1
|
Piñeiro-Llanes J, Suzuki-Hatano S, Jain A, Venigalla S, Kamat M, Basso KB, Cade WT, Simmons CS, Pacak CA. Rescue of mitochondrial dysfunction through alteration of extracellular matrix composition in barth syndrome cardiac fibroblasts. Biomaterials 2025; 315:122922. [PMID: 39509858 PMCID: PMC11625619 DOI: 10.1016/j.biomaterials.2024.122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Fibroblast-ECM (dys)regulation is associated with a plethora of diseases. The ECM acts as a reservoir of inflammatory factors and cytokines that mediate molecular mechanisms within cardiac cell populations. The role of ECM-mitochondria crosstalk in the development and progression of cardiac disorders remains uncertain. We evaluated the influence of ECM produced by stromal cells from patients with the mitochondrial cardiomyopathy (Barth syndrome, BTHS) and unaffected healthy controls on cardiac fibroblast (CF) metabolic function. To do this, cell-derived matrices CDMs were generated from BTHS and healthy human pluripotent stem cell-derived CFs (hPSC-CF) and used as cell culture substrates. BTHS CDMs negatively impacted the mitochondrial function of healthy hPSC-CFs while healthy CDMs improved mitochondrial function in BTHS hPSC-CFs. Mass spectrometry comparisons identified 5 matrisome proteins differentially expressed in BTHS compared to healthy CDM. Our results highlight a key role for the ECM in disease through its impact on mitochondrial function.
Collapse
Affiliation(s)
- Janny Piñeiro-Llanes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Silveli Suzuki-Hatano
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Ananya Jain
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Sree Venigalla
- Department of Neurology and Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, 55455, USA.
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - William T Cade
- Doctor of Physical Therapy Division, Duke University, Durham, NC, 27710, USA.
| | - Chelsey S Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA; Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL, 32610, USA; Department of Neurology and Greg Marzolf Jr. Muscular Dystrophy Center, University of Minnesota Medical School, Minneapolis, 55455, USA.
| |
Collapse
|
2
|
Ma YK, Han XY, Zan SH, Liu HT, Zhou XY, Zhao DX, Xing R, Zhao P. Microrna363-5p targets thrombospondin3 to regulate pathological cardiac remodeling. Mol Cell Biochem 2025; 480:2487-2500. [PMID: 39373825 DOI: 10.1007/s11010-024-05125-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Cardiac remodeling is an end-stage manifestation of multiple cardiovascular diseases, and microRNAs are involved in a variety of posttranscriptional regulatory processes. miR-363-5p targeting Thrombospondin3 (THBS3) has been shown to play an important regulatory role in vascular endothelial cells, but the roles of these two in cardiac remodeling are unknown. Firstly, we established an in vivo model of cardiac remodeling by transverse aortic narrow (TAC), and then we stimulated a human cardiomyocyte cell line (AC16) and a human cardiac fibroblast cell line (HCF) using 1 μmol/L angiotensin II (Ang II) to establish an in vitro model of cardiac hypertrophy and an in vitro model of myocardial fibrosis, respectively. In all three of the above models, we found a significant decreasing trend of miR-363-5p, suggesting that it plays a key regulatory role in the occurrence and development of cardiac remodeling. Subsequently, overexpression of miR-363-5p significantly attenuated myocardial hypertrophy and myocardial fibrosis in vitro as evidenced by reduced the area of AC16, the cell viability of HCFs, the relative expression of the protein of fetal genes (ANP, BNP, β-MHC) and fibrosis marker (collagen I, collagen III, α-SMA), whereas inhibition of miR-363-5p expression showed the opposite trend. In addition, we also confirmed the targeted binding relationship between miR-363-5p and THBS3 by dual luciferase reporter gene assay, and the expression of THBS3 was directly inhibited by miR-363-5p. Moreover, overexpression of miR-363-5p with THBS3 simultaneously partially eliminated the delaying effect of miR-363-5p on myocardial hypertrophy and myocardial fibrosis in vitro. In conclusion, Overexpression of miR-363-5p attenuated the prohypertrophic and profibrotic effects of Ang II on AC16 and HCF by a mechanism related to the inhibition of THBS3 expression.
Collapse
Affiliation(s)
- Yu-Kun Ma
- School of Basic Medicine, Qingdao University, Qingdao, 266000, China
| | - Xin-Yi Han
- School of Basic Medicine, Qingdao University, Qingdao, 266000, China
| | - Shu-Huai Zan
- The First School of Clinical Medicine, Qingdao University, Qingdao, 266000, China
| | - Hui-Ting Liu
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xue-Yan Zhou
- The First School of Clinical Medicine, Qingdao University, Qingdao, 266000, China
| | - Dan-Xue Zhao
- School of Basic Medicine, Qingdao University, Qingdao, 266000, China
| | - Rui Xing
- The First School of Clinical Medicine, Qingdao University, Qingdao, 266000, China
| | - Peng Zhao
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
3
|
Pervaiz N, Mehmood R, Aithabathula RV, Kathuria I, Ahn W, Le BT, Kim KS, Singh UP, Csanyi G, Singla B. Smooth muscle cell-specific CD47 deletion suppresses atherosclerosis. Life Sci 2025; 361:123315. [PMID: 39675550 PMCID: PMC11740882 DOI: 10.1016/j.lfs.2024.123315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Recent smooth muscle cell (SMC)-lineage tracing and single-cell RNA sequencing (scRNA-seq) experiments revealed a significant role of SMC-derived cells in atherosclerosis development. Further, thrombospondin-1 (TSP1), a matricellular protein, and activation of its receptor cluster of differentiation (CD) 47 have been linked with atherosclerosis. However, the role of vascular SMC TSP1-CD47 signaling in regulating VSMC phenotype and atherogenesis remains unknown. METHODS We investigated the role of SMC CD47 activation by TSP1 in regulating VSMC phenotype and atherosclerosis development using various in vitro cell-based assays, molecular biological techniques, immunohistological approaches, reanalysis of publicly available scRNA-seq data, and cell-specific knockout mice. RESULTS We observed elevated TSP1 expression in human atherosclerotic vascular tissues and VSMCs. TSP1-treated VSMCs exhibited decreased expression of contractile SMC markers (ACTA2, CNN1, and TAGLN) and increased proliferation. Additional experiments and reanalysis of the scRNA-seq dataset showed CD47 as the major TSP1 receptor in VSMCs, with its expression increased in SMC-derived modulated cells of murine atherosclerotic arteries. Knockdown of CD47 gene in human VSMCs upregulated expression of contractile SMC markers and abrogated TSP1's effects on these genes. SMC-specific Cd47 deletion in mice suppressed atherosclerotic lesion formation, reduced macrophage accumulation, and decreased necrotic area. However, no significant differences were observed in weight gain, liver and adipose tissue mass, plasma total cholesterol, and fasting blood glucose between control and SMC-restricted Cd47-deficient mice. Further experiments demonstrated increased efferocytosis of apoptotic CD47-silenced VSMCs by macrophages. CONCLUSIONS These findings suggest that CD47 plays a crucial role in regulating VSMC phenotype, and SMC-specific-Cd47 deletion suppresses atherosclerosis. NEW AND NOTEWORTHY VSMC phenotypic switching contributes to atherosclerosis development. The present study reports the novel observations that Cd47 levels are upregulated in phenotypically modulated SMCs within atherosclerotic arteries and targeted deletion of Cd47 specifically in SMCs attenuates atherosclerosis. Mechanistic in vitro investigations further showed that TSP1-CD47 signaling regulates VSMC phenotype. Therefore, targeting SMC CD47 represents a promising therapeutic target to suppress atherogenesis.
Collapse
Affiliation(s)
- Naveed Pervaiz
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Rashid Mehmood
- Department of Hematology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Ravi Varma Aithabathula
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ishita Kathuria
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - WonMo Ahn
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Britney-Thuy Le
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ki-Suk Kim
- Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Udai P Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Gabor Csanyi
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| | - Bhupesh Singla
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
4
|
Adams JC. Thrombospondins: Conserved mediators and modulators of metazoan extracellular matrix. Int J Exp Pathol 2024; 105:136-169. [PMID: 39267379 PMCID: PMC11574667 DOI: 10.1111/iep.12517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
This review provides a personal overview of significant scientific developments in the thrombospondin field during the course of my career. Thrombospondins are multidomain, multimeric, calcium-binding extracellular glycoproteins with context-specific roles in tissue organisation. They act at cell surfaces and within ECM to regulate cell phenotype and signalling, differentiation and assembly of collagenous ECM, along with tissue-specific roles in cartilage, angiogenesis and synaptic function. More recently, intracellular, homeostatic roles have also been identified. Resolution of structures for the major domains of mammalian thrombospondins has facilitated major advances in understanding thrombospondin biology from molecule to tissue; for example, in illuminating molecular consequences of disease-causing coding mutations in human pseudoachrondroplasia. Although principally studied in vertebrates, thrombospondins are amongst the most ancient of animal ECM proteins, with many invertebrates encoding a single thrombospondin and the thrombospondin gene family of vertebrates originating through gene duplications. Moreover, thrombospondins form one branch of a thrombospondin superfamily that debuted at the origin of metazoans. The super-family includes additional sub-groups, present only in invertebrates, that differ in N-terminal domain organisation, share the distinctive TSP C-terminal region domain architecture and, to the limited extent studied to date, apparently contribute to tissue development and organisation. Finally, major lines of translational research are discussed, related to fibrosis; TSP1, TSP2 and inhibition of angiogenesis; and the alleviation of chronic cartilage tissue pathologies in pseudoachrondroplasia.
