1
|
Wang R, He Y, Wang Y, Wang J, Ding H. Palmitoylation in cardiovascular diseases: Molecular mechanism and therapeutic potential. IJC HEART & VASCULATURE 2025; 58:101675. [PMID: 40242212 PMCID: PMC12002947 DOI: 10.1016/j.ijcha.2025.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide, and involves complex pathophysiological mechanisms that encompass various biological processes and molecular pathways. Post-translational modifications of proteins play crucial roles in the occurrence and progression of cardiovascular diseases, among which palmitoylation is particularly important. Various proteins associated with cardiovascular diseases can be palmitoylated to enhance the hydrophobicity of their molecular subdomains. This lipidation can significantly affect some pathophysiological processes, such as metabolism, inflammation by altering protein stability, localization, and signal transduction. In this review, we narratively summarize recent advances in the palmitoylation of proteins related to cardiovascular diseases and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rongli Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
| | - Yi He
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
| | - Yan Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuan 430030, PR China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuan 430030, PR China
| |
Collapse
|
2
|
Soslau G. Platelet protein synthesis, regulation, and post-translational modifications: mechanics and function. Crit Rev Biochem Mol Biol 2023; 58:99-117. [PMID: 37347996 DOI: 10.1080/10409238.2023.2224532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023]
Abstract
Dogma had been firmly entrenched in the minds of the scientific community that the anucleate mammalian platelet was incapable of protein biosynthesis since their identification in the late 1880s. These beliefs were not challenged until the 1960s when several reports demonstrated that platelets possessed the capacity to biosynthesize proteins. Even then, many still dismissed the synthesis as trivial and unimportant for at least another two decades. Research in the field expanded after the 1980s and numerous reports have since been published that now clearly demonstrate the potential significance of platelet protein synthesis under normal, pathological, and activating conditions. It is now clear that the platelet proteome is not a static entity but can be altered slowly or rapidly in response to external signals to support physiological requirements to maintain hemostasis and other biological processes. All the necessary biological components to support protein synthesis have been identified in platelets along with post-transcriptional processing of mRNAs, regulators of translation, and post-translational modifications such as glycosylation. The last comprehensive review of the subject appeared in 2009 and much work has been conducted since that time. The current review of the field will briefly incorporate the information covered in earlier reviews and then bring the reader up to date with more recent findings.
Collapse
Affiliation(s)
- Gerald Soslau
- Department of Biochemistry and Molecular Biology Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
3
|
Yang M, Flaumenhaft R. Oxidative Cysteine Modification of Thiol Isomerases in Thrombotic Disease: A Hypothesis. Antioxid Redox Signal 2021; 35:1134-1155. [PMID: 34121445 PMCID: PMC8817710 DOI: 10.1089/ars.2021.0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Oxidative stress is a characteristic of many systemic diseases associated with thrombosis. Thiol isomerases are a family of oxidoreductases important in protein folding and are exquisitely sensitive to the redox environment. They are essential for thrombus formation and represent a previously unrecognized layer of control of the thrombotic process. Yet, the mechanisms by which thiol isomerases function in thrombus formation are unknown. Recent Advances: The oxidoreductase activity of thiol isomerases in thrombus formation is controlled by the redox environment via oxidative changes to active site cysteines. Specific alterations can now be detected owing to advances in the chemical biology of oxidative cysteine modifications. Critical Issues: Understanding of the role of thiol isomerases in thrombus formation has focused largely on identifying single disulfide bond modifications in isolated proteins (e.g., αIIbβ3, tissue factor, vitronectin, or glycoprotein Ibα [GPIbα]). An alternative approach is to conceptualize thiol isomerases as effectors in redox signaling pathways that control thrombotic potential by modifying substrate networks. Future Directions: Cysteine-based chemical biology will be employed to study thiol-dependent dynamics mediated by the redox state of thiol isomerases at the systems level. This approach could identify thiol isomerase-dependent modifications of the disulfide landscape that are prothrombotic.
Collapse
Affiliation(s)
- Moua Yang
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Possible effects of chemokine-like factor-like MARVEL transmembrane domain-containing family on antiphospholipid syndrome. Chin Med J (Engl) 2021; 134:1661-1668. [PMID: 33813507 PMCID: PMC8318642 DOI: 10.1097/cm9.0000000000001449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disease defined by thrombotic or obstetrical events and persistent antiphospholipid antibodies (aPLs). Chemokine-like factor-like MARVEL transmembrane domain-containing family (CMTM) is widely expressed in the immune system and may closely related to APS. This review aimed to systematically summarize the possible effects of CMTM on APS. Publications were collected from PubMed and Web of Science databases up to August 2020. CKLF, CKLFSF, CMTM, antiphospholipid syndrome, immune cells, and immune molecules were used as search criteria. Immune cells, including neutrophil, dendritic cells (DCs), T-cells, B-cells, and inflammatory cytokines, play an important role in the development of APS. Chemokine-like factor 1 (CKLF1) has a chemotactic effect on many cells and can affect the expression of inflammatory cytokines and adhesion molecules through the nuclear factor-kB (NF-kB) pathway or mitogen-activated protein kinase (MARK) pathway. CKLF1 can participate in the maturation of DCs, T lymphocyte activation, and the activation of neutrophils through the MAPK pathway. CMTM1 may act on Annexin A2 by regulating Ca2+ signaling. CMTM2 and CMTM6 are up-regulated in neutrophils of APS patients. Some CMTM family members influence the activation and accumulation of platelets. CMTM3 and CMTM7 are binding partners of B-cell linker protein (BLNK), thereby linking B cell receptor (BCR) and activating BLNK-mediated signal transduction in B cells. Moreover, CMTM3 and CMTM7 can act on DCs and B-1a cell development, respectively. CMTM may have potential effects on the development of APS by acting on immune cells and immune molecules. Thus, CMTM may act as a novel prognostic factor or immunomodulatory treatment option of APS.
Collapse
|
5
|
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein Palmitoylation in Leukocyte Signaling and Function. Front Cell Dev Biol 2020; 8:600368. [PMID: 33195285 PMCID: PMC7655920 DOI: 10.3389/fcell.2020.600368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Palmitoylation is a post-translational modification (PTM) based on thioester-linkage between palmitic acid and the cysteine residue of a protein. This covalent attachment of palmitate is reversibly and dynamically regulated by two opposing sets of enzymes: palmitoyl acyltransferases containing a zinc finger aspartate-histidine-histidine-cysteine motif (PAT-DHHCs) and thioesterases. The reversible nature of palmitoylation enables fine-tuned regulation of protein conformation, stability, and ability to interact with other proteins. More importantly, the proper function of many surface receptors and signaling proteins requires palmitoylation-meditated partitioning into lipid rafts. A growing number of leukocyte proteins have been reported to undergo palmitoylation, including cytokine/chemokine receptors, adhesion molecules, pattern recognition receptors, scavenger receptors, T cell co-receptors, transmembrane adaptor proteins, and signaling effectors including the Src family of protein kinases. This review provides the latest findings of palmitoylated proteins in leukocytes and focuses on the functional impact of palmitoylation in leukocyte function related to adhesion, transmigration, chemotaxis, phagocytosis, pathogen recognition, signaling activation, cytotoxicity, and cytokine production.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Victor Chatterjee
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Yonggang Ma
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
6
|
Platelets in Healthy and Disease States: From Biomarkers Discovery to Drug Targets Identification by Proteomics. Int J Mol Sci 2020; 21:ijms21124541. [PMID: 32630608 PMCID: PMC7352998 DOI: 10.3390/ijms21124541] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Platelets are a heterogeneous small anucleate blood cell population with a central role both in physiological haemostasis and in pathological states, spanning from thrombosis to inflammation, and cancer. Recent advances in proteomic studies provided additional important information concerning the platelet biology and the response of platelets to several pathophysiological pathways. Platelets circulate systemically and can be easily isolated from human samples, making proteomic application very interesting for characterizing the complexity of platelet functions in health and disease as well as for identifying and quantifying potential platelet proteins as biomarkers and novel antiplatelet therapeutic targets. To date, the highly dynamic protein content of platelets has been studied in resting and activated platelets, and several subproteomes have been characterized including platelet-derived microparticles, platelet granules, platelet releasates, platelet membrane proteins, and specific platelet post-translational modifications. In this review, a critical overview is provided on principal platelet proteomic studies focused on platelet biology from signaling to granules content, platelet proteome changes in several diseases, and the impact of drugs on platelet functions. Moreover, recent advances in quantitative platelet proteomics are discussed, emphasizing the importance of targeted quantification methods for more precise, robust and accurate quantification of selected proteins, which might be used as biomarkers for disease diagnosis, prognosis and therapy, and their strong clinical impact in the near future.
Collapse
|
7
|
Khaliulin AV, Gusyakova OA, Kozlov AV, Gabrilchak AI. [Metabolism processes and mechanisms of regulation of platelet activity (review of literature).]. Klin Lab Diagn 2019; 64:164-169. [PMID: 31012555 DOI: 10.18821/0869-2084-2019-64-3-164-169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
Platelets play fundamental role in ensuring the hemostatic function in blood. In addition to this canonical function, the blood plates play angiotrophic, immunological, transport role, participate in the activation of plasma hemostasis, retraction of a blood clot, and can record circulating immune complexes. The review article presents current data on the structure and conjugation of molecular rearrangements of platelet ultrastructures associated with the functioning of an open canalicular platelet system, a dense tubular system, and a platelet cytoplasmic membrane. The main types of resting platelet metabolism, and the processes underlying the activation of platelets associated with the enhancement of carbohydrate and fatty acid catabolism are characterized, as well as some signaling pathways that regulate processes of induction of platelet aggregation. The data show the value of lipid components of activated platelet membranes, including phospholipids of various classes, glycolipids and cholesterol. The role of regulatory processes associated with the non-covalent modification of certain platelet proteins with fatty acids is reflected. Fundamental questions of platelet metabolism are relevant nowadays and require a combined approach of studying them, which can potentially solve many problems of clinical laboratory diagnostics, pathobiochemistry, and pharmacology. In preparing the review, we used sources from international and russian databases: Scopus, Web of Science, RSCI.
Collapse
Affiliation(s)
- A V Khaliulin
- Samara State Medical University, 443099, Samara, Russia
| | - O A Gusyakova
- Samara State Medical University, 443099, Samara, Russia
| | - A V Kozlov
- Samara State Medical University, 443099, Samara, Russia
| | | |
Collapse
|
8
|
|
9
|
Looße C, Swieringa F, Heemskerk JWM, Sickmann A, Lorenz C. Platelet proteomics: from discovery to diagnosis. Expert Rev Proteomics 2018; 15:467-476. [PMID: 29787335 DOI: 10.1080/14789450.2018.1480111] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Platelets are the smallest cells within the circulating blood with key roles in physiological hemostasis and pathological thrombosis regulated by the onset of activating/inhibiting processes via receptor responses and signaling cascades. Areas covered: Proteomics as well as genomic approaches have been fundamental in identifying and quantifying potential targets for future diagnostic strategies in the prevention of bleeding and thrombosis, and uncovering the complexity of platelet functions in health and disease. In this article, we provide a critical overview on current functional tests used in diagnostics and the future perspectives for platelet proteomics in clinical applications. Expert commentary: Proteomics represents a valuable tool for the identification of patients with diverse platelet associated defects. In-depth validation of identified biomarkers, e.g. receptors, signaling proteins, post-translational modifications, in large cohorts is decisive for translation into routine clinical diagnostics.
Collapse
Affiliation(s)
- Christina Looße
- a Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund , Germany
| | - Frauke Swieringa
- a Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund , Germany
| | - Johan W M Heemskerk
- b Department of Biochemistry , CARIM, Maastricht University , Maastricht , The Netherlands
| | - Albert Sickmann
- a Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund , Germany.,c Medizinisches Proteom-Center , Medizinische Fakultät, Ruhr-Universität Bochum , Bochum , Germany.,d Department of Chemistry, College of Physical Sciences , University of Aberdeen , Aberdeen , UK
| | - Christin Lorenz
- a Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund , Germany
| |
Collapse
|
10
|
Zhang J, Huang Y, Chen J, Zhu H, Whiteheart SW. Dynamic cycling of t-SNARE acylation regulates platelet exocytosis. J Biol Chem 2018; 293:3593-3606. [PMID: 29352103 PMCID: PMC5846156 DOI: 10.1074/jbc.ra117.000140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/12/2018] [Indexed: 12/16/2022] Open
Abstract
Platelets regulate vascular integrity by secreting a host of molecules that promote hemostasis and its sequelae. Given the importance of platelet exocytosis, it is critical to understand how it is controlled. The t-SNAREs, SNAP-23 and syntaxin-11, lack classical transmembrane domains (TMDs), yet both are associated with platelet membranes and redistributed into cholesterol-dependent lipid rafts when platelets are activated. Using metabolic labeling and hydroxylamine (HA)/HCl treatment, we showed that both contain thioester-linked acyl groups. Mass spectrometry mapping further showed that syntaxin-11 was modified on cysteine 275, 279, 280, 282, 283, and 285, and SNAP-23 was modified on cysteine 79, 80, 83, 85, and 87. Interestingly, metabolic labeling studies showed incorporation of [3H]palmitate into the t-SNAREs increased although the protein levels were unchanged, suggesting that acylation turns over on the two t-SNAREs in resting platelets. Exogenously added fatty acids did compete with [3H]palmitate for t-SNARE labeling. To determine the effects of acylation, we measured aggregation, ADP/ATP release, as well as P-selectin exposure in platelets treated with the acyltransferase inhibitor cerulenin or the thioesterase inhibitor palmostatin B. We found that cerulenin pretreatment inhibited t-SNARE acylation and platelet function in a dose- and time-dependent manner whereas palmostatin B had no detectable effect. Interestingly, pretreatment with palmostatin B blocked the inhibitory effects of cerulenin, suggesting that maintaining the acylation state is important for platelet function. Thus, our work shows that t-SNARE acylation is actively cycling in platelets and suggests that the enzymes regulating protein acylation could be potential targets to control platelet exocytosis in vivo.
Collapse
Affiliation(s)
- Jinchao Zhang
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Yunjie Huang
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Jing Chen
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Haining Zhu
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| | - Sidney W Whiteheart
- From the Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, Kentucky 40536
| |
Collapse
|
11
|
Malchow S, Loosse C, Sickmann A, Lorenz C. Quantification of Cardiovascular Disease Biomarkers in Human Platelets by Targeted Mass Spectrometry. Proteomes 2017; 5:proteomes5040031. [PMID: 29140295 PMCID: PMC5748566 DOI: 10.3390/proteomes5040031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 01/01/2023] Open
Abstract
Platelets are known to be key players in thrombosis and hemostasis, contributing to the genesis and progression of cardiovascular diseases. Due to their pivotal role in human physiology and pathology, platelet function is regulated tightly by numerous factors which have either stimulatory or inhibitory effects. A variety of factors, e.g., collagen, fibrinogen, ADP, vWF, thrombin, and thromboxane promote platelet adhesion and aggregation by utilizing multiple intracellular signal cascades. To quantify platelet proteins for this work, a targeted proteomics workflow was applied. In detail, platelets are isolated and lyzed, followed by a tryptic protein digest. Subsequently, a mix of stable isotope-labeled peptides of interesting biomarker proteins in concentrations ranging from 0.1 to 100 fmol is added to 3 μg digest. These peptides are used as an internal calibration curve to accurately quantify endogenous peptides and corresponding proteins in a pooled platelet reference sample by nanoLC-MS/MS with parallel reaction monitoring. In order to assure a valid quantification, limit of detection (LOD) and limit of quantification (LOQ), as well as linear range, were determined. This quantification of platelet activation and proteins by targeted mass spectrometry may enable novel diagnostic strategies in the detection and prevention of cardiovascular diseases.
Collapse
Affiliation(s)
- Sebastian Malchow
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany.
| | - Christina Loosse
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany.
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany.
| | - Christin Lorenz
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44139 Dortmund, Germany.
| |
Collapse
|
12
|
Zhou M, Philips MR. Nitrogen Cavitation and Differential Centrifugation Allows for Monitoring the Distribution of Peripheral Membrane Proteins in Cultured Cells. J Vis Exp 2017. [PMID: 28872138 DOI: 10.3791/56037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cultured cells are useful for studying the subcellular distribution of proteins, including peripheral membrane proteins. Genetically encoded fluorescently tagged proteins have revolutionized the study of subcellular protein distribution. However, it is difficult to quantify the distribution with fluorescent microscopy, especially when proteins are partially cytosolic. Moreover, it is often important to study endogenous proteins. Biochemical assays such as immunoblots remain the gold standard for quantification of protein distribution after subcellular fractionation. Although there are commercial kits that aim to isolate cytosolic or certain membrane fractions, most of these kits are based on extraction with detergents, which may be unsuitable for studying peripheral membrane proteins that are easily extracted from membranes. Here we present a detergent-free protocol for cellular homogenization by nitrogen cavitation and subsequent separation of cytosolic and membrane-bound proteins by ultracentrifugation. We confirm the separation of subcellular organelles in soluble and pellet fractions across different cell types, and compare protein extraction among several common non-detergent-based mechanical homogenization methods. Among several advantages of nitrogen cavitation is the superior efficiency of cellular disruption with minimal physical and chemical damage to delicate organelles. Combined with ultracentrifugation, nitrogen cavitation is an excellent method to examine the shift of peripheral membrane proteins between cytosolic and membrane fractions.
Collapse
Affiliation(s)
- Mo Zhou
- Langone Medical Center, New York University;
| | | |
Collapse
|
13
|
Abstract
Secretion is essential to many of the roles that platelets play in the vasculature, e.g., thrombosis, angiogenesis, and inflammation, enabling platelets to modulate the microenvironment at sites of vascular lesions with a myriad of bioactive molecules stored in their granules. Past studies demonstrate that granule cargo release is mediated by Soluble NSF Attachment Protein Receptor (SNARE) proteins, which are required for granule-plasma membrane fusion. Several SNARE regulators, which control when, where, and how the SNAREs interact, have been identified in platelets. Additionally, platelet SNAREs are controlled by post-translational modifications, e.g., phosphorylation and acylation. Although there have been many recent insights into the mechanisms of platelet secretion, many questions remain: have we identified all the important regulators, does calcium directly control the process, and is platelet secretion polarized. In this review, we focus on the mechanics of platelet secretion and discuss how the secretory machinery functions in the pathway leading to membrane fusion and cargo release.
Collapse
Affiliation(s)
- Smita Joshi
- a Department of Molecular and Cellular Biochemistry , University of Kentucky , Lexington , KY , USA
| | - Sidney W Whiteheart
- a Department of Molecular and Cellular Biochemistry , University of Kentucky , Lexington , KY , USA
| |
Collapse
|
14
|
Datta P, Weis MT. Calcium glycerophosphate preserves transepithelial integrity in the Caco-2 model of intestinal transport. World J Gastroenterol 2015; 21:9055-9066. [PMID: 26290632 PMCID: PMC4533037 DOI: 10.3748/wjg.v21.i30.9055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/13/2015] [Accepted: 06/26/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To assess the direct effects of ischemia on intestinal epithelial integrity. Furthermore, clinical efforts at mitigating the effect of hypoperfusion on gut permeability have focused on restoring gut vascular function.
METHODS: We report that, in the Caco-2 cell model of transepithelial transport, calcium glycerophosphate (CGP), an inhibitor of intestinal alkaline phosphatase F3, has a significant effect to preserve transepithelial electrical resistance (TEER) and to attenuate increases in mannitol flux rates during hypoxia or cytokine stimulation.
RESULTS: The effect was observable even at concentrations as low as 1 μmol/L. As celiac disease is also marked by a loss of gut epithelial integrity, the effect of CGP to attenuate the effect of the α-gliadin peptide 31-55 was also examined. In this instance, CGP exerted little effect of preservation of TEER, but significantly attenuated peptide induced increase in mannitol flux.
CONCLUSION: It appears that CGP treatment might synergize with other therapies to preserve gut epithelial integrity.
Collapse
|
15
|
Prior AM, Zhang M, Blakeman N, Datta P, Pham H, Chen Q, Young LH, Weis MT, Hua DH. Inhibition of long chain fatty acyl-CoA synthetase (ACSL) and ischemia reperfusion injury. Bioorg Med Chem Lett 2014; 24:1057-61. [PMID: 24480468 DOI: 10.1016/j.bmcl.2014.01.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 02/07/2023]
Abstract
Various triacsin C analogs, containing different alkenyl chains and carboxylic acid bioisoteres including 4-aminobenzoic acid, isothiazolidine dioxide, hydroxylamine, hydroxytriazene, and oxadiazolidine dione, were synthesized and their inhibitions of long chain fatty acyl-CoA synthetase (ACSL) were examined. Two methods, a cell-based assay of ACSL activity and an in situ [(14)C]-palmitate incorporation into extractable lipids were used to study the inhibition. Using an in vivo leukocyte recruitment inhibition protocol, the translocation of one or more cell adhesion molecules from the cytoplasm to the plasma membrane on either the endothelium or leukocyte or both was inhibited by inhibitors 1, 9, and triacsin C. The results suggest that inhibition of ACSL may attenuate the vascular inflammatory component associated with ischemia reperfusion injury and lead to a decrease of infarct expansion.
Collapse
Affiliation(s)
- Allan M Prior
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Man Zhang
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States
| | - Nina Blakeman
- Department of Biomedical Sciences, Vascular Drug Research Center, School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, TX 79106, United States
| | - Palika Datta
- Department of Biomedical Sciences, Vascular Drug Research Center, School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, TX 79106, United States
| | - Hung Pham
- Department of Pathology, Microbiology, Immunology and Forensic Medicine, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, United States
| | - Qian Chen
- Department of Pathology, Microbiology, Immunology and Forensic Medicine, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, United States
| | - Lindon H Young
- Department of Pathology, Microbiology, Immunology and Forensic Medicine, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, United States
| | - Margaret T Weis
- Department of Biomedical Sciences, Vascular Drug Research Center, School of Pharmacy, Texas Tech University, Health Sciences Center, Amarillo, TX 79106, United States.
| | - Duy H Hua
- Department of Chemistry, 213 CBC Building, Kansas State University, Manhattan, KS 66506, United States.
| |
Collapse
|
16
|
Chamberlain LH, Lemonidis K, Sanchez-Perez M, Werno MW, Gorleku OA, Greaves J. Palmitoylation and the trafficking of peripheral membrane proteins. Biochem Soc Trans 2013; 41:62-6. [PMID: 23356259 DOI: 10.1042/bst20120243] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Palmitoylation, the attachment of palmitate and other fatty acids on to cysteine residues, is a common post-translational modification of both integral and peripheral membrane proteins. Dynamic palmitoylation controls the intracellular distribution of peripheral membrane proteins by regulating membrane-cytosol exchange and/or by modifying the flux of the proteins through vesicular transport systems.
Collapse
Affiliation(s)
- Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK.
| | | | | | | | | | | |
Collapse
|
17
|
Fitch-Tewfik JL, Flaumenhaft R. Platelet granule exocytosis: a comparison with chromaffin cells. Front Endocrinol (Lausanne) 2013; 4:77. [PMID: 23805129 PMCID: PMC3693082 DOI: 10.3389/fendo.2013.00077] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 06/11/2013] [Indexed: 11/13/2022] Open
Abstract
The rapid secretion of bioactive amines from chromaffin cells constitutes an important component of the fight or flight response of mammals to stress. Platelets respond to stresses within the vasculature by rapidly secreting cargo at sites of injury, inflammation, or infection. Although chromaffin cells derive from the neural crest and platelets from bone marrow megakaryocytes, both have evolved a heterogeneous assemblage of granule types and a mechanism for efficient release. This article will provide an overview of granule formation and exocytosis in platelets with an emphasis on areas in which the study of chromaffin cells has influenced that of platelets and on similarities between the two secretory systems. Commonalities include the use of transporters to concentrate bioactive amines and other cargos into granules, the role of cytoskeletal remodeling in granule exocytosis, and the use of granules to provide membrane for cytoplasmic projections. The SNAREs and SNARE accessory proteins used by each cell type will also be considered. Finally, we will discuss the newly appreciated role of dynamin family proteins in regulated fusion pore formation. This evaluation of the comparative cell biology of regulated exocytosis in platelets and chromaffin cells demonstrates a convergence of mechanisms between two disparate cell types both tasked with responding rapidly to physiological stimuli.
Collapse
Affiliation(s)
- Jennifer L. Fitch-Tewfik
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA
- *Correspondence: Robert Flaumenhaft, Center for Life Science, Beth Israel Deaconess Medical Center, Room 939, 3 Blackfan Circle, Boston, MA 02215, USA e-mail:
| |
Collapse
|
18
|
|
19
|
Subramanian H, Gambaryan S, Panzer S, Gremmel T, Walter U, Mannhalter C. The Thr715Pro variant impairs terminal glycosylation of P-selectin. Thromb Haemost 2012; 108:963-72. [PMID: 23014585 DOI: 10.1160/th12-01-0047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 08/21/2012] [Indexed: 12/22/2022]
Abstract
P-selectin variant 715Pro is associated with lower concentrations of plasma P-selectin and reduced risk for thrombosis. We examined the influence of 715Pro on P-selectin synthesis, post-translational processing, surface expression and function using HEK293 cells, which do not express endogenous P-selectin. Mass spectrometry revealed that HEK293 cells produced recombinant P-selectin which has a glycosylation pattern comparable to platelet P-selectin. Compared to wild-type transfectants, 715Pro transfectants have ~50% less terminally glycosylated P-selectin and accumulate more immature P-selectin in Golgi. Following Brefeldin A treatment, the majority of 715Pro P-selectin is not modified by Golgi enzymes, while wild-type P-selectin undergoes complete modification. Flow cytometry revealed that 715Pro transfectants have ~20% less P-selectin on the cell surface compared to wild-type transfectants. Secretion of P-selectin by 715Pro transfectants was about 38% lower compared to wild-type transfectants. Binding of HL-60 cells to 715Pro transfectants was ~29% lower than to wild-type transfectants. This observation was confirmed by the presence of fewer platelet-monocyte aggregates (PMA) in the blood of healthy individuals and patients with angiographically proven atherosclerosis, carrying 715Pro P-selectin compared to individuals with wild-type P-selectin. We conclude that the 715Pro variant impairs terminal glycosylation of P-selectin in Golgi, leading to reduced amounts of mature P-selectin and subsequently less surface expression and secretion of P-selectin. The reduced surface expression of 715Pro P-selectin contributes to inefficient adhesion to HL-60 cells or monocytes.
Collapse
|
20
|
Ashitate Y, Kim SH, Tanaka E, Henary M, Choi HS, Frangioni JV, Flaumenhaft R. Two-wavelength near-infrared fluorescence for the quantitation of drug antiplatelet effects in large animal model systems. J Vasc Surg 2012; 56:171-80. [PMID: 22503225 DOI: 10.1016/j.jvs.2011.11.058] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Intraoperative imaging of intravascular thrombi is limited by the inability of visible light to penetrate thick-walled vessels. Near-infrared (NIR) light has relatively high tissue penetration and low autofluorescence and scatter, offering significant advantages. We hypothesized that the development of 700-nm NIR fluorophores for platelet labeling, in conjunction with existing 800-nm NIR fluorophores, would permit simultaneous and separable quantitation of intravascular thrombi and measurement of the antiplatelet effect of drugs. METHODS We synthesized a series of lipophilic, cationic, polymethine indocyanine dyes (MHI-86, 94, 106, and 114) that emit at approximately 700 nm. Platelet uptake was optimized in vitro and the bioactivity and blood half-life of labeled platelets was characterized in vitro and in vivo. FeCl(3)-induced injury of the femoral arteries and intravascular thrombus formation was performed in 35-kg Yorkshire pigs. A combination of 700-nm and 800-nm NIR fluorophore-labeled platelets was used in conjunction with the fluorescence-assisted resection and exploration imaging system to image and quantify the antiplatelet effect of cilostazol and acetylsalicylic acid. RESULTS MHI-114 was incorporated at nearly 4.1 × 10(6) molecules per platelet without affecting platelet function. When infused into pigs, the signal-to-background ratio of MHI-114-labeled platelets exhibited a blood half-life of 16.4 ± 2.2 (mean ± SEM; n = 3) minute and generated a signal-to-background ratio of 2.5 ± 0.5 (mean ± SEM; n = 3) at the site of thrombi. Using dual-NIR-labeled platelet populations, cilostazol and acetylsalicylic acid were found to cause a reduction in platelet incorporation into thrombi of 51 ± 2% and 10 ± 1% (mean ± SEM; n = 3), respectively, relative to vehicle-only treated control thrombi. CONCLUSIONS New platelet-avid 700-nm NIR fluorophores permit simultaneous two-wavelength NIR fluorescence imaging and quantitation of intravascular thrombi in intact vessels approaching the size of humans and can be used to study the antiplatelet effect of drugs.
Collapse
Affiliation(s)
- Yoshitomo Ashitate
- Division of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Łach A, Grzybek M, Heger E, Korycka J, Wolny M, Kubiak J, Kolondra A, Bogusławska DM, Augoff K, Majkowski M, Podkalicka J, Kaczor J, Stefanko A, Kuliczkowski K, Sikorski AF. Palmitoylation of MPP1 (membrane-palmitoylated protein 1)/p55 is crucial for lateral membrane organization in erythroid cells. J Biol Chem 2012; 287:18974-84. [PMID: 22496366 DOI: 10.1074/jbc.m111.332981] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
S-Acylation of proteins is a ubiquitous post-translational modification and a common signal for membrane association. The major palmitoylated protein in erythrocytes is MPP1, a member of the MAGUK family and an important component of the ternary complex that attaches the spectrin-based skeleton to the plasma membrane. Here we show that DHHC17 is the only acyltransferase present in red blood cells (RBC). Moreover, we give evidence that protein palmitoylation is essential for membrane organization and is crucial for proper RBC morphology, and that the effect is specific for MPP1. Our observations are based on the clinical cases of two related patients whose RBC had no palmitoylation activity, caused by a lack of DHHC17 in the membrane, which resulted in a strong decrease of the amount of detergent-resistant membrane (DRM) material. We confirmed that this loss of detergent-resistant membrane was due to the lack of palmitoylation by treatment of healthy RBC with 2-bromopalmitic acid (2-BrP, common palmitoylation inhibitor). Concomitantly, fluorescence lifetime imaging microscopy (FLIM) analyses of an order-sensing dye revealed a reduction of membrane order after chemical inhibition of palmitoylation in erythrocytes. These data point to a pathophysiological relationship between the loss of MPP1-directed palmitoylation activity and perturbed lateral membrane organization.
Collapse
Affiliation(s)
- Agnieszka Łach
- Laboratory of Cytobiochemistry, Biotechnology Faculty, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wrocław, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Protein palmitoylation and subcellular trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2981-94. [DOI: 10.1016/j.bbamem.2011.07.009] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/06/2011] [Accepted: 07/12/2011] [Indexed: 02/07/2023]
|
23
|
Dowal L, Yang W, Freeman MR, Steen H, Flaumenhaft R. Proteomic analysis of palmitoylated platelet proteins. Blood 2011; 118:e62-73. [PMID: 21813449 PMCID: PMC3186346 DOI: 10.1182/blood-2011-05-353078] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 07/11/2011] [Indexed: 12/23/2022] Open
Abstract
Protein palmitoylation is a dynamic process that regulates membrane targeting of proteins and protein-protein interactions. We have previously demonstrated a critical role for protein palmitoylation in platelet activation and have identified palmitoylation machinery in platelets. Using a novel proteomic approach, Palmitoyl Protein Identification and Site Characterization, we have begun to characterize the human platelet palmitoylome. Palmitoylated proteins were enriched from membranes isolated from resting platelets using acyl-biotinyl exchange chemistry, followed by identification using liquid chromatography-tandem mass spectrometry. This global analysis identified > 1300 proteins, of which 215 met criteria for significance and represent the platelet palmitoylome. This collection includes 51 known palmitoylated proteins, 61 putative palmitoylated proteins identified in other palmitoylation-specific proteomic studies, and 103 new putative palmitoylated proteins. Of these candidates, we chose to validate the palmitoylation of triggering receptors expressed on myeloid cell (TREM)-like transcript-1 (TLT-1) as its expression is restricted to platelets and megakaryocytes. We determined that TLT-1 is a palmitoylated protein using metabolic labeling with [³H]palmitate and identified the site of TLT-1 palmitoylation as cysteine 196. The discovery of new platelet palmitoyl protein candidates will provide a resource for subsequent investigations to validate the palmitoylation of these proteins and to determine the role palmitoylation plays in their function.
Collapse
Affiliation(s)
- Louisa Dowal
- Division of Hemostasis and Thrombosis, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | | |
Collapse
|
24
|
Woronowicz K, Dilks JR, Rozenvayn N, Dowal L, Blair PS, Peters CG, Woronowicz L, Flaumenhaft R. The platelet actin cytoskeleton associates with SNAREs and participates in alpha-granule secretion. Biochemistry 2010; 49:4533-42. [PMID: 20429610 PMCID: PMC2892908 DOI: 10.1021/bi100541t] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Following platelet activation, platelets undergo a dramatic shape change mediated by the actin cytoskeleton and accompanied by secretion of granule contents. While the actin cytoskeleton is thought to influence platelet granule secretion, the mechanism for this putative regulation is not known. We found that disruption of the actin cytoskeleton by latrunculin A inhibited alpha-granule secretion induced by several different platelet agonists without significantly affecting activation-induced platelet aggregation. In a cell-free secretory system, platelet cytosol was required for alpha-granule secretion. Inhibition of actin polymerization prevented alpha-granule secretion in this system, and purified platelet actin could substitute for platelet cytosol to support alpha-granule secretion. To determine whether SNAREs physically associate with the actin cytoskeleton, we isolated the Triton X-100 insoluble actin cytoskeleton from platelets. VAMP-8 and syntaxin-2 associated only with actin cytoskeletons of activated platelets. Syntaxin-4 and SNAP-23 associated with cytoskeletons isolated from either resting or activated platelets. When syntaxin-4 and SNAP-23 were tested for actin binding in a purified protein system, only syntaxin-4 associated directly with polymerized platelet actin. These data show that the platelet cytoskeleton interacts with select SNAREs and that actin polymerization facilitates alpha-granule release.
Collapse
Affiliation(s)
- Kamil Woronowicz
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - James R. Dilks
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Nataliya Rozenvayn
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Louisa Dowal
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Price S. Blair
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Christian G. Peters
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| | - Lucyna Woronowicz
- Ultrastructure Laboratory, Institute for Basic Research, Staten Island, NY 10314
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215
| |
Collapse
|
25
|
Prescott GR, Gorleku OA, Greaves J, Chamberlain LH. Palmitoylation of the synaptic vesicle fusion machinery. J Neurochem 2009; 110:1135-49. [PMID: 19508429 DOI: 10.1111/j.1471-4159.2009.06205.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fusion of synaptic vesicles with the pre-synaptic plasma membrane mediates the secretion of neurotransmitters at nerve terminals. This pathway is regulated by an array of protein-protein interactions. Of central importance are the soluble NSF (N-ethylmaleimide-sensitive factor) attachment protein receptor (SNARE) proteins syntaxin 1 and SNAP25, which are associated with the pre-synaptic plasma membrane and vesicle-associated membrane protein (VAMP2), a synaptic vesicle SNARE. Syntaxin 1, SNAP25 and VAMP2 interact to form a tight complex bridging the vesicle and plasma membranes, which has been suggested to represent the minimal membrane fusion machinery. Synaptic vesicle fusion is stimulated by a rise in intraterminal Ca2+ levels, and a major Ca2+ sensor for vesicle fusion is synaptotagmin I. Synaptotagmin is likely to couple Ca2+ entry to vesicle fusion via Ca2+-dependent and independent interactions with membrane phospholipids and the SNARE proteins. Intriguingly, syntaxin 1, SNAP25, VAMP2 and synaptotagmin I have all been reported to be modified by palmitoylation in neurons. In this review, we discuss the mechanisms and dynamics of palmitoylation of these proteins and speculate on how palmitoylation might contribute to the regulation of synaptic vesicle fusion.
Collapse
Affiliation(s)
- Gerald R Prescott
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | |
Collapse
|
26
|
Israels SJ, McMillan-Ward EM. Palmitoylation supports the association of tetraspanin CD63 with CD9 and integrin alphaIIbbeta3 in activated platelets. Thromb Res 2009; 125:152-8. [PMID: 19640571 DOI: 10.1016/j.thromres.2009.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 05/12/2009] [Accepted: 07/07/2009] [Indexed: 12/17/2022]
Abstract
CD63 and CD9 are members of the tetraspanin superfamily of integral membrane proteins that function as organizers of multi-molecular signaling complexes involved in cell morphology, motility and proliferation. Tetraspanin complexes cluster dynamically in unique cholesterol-rich tetraspanin-enriched microdomains (TEMs). In resting platelets, CD63 is located in the membranes of lysosomes and dense granules. Following platelet activation and granule exocytosis, CD63 is expressed on the plasma membrane, co-localizes with the alphaIIbbeta3-CD9 complex and is incorporated into the Triton-insoluble actin cytoskeleton, dependent on fibrinogen binding to alphaIIbbeta3. In nucleated cell lines, the assembly and maintenance of TEMs depends on the palmitoylation of both tetraspanins and some partner proteins. This study investigated the role of palmitoylation in platelet TEM assembly and maintenance. [(3)H]-palmitate-labeled, washed human platelets were studied at rest, or following activation with thrombin (0.1 U/ml). CD63 and CD9 were separated by density gradient centrifugation, isolated by immunoprecipitation, and [(3)H]-palmitate was measured in each fraction. Palmitate levels increased in all fractions following thrombin activation. However, the relative inter-fraction distribution of the tetraspanins did not change. 2-bromopalmitate (2-BP), an inhibitor of protein palmitoylation as demonstrated by decreased [(3)H]-palmitate labeling of platelet proteins, blocked both thrombin-induced platelet aggregation and platelet spreading on immobilized fibrinogen in a dose-dependent manner. 2-BP also inhibited the activation-dependent association of CD63 with CD9, and the incorporation of CD63 into the Triton-insoluble actin cytoskeleton. In contrast, 2-BP had no effect on the incorporation of alphaIIbbeta3 into the activated platelet cytoskeleton. These results demonstrate that palmitoylation is required for platelet tetraspanin-tetraspanin and tetraspanin-integrin interaction and for complete platelet spreading on a fibrinogen substrate.
Collapse
Affiliation(s)
- Sara J Israels
- Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | |
Collapse
|
27
|
Saha AK, D'Cruz D. New potential therapies for the treatment of antiphospholipid syndrome. Expert Opin Ther Pat 2009; 19:13-22. [DOI: 10.1517/13543770802608048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Abstract
Many proteins are S-acylated, affecting their localization and function. Dynamic S-acylation in response to various stimuli has been seen for several proteins in vivo. The regulation of S-acylation is beginning to be elucidated. Proteins can autoacylate or be S-acylated by protein acyl transferases (PATs). Deacylation, on the other hand, is an enzymatic process catalyzed by protein thioesterases (APT1 and PPT1) but only APT1 appears to be involved in the regulation of the reversible S-acylation of cytoplasmic proteins seen in vivo. PPT1, on the other hand, is involved in the lysosomal degradation of S-acylated proteins and PPT1 deficiency causes the disease infant neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Ruth Zeidman
- Molecular Medicine, National Heart & Lung Institute, Sir Alexander Fleming Building, Imperial College London, London, UK
| | | | | |
Collapse
|
29
|
Gillitzer A, Peluso M, Bültmann A, Münch G, Gawaz M, Ungerer M. Effect of dominant negative SNAP-23 expression on platelet function. J Thromb Haemost 2008; 6:1757-63. [PMID: 18665925 DOI: 10.1111/j.1538-7836.2008.03108.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The protein SNAP-23 is part of the secretory pathway in platelets. It is, however, not entirely clear to what extent this protein contributes to the secretory function of platelets. Therefore, we overexpressed a dominant negative mutant with a novel technology that allows the creation of intact transgene-expressing platetets. RESULTS Overexpression of a dominant negative SNAP-23 mutant that inhibited the binding of the native protein to the docking site within the secretory machinery resulted in significant suppression of the agonist-dependent surface recruitment of P-selectin and CD40L. Simultaneously, release from dense granules was clearly suppressed in the presence of this construct. Also agonist-dependent surface expression of fibrinogen receptor markers CD41 and CD61 was reduced, and agonist-triggered aggregation was inhibited. CONCLUSION The dominant negative inhibition of SNAP-23 resulted in clear effects on platelet functions. The novel method using recombinant culture-derived platelets allowed the rapid clarification of the functional importance of this protein in intact platelets.
Collapse
|
30
|
Munday AD, López JA. Posttranslational protein palmitoylation: promoting platelet purpose. Arterioscler Thromb Vasc Biol 2007; 27:1496-9. [PMID: 17581830 DOI: 10.1161/atvbaha.106.136226] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Flaumenhaft R, Rozenvayn N, Feng D, Dvorak AM. SNAP-23 and syntaxin-2 localize to the extracellular surface of the platelet plasma membrane. Blood 2007; 110:1492-501. [PMID: 17485553 PMCID: PMC1975852 DOI: 10.1182/blood-2006-11-055772] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SNARE proteins direct membrane fusion events required for platelet granule secretion. These proteins are oriented in cell membranes such that most of the protein resides in a cytosolic compartment. Evaluation of SNARE protein localization in activated platelets using immunonanogold staining and electron microscopy, however, demonstrated expression of SNAP-23 and syntaxin-2 on the extracellular surface of the platelet plasma membrane. Flow cytometry of intact platelets confirmed trypsin-sensitive SNAP-23 and syntaxin-2 localization to the extracellular surface of the plasma membrane. Acyl-protein thioesterase 1 and botulinum toxin C light chain released SNAP-23 and syntaxin-2, respectively, from the surface of intact platelets. When resting platelets were incubated with both acyl-protein thioesterase 1 and botulinum toxin C light chain, a complex that included both SNAP-23 and syntaxin-2 was detected in supernatants, indicating that extracellular SNARE proteins retain their ability to bind one another. These observations represent the first description of SNARE proteins on the extracellular surface of a cell.
Collapse
Affiliation(s)
- Robert Flaumenhaft
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|