle Venter
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 MATIELAND, Stellenbosch, 7602, South Africa
| | - Timothy J Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 MATIELAND, Stellenbosch, 7602, South Africa.,Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK.,University College London Hospital NHS Foundation Trust, 250 Euston Road, London, NW1 2PB, UK
| | - Gareth Tarr
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 MATIELAND, Stellenbosch, 7602, South Africa.,Division of Rheumatology, Institute of Orthopaedics and Rheumatology, Winelands Mediclinic Orthopaedic Hospital, Stellenbosch University, Cape Town, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Private Bag X1 MATIELAND, Stellenbosch, 7602, South Africa.
| |
Collapse
|
7
|
Sorić Hosman I, Kos I, Lamot L. Serum Amyloid A in Inflammatory Rheumatic Diseases: A Compendious Review of a Renowned Biomarker. Front Immunol 2021; 11:631299. [PMID: 33679725 PMCID: PMC7933664 DOI: 10.3389/fimmu.2020.631299] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Serum amyloid A (SAA) is an acute phase protein with a significant importance for patients with inflammatory rheumatic diseases (IRD). The central role of SAA in pathogenesis of IRD has been confirmed by recent discoveries, including its involvement in the activation of the inflammasome cascade and recruitment of interleukin 17 producing T helper cells. Clinical utility of SAA in IRD was originally evaluated nearly half a century ago. From the first findings, it was clear that SAA could be used for evaluating disease severity and monitoring disease activity in patients with rheumatoid arthritis and secondary amyloidosis. However, cost-effective and more easily applicable markers, such as C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), overwhelmed its use in clinical practice. In the light of emerging evidences, SAA has been discerned as a more sensitive biomarker in a wide spectrum of IRD, especially in case of subclinical inflammation. Furthermore, a growing number of studies are confirming the advantages of SAA over many other biomarkers in predicting and monitoring response to biological immunotherapy in IRD patients. Arising scientific discoveries regarding the role of SAA, as well as delineating SAA and its isoforms as the most sensitive biomarkers in various IRD by recently developing proteomic techniques are encouraging the revival of its clinical use. Finally, the most recent findings have shown that SAA is a biomarker of severe Coronavirus disease 2019 (COVID-19). The aim of this review is to discuss the SAA-involving immune system network with emphasis on mechanisms relevant for IRD, as well as usefulness of SAA as a biomarker in various IRD. Therefore, over a hundred original papers were collected through an extensive PubMed and Scopus databases search. These recently arising insights will hopefully lead to a better management of IRD patients and might even inspire the development of new therapeutic strategies with SAA as a target.
Collapse
Affiliation(s)
- Iva Sorić Hosman
- Department of Pediatrics, Zadar General Hospital, Zadar, Croatia
| | - Ivanka Kos
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Lovro Lamot
- Division of Nephrology, Dialysis and Transplantation, Department of Pediatrics, University Hospital Centre Zagreb, Zagreb, Croatia.,Department of Pediatrics, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
8
|
Ammendola R, Parisi M, Esposito G, Cattaneo F. Pro-Resolving FPR2 Agonists Regulate NADPH Oxidase-Dependent Phosphorylation of HSP27, OSR1, and MARCKS and Activation of the Respective Upstream Kinases. Antioxidants (Basel) 2021; 10:antiox10010134. [PMID: 33477989 PMCID: PMC7835750 DOI: 10.3390/antiox10010134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Formyl peptide receptor 2 (FPR2) is involved in the pathogenesis of chronic inflammatory diseases, being activated either by pro-resolving or proinflammatory ligands. FPR2-associated signal transduction pathways result in phosphorylation of several proteins and in NADPH oxidase activation. We, herein, investigated molecular mechanisms underlying phosphorylation of heat shock protein 27 (HSP27), oxidative stress responsive kinase 1 (OSR1), and myristolated alanine-rich C-kinase substrate (MARCKS) elicited by the pro-resolving FPR2 agonists WKYMVm and annexin A1 (ANXA1). Methods: CaLu-6 cells or p22phoxCrispr/Cas9 double nickase CaLu-6 cells were incubated for 5 min with WKYMVm or ANXA1, in the presence or absence of NADPH oxidase inhibitors. Phosphorylation at specific serine residues of HSP27, OSR1, and MARCKS, as well as the respective upstream kinases activated by FPR2 stimulation was analysed. Results: Blockade of NADPH oxidase functions prevents WKYMVm- and ANXA1-induced HSP-27(Ser82), OSR1(Ser339) and MARCKS(Ser170) phosphorylation. Moreover, NADPH oxidase inhibitors prevent WKYMVm- and ANXA1-dependent activation of p38MAPK, PI3K and PKCδ, the kinases upstream to HSP-27, OSR1 and MARCKS, respectively. The same results were obtained in p22phoxCrispr/Cas9 cells. Conclusions: FPR2 shows an immunomodulatory role by regulating proinflammatory and anti-inflammatory activities and NADPH oxidase is a key regulator of inflammatory pathways. The activation of NADPH oxidase-dependent pro-resolving downstream signals suggests that FPR2 signalling and NADPH oxidase could represent novel targets for inflammation therapeutic intervention.
Collapse
Affiliation(s)
| | | | | | - Fabio Cattaneo
- Correspondence: ; Tel.: +39-081-746-2036; Fax: +39-081-746-4359
| |
Collapse
|
9
|
Abuduhalike R, Sun J, Zhao L, Mahemuti A. Correlation study of venous thromboembolism with SAA, IL-1, and TNF-a levels and gene polymorphisms in Chinese population. J Thorac Dis 2019; 11:5527-5534. [PMID: 32030272 DOI: 10.21037/jtd.2019.11.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background The relationship between inflammation and venous thromboembolism (VTE) has not been fully elucidated. Methods Based on our previous studies, we detected the plasma levels of serum amyloid A protein (SAA), interleukin-1 (IL-1), and tumor necrosis factor-a (TNF-a) and their 8 gene polymorphisms by ELISA and a multiplex ligation detection reaction (iMLDR) method in 284 patients with VTE and 268 healthy controls. Results Levels of SAA (P=0.032), IL-1 (P=0.045), and TNF-a (P=0.040) were significantly higher in the VTE group than in the control group. Recessive model analysis of the IL-1 rs1800587 variant showed that the risk of VTE in patients with the GG + GA genotype was significantly higher than that in patients with the AA genotype [odds ratio (OR): 4.444; 95% CI: 1.466-13.470]. Recessive model analysis of the IL-1 rs2234650 polymorphism showed that the risk of VTE in patients with the CC + CT genotype was significantly lower than that in patients with the TT genotype (OR: 0.500; 95% CI: 0.268-0.934). Multivariate logistic regression analysis showed that the TT genotype at IL-1 rs2234650 (OR: 2.086; 95% CI: 1.091-3.985) was an independent risk factor for VTE. The AA genotype of IL-1 rs1800587 (OR: 0.226; 95% CI: 0.074-0.890) was an independent protective factor against VTE. Conclusions In summary, an intrinsic relationship may exist between inflammatory activation and the occurrence of VTE.
Collapse
Affiliation(s)
- Refukaiti Abuduhalike
- Cardiovascular Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830028, China
| | - Juan Sun
- Cardiovascular Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830028, China
| | - Li Zhao
- Cardiovascular Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830028, China
| | - Ailiman Mahemuti
- Cardiovascular Department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830028, China
| |
Collapse
|
10
|
Chemotactic Ligands that Activate G-Protein-Coupled Formylpeptide Receptors. Int J Mol Sci 2019; 20:ijms20143426. [PMID: 31336833 PMCID: PMC6678346 DOI: 10.3390/ijms20143426] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/14/2022] Open
Abstract
Leukocyte infiltration is a hallmark of inflammatory responses. This process depends on the bacterial and host tissue-derived chemotactic factors interacting with G-protein-coupled seven-transmembrane receptors (GPCRs) expressed on the cell surface. Formylpeptide receptors (FPRs in human and Fprs in mice) belong to the family of chemoattractant GPCRs that are critical mediators of myeloid cell trafficking in microbial infection, inflammation, immune responses and cancer progression. Both murine Fprs and human FPRs participate in many patho-physiological processes due to their expression on a variety of cell types in addition to myeloid cells. FPR contribution to numerous pathologies is in part due to its capacity to interact with a plethora of structurally diverse chemotactic ligands. One of the murine Fpr members, Fpr2, and its endogenous agonist peptide, Cathelicidin-related antimicrobial peptide (CRAMP), control normal mouse colon epithelial growth, repair and protection against inflammation-associated tumorigenesis. Recent developments in FPR (Fpr) and ligand studies have greatly expanded the scope of these receptors and ligands in host homeostasis and disease conditions, therefore helping to establish these molecules as potential targets for therapeutic intervention.
Collapse
|
11
|
Vallejo A, Chami B, Dennis JM, Simone M, Ahmad G, Abdo AI, Sharma A, Shihata WA, Martin N, Chin-Dusting JPF, de Haan JB, Witting PK. NFκB Inhibition Mitigates Serum Amyloid A-Induced Pro-Atherogenic Responses in Endothelial Cells and Leukocyte Adhesion and Adverse Changes to Endothelium Function in Isolated Aorta. Int J Mol Sci 2018; 20:ijms20010105. [PMID: 30597899 PMCID: PMC6337750 DOI: 10.3390/ijms20010105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023] Open
Abstract
The acute phase protein serum amyloid A (SAA) is associated with endothelial dysfunction and early-stage atherogenesis. Stimulation of vascular cells with SAA increases gene expression of pro-inflammation cytokines and tissue factor (TF). Activation of the transcription factor, nuclear factor kappa-B (NFκB), may be central to SAA-mediated endothelial cell inflammation, dysfunction and pro-thrombotic responses, while targeting NFκB with a pharmacologic inhibitor, BAY11-7082, may mitigate SAA activity. Human carotid artery endothelial cells (HCtAEC) were pre-incubated (1.5 h) with 10 μM BAY11-7082 or vehicle (control) followed by SAA (10 μg/mL; 4.5 h). Under these conditions gene expression for TF and Tumor Necrosis Factor (TNF) increased in SAA-treated HCtAEC and pre-treatment with BAY11-7082 significantly (TNF) and marginally (TF) reduced mRNA expression. Intracellular TNF and interleukin 6 (IL-6) protein also increased in HCtAEC supplemented with SAA and this expression was inhibited by BAY11-7082. Supplemented BAY11-7082 also significantly decreased SAA-mediated leukocyte adhesion to apolipoprotein E-deficient mouse aorta in exvivo vascular flow studies. In vascular function studies, isolated aortic rings pre-treated with BAY11-7082 prior to incubation with SAA showed improved endothelium-dependent vasorelaxation and increased vascular cyclic guanosine monophosphate (cGMP) content. Together these data suggest that inhibition of NFκB activation may protect endothelial function by inhibiting the pro-inflammatory and pro-thrombotic activities of SAA.
Collapse
Affiliation(s)
- Abigail Vallejo
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Belal Chami
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Joanne M Dennis
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Martin Simone
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Gulfam Ahmad
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Adrian I Abdo
- Heart Research Institute, Newton, NSW 2053, Australia.
| | - Arpeeta Sharma
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
| | - Waled A Shihata
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Medicine, Monash University, Victoria 3500, Australia.
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University £Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | - Nathan Martin
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Jaye P F Chin-Dusting
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Medicine, Monash University, Victoria 3500, Australia.
- Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University £Department of Pharmacology, Monash University, Victoria 3800, Australia.
| | - Judy B de Haan
- Baker Heart and Diabetes Institute, Victoria 3004, Australia.
- Department of Immunology, Monash University, Victoria 3004, Australia.
- Department of Physiology, Anatomy & Microbiology, School of Life Sciences, La Trobe University, Bundoora, VIC 3083, Australia.
| | - Paul K Witting
- Discipline of Pathology, Sydney Medical School, The University of Sydney, Camperdown, NSW 2006, Australia.
| |
Collapse
|
12
|
Li T, Hara H, Ezzelarab MB, Long C, Long Y, Wang Y, Cooper DKC, Iwase H. Serum amyloid A as a marker of inflammation in xenotransplantation. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218780046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence indicates that inflammation plays a role in pig-to-baboon organ xenotransplantation. We have evaluated serum amyloid A (SAA) as a marker of inflammation in baboons with various pig xenografts. We measured SAA levels in recipient baboons with pig artery patch (n = 5), life-supporting kidney (n = 5), heterotopic heart (n = 2), or hepatocyte (n = 1) grafts and using an OmniChek-SAA for Inflammation & Infection kit. C-reactive protein (CRP), another marker of inflammation (e.g. D-dimer), was also measured.SAA indicated increased inflammation when baboons developed consumptive coagulopathy (CC; e.g. thrombocytopenia) or infection. SAA also indicated that treatment of the recipient with tocilizumab reduced inflammation. There was significant positive correlation between SAA with changes in CRP (r = 0.6, P < 0.05) and with D-dimer (r = 0.8, P < 0.01), but SAA appeared at times to more accurately reflect the clinical state of the baboon. In sum, measurement of SAA proved simple and quick, and indicated (1) significant inflammation when CC or infection was present, and (2) reduced inflammation when treatment with tocilizumab was administered.
Collapse
Affiliation(s)
- Tao Li
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
- ZhuZhou Central Hosptial, ZhuZhou, Hunan, China
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed B Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yongqi Long
- ZhuZhou Central Hosptial, ZhuZhou, Hunan, China
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Hengyang, Hunan, China
| | - David KC Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
13
|
Zhao J, Piao X, Wu Y, Xu P, He Z. Association of SAA gene polymorphism with ischemic stroke in northern Chinese Han population. J Neurol Sci 2017; 380:101-105. [PMID: 28870546 DOI: 10.1016/j.jns.2017.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/15/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Serum amyloid A protein (SAA) is known as an inflammatory factor and an apolipoprotein that can replace apolipoprotein A-I/II components as the major apolipoprotein of high-density lipoprotein (HDL), which is related to atherosclerosis. The present study is aimed to evaluate whether the SAA gene polymorphism is involved in ischemic stroke in northern Chinese Han population. METHODS In a case-control study, the participants included 396 patients (239 males, 157 females) with ischemic stroke and 360 healthy subjects (211 males, 149 females). The rs12218 polymorphism of the SAA gene was analyzed by polymerase chain reaction and restriction fragment length polymorphism, while the rs2468844 polymorphism of the SAA gene was analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RESULTS The frequencies of the CC genotype and the C allele of rs12218 were higher in participants with ischemic stroke than in the control group (P=0.020 in males, P=0.001 in large-artery atherosclerosis group, LAA). The frequencies of the AG genotype and the G allele of rs2468844 were higher in participants with ischemic stroke than in the control group (P=0.040 in males, P=0.011 in large-artery atherosclerosis group). Multiple logistic regression analysis revealed the significance of the rs12218 in males and in large-artery atherosclerosis group after adjustment for confounding factors. CONCLUSION The rs12218 polymorphism of the SAA gene was associated with ischemic stroke in males and in patients with large-artery atherosclerosis group in northern Chinese Han population.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Xiangyu Piao
- Department of Neurology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Yue Wu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| | - Ping Xu
- Department of Neurology, The Fifth People's Hospital of Dalian, Dalian 116021, China
| | - Zhiyi He
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
14
|
Li XK, Yang ZD, Du J, Xing B, Cui N, Zhang PH, Li H, Zhang XA, Lu QB, Liu W. Endothelial activation and dysfunction in severe fever with thrombocytopenia syndrome. PLoS Negl Trop Dis 2017; 11:e0005746. [PMID: 28806760 PMCID: PMC5581191 DOI: 10.1371/journal.pntd.0005746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/01/2017] [Accepted: 06/25/2017] [Indexed: 12/07/2022] Open
Abstract
Background Pathogenesis of severe fever with thrombocytopenia syndrome (SFTS) has not been well described yet. Recent studies indicate that SFTSV could replicate in endothelial cells. Here we performed a case-control study to determine whether endothelial activation/dysfunction occurred in SFTSV infection and to identify the biomarkers reflecting endothelial dysfunction. Methodology/Principal findings In a case-control study of 134 SFTS patients and 68 healthy controls, serum levels of plasminogen activator inhibitor 1, tissue plasminogen activator, P-selectin, platelet endothelial cell adhesion molecular, CD40 ligand, E-selectin, vascular endothelial growth factor A, serum amyloid antigen 1 (SAA-1) and vascular cell adhesion molecular 1 were significantly enhanced in the patients than the controls (all P<0.05), indicating the occurrence of endothelial activation/dysfunction in SFTS. The intercellular adhesion molecular 1 (ICAM-1) and SAA-1 at the convalescent phase were also significantly associated with severe patients, after adjusting for the potential confounders. The odds ratio was estimated to be 3.364 (95% CI 1.074–10.534) for ICAM-1, and 1.881 (95% CI 1.166–3.034) for SAA-1, respectively. Cutoff value of 1.1×107 pg/mL SAA-1 or 1.2×106 pg/mL ICAM-1 were found to have moderate power of predicting fatal cases. Conclusions The endothelial dysfunction may be one of the pathogenic mechanism of SFTS. The serum levels of ICAM-1 and SAA-1 might be used to predict adverse outcome. Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne viral disease and first reported in the rural areas of China. Pathogenesis of the disease has not been well described yet. Recent studies indicated that SFTSV replicated in endothelial cells. So, we performed a case-control study to explore whether endothelial activation/dysfunction occurred in SFTSV infection and to identify biomarkers reflecting endothelial dysfunction. We found that the occurrence of endothelial activation/dysfunction in severe fever with thrombocytopenia syndrome and the serum levels of ICAM-1 and SAA-1 might be used to predict adverse outcome.
Collapse
Affiliation(s)
- Xiao-Kun Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Zhen-Dong Yang
- The 154 Hospital, People’s Liberation Army, Xinyang, P. R. China
| | - Juan Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Bo Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Ning Cui
- The 154 Hospital, People’s Liberation Army, Xinyang, P. R. China
| | - Pan-He Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Hao Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, P. R. China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, P. R. China
- * E-mail: (WL); (QBL)
| | - Wei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, P. R. China
- * E-mail: (WL); (QBL)
| |
Collapse
|
15
|
Jiang TT, Shi LY, Wei LL, Li X, Yang S, Wang C, Liu CM, Chen ZL, Tu HH, Li ZJ, Li JC. Serum amyloid A, protein Z, and C4b-binding protein β chain as new potential biomarkers for pulmonary tuberculosis. PLoS One 2017; 12:e0173304. [PMID: 28278182 PMCID: PMC5344400 DOI: 10.1371/journal.pone.0173304] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/17/2017] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to discover novel biomarkers for pulmonary tuberculosis (TB). Differentially expressed proteins in the serum of patients with TB were screened and identified by iTRAQ-two dimensional liquid chromatography tandem mass spectrometry analysis. A total of 79 abnormal proteins were discovered in patients with TB compared with healthy controls. Of these, significant differences were observed in 47 abnormally expressed proteins between patients with TB or pneumonia and chronic obstructive pulmonary disease (COPD). Patients with TB (n = 136) exhibited significantly higher levels of serum amyloid A (SAA), vitamin K-dependent protein Z (PROZ), and C4b-binding protein β chain (C4BPB) than those in healthy controls (n = 66) (P<0.0001 for each) albeit significantly lower levels compared with those in patients with pneumonia (n = 72) (P<0.0001 for each) or COPD (n = 72) (P<0.0001, P<0.0001, P = 0.0016, respectively). After 6 months of treatment, the levels of SAA and PROZ were significantly increased (P = 0.022, P<0.0001, respectively), whereas the level of C4BPB was significantly decreased (P = 0.0038) in treated TB cases (n = 72). Clinical analysis showed that there were significant differences in blood clotting and lipid indices in patients with TB compared with healthy controls, patients with pneumonia or COPD, and treated TB cases (P<0.05). Correlation analysis revealed significant correlations between PROZ and INR (rs = 0.414, P = 0.044), and between C4BPB and FIB (rs = 0.617, P = 0.0002) in patients with TB. Receiver operating characteristic curve analysis revealed that the area under the curve value of the diagnostic model combining SAA, PROZ, and C4BPB to discriminate the TB group from the healthy control, pneumonia, COPD, and cured TB groups was 0.972, 0.928, 0.957, and 0.969, respectively. Together, these results suggested that SAA, PROZ, and C4BPB may serve as new potential biomarkers for TB. Our study may thus provide experimental data for the differential diagnosis of TB.
Collapse
Affiliation(s)
- Ting-Ting Jiang
- South China University of Technology School of Medicine, Guangzhou, P.R. China
| | - Li-Ying Shi
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, P.R. China
| | - Li-Liang Wei
- Department of Pneumology, Shaoxing Municipal Hospital, Shaoxing, P.R. China
| | - Xiang Li
- Key Laboratory of Gastroenteropathy, Zhejiang Province People’s Hospital, Hangzhou, China
| | - Su Yang
- Institute of Cell Biology, Zhejiang University, Hangzhou, P.R. China
| | - Chong Wang
- Institute of Cell Biology, Zhejiang University, Hangzhou, P.R. China
| | - Chang-Ming Liu
- Institute of Cell Biology, Zhejiang University, Hangzhou, P.R. China
| | - Zhong-Liang Chen
- Institute of Cell Biology, Zhejiang University, Hangzhou, P.R. China
| | - Hui-Hui Tu
- Institute of Cell Biology, Zhejiang University, Hangzhou, P.R. China
| | - Zhong-Jie Li
- Institute of Cell Biology, Zhejiang University, Hangzhou, P.R. China
| | - Ji-Cheng Li
- South China University of Technology School of Medicine, Guangzhou, P.R. China
- Institute of Cell Biology, Zhejiang University, Hangzhou, P.R. China
- * E-mail:
| |
Collapse
|
16
|
Serum amyloid A stimulates vascular endothelial growth factor receptor 2 expression and angiogenesis. J Physiol Biochem 2015; 72:71-81. [DOI: 10.1007/s13105-015-0462-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
|
17
|
Yang X, Li L, Liu J, Lv B, Chen F. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-κB and AP-1. Thromb Res 2015; 137:211-218. [PMID: 26476743 DOI: 10.1016/j.thromres.2015.10.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/02/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022]
Abstract
Extracellular histones have been recognized recently as proinflammatory mediators; they are released from dying cells in response to inflammatory challenge, contributing to endothelial cell dysfunction, thrombin formation, organ failure, and death during sepsis. Clinical studies suggest that the plasma concentration of the histone-DNA complex is correlated with the severity of DIC and is a poor independent prognostic marker in sepsis. In addition, platelet activation stimulates thrombus formation. Whether histones contribute to procoagulant activity in other ways remains elusive. In this study, we confirmed that histones induce tissue factor (TF) expression in a concentration- and time-dependent manner in vascular endothelial cells (ECs) and macrophages. However, histones did not affect TF pathway inhibitor expression. Moreover, blocking the cell surface receptors TLR4 and TLR2 with specific neutralizing antibodies significantly reduced histone-induced TF expression. Furthermore, histones enhanced the nuclear translocation of NF-κB (c-Rel/p65) and AP-1 expression in a time-dependent manner in ECs. Mutating NF-κB and AP-1 significantly reduced histone-induced TF expression. Altogether, our experiments suggest that histone induces TF expression in ECs via cell surface receptors TLR4 and TLR2, simultaneously depending on the activation of the transcription factors NF-κB and AP-1.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Haematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Lin Li
- Department of Haematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Jin Liu
- Department of Haematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Ben Lv
- Department of Haematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Fangping Chen
- Department of Haematology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, PR China; Department of Hemotology Xiangya Hospital, Central South University Changsha, Hunan 410078, PR China.
| |
Collapse
|
18
|
Toll-like receptor 9 signaling regulates tissue factor and tissue factor pathway inhibitor expression in human endothelial cells and coagulation in mice. Crit Care Med 2015; 43:e179-89. [PMID: 25855902 PMCID: PMC4431678 DOI: 10.1097/ccm.0000000000001005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Supplemental Digital Content is available in the text. Objective: Bacterial DNA (CpG DNA) persists in tissues and blood under pathological conditions that are associated with enhanced intravascular coagulation. Toll-like receptor 9 recognizes CpG DNA and elicits innate and adoptive immunity, yet the impact of CpG DNA on coagulation has not been studied. In this study, we investigated the effects of CpG DNA on the expression and activity of tissue factor, a key initiator of coagulation and tissue factor pathway inhibitor in human coronary artery endothelial cells and on coagulation in mice. Design: Controlled in vitro and in vivo studies. Setting: University research laboratory. Subjects: Cultured human coronary artery endothelial cell, wild-type mice, and TLR9-deficient mice. Interventions: Human coronary artery endothelial cell was challenged with CpG DNA, and tissue factor and tissue factor pathway inhibitor expression and activity were assessed. In mice, the effects of CpG DNA on bleeding time and plasma levels of thrombin-antithrombin complexes and tissue factor were measured. Measurements and Main Results: We found that CpG DNA, but not eukaryotic DNA, evoked marked nuclear factor-κB-mediated increases in tissue factor expression at both messenger RNA and protein levels, as well as in tissue factor activity. Conversely, CpG DNA significantly reduced tissue factor pathway inhibitor transcription, secretion, and activity. Inhibition of Toll-like receptor 9 with a telomere-derived Toll-like receptor 9 inhibitory oligonucleotide or transient Toll-like receptor 9 knockdown with small interfering RNA attenuated human coronary artery endothelial cell responses to CpG DNA. In wild-type mice, CpG DNA shortened the bleeding time parallel with dramatic increases in plasma thrombin-antithrombin complex and tissue factor levels. Pretreatment with inhibitory oligonucleotide or anti-tissue factor antibody or genetic deletion of TLR9 prevented these changes, whereas depleting monocytes with clodronate resulted in a modest partial inhibition. Conclusions: Our findings demonstrate that bacterial DNA through Toll-like receptor 9 shifted the balance of tissue factor and tissue factor pathway inhibitor toward procoagulant phenotype in human coronary artery endothelial cells and activated blood coagulation in mice. Our study identifies Toll-like receptor 9 inhibitory oligonucleotides as potential therapeutic agents for the prevention of coagulation in pathologies where bacterial DNA may abundantly be present.
Collapse
|
19
|
Serum amyloid A receptor blockade and incorporation into high-density lipoprotein modulates its pro-inflammatory and pro-thrombotic activities on vascular endothelial cells. Int J Mol Sci 2015; 16:11101-24. [PMID: 25988387 PMCID: PMC4463692 DOI: 10.3390/ijms160511101] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/25/2015] [Accepted: 04/27/2015] [Indexed: 02/07/2023] Open
Abstract
The acute phase protein serum amyloid A (SAA), a marker of inflammation, induces expression of pro-inflammatory and pro-thrombotic mediators including ICAM-1, VCAM-1, IL-6, IL-8, MCP-1 and tissue factor (TF) in both monocytes/macrophages and endothelial cells, and induces endothelial dysfunction—a precursor to atherosclerosis. In this study, we determined the effect of pharmacological inhibition of known SAA receptors on pro-inflammatory and pro-thrombotic activities of SAA in human carotid artery endothelial cells (HCtAEC). HCtAEC were pre-treated with inhibitors of formyl peptide receptor-like-1 (FPRL-1), WRW4; receptor for advanced glycation-endproducts (RAGE), (endogenous secretory RAGE; esRAGE) and toll-like receptors-2/4 (TLR2/4) (OxPapC), before stimulation by added SAA. Inhibitor activity was also compared to high-density lipoprotein (HDL), a known inhibitor of SAA-induced effects on endothelial cells. SAA significantly increased gene expression of TF, NFκB and TNF and protein levels of TF and VEGF in HCtAEC. These effects were inhibited to variable extents by WRW4, esRAGE and OxPapC either alone or in combination, suggesting involvement of endothelial cell SAA receptors in pro-atherogenic gene expression. In contrast, HDL consistently showed the greatest inhibitory action, and often abrogated SAA-mediated responses. Increasing HDL levels relative to circulating free SAA may prevent SAA-mediated endothelial dysfunction and ameliorate atherogenesis.
Collapse
|
20
|
Association of selenoprotein S gene polymorphism with ischemic stroke in a Chinese case–control study. Blood Coagul Fibrinolysis 2015; 26:131-5. [DOI: 10.1097/mbc.0000000000000202] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
Lakota K, Mrak-Poljsak K, Bozic B, Tomsic M, Sodin-Semrl S. Serum amyloid A activation of human coronary artery endothelial cells exhibits a neutrophil promoting molecular profile. Microvasc Res 2013; 90:55-63. [PMID: 23938271 DOI: 10.1016/j.mvr.2013.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Serum amyloid A (SAA) has been shown to be an active participant in atherosclerosis and cardiovascular diseases. SAA-stimulated human coronary artery endothelial cells (HCAEC) were reported to release pro-inflammatory cytokines, chemokines and adhesion molecules; however it remains unclear which putative SAA receptors are present in these cells and how they act. We investigated the effects of inflammatory stimuli on the expression of SAA receptors, signaling pathways and molecular profiles in HCAEC. METHODOLOGY/PRINCIPLE FINDINGS HCAEC were cultured in vitro and stimulated with SAA (1000nM) or IL-1β (1000pg/ml). Expression of mRNA was determined by qPCR, and expression and quantification of proteins were assessed by dot array blots and ELISA, respectively. Protein phosphorylation was determined by dot blot arrays and Western blots. We report that all potential SAA receptors tested (FPR2/ALX, RAGE, TANIS, TLR2, TLR4 and CLA-1/hSR-B1) are expressed in HCAEC. Importantly, IL-1β or SAA significantly increased solely the expression of the innate immune receptor TLR2. SAA upregulated the phosphorylation of ERK1/2, NF-κB (p65, p105) and JNK, as well as expression/release of IL-6, IL-8, G-CSF, GM-CSF, ICAM-1 and VCAM-1, all potent molecules involved in neutrophil-related activities. A TLR2-dependent positive feedback mechanism of SAA expression was found. CONCLUSION/SIGNIFICANCE SAA stimulated responses in HCAEC target neutrophil rather than monocyte/macrophage activation.
Collapse
Affiliation(s)
- Katja Lakota
- University Medical Centre, Department of Rheumatology, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
22
|
Chung YM, Goyette J, Tedla N, Hsu K, Geczy CL. S100A12 suppresses pro-inflammatory, but not pro-thrombotic functions of serum amyloid A. PLoS One 2013; 8:e62372. [PMID: 23638054 PMCID: PMC3634854 DOI: 10.1371/journal.pone.0062372] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/20/2013] [Indexed: 12/15/2022] Open
Abstract
S100A12 is elevated in the circulation in patients with chronic inflammatory diseases and recent studies indicate pleiotropic functions. Serum amyloid A induces monocyte cytokines and tissue factor. S100A12 did not stimulate IL-6, IL-8, IL-1β or TNF-α production by human peripheral blood mononuclear cells but low amounts consistently reduced cytokine mRNA and protein levels induced by serum amyloid A, by ∼49% and ∼46%, respectively. However, S100A12 did not affect serum amyloid A-induced monocyte tissue factor. In marked contrast, LPS-induced cytokines or tissue factor were not suppressed by S100A12. S100A12 did not alter cytokine mRNA stability or the cytokine secretory pathway. S100A12 and serum amyloid A did not appear to form complexes and although they may have common receptors, suppression was unlikely via receptor competition. Serum amyloid A induces cytokines via activation of NF-κB and the MAPK pathways. S100A12 reduced serum amyloid A-, but not LPS-induced ERK1/2 phosphorylation to baseline. It did not affect JNK or p38 phosphorylation or the NF-κB pathway. Reduction in ERK1/2 phosphorylation by S100A12 was unlikely due to changes in intracellular reactive oxygen species, Ca2+ flux or to recruitment of phosphatases. We suggest that S100A12 may modulate sterile inflammation by blunting pro-inflammatory properties of lipid-poor serum amyloid A deposited in chronic lesions where both proteins are elevated as a consequence of macrophage activation.
Collapse
Affiliation(s)
- Yuen Ming Chung
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Jesse Goyette
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Nicodemus Tedla
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Kenneth Hsu
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Carolyn L. Geczy
- Inflammation and Infection Research Centre, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
23
|
Deguchi H, Elias DJ, Navarro S, España F, Griffin JH. Elevated serum amyloid A is associated with venous thromboembolism. Thromb Haemost 2012; 109:358-9. [PMID: 23255027 DOI: 10.1160/th12-10-0722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/14/2012] [Indexed: 12/28/2022]
|
24
|
Serum Amyloid A Levels Associated with Gastrointestinal Manifestations in Henoch-Schönlein Purpura. Inflammation 2012; 35:1251-5. [DOI: 10.1007/s10753-012-9435-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Dong Z, An F, Wu T, Zhang C, Zhang M, Zhang Y, An G, An F. PTX3, a key component of innate immunity, is induced by SAA via FPRL1-mediated signaling in HAECs. J Cell Biochem 2011; 112:2097-105. [PMID: 21465531 DOI: 10.1002/jcb.23128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Serum amyloid A (SAA) is regarded as an important acute phase protein in coronary artery diseases. However, its involvement in the immune response of atherosclerosis is poorly understood. The present study was designed to investigate the influence of SAA on the secretion of long pentraxin 3 (PTX3), a key component of innate immunity, in human aortic endothelial cells (HAECs). Our study revealed that recombinant SAA up-regulated PTX3 production in a remarkable dose- and time-dependent manner and the activation of formyl peptide receptor-like 1 (FPRL1) was crucial for SAA-induced expression of PTX3 in HAECs. Meanwhile, SAA-induced PTX3 production could be significantly down-regulated by using the specific siRNA sequences for Jun N-terminal kinases (JNK). Furthermore, the activation of activator protein-1 (AP-1) was necessary for the up-regulation of PTX3 expression. We also found that the activation of nuclear factor-kappa B (NF-κB) played an important role in this process. Our findings demonstrate that SAA up-regulates PTX3 production via FPRL1 significantly, and thus, contributes to the inflammatory pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Zhe Dong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Proinflammatory Stimulants Promote the Expression of a Promiscuous G Protein-Coupled Receptor, mFPR2, in Microvascular Endothelial Cells. Inflammation 2011; 35:656-64. [DOI: 10.1007/s10753-011-9358-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Li H, Zhao Y, Zhou S, Heng CK. Serum Amyloid A Activates Peroxisome Proliferator-Activated Receptor γ through Extracellularly Regulated Kinase 1/2 and COX-2 Expression in Hepatocytes. Biochemistry 2010; 49:9508-17. [DOI: 10.1021/bi100645m] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hongzhe Li
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074
| | - Yulan Zhao
- Advanced Institute of NBIC Integrated Drug Discovery and Development, East China Normal University, Shanghai, P. R. China
| | - Shuli Zhou
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074
| |
Collapse
|
28
|
Lee HY, Kim SD, Shim JW, Kim HJ, Yun J, Baek SH, Kim K, Bae YS. A pertussis toxin sensitive G-protein-independent pathway is involved in serum amyloid A-induced formyl peptide receptor 2-mediated CCL2 production. Exp Mol Med 2010; 42:302-9. [PMID: 20177146 DOI: 10.3858/emm.2010.42.4.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Serum amyloid A (SAA) induced CCL2 production via a pertussis toxin (PTX)-insensitive pathway in human umbilical vein endothelial cells (HUVECs). SAA induced the activation of three MAPKs (ERK, p38 MAPK, and JNK), which were completely inhibited by knock-down of formyl peptide receptor 2 (FPR2). Inhibition of p38 MAPK and JNK by their specific inhibitors (SB203580 and SP600125), or inhibition by a dominant negative mutant of p38 MAPK dramatically decreased SAA-induced CCL2 production. Inactivation of G((i)) protein(s) by PTX inhibited the activation of SAA-induced ERK, but not p38 MAPK or JNK. The results indicate that SAA stimulates FPR2-mediated activation of p38 MAPK and JNK, which are independent of a PTX-sensitive G-protein and are essential for SAA-induced CCL2 production.
Collapse
Affiliation(s)
- Ha Young Lee
- Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Filep JG, El Kebir D. Serum amyloid A as a marker and mediator of acute coronary syndromes. Future Cardiol 2010; 4:495-504. [PMID: 19804343 DOI: 10.2217/14796678.4.5.495] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Inflammation promotes acute coronary syndromes and ensuing clinical complications. An emerging downstream marker of inflammation is serum amyloid A (SAA). Elevated plasma SAA levels predict increased cardiovascular risk and portend worse prognosis in patients with acute coronary artery disease (CAD). The pathophysiological role of SAA remains enigmatic. SAA plays a role in host defense, but it might also be atherogenic. SAA affects cholesterol transport, contributes to endothelial dysfunction, promotes thrombosis, evokes recruitment of inflammatory cells, activates neutrophils and suppresses neutrophil apoptosis, key events underlying acute coronary syndromes. These results provide a potential link between SAA and CAD and suggest that reducing SAA levels and/or opposing the actions of SAA may have beneficial effects in patients with acute CAD.
Collapse
Affiliation(s)
- János G Filep
- University of Montréal, Research Center, Maisonneuve-Rosemont Hospital & Department of Pathology & Cell Biology, Montréal, QC H1T2M4, Canada.
| | | |
Collapse
|
30
|
Carvalho WA, Maruyama SR, Franzin AM, Abatepaulo ARR, Anderson JM, Ferreira BR, Ribeiro JMC, Moré DD, Augusto Mendes Maia A, Valenzuela JG, Garcia GR, de Miranda Santos IKF. Rhipicephalus (Boophilus) microplus: clotting time in tick-infested skin varies according to local inflammation and gene expression patterns in tick salivary glands. Exp Parasitol 2010; 124:428-35. [PMID: 20045690 DOI: 10.1016/j.exppara.2009.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/26/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their host's local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the tick's blood meal.
Collapse
Affiliation(s)
- Wanessa Araújo Carvalho
- Departament of Biochemistry and Immunology, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lv B, Wang H, Tang Y, Fan Z, Xiao X, Chen F. High-mobility group box 1 protein induces tissue factor expression in vascular endothelial cells via activation of NF-kappaB and Egr-1. Thromb Haemost 2009; 102:352-9. [PMID: 19652887 DOI: 10.1160/th08-11-0759] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High-mobility group box 1 protein (HMGB1), an abundant nuclear protein, was recently established as a proinflammatory mediator of experimental sepsis. Although extracellular HMGB1 has been found in atherosclerotic plaques, its potential role in the pathogenesis of atherothrombosis remains elusive. In the present study, we determined whether HMGB1 induces tissue factor (TF) expression in vascular endothelial cells (ECs) and macrophages. Our data showed that HMGB1 stimulated ECs to express TF (but not TF pathway inhibitor) mRNA and protein in a concentration- and time-dependent manner. Blockade of cell surface receptors (including TLR4, TLR2, and RAGE) with specific neutralising antibodies partially reduced HMGB1-induced TF expression. Moreover, HMGB1 increased expression of Egr-1 and nuclear translocation of NF-kappaB (c-Rel/p65) in ECs. Taken together, our data suggest that HMGB1 induces TF expression in vascular endothelial cells via cell surface receptors (TLR4, TLR2, and RAGE), and through activation of transcription factors (NF-kappaB and Egr-1).
Collapse
Affiliation(s)
- Ben Lv
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Carty CL, Heagerty P, Heckbert SR, Enquobahrie DA, Jarvik GP, Davis S, Tracy RP, Reiner AP. Association of genetic variation in serum amyloid-A with cardiovascular disease and interactions with IL6, IL1RN, IL1beta and TNF genes in the Cardiovascular Health Study. J Atheroscler Thromb 2009; 16:419-30. [PMID: 19729864 PMCID: PMC2890297 DOI: 10.5551/jat.no968] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Since inflammation is an important contributor to atherosclerosis, gene variants mediating inflammation are of interest. We investigated gene variants in acute phase serum amyloid-A (SAA), a sensitive indicator of inflammatory activity, and their associations with cardiovascular disease (CVD) and HDL cholesterol. Interaction of the SAA genes with genetic variants of their regulators, IL-1, IL-6 and TNF-alpha in influencing CVD was also explored. METHODS SNPs characterizing common variation in the SAA1 and SAA2 genes were genotyped in European-(EA) and African-American (AA) participants (n=3969 and n=719) of the Cardiovascular Health Study. Using linear and Cox proportional hazards regression, we assessed associations of SNPs with baseline carotid artery intima-media thickness (cIMT) and risk of incident myocardial infarction, ischemic stroke, total CVD events or mortality during 14 years of follow-up. RESULTS No associations between SAA SNPs and outcomes were observed in EA, with the exception of total CVD events; each rs4638289 minor allele was associated with an increased risk in obese individuals, HR=1.2 (95%CI: 0.981.4; p=0.086) and decreased risk among non-obese, HR=0.9 (95%CI: 0.80.99; p=0.026). In AA, we observed modest associations between SAA SNPs and cIMT, potentially modified by HDL. SAA SNPs were also associated with lower HDL in EA and AA. Suggestive gene-gene interaction findings for cIMT in AA and CVD mortality in EA were not significant in subsequent model selection tests. CONCLUSION Associations of SAA SNPs with cIMT, HDL and total CVD events were identified, unadjusted for multiple testing. These findings should be regarded as hypothesis-generating until confirmed by other studies.
Collapse
Affiliation(s)
- Cara L Carty
- Department of Epidemiology, University of Washington, WA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Jin H, Qiu WB, Mei YF, Wang DM, Li YG, Tan XR. Testosterone alleviates tumor necrosis factor-alpha-mediated tissue factor pathway inhibitor downregulation via suppression of nuclear factor-kappa B in endothelial cells. Asian J Androl 2009; 11:266-271. [PMID: 19169266 PMCID: PMC3735026 DOI: 10.1038/aja.2008.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 08/03/2008] [Accepted: 08/21/2008] [Indexed: 02/05/2023] Open
Abstract
We have observed earlier that testosterone at physiological concentrations can stimulate tissue factor pathway inhibitor (TFPI) gene expression through the androgen receptor in endothelial cells. This study further investigated the impact of testosterone on TFPI levels in response to inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha). Cultured human umbilical vein endothelial cells were incubated in the presence or absence of testosterone or TNF-alpha. TFPI protein and mRNA levels were assessed by enzyme-linked immunosorbent assay and quantitative real-time reverse transcription polymerase chain reaction. To study the cellular mechanism of testosterone's action, nuclear factor-kappa B (NF-kappaB) translocation was confirmed by electrophoretic mobility shift assays. We found that after NF-kappaB was activated by TNF-alpha, TFPI protein levels declined significantly by 37.3% compared with controls (P < 0.001), and the mRNA levels of TFPI also decreased greatly (P < 0.001). A concentration of 30 nmol L(-1) testosterone increased the secretion of TFPI compared with the TNF-alpha-treated group. NF-kappaB DNA-binding activity was significantly suppressed by testosterone (P < 0.05). This suggests that physiological testosterone concentrations may exert their antithrombotic effects on TFPI expression during inflammation by downregulating NF-kappaB activity.
Collapse
Affiliation(s)
- Hong Jin
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Wen-Bing Qiu
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yi-Fang Mei
- The First Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Dong-Ming Wang
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yu-Guang Li
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xue-Rui Tan
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
34
|
Wang X, Chai H, Wang Z, Lin PH, Yao Q, Chen C. Serum amyloid A induces endothelial dysfunction in porcine coronary arteries and human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol 2008; 295:H2399-408. [PMID: 18931033 DOI: 10.1152/ajpheart.00238.2008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The objective of this study was to determine the effects and mechanisms of serum amyloid A (SAA) on coronary endothelial function. Porcine coronary arteries and human coronary arterial endothelial cells (HCAECs) were treated with SAA (0, 1, 10, or 25 microg/ml). Vasomotor reactivity was studied using a myograph tension system. SAA significantly reduced endothelium-dependent vasorelaxation of porcine coronary arteries in response to bradykinin in a concentration-dependent manner. SAA significantly decreased endothelial nitric oxide (NO) synthase (eNOS) mRNA and protein levels as well as NO bioavailability, whereas it increased ROS in both artery rings and HCAECs. In addition, the activities of internal antioxidant enzymes catalase and SOD were decreased in SAA-treated HCAECs. Bio-plex immunoassay analysis showed the activation of JNK, ERK2, and IkappaB-alpha after SAA treatment. Consequently, the antioxidants seleno-l-methionine and Mn(III) tetrakis-(4-benzoic acid)porphyrin and specific inhibitors for JNK and ERK1/2 effectively blocked the SAA-induced eNOS mRNA decrease and SAA-induced decrease in endothelium-dependent vasorelaxation in porcine coronary arteries. Thus, SAA at clinically relevant concentrations causes endothelial dysfunction in both porcine coronary arteries and HCAECs through molecular mechanisms involving eNOS downregulation, oxidative stress, and activation of JNK and ERK1/2 as well as NF-kappaB. These findings suggest that SAA may contribute to the progress of coronary artery disease.
Collapse
Affiliation(s)
- Xinwen Wang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Mail stop: BCM390, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
35
|
Nakamura T. Clinical strategies for amyloid A amyloidosis secondary to rheumatoid arthritis. Mod Rheumatol 2008; 18:109-18. [PMID: 18369528 DOI: 10.1007/s10165-008-0035-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Accepted: 11/19/2007] [Indexed: 10/22/2022]
Abstract
Secondary amyloid A (AA) amyloidosis is an important complication of rheumatoid arthritis (RA) and has remarkable variation in frequency worldwide. It is a serious, potentially life-threatening disorder caused by deposition in organs of AA fibrils, which are derived from the circulatory, acute-phase-reactant, serum amyloid A protein (SAA). The SAA1.3 allele can serve not only as a risk factor for the association of AA amyloidosis but also as a poor prognostic factor in Japanese RA patients. Both the association of AA amyloidosis arising early in RA disease course and symptomatic variety and severity were found in amyloidotic patients carrying the SAA1.3 allele. Etanercept for patients with AA amyloidosis who carry the SAA1.3 allele showed the amelioration of rheumatoid inflammation, including marked reduction of SAA and improvement of renal function. In light of the SAA1.3 allele significance in Japanese RA patients, both a tight control by disease-modifying antirheumatic drugs and an early intervention of biologics for RA inflammation should be applied to suppress acute-phase response, thus preventing the association of AA amyloidosis. It is suggested that SAA plays not only an important role in the development of AA amyloidosis but also interacts with events closely involved in metabolic syndrome as a high- and low-grade inflammatory modulator, respectively.
Collapse
Affiliation(s)
- Tadashi Nakamura
- Section of Internal Medicine and Rheumatology, Kumamoto Center for Arthritis and Rheumatology, Kumamoto, Japan.
| |
Collapse
|
36
|
Abstract
Biomarkers are increasingly employed in empirical studies of human populations to understand physiological processes that change with age, diseases whose onset appears linked to age, and the aging process itself. In this chapter, we describe some of the most commonly used biomarkers in population aging research, including their collection, associations with other markers, and relationships to health outcomes. We discuss biomarkers of the cardiovascular system, metabolic processes, inflammation, activity in the hypothalamic-pituitary axis (HPA) and sympathetic nervous system (SNS), and organ functioning (including kidney, lung, and heart). In addition, we note that markers of functioning of the central nervous system and genetic markers are now becoming part of population measurement. Where possible, we detail interrelationships between these markers by providing correlations between high risk levels of each marker from three population-based surveys: the National Health and Nutrition Examination Survey (NHANES) III, NHANES 1999-2002, and the MacArthur Study of Successful Aging. NHANES III is used instead of NHANES 1999-2002 when specific markers of interest are available only in NHANES III and when we examine the relationship of biomarkers to mortality which is only known for NHANES III. We also describe summary measures combining biomarkers across systems. Finally, we examine associations between individual markers and mortality and provide information about biomarkers of growing interest for future research in population aging and health.
Collapse
Affiliation(s)
- Eileen Crimmins
- Andrus Gerontology Center, Davis School of Gerontology, University of Southern California, Los Angeles, California 90089, USA
| | | | | | | |
Collapse
|