Collapse
|
5
|
Zarén P, Gawlik KI. Thrombospondin-4 deletion does not exacerbate muscular dystrophy in β-sarcoglycan-deficient and laminin α2 chain-deficient mice. Sci Rep 2024; 14:14757. [PMID: 38926599 PMCID: PMC11208443 DOI: 10.1038/s41598-024-65473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Muscular dystrophy is a group of genetic disorders that lead to muscle wasting and loss of muscle function. Identifying genetic modifiers that alleviate symptoms or enhance the severity of a primary disease helps to understand mechanisms behind disease pathology and facilitates discovery of molecular targets for therapy. Several muscular dystrophies are caused by genetic defects in the components of the dystrophin-glycoprotein adhesion complex (DGC). Thrombospondin-4 overexpression has been shown to mitigate dystrophic disease in mouse models for Duchenne muscular dystrophy (dystrophin deficiency) and limb-girdle muscular dystrophy type 2F (LGMD2F, δ-sarcoglycan deficiency), while deletion of the thrombospondin-4 gene exacerbated the diseases. Hence, thrombospondin-4 has been considered a candidate molecule for therapy of muscular dystrophies involving the DGC. We have investigated whether thrombospondin-4 could act as a genetic modifier for other DGC-associated diseases: limb-girdle muscular dystrophy type 2E (LGMD2E, β-sarcoglycan deficiency) and laminin α2 chain-deficient muscular dystrophy (LAMA2-RD). Deletion of the thrombospondin-4 gene in mouse models for LGMD2E and LAMA2-RD, respectively, did not result in worsening of the dystrophic phenotype. Loss of thrombospondin-4 did not enhance sarcolemma damage and did not impair trafficking of transmembrane receptors integrin α7β1 and dystroglycan in double knockout muscles. Our results suggest that thrombospondin-4 might not be a relevant therapeutic target for all muscular dystrophies involving the DGC. This data also demonstrates that molecular pathology between very similar diseases like LGMD2E and 2F can differ significantly.
Collapse
Affiliation(s)
- Paula Zarén
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden
| | - Kinga I Gawlik
- Muscle Biology Unit, Department of Experimental Medical Science, Lund University, BMC C12, 221 84, Lund, Sweden.
| |
Collapse
|
6
|
Genaro K, Luo ZD. Pathophysiological roles of thrombospondin-4 in disease development. Semin Cell Dev Biol 2024; 155:66-73. [PMID: 37391348 PMCID: PMC10753034 DOI: 10.1016/j.semcdb.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the extracellular matrix glycoprotein family of thrombospondins (TSPs). The multidomain, pentameric structure of TSP-4 allows its interactions with numerous extracellular matrix components, proteins and signaling molecules that enable its modulation to various physiological and pathological processes. Characterization of TSP-4 expression under development and pathogenesis of disorders has yielded important insights into mechanisms underlying the unique role of TSP-4 in mediating various processes including cell-cell, cell-extracellular matrix interactions, cell migration, proliferation, tissue remodeling, angiogenesis, and synaptogenesis. Maladaptation of these processes in response to pathological insults and stress can accelerate the development of disorders including skeletal dysplasia, osteoporosis, degenerative joint disease, cardiovascular diseases, tumor progression/metastasis and neurological disorders. Overall, the diverse functions of TSP-4 suggest that it may be a potential marker or therapeutic target for prognosis, diagnosis, and treatment of various pathological conditions upon further investigations. This review article highlights recent findings on the role of TSP-4 in both physiological and pathological conditions with a focus on what sets it apart from other TSPs.
Collapse
Affiliation(s)
- Karina Genaro
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Z David Luo
- Department of Anesthesiology & Perioperative Care, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
7
|
Kaur S, Roberts DD. Why do humans need thrombospondin-1? J Cell Commun Signal 2023; 17:485-493. [PMID: 36689135 PMCID: PMC10409698 DOI: 10.1007/s12079-023-00722-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/07/2023] [Indexed: 01/24/2023] Open
Abstract
Matricellular proteins comprise several families of secreted proteins that function in higher animals at the interface between cells and their surrounding extracellular matrix. Targeted gene disruptions that result in loss of viability in mice have revealed critical roles for several matricellular proteins in murine embryonic development, including two members of the cellular communication network (CCN) gene family. In contrast, mice lacking single or multiple members of the thrombospondin (THBS) gene family remain viable and fertile. The frequency of loss of function mutants, identified using human deep exome sequencing data, provided evidence that some of the essential genes in mice, including Ccn1, are also essential genes in humans. However, a deficit in loss of function mutants in humans indicated that THBS1 is also highly loss-intolerant. In addition to roles in embryonic development or adult reproduction, genes may be loss-intolerant in humans because their function is needed to survive environmental stresses that are encountered between birth and reproduction. Laboratory mice live in a protected environment that lacks the exposures to pathogens and injury that humans routinely face. However, subjecting Thbs1-/- mice to defined stresses has provided valuable insights into functions of thrombospondin-1 that could account for the loss-intolerance of THBS1 in humans. Stress response models using transgenic mice have identified protective functions of thrombospondin-1 in the cardiovascular system (red) and immune defenses (blue) that could account for its intolerance to loss of function mutants in humans.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10 Room 2S235, 10 Center Dr, Bethesda, MD, 20892-1500, USA.
| |
Collapse
|
8
|
Forbes T, Pauza AG, Adams JC. In the balance: how do thrombospondins contribute to the cellular pathophysiology of cardiovascular disease? Am J Physiol Cell Physiol 2021; 321:C826-C845. [PMID: 34495764 DOI: 10.1152/ajpcell.00251.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thrombospondins (TSPs) are multidomain, secreted proteins that associate with cell surfaces and extracellular matrix. In mammals, there is a large body of data on functional roles of various TSP family members in cardiovascular disease (CVD), including stroke, cardiac remodeling and fibrosis, atherosclerosis, and aortic aneurysms. Coding single nucleotide polymorphisms (SNPs) of TSP1 or TSP4 are also associated with increased risk of several forms of CVD. Whereas interactions and functional effects of TSPs on a variety of cell types have been studied extensively, the molecular and cellular basis for the differential effects of the SNPs remains under investigation. Here, we provide an integrative review on TSPs, their roles in CVD and cardiovascular cell physiology, and known properties and mechanisms of TSP SNPs relevant to CVD. In considering recent expansions to knowledge of the fundamental cellular roles and mechanisms of TSPs, as well as the effects of wild-type and variant TSPs on cells of the cardiovascular system, we aim to highlight knowledge gaps and areas for future research or of translational potential.
Collapse
Affiliation(s)
- Tessa Forbes
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Audrys G Pauza
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Clinical Value of Serum Thrombospondin-2 Combined with CA19-9 in Early Diagnosis of Gastric Cancer. JOURNAL OF ONCOLOGY 2021; 2021:2483964. [PMID: 34659407 PMCID: PMC8516522 DOI: 10.1155/2021/2483964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022]
Abstract
Gastric cancer (GC) is a kind of common cancer worldwide. Too late in diagnosis results in poor prognosis of patients with GC. Thrombospondin-2 (THBS2) is a type of secreted protein that has been found to be a diagnostic biomarker in a variety of cancers. Our study aimed to uncover the clinical value of THBS2 in early detection for patients with gastric cancer. THBS2 was upregulated in gastric cancer tissue compared with normal tissue via analyzing data obtained from The Cancer Genome Atlas (TCGA) database. Additionally, the enzyme-linked immunosorbent assay revealed that the level of serum THBS2 and carcinoembryonic antigen, CA19-9, was higher dramatically in patients with early gastric cancer (EGC) than that in healthy control (HC) in addition to patients with benign gastric tumor (BGT), which suggested that THBS2 indeed associated with GC. Receiver operator characteristic (ROC) curve assay was conducted to demonstrate that serum THBS2 was similar to CA19-9 to distinguish patients with early gastric cancer from healthy control and patients with benign gastric tumor and that THBS2 combined with CA19-9 improved the detective performance of THBS2 for early gastric cancer. Furthermore, we applied the gene set enrichment analysis assay to analyze signaling pathways related to THBS2. We found that THBS2 positively controlled MAPK and WNT signaling pathways, which indicated that THBS2 might exert its functions via the pathway mentioned above. Thus, our study expounded that serum THBS2 could serve as a vital early diagnostic marker for patients with gastric cancer.
Collapse
|
10
|
Grunberg N, Pevsner-Fischer M, Goshen-Lago T, Diment J, Stein Y, Lavon H, Mayer S, Levi-Galibov O, Friedman G, Ofir-Birin Y, Syu LJ, Migliore C, Shimoni E, Stemmer SM, Brenner B, Dlugosz AA, Lyden D, Regev-Rudzki N, Ben-Aharon I, Scherz-Shouval R. Cancer-Associated Fibroblasts Promote Aggressive Gastric Cancer Phenotypes via Heat Shock Factor 1-Mediated Secretion of Extracellular Vesicles. Cancer Res 2021; 81:1639-1653. [PMID: 33547159 PMCID: PMC8337092 DOI: 10.1158/0008-5472.can-20-2756] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/22/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022]
Abstract
Gastric cancer is the third most lethal cancer worldwide, and evaluation of the genomic status of gastric cancer cells has not translated into effective prognostic or therapeutic strategies. We therefore hypothesize that outcomes may depend on the tumor microenvironment (TME), in particular, cancer-associated fibroblasts (CAF). However, very little is known about the role of CAFs in gastric cancer. To address this, we mapped the transcriptional landscape of human gastric cancer stroma by microdissection and RNA sequencing of CAFs from patients with gastric cancer. A stromal gene signature was associated with poor disease outcome, and the transcription factor heat shock factor 1 (HSF1) regulated the signature. HSF1 upregulated inhibin subunit beta A and thrombospondin 2, which were secreted in CAF-derived extracellular vesicles to the TME to promote cancer. Together, our work provides the first transcriptional map of human gastric cancer stroma and highlights HSF1 and its transcriptional targets as potential diagnostic and therapeutic targets in the genomically stable tumor microenvironment. SIGNIFICANCE: This study shows how HSF1 regulates a stromal transcriptional program associated with aggressive gastric cancer and identifies multiple proteins within this program as candidates for therapeutic intervention. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/7/1639/F1.large.jpg.
Collapse
Affiliation(s)
- Nil Grunberg
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | | | - Tal Goshen-Lago
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Judith Diment
- Department of Pathology, Kaplan Medical Center, Rehovot, Israel
| | - Yaniv Stein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Hagar Lavon
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Shimrit Mayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Oshrat Levi-Galibov
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Gil Friedman
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Yifat Ofir-Birin
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Li-Jyun Syu
- Department of Dermatology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Cristina Migliore
- University of Torino, Department of Oncology, Candiolo; Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Eyal Shimoni
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Salomon M Stemmer
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Baruch Brenner
- Institute of Oncology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Andrzej A Dlugosz
- Department of Dermatology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
- Department of Cell & Developmental Biology, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, New York
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Irit Ben-Aharon
- Division of Oncology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Ruth Scherz-Shouval
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Kaur S, Roberts DD. Differential intolerance to loss of function and missense mutations in genes that encode human matricellular proteins. J Cell Commun Signal 2021; 15:93-105. [PMID: 33415696 PMCID: PMC7904989 DOI: 10.1007/s12079-020-00598-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 12/11/2022] Open
Abstract
Targeted gene disruption in mice has provided valuable insights into the functions of matricellular proteins. Apart from missense and loss of function mutations that have been associated with inherited diseases, however, their functions in humans remain unclear. The availability of deep exome sequencing data from over 140,000 individuals in the Genome Aggregation Database provided an opportunity to examine intolerance to loss of function and missense mutations in human matricellular genes. The probability of loss-of-function intolerance (pLI) differed widely within members of the thrombospondin, CYR61/CTGF/NOV (CCN), tenascin, small integrin-binding ligand N-linked glycoproteins (SIBLING), and secreted protein, acidic and rich in cysteine (SPARC) gene families. Notably, pLI values in humans had limited correlation with viability of the corresponding homozygous null mice. Among the thrombospondins, only THBS1 was highly loss-intolerant (pLI = 1). In contrast, Thbs1 is not essential for viability in mice. Several known thrombospondin-1 receptors were similarly loss-intolerant, although thrombospondin-1 is not the exclusive ligand for some of these receptors. The frequencies of missense mutations in THBS1 and the gene encoding its signaling receptor CD47 indicated conservation of some residues implicated in specific receptor binding. Deficits in missense mutations were also observed for other thrombospondin genes and for SPARC, SPOCK1, SPOCK2, TNR, and DSPP. The intolerance of THBS1 to loss of function in humans and elevated pLI values for THBS2, SPARC, SPOCK1, TNR, and CCN1 support important functions for these matricellular protein genes in humans, some of which may relate to functions in reproduction or responding to environmental stresses.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Building 10 Room 2S235, 10 Center Drive MSC1500, Bethesda, MD, 20892-1500, USA.
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Building 10 Room 2S235, 10 Center Drive MSC1500, Bethesda, MD, 20892-1500, USA.
| |
Collapse
|
12
|
Ganguly R, Khanal S, Mathias A, Gupta S, Lallo J, Sahu S, Ohanyan V, Patel A, Storm K, Datta S, Raman P. TSP-1 (Thrombospondin-1) Deficiency Protects ApoE -/- Mice Against Leptin-Induced Atherosclerosis. Arterioscler Thromb Vasc Biol 2021; 41:e112-e127. [PMID: 33327743 PMCID: PMC8105272 DOI: 10.1161/atvbaha.120.314962] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Hyperleptinemia, hallmark of obesity, is a putative pathophysiologic trigger for atherosclerosis. We previously reported a stimulatory effect of leptin on TSP-1 (thrombospondin-1) expression, a proatherogenic matricellular protein implicated in atherogenesis. However, a causal role of TSP-1 in leptin-driven atherosclerosis remains unknown. Approach and Results: Seventeen-weeks-old ApoE-/- and TSP-1-/-/ApoE-/- double knockout mice, on normocholesterolemic diet, were treated with or without murine recombinant leptin (5 µg/g bwt, IP) once daily for 3 weeks. Using aortic root morphometry and en face lesion assay, we found that TSP-1 deletion abrogated leptin-stimulated lipid-filled lesion burden, plaque area, and collagen accumulation in aortic roots of ApoE-/- mice, shown via Oil red O, hematoxylin and eosin, and Masson trichrome staining, respectively. Immunofluorescence microscopy of aortic roots showed that TSP-1 deficiency blocked leptin-induced inflammatory and smooth muscle cell abundance as well as cellular proliferation in ApoE-/- mice. Moreover, these effects were concomitant to changes in VLDL (very low-density lipoprotein)-triglyceride and HDL (high-density lipoprotein)-cholesterol levels. Immunoblotting further revealed reduced vimentin and pCREB (phospho-cyclic AMP response element-binding protein) accompanied with augmented smooth muscle-myosin heavy chain expression in aortic vessels of leptin-treated double knockout versus leptin-treated ApoE-/-; also confirmed in aortic smooth muscle cells from the mice genotypes, incubated ± leptin in vitro. Finally, TSP-1 deletion impeded plaque burden in leptin-treated ApoE-/- on western diet, independent of plasma lipid alterations. CONCLUSIONS The present study provides evidence for a protective effect of TSP-1 deletion on leptin-stimulated atherogenesis. Our findings suggest a regulatory role of TSP-1 on leptin-induced vascular smooth muscle cell phenotypic transition and inflammatory lesion invasion. Collectively, these results underscore TSP-1 as a potential target of leptin-induced vasculopathy.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Aortic Diseases/chemically induced
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Atherosclerosis/chemically induced
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Collagen/metabolism
- Diet, High-Fat
- Disease Models, Animal
- Leptin
- Male
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Plaque, Atherosclerotic
- Signal Transduction
- Thrombospondin 1/deficiency
- Thrombospondin 1/genetics
- Mice
Collapse
Affiliation(s)
- Rituparna Ganguly
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
- Current Address: Department of Diabetes Complications and Metabolism, City of Hope, 1500 East Duarte Road, Duarte, CA 91010
| | - Saugat Khanal
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| | - Amy Mathias
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Shreya Gupta
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| | - Jason Lallo
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Soumyadip Sahu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
- Current Address: National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| | - Aakaash Patel
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Kyle Storm
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
| | - Sujay Datta
- Department of Statistics, The University of Akron, Akron, OH
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH
- School of Biomedical Sciences, Kent State University, Kent, OH
| |
Collapse
|
13
|
Her NG, Kesari S, Nurmemmedov E. Thrombospondin-1 counteracts the p97 inhibitor CB-5083 in colon carcinoma cells. Cell Cycle 2020; 19:1590-1601. [PMID: 32423265 DOI: 10.1080/15384101.2020.1754584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
p97 has recently emerged as a therapeutic target for cancer due to its essential functions in protein homeostasis. CB-5083 is a first-in-class, potent and selective ATP-competitive p97 inhibitor that induces proteotoxic stress in cancer cells. Potential mechanisms regulating the sensitivity of cells to p97 inhibition remain poorly studied. Here, we demonstrate that Thrombospondin-1 (THBS1) is a CB-5083-upregulated gene that helps confer resistance of HCT116 cells to CB-5083. Our immunoblotting and immunofluorescence data showed that CB-5083 significantly increases the steady-state abundance of THBS1. Blockade of THBS1 induction sensitized cells to CB-5083-mediated growth inhibition. Suppression of THBS1 caused an increase of CB-5083-induced sub-G1 population and caspase 3/7 activity suggesting that its function is linked to the survival of cancer cells in response to p97 inhibition. Altogether our data provide new evidence that THBS1 is important for the susceptibility of cells to p97 inhibition.
Collapse
Affiliation(s)
- Nam-Gu Her
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences , Seoul, Republic of Korea.,Department of Neuro-sciences and Neuro-therapeutics, John Wayne Cancer Institute and Pacific Neuroscience Institute at Providence Saint John's Health Center , Santa Monica, CA, USA
| | - Santosh Kesari
- Institute for Refractory Cancer Research, Current Address: Samsung Medical Center , Seoul, Republic of Korea
| | - Elmar Nurmemmedov
- Institute for Refractory Cancer Research, Current Address: Samsung Medical Center , Seoul, Republic of Korea
| |
Collapse
|
14
|
Shen Y, Yu J, Jing Y, Zhang J. MiR-106a aggravates sepsis-induced acute kidney injury by targeting THBS2 in mice model. Acta Cir Bras 2019; 34:e201900602. [PMID: 31432993 PMCID: PMC6705346 DOI: 10.1590/s0102-865020190060000002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/02/2019] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To investigate the role and related mechanisms of miR-106a in sepsis-induced AKI. METHODS Serum from sepsis and healthy patients was collected, sepsis mouse model was established by cecal ligation and puncture (CLP). TCMK-1 cells were treated with lipopolysaccharide (LPS) and transfected with THBS2-small interfering RNA (siTHBS2), miR-106a inhibitor, miR-106a mimics and their negative controls (NCs). The expression of miR-106a, thrombospondin 2 (THBS2), Bax, cleaved caspase-3 and Bcl-2, cell viability, relative caspase-3 activity and TNF-α, IL-1β, IL-6 content were respectively detected by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, Cell Counting Kit-8 (CCK-8) and enzyme linked immunosorbent assay (ELISA). The relationship between miR-106a and THBS2 was confirmed by dual luciferase reporter assay. RESULTS MiR-106a was up-regulated in serum of sepsis patients, CLP-induced mice models and LPS-induced TCMK-1 cells. LPS reduced cell viability and Bcl-2 expression, and increased caspase-3 activity, Bax expression, the content of TNF-α, IL-1β, IL-6. THBS2 was a target of miR-106a. The decreases of caspase-3 activity, TNF-α, IL-1β, IL-6, Bax expression and the increases of cell viability, Bcl-2 expression caused by miR-106a knockdown were reversed when THBS2 silencing in LPS-stimulated TCMK-1 cells. CONCLUSION MiR-106a aggravated LPS-induced inflammation and apoptosis of TCMK-1 cells via regulating THBS2 expression.
Collapse
Affiliation(s)
- Yezhou Shen
- Bachelor, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Conception and design of the study, acquisition of data, technical procedures, manuscript preparation and writing
| | - Jiaoyang Yu
- Master, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Technical procedures, acquisition of data
| | - Yunyan Jing
- Master, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Technical procedures, acquisition of data
| | - Jian Zhang
- Bachelor, Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China. Statistical analysis, interpretation of data
| |
Collapse
|
15
|
Swystun LL, Lillicrap D. Genetic regulation of plasma von Willebrand factor levels in health and disease. J Thromb Haemost 2018; 16:2375-2390. [PMID: 30246494 PMCID: PMC7147242 DOI: 10.1111/jth.14304] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Indexed: 02/06/2023]
Abstract
Plasma levels of the multimeric glycoprotein von Willebrand factor (VWF) constitute a complex quantitative trait with a continuous distribution and wide range in the normal population (50-200%). Quantitative deficiencies of VWF (< 50%) are associated with an increased risk of bleeding, whereas high plasma levels of VWF (> 150%) influence the risk of arterial and venous thromboembolism. Although environmental factors can strongly influence plasma VWF levels, it is estimated that approximately 65% of this variability is heritable. Interestingly, although variability in VWF can account for ~ 5% of the genetic influence on plasma VWF levels, other genetic loci also strongly modify plasma VWF levels. The identification of the additional sources of VWF heritability has been the focus of recent observational trait-mapping studies, including genome-wide association studies or linkage analyses, as well as hypothesis-driven research studies. Quantitative trait loci influencing VWF glycosylation, secretion and clearance have been associated with plasma VWF antigen levels in normal individuals, and may contribute to quantitative VWF abnormalities in patients with a thrombotic tendency or type 1 von Willebrand disease (VWD). The identification of genetic modifiers of plasma VWF levels may allow for better molecular diagnosis of type 1 VWD, and enable the identification of individuals at increased risk for thrombosis. Validation of trait-mapping studies with in vitro and in vivo methodologies has led to novel insights into the life cycle of VWF and the pathogenesis of quantitative VWF abnormalities.
Collapse
Affiliation(s)
- L L Swystun
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - D Lillicrap
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
16
|
Thrombospondin-1 Production Regulates the Inflammatory Cytokine Secretion in THP-1 Cells Through NF-κB Signaling Pathway. Inflammation 2018. [PMID: 28634844 DOI: 10.1007/s10753-017-0601-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thrombospondin-1 (TSP-1) is upregulated in several inflammatory diseases. Recent data have shown that macrophages from TSP-1-deficient mice have a reduced inflammatory phenotype, suggesting that TSP-1 plays a part in macrophage activation. DNA microarray approach revealed that Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) may induce the enhanced TSP-1 expression in human monocytes, suggesting a role of TSP-1-mediated pathogenesis in periodontitis. Until recently, the function of TSP-1 has been a matter of debate. In this study, we explored the role of TSP-1 in inflammatory cytokine secretions and its putative mechanism in pathogenesis of periodontitis. We demonstrated that TSP-1 expression was significantly upregulated in gingival tissues with periodontitis and in P. gingivalis LPS-stimulated THP-1 cells. Deficiency of TSP-1 by transfecting siRNAs decreased IL-6, IL-1β, and TNF-α secretions in THP-1 cells, whereas overexpression of TSP-1 resulted in an upregulation of IL-6, IL-1β, and TNF-α productions. Additional experiments showed that Pyrrolidine dithiocarbamate (PDTC) inhibited IL-6, IL-1β, and TNF-α expression induced by overexpression of TSP-1, accompanying with downregulation of phosphorylated p65 and IκBα protein levels in response to P. gingivalis LPS. These results indicated that TSP-1 played a significant role in P. gingivalis LPS-initiated inflammatory cytokines (IL-6, IL-1β, and TNF-α) secretions of THP-1 cells, and the NF-κB signaling is involved in its induction of expression. Thus, TSP-1 effectively elevated P. gingivalis LPS-induced inflammation mediated by the NF-κB pathway and may be critical for pathology of periodontitis.
Collapse
|
17
|
Palao T, Medzikovic L, Rippe C, Wanga S, Al-Mardini C, van Weert A, de Vos J, van der Wel NN, van Veen HA, van Bavel ET, Swärd K, de Waard V, Bakker ENTP. Thrombospondin-4 mediates cardiovascular remodelling in angiotensin II-induced hypertension. Cardiovasc Pathol 2018; 35:12-19. [DOI: 10.1016/j.carpath.2018.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022] Open
|
18
|
Abstract
The extracellular matrix (ECM) has central roles in tissue integrity and remodeling throughout the life span of animals. While collagens are the most abundant structural components of ECM in most tissues, tissue-specific molecular complexity is contributed by ECM glycoproteins. The matricellular glycoproteins are categorized primarily according to functional criteria and represented predominantly by the thrombospondin, tenascin, SPARC/osteonectin, and CCN families. These proteins do not self-assemble into ECM fibrils; nevertheless, they shape ECM properties through interactions with structural ECM proteins, growth factors, and cells. Matricellular proteins also promote cell migration or morphological changes through adhesion-modulating or counter-adhesive actions on cell-ECM adhesions, intracellular signaling, and the actin cytoskeleton. Typically, matricellular proteins are most highly expressed during embryonic development. In adult tissues, expression is more limited unless activated by cues for dynamic tissue remodeling and cell motility, such as occur during inflammatory response and wound repair. Many insights in the complex roles of matricellular proteins have been obtained from studies of gene knockout mice. However, with the exception of chordate-specific tenascins, these are highly conserved proteins that are encoded in many animal phyla. This review will consider the increasing body of research on matricellular proteins in nonmammalian animal models. These models provide better access to the very earliest stages of embryonic development and opportunities to study biological processes such as limb and organ regeneration. In aggregate, this research is expanding concepts of the functions and mechanisms of action of matricellular proteins.
Collapse
Affiliation(s)
- Josephine C Adams
- School of Biochemistry, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
19
|
Stenina-Adognravi O, Plow EF. Thrombospondin-4 in tissue remodeling. Matrix Biol 2017; 75-76:300-313. [PMID: 29138119 DOI: 10.1016/j.matbio.2017.11.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 01/09/2023]
Abstract
Thrombospondin-4 (TSP-4) belongs to the thrombospondin protein family that consists of five highly homologous members. A number of novel functions have been recently assigned to TSP-4 in cardiovascular and nervous systems, inflammation, cancer, and the motor unit, which have attracted attention to this extracellular matrix (ECM) protein. These newly discovered functions set TSP-4 apart from other thrombospondins. For example, TSP-4 promotes angiogenesis while other TSPs either prevent it or have no effect on new blood vessel growth; TSP-4 reduces fibrosis and collagen production while TSP-1 and TSP-2 promote fibrosis in several organs; unlike other TSPs, TSP-4 appears to have some structural functions in ECM. The current information about TSP-4 functions in different organs and physiological systems suggests that this evolutionary conserved protein is a major regulator of the extracellular matrix (ECM) organization and production and tissue remodeling during the embryonic development and response to injury. In this review article, we summarize the properties and functions of TSP-4 and discuss its role in tissue remodeling.
Collapse
Affiliation(s)
- Olga Stenina-Adognravi
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | - Edward F Plow
- Department of Molecular Cardiology, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| |
Collapse
|
20
|
Ganguly R, Sahu S, Ohanyan V, Haney R, Chavez RJ, Shah S, Yalamanchili S, Raman P. Oral chromium picolinate impedes hyperglycemia-induced atherosclerosis and inhibits proatherogenic protein TSP-1 expression in STZ-induced type 1 diabetic ApoE -/- mice. Sci Rep 2017; 7:45279. [PMID: 28345659 PMCID: PMC5366888 DOI: 10.1038/srep45279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 02/23/2017] [Indexed: 12/23/2022] Open
Abstract
Increasing evidence suggests thrombospondin-1 (TSP-1), a potent proatherogenic matricellular protein, as a putative link between hyperglycemia and atherosclerotic complications in diabetes. We previously reported that the micronutrient chromium picolinate (CrP), with long-standing cardiovascular benefits, inhibits TSP-1 expression in glucose-stimulated human aortic smooth muscle cells in vitro. Here, we investigated the atheroprotective action of orally administered CrP in type 1 diabetic apolipoprotein E-deficient (ApoE−/−) mice and elucidated the role of TSP-1 in this process. CrP decreased lipid burden and neointimal thickness in aortic root lesions of hyperglycemic ApoE−/− mice; also, smooth muscle cell (SMC), macrophage and leukocyte abundance was prevented coupled with reduced cell proliferation. Attenuated lesion progression was accompanied with inhibition of hyperglycemia-induced TSP-1 expression and reduced protein O-glycosylation following CrP treatment; also, PCNA and vimentin (SMC synthetic marker) expression were reduced while SM-MHC (SMC contractile marker) levels were increased. To confirm a direct role of TSP-1 in diabetic atherosclerosis, hyperglycemic TSP-1−/−/ApoE−/− double knockout mice were compared with age-matched hyperglycemic ApoE−/− littermates. Lack of TSP-1 prevented lesion formation in hyperglycemic ApoE−/− mice, mimicking the atheroprotective phenotype of CrP-treated mice. These results suggest that therapeutic TSP-1 inhibition may have important atheroprotective potential in diabetic vascular disease.
Collapse
Affiliation(s)
- Rituparna Ganguly
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - Soumyadip Sahu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Rebecca Haney
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Ronaldo J Chavez
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Shivani Shah
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Siri Yalamanchili
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.,School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| |
Collapse
|
21
|
Kessler T, Vilne B, Schunkert H. The impact of genome-wide association studies on the pathophysiology and therapy of cardiovascular disease. EMBO Mol Med 2016; 8:688-701. [PMID: 27189168 PMCID: PMC4931285 DOI: 10.15252/emmm.201506174] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases are leading causes for death worldwide. Genetic disposition jointly with traditional risk factors precipitates their manifestation. Whereas the implications of a positive family history for individual risk have been known for a long time, only in the past few years have genome-wide association studies (GWAS) shed light on the underlying genetic variations. Here, we review these studies designed to increase our understanding of the pathophysiology of cardiovascular diseases, particularly coronary artery disease and myocardial infarction. We focus on the newly established pathways to exemplify the translation from the identification of risk-related genetic variants to new preventive and therapeutic strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Thorsten Kessler
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany
| | - Baiba Vilne
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Klinik für Herz- und Kreislauferkrankungen, Technische Universität München, Munich, Germany DZHK (German Center for Cardiovascular Research) e.V., partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
22
|
Sahu S, Ganguly R, Raman P. Leptin augments recruitment of IRF-1 and CREB to thrombospondin-1 gene promoter in vascular smooth muscle cells in vitro. Am J Physiol Cell Physiol 2016; 311:C212-24. [PMID: 27281481 DOI: 10.1152/ajpcell.00068.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/02/2016] [Indexed: 01/26/2023]
Abstract
We previously reported that high pathophysiological concentrations of leptin, the adipocyte-secreted peptide, upregulate the expression of a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in vascular smooth muscle cells. Moreover, this regulation was found to occur at the level of transcription; however, the underlying molecular mechanisms remain unknown. The goal of the present study was to investigate the specific transcriptional mechanisms that mediate upregulation of TSP-1 expression by leptin. Primary human aortic smooth muscle cell cultures were transiently transfected with different TSP-1 gene (THBS1) promoter-linked luciferase reporter constructs, and luciferase activity in response to leptin (100 ng/ml) was assessed. We identified a long THBS1 promoter (-1270/+750) fragment with specific leptin response elements that are required for increased TSP-1 transcription by leptin. Promoter analyses, protein/DNA array and gel shift assays demonstrated activation and association of transcription factors, interferon regulatory factor-1 (IRF-1) and cAMP response element-binding protein (CREB), to the distal fragment of the THBS1 promoter in response to leptin. Supershift, chromatin immunoprecipitation, and coimmunoprecipitation assays revealed formation of a single complex between IRF-1 and CREB in response to leptin; importantly, recruitment of this complex to the THBS1 promoter mediated leptin-induced TSP-1 transcription. Finally, binding sequence decoy oligomer and site-directed mutagenesis revealed that regulatory elements for both IRF-1 (-1019 to -1016) and CREB (-1198 to -1195), specific to the distal THBS1 promoter, were required for leptin-induced TSP-1 transcription. Taken together, these findings demonstrate that leptin promotes a cooperative association between IRF-1 and CREB on the THBS1 promoter driving TSP-1 transcription in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Soumyadip Sahu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Rituparna Ganguly
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
23
|
Jeschke A, Bonitz M, Simon M, Peters S, Baum W, Schett G, Ruether W, Niemeier A, Schinke T, Amling M. Deficiency of Thrombospondin-4 in Mice Does Not Affect Skeletal Growth or Bone Mass Acquisition, but Causes a Transient Reduction of Articular Cartilage Thickness. PLoS One 2015; 10:e0144272. [PMID: 26629997 PMCID: PMC4667928 DOI: 10.1371/journal.pone.0144272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022] Open
Abstract
Although articular cartilage degeneration represents a major public health problem, the underlying molecular mechanisms are still poorly characterized. We have previously utilized genome-wide expression analysis to identify specific markers of porcine articular cartilage, one of them being Thrombospondin-4 (Thbs4). In the present study we analyzed Thbs4 expression in mice, thereby confirming its predominant expression in articular cartilage, but also identifying expression in other tissues, including bone. To study the role of Thbs4 in skeletal development and integrity we took advantage of a Thbs4-deficient mouse model that was analyzed by undecalcified bone histology. We found that Thbs4-deficient mice do not display phenotypic differences towards wildtype littermates in terms of skeletal growth or bone mass acquisition. Since Thbs4 has previously been found over-expressed in bones of Phex-deficient Hyp mice, we additionally generated Thbs4-deficient Hyp mice, but failed to detect phenotypic differences towards Hyp littermates. With respect to articular cartilage we found that Thbs4-deficient mice display transient thinning of articular cartilage, suggesting a protective role of Thbs4 for joint integrity. Gene expression analysis using porcine primary cells revealed that Thbs4 is not expressed by synovial fibroblasts and that it represents the only member of the Thbs gene family with specific expression in articular, but not in growth plate chondrocytes. In an attempt to identify specific molecular effects of Thbs4 we treated porcine articular chondrocytes with human THBS4 in the absence or presence of conditioned medium from porcine synovial fibroblasts. Here we did not observe a significant influence of THBS4 on proliferation, metabolic activity, apoptosis or gene expression, suggesting that it does not act as a signaling molecule. Taken together, our data demonstrate that Thbs4 is highly expressed in articular chondrocytes, where its presence in the extracellular matrix is required for articular cartilage integrity.
Collapse
Affiliation(s)
- Anke Jeschke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Martin Bonitz
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Maciej Simon
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
- Department of Orthopedics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Stephanie Peters
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Wolfgang Baum
- Department of Internal Medicine 3 and Institute of Clinical Immunology, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Georg Schett
- Department of Internal Medicine 3 and Institute of Clinical Immunology, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Wolfgang Ruether
- Department of Orthopedics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Andreas Niemeier
- Department of Orthopedics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg Eppendorf, Hamburg 20246, Germany
- * E-mail:
| |
Collapse
|
24
|
Cartilage oligomeric matrix protein is a natural inhibitor of thrombin. Blood 2015; 126:905-14. [PMID: 26045608 DOI: 10.1182/blood-2015-01-621292] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/02/2015] [Indexed: 12/29/2022] Open
Abstract
Thrombin is an effector enzyme for hemostasis and thrombosis; however, endogenous regulators of thrombin remain elusive. Cartilage oligomeric matrix protein (COMP), a matricellular protein also known as thrombospondin-5, is essential for maintaining vascular homeostasis. Here, we asked whether COMP is involved in the process of blood coagulation. COMP deficiency shortened tail-bleeding and clotting time and accelerated ferric-chloride-induced thrombosis in mice. The absence of COMP had no effect on platelet count. In contrast, COMP specifically inhibited thrombin-induced platelet aggregation, activation, and retraction and the thrombin-mediated cleavage of fibrinogen. Furthermore, surface plasmon resonance analysis revealed direct thrombin-COMP binding (KD = 1.38 ± 0.24 μM). In particular, blockage of thrombin exosites with compounds specific for exosite I (hirudin and HD1 aptamer) or exosite II (heparin and HD22 aptamer) impaired the COMP-thrombin interaction, indicating a 2-site binding mechanism. Additionally, epidermal growth factor-like repeats (amino acids 84-261) were identified as a COMP binding site for thrombin. Moreover, COMP was expressed in and secreted by platelets. Using bone marrow transplantation and platelet transfusion to create chimeric mice, platelet-derived but not vessel-wall-derived COMP was demonstrated to inhibit coagulation. Taken together, COMP is an endogenous thrombin inhibitor and negative regulator of hemostasis and thrombosis.
Collapse
|
25
|
Kim DJ, Christofidou ED, Keene DR, Hassan Milde M, Adams JC. Intermolecular interactions of thrombospondins drive their accumulation in extracellular matrix. Mol Biol Cell 2015; 26:2640-54. [PMID: 25995382 PMCID: PMC4501361 DOI: 10.1091/mbc.e14-05-0996] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/12/2015] [Indexed: 02/01/2023] Open
Abstract
A novel mechanism of intermolecular interactions in trans is identified by which thrombospondin molecules accumulate as puncta within the extracellular matrix. This process depends on a novel, conserved, surface-exposed site on the thrombospondin L-type lectin domain. Thrombospondins participate in many aspects of tissue organization in adult tissue homeostasis, and their dysregulation contributes to pathological processes such as fibrosis and tumor progression. The incorporation of thrombospondins into extracellular matrix (ECM) as discrete puncta has been documented in various tissue and cell biological contexts, yet the underlying mechanisms remain poorly understood. We find that collagen fibrils are disorganized in multiple tissues of Thbs1−/− mice. In investigating how thrombospondins become retained within ECM and thereby affect ECM organization, we find that accumulation of thrombospondin-1 or thrombospondin-5 puncta within cell-derived ECM is controlled by a novel, conserved, surface-exposed site on the thrombospondin L-type lectin domain. This site acts to recruit thrombospondin molecules into ECM by intermolecular interactions in trans. This mechanism is fibronectin independent, can take place extracellularly, and is demonstrated to be direct in vitro. The trans intermolecular interactions can also be heterotypic—for example, between thrombospondin-1 and thrombospondin-5. These data identify a novel concept of concentration-dependent, intermolecular “matrix trapping” as a conserved mechanism that controls the accumulation and thereby the functionality of thrombospondins in ECM.
Collapse
Affiliation(s)
- Dae Joong Kim
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195
| | | | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR 97239
| | - Marwah Hassan Milde
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195
| | - Josephine C Adams
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195 School of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
26
|
Wilsgaard T, Mathiesen EB, Patwardhan A, Rowe MW, Schirmer H, Løchen ML, Sudduth-Klinger J, Hamren S, Bønaa KH, Njølstad I. Clinically significant novel biomarkers for prediction of first ever myocardial infarction: the Tromsø Study. ACTA ACUST UNITED AC 2015; 8:363-71. [PMID: 25613532 DOI: 10.1161/circgenetics.113.000630] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/08/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Identification of individuals with high risk for first-ever myocardial infarction (MI) can be improved. The objectives of the study were to survey multiple protein biomarkers for association with the 10-year risk of incident MI and identify a clinically significant risk model that adds information to current common risk models. METHODS AND RESULTS We used an immunoassay platform that uses a sensitive, sample-efficient molecular counting technology to measure 51 proteins in samples from the fourth survey (1994) in the Tromsø Study, a longitudinal study of men and women in Tromsø, Norway. A case control design was used with 419 first-ever MI cases (169 females/250 males) and 398 controls (244 females/154 males). Of the proteins measured, 17 were predictors of MI when considered individually after adjustment for traditional risk factors either in men, women, or both. The 6 biomarkers adjusted for traditional risk factors that were selected in a multivariable model (odds ratios [OR] per standard deviation) using a stepwise procedure were apolipoprotein B/apolipoprotein A1 ratio (1.40), kallikrein (0.73), lipoprotein a (1.29), matrix metalloproteinase 9 (1.30), the interaction term IP-10/CXCL10×women (0.69), and the interaction term thrombospondin 4×men (1.38). The composite risk of these biomarkers added significantly to the traditional risk factor model with a net reclassification improvement of 14% (P=0.0002), whereas the receiver operating characteristic area increased from 0.757 to 0.791, P=0.0004. CONCLUSIONS Novel protein biomarker models improve identification of 10-year MI risk above and beyond traditional risk factors with 14% better allocation to either high or low risk group.
Collapse
Affiliation(s)
- Tom Wilsgaard
- From the Departments of Community Medicine (T.W., M.-L.L., K.H.B., I.N.) and Clinical Medicine (E.B.M. H.S.), UiT The Arctic University of Norway, Norway; Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway (H.S.); Tethys Bioscience, Emeryville, CA (A.P., M.W.R., J.S.-K.); Life Science Department, Singulex, Inc., Alameda, CA (S.H.); and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (K.H.B.).
| | - Ellisiv Bøgeberg Mathiesen
- From the Departments of Community Medicine (T.W., M.-L.L., K.H.B., I.N.) and Clinical Medicine (E.B.M. H.S.), UiT The Arctic University of Norway, Norway; Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway (H.S.); Tethys Bioscience, Emeryville, CA (A.P., M.W.R., J.S.-K.); Life Science Department, Singulex, Inc., Alameda, CA (S.H.); and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (K.H.B.)
| | - Anil Patwardhan
- From the Departments of Community Medicine (T.W., M.-L.L., K.H.B., I.N.) and Clinical Medicine (E.B.M. H.S.), UiT The Arctic University of Norway, Norway; Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway (H.S.); Tethys Bioscience, Emeryville, CA (A.P., M.W.R., J.S.-K.); Life Science Department, Singulex, Inc., Alameda, CA (S.H.); and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (K.H.B.)
| | - Michael W Rowe
- From the Departments of Community Medicine (T.W., M.-L.L., K.H.B., I.N.) and Clinical Medicine (E.B.M. H.S.), UiT The Arctic University of Norway, Norway; Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway (H.S.); Tethys Bioscience, Emeryville, CA (A.P., M.W.R., J.S.-K.); Life Science Department, Singulex, Inc., Alameda, CA (S.H.); and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (K.H.B.)
| | - Henrik Schirmer
- From the Departments of Community Medicine (T.W., M.-L.L., K.H.B., I.N.) and Clinical Medicine (E.B.M. H.S.), UiT The Arctic University of Norway, Norway; Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway (H.S.); Tethys Bioscience, Emeryville, CA (A.P., M.W.R., J.S.-K.); Life Science Department, Singulex, Inc., Alameda, CA (S.H.); and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (K.H.B.)
| | - Maja-Lisa Løchen
- From the Departments of Community Medicine (T.W., M.-L.L., K.H.B., I.N.) and Clinical Medicine (E.B.M. H.S.), UiT The Arctic University of Norway, Norway; Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway (H.S.); Tethys Bioscience, Emeryville, CA (A.P., M.W.R., J.S.-K.); Life Science Department, Singulex, Inc., Alameda, CA (S.H.); and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (K.H.B.)
| | - Julie Sudduth-Klinger
- From the Departments of Community Medicine (T.W., M.-L.L., K.H.B., I.N.) and Clinical Medicine (E.B.M. H.S.), UiT The Arctic University of Norway, Norway; Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway (H.S.); Tethys Bioscience, Emeryville, CA (A.P., M.W.R., J.S.-K.); Life Science Department, Singulex, Inc., Alameda, CA (S.H.); and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (K.H.B.)
| | - Sarah Hamren
- From the Departments of Community Medicine (T.W., M.-L.L., K.H.B., I.N.) and Clinical Medicine (E.B.M. H.S.), UiT The Arctic University of Norway, Norway; Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway (H.S.); Tethys Bioscience, Emeryville, CA (A.P., M.W.R., J.S.-K.); Life Science Department, Singulex, Inc., Alameda, CA (S.H.); and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (K.H.B.)
| | - Kaare Harald Bønaa
- From the Departments of Community Medicine (T.W., M.-L.L., K.H.B., I.N.) and Clinical Medicine (E.B.M. H.S.), UiT The Arctic University of Norway, Norway; Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway (H.S.); Tethys Bioscience, Emeryville, CA (A.P., M.W.R., J.S.-K.); Life Science Department, Singulex, Inc., Alameda, CA (S.H.); and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (K.H.B.)
| | - Inger Njølstad
- From the Departments of Community Medicine (T.W., M.-L.L., K.H.B., I.N.) and Clinical Medicine (E.B.M. H.S.), UiT The Arctic University of Norway, Norway; Division of Cardiothoracic and Respiratory Medicine, University Hospital of North Norway, Tromsø, Norway (H.S.); Tethys Bioscience, Emeryville, CA (A.P., M.W.R., J.S.-K.); Life Science Department, Singulex, Inc., Alameda, CA (S.H.); and Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway (K.H.B.)
| |
Collapse
|
27
|
Ganguly R, Sahu S, Chavez RJ, Raman P. Trivalent chromium inhibits TSP-1 expression, proliferation, and O-GlcNAc signaling in vascular smooth muscle cells in response to high glucose in vitro. Am J Physiol Cell Physiol 2014; 308:C111-22. [PMID: 25354527 DOI: 10.1152/ajpcell.00256.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Trivalent chromium (Cr(3+)) is a mineral nutrient reported to have beneficial effects in glycemic and cardiovascular health. In vitro and in vivo studies suggest that Cr(3+) supplementation reduces the atherogenic potential and lowers the risk of vascular inflammation in diabetes. However, effects of Cr(3+) in vascular cells under conditions of hyperglycemia, characteristic of diabetes, remain unknown. In the present study we show that a therapeutically relevant concentration of Cr(3+) (100 nM) significantly downregulates a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in human aortic smooth muscle cells (HASMC) stimulated with high glucose in vitro. Promoter-reporter assays reveal that this downregulation of TSP-1 expression by Cr(3+) occurs at the level of transcription. The inhibitory effects of Cr(3+) on TSP-1 were accompanied by significant reductions in O-glycosylation of cytoplasmic and nuclear proteins. Using Western blotting and immunofluorescence studies, we demonstrate that reduced protein O-glycosylation by Cr(3+) is mediated via inhibition of glutamine: fructose 6-phosphate amidotransferase, a rate-limiting enzyme of the hexosamine pathway, and O-linked N-acetylglucosamine (O-GlcNAc) transferase, a distal enzyme in the pathway that controls intracellular protein O-glycosylation. Additionally, we found that Cr(3+) attenuates reactive oxygen species formation in glucose-stimulated HASMC, suggesting an antioxidant effect. Finally, we report an antiproliferative effect of Cr(3+) that is specific for high glucose and conditions triggering elevated protein O-glycosylation. Taken together, these findings provide the first cellular evidence for a novel role of Cr(3+) to modulate aberrant vascular smooth muscle cell function associated with hyperglycemia-induced vascular complications.
Collapse
Affiliation(s)
- Rituparna Ganguly
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Soumyadip Sahu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Ronaldo J Chavez
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
28
|
Sun R, Wu J, Chen Y, Lu M, Zhang S, Lu D, Li Y. Down regulation of Thrombospondin2 predicts poor prognosis in patients with gastric cancer. Mol Cancer 2014; 13:225. [PMID: 25262009 PMCID: PMC4189190 DOI: 10.1186/1476-4598-13-225] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 09/22/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Thrombospondins (THBSs) are a family of multidomain and secreted matricellular Ca(2+)-binding glycoproteins which has at least five members encoded by independent genes. As a THBSs family member, Thrombospondin2 (THBS2) has been reported to regulate angiogenesis. Nevertheless, the functions and clinical significance of THBS2 still remains unclear in gastric cancer. METHODS The mRNA and protein expression levels of THBS2 were assessed in 14 paired of gastric cancer specimens and corresponding normal mucosas using quantitative real-time PCR and western blot analysis. Immunohistochemistry of THBS2 and CD34 on population-based tissue microarrays consisting of 129 gastric cancer cases were used to evaluate the prognostic significance of THBS2 and microvessel density (MVD) of each sample. Survival analyses were performed by Kaplan-Meier method and Cox's proportional hazards model. Colony formation assay, endothelial cell tube formation assay, cell migration assay and apoptosis analysis in MKN-45 and SGC-7901 cell lines were carried out to evaluate the effects of THBS2 on gastric cancer in vitro. RESULTS 85.71% (12 of 14) gastric cancer tissues expressed remarkably lower THBS2 in both mRNA and protein levels than the corresponding normal controls. Consistently, tissue microarray (TMA) results showed THBS2 levels were also inhibited in gastric cancer tissues compared with the normal controls. Moreover, we observed that patients with higher levels of THBS2 were significantly correlated with more favourable prognosis while decreased THBS2 expression were associated with poorer histological grades of gastric cancer. Additionally, our in vitro experiments further demonstrated that overexpression of THBS2 could impede both the proliferation rate and the tube formation of Human umbilical vein endothelial cells (HUVECs) in MKN-45 and SGC-7901 cell lines. CONCLUSION Our study suggests THBS2 is aberrantly expressed in gastric cancer and plays a critical role in cancer progression, which can be a potential prognosis predictor of gastric cancer.
Collapse
Affiliation(s)
| | | | | | | | | | - Daru Lu
- The Eighth Department of General Surgery, Hefei, China.
| | | |
Collapse
|
29
|
Rienks M, Papageorgiou AP, Frangogiannis NG, Heymans S. Myocardial extracellular matrix: an ever-changing and diverse entity. Circ Res 2014; 114:872-88. [PMID: 24577967 DOI: 10.1161/circresaha.114.302533] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cardiac extracellular matrix (ECM) is a complex architectural network consisting of structural and nonstructural proteins, creating strength and plasticity. The nonstructural compartment of the ECM houses a variety of proteins, which are vital for ECM plasticity, and can be divided into 3 major groups: glycoproteins, proteoglycans, and glycosaminoglycans. The common denominator for these groups is glycosylation, which refers to the decoration of proteins or lipids with sugars. This review will discuss the fundamental role of the matrix in cardiac development, homeostasis, and remodeling, from a glycobiology point of view. Glycoproteins (eg, thrombospondins, secreted protein acidic and rich in cysteine, tenascins), proteoglycans (eg, versican, syndecans, biglycan), and glycosaminoglycans (eg, hyaluronan, heparan sulfate) are upregulated on cardiac injury and regulate key processes in the remodeling myocardium such as inflammation, fibrosis, and angiogenesis. Albeit some parallels can be made regarding the processes these proteins are involved in, their specific functions are extremely diverse. In fact, under varying conditions, individual proteins can even have opposing functions, making spatiotemporal contribution of these proteins in the rearrangement of multifaceted ECM very hard to grasp. Alterations of protein characteristics by the addition of sugars may explain the immense, yet tightly regulated, variability of the remodeling cardiac matrix. Understanding the role of glycosylation in altering the ultimate function of glycoproteins, proteoglycans, and glycosaminoglycans in the myocardium may lead to the development of new biochemical structures or compounds with great therapeutic potential for patients with heart disease.
Collapse
Affiliation(s)
- Marieke Rienks
- From Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
30
|
Kristensen LP, Larsen MR, Mickley H, Saaby L, Diederichsen AC, Lambrechtsen J, Rasmussen LM, Overgaard M. Plasma proteome profiling of atherosclerotic disease manifestations reveals elevated levels of the cytoskeletal protein vinculin. J Proteomics 2014; 101:141-53. [DOI: 10.1016/j.jprot.2013.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 11/16/2022]
|
31
|
Frolova EG, Drazba J, Krukovets I, Kostenko V, Blech L, Harry C, Vasanji A, Drumm C, Sul P, Jenniskens GJ, Plow EF, Stenina-Adognravi O. Control of organization and function of muscle and tendon by thrombospondin-4. Matrix Biol 2014; 37:35-48. [PMID: 24589453 DOI: 10.1016/j.matbio.2014.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 02/01/2014] [Accepted: 02/01/2014] [Indexed: 01/28/2023]
Abstract
Thrombospondins (TSPs) are multifunctional proteins that are deposited in the extracellular matrix where they directly affect the function of vascular and other cell types. TSP-4, one of the 5 TSP family members, is expressed abundantly in tendon and muscle. We have examined the effect of TSP-4 deficiency on tendon collagen and skeletal muscle morphology and function. In Thbs4(-/-) mice, tendon collagen fibrils are significantly larger than in wild-type mice, and there is no compensatory over-expression of TSP-3 and TSP-5, the two TSPs most highly homologous to TSP-4, in the deficient mice. TSP-4 is expressed in skeletal muscle, and higher levels of TSP-4 protein are associated with the microvasculature of red skeletal muscle with high oxidative metabolism. Lack of TSP-4 in medial soleus, red skeletal muscle with predominant oxidative metabolism, is associated with decreased levels of several specific glycosaminoglycan modifications, decreased expression of a TGFβ receptor beta-glycan, decreased activity of lipoprotein lipase, which associates with vascular cell surfaces by binding to glycosaminoglycans, and decreased uptake of VLDL. The soleus muscle is smaller and hind- and fore-limb grip strength is reduced in Thbs4(-/-) mice compared to wild-type mice. These observations suggest that TSP-4 regulates the composition of the ECM at major sites of its deposition, tendon and muscle, and the absence of TSP-4 alters the organization, composition and physiological functions of these tissues.
Collapse
Affiliation(s)
- Ella G Frolova
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Judith Drazba
- Imaging Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Irene Krukovets
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Volodymyr Kostenko
- Department of Neurology, Neuromuscular Section, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Lauren Blech
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Christy Harry
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Amit Vasanji
- Biomedical Imaging and Analysis Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Carla Drumm
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Pavel Sul
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Guido J Jenniskens
- Department of Biochemistry 194, University Medical Center, NCMLS, Nijmegen, The Netherlands; ModiQuest Research BV, Nijmegen, The Netherlands
| | - Edward F Plow
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Olga Stenina-Adognravi
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States.
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Thrombospondins (TSPs) are secreted extracellular matrix (ECM) proteins from TSP family, which consists of five homologous members. They share a complex domain structure and have numerous binding partners in ECM and multiple cell surface receptors. Information that has emerged over the past decade identifies TSPs as important mediators of cellular homeostasis, assigning new important roles in cardiovascular pathology to these proteins. RECENT FINDINGS Recent studies of the functions of TSP in the cardiovascular system, diabetes and aging, which placed several TSPs in a position of critical regulators, demonstrated the involvement of these proteins in practically every aspect of cardiovascular pathophysiology related to atherosclerosis: inflammation, immunity, leukocyte recruitment and function, function of vascular cells, angiogenesis, and responses to hypoxia, ischemia and hyperglycemia. TSPs are also critically important in the development and ultimate outcome of the complications associated with atherosclerosis--myocardial infarction, and heart hypertrophy and failure. Their expression and significance increase with age and with the progression of diabetes, two major contributors to the development of atherosclerosis and its complications. SUMMARY This overview of recent literature examines the latest information on the newfound functions of TSPs that emphasize the importance of ECM in cardiovascular homeostasis and pathology. The functions of TSPs in myocardium, vasculature, vascular complications of diabetes, aging and immunity are discussed.
Collapse
|
33
|
Krishna SM, Golledge J. The role of thrombospondin-1 in cardiovascular health and pathology. Int J Cardiol 2013; 168:692-706. [DOI: 10.1016/j.ijcard.2013.04.139] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 03/09/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
|
34
|
McCart Reed AE, Song S, Kutasovic JR, Reid LE, Valle JM, Vargas AC, Smart CE, Simpson PT. Thrombospondin-4 expression is activated during the stromal response to invasive breast cancer. Virchows Arch 2013; 463:535-45. [PMID: 23942617 DOI: 10.1007/s00428-013-1468-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 02/08/2023]
Abstract
The thromobospondins are a family of extracellular glycoproteins that are activated during tissue remodeling processes such as embryogenesis, wound healing and cancer. Thrombospondin-4 (THBS4) is known to have roles in cellular migration, adhesion and attachment, as well as proliferation in different contexts. Data to support a role in cancer biology is increasing, including for gastrointestinal and prostate tumours. Here, using a combination of immunohistochemistry, immunofluorescence and analysis of publicly available genomic and expression data, we present the first study describing the pattern of expression of THBS4 in normal breast and breast cancer. THBS4 was located to the basement membrane of large ducts and vessels in normal breast tissue, but was absent from epithelium and extracellular matrix. There was a significant induction in expression in cancer-associated stroma relative to normal stroma (P = 0.0033), neoplastic epithelium (P < 0.0001) and normal epithelium (P < 0.0001). There was no difference in stromal expression of THBS4 between invasive ductal carcinomas (IDC) and invasive lobular carcinomas (ILC). The THBS4 mRNA levels were variable yet were generally highest in tumours typically rich in stromal content (ILC, ER positive low grade IDC; luminal A and normal-like subtypes). Genomic alterations of the THBS4 gene (somatic mutations and gene copy number) are rare suggesting this dramatic activation in expression is most likely dynamically regulated through the interaction between invading tumour cells and stromal fibroblasts in the local microenvironment. In summary, THBS4 expression in breast cancer-associated extracellular matrix contributes to the activated stromal response exhibited during tumour progression and this may facilitate invasion of tumour cells.
Collapse
Affiliation(s)
- Amy E McCart Reed
- The University of Queensland, UQ Centre for Clinical Research (UQCCR), Building 71/918, The Royal Brisbane & Women's Hospital, Herston, Queensland, 4029, Australia
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Huang Y, Xia J, Zheng J, Geng B, Liu P, Yu F, Liu B, Zhang H, Xu M, Ye P, Zhu Y, Xu Q, Wang X, Kong W. Deficiency of cartilage oligomeric matrix protein causes dilated cardiomyopathy. Basic Res Cardiol 2013; 108:374. [DOI: 10.1007/s00395-013-0374-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/19/2013] [Accepted: 07/23/2013] [Indexed: 01/08/2023]
|
36
|
Cagliani R, Guerini FR, Rubio-Acero R, Baglio F, Forni D, Agliardi C, Griffanti L, Fumagalli M, Pozzoli U, Riva S, Calabrese E, Sikora M, Casals F, Comi GP, Bresolin N, Cáceres M, Clerici M, Sironi M. Long-standing balancing selection in the THBS4 gene: influence on sex-specific brain expression and gray matter volumes in Alzheimer disease. Hum Mutat 2013; 34:743-53. [PMID: 23420636 DOI: 10.1002/humu.22301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/01/2013] [Indexed: 01/08/2023]
Abstract
The THBS4 gene encodes a glycoprotein involved in inflammatory responses and synaptogenesis. THBS4 is expressed at higher levels in the brain of humans compared with nonhuman primates, and the protein accumulates in β-amyloid plaques. We analyzed THBS4 genetic variability in humans and show that two haplotypes (hap1 and hap2) are maintained by balancing selection and modulate THBS4 expression in lymphocytes. Indeed, the balancing selection region covers a predicted transcriptional enhancer. In humans, but not in macaques and chimpanzees, THBS4 brain expression increases with age, and variants in the balancing selection region interact with sex in influencing THBS4 expression (pinteraction = 0.038), with hap1 homozygous females showing lowest expression. In Alzheimer disease (AD) patients, significant interactions between sex and THBS4 genotype were detected for peripheral gray matter (pinteraction = 0.014) and total gray matter (pinteraction = 0.012) volumes. Similarly to the gene expression results, the interaction is mainly mediated by hap1 homozygous AD females, who show reduced volumes. Thus, the balancing selection target in THBS4 is likely represented by one or more variants that regulate tissue-specific and sex-specific gene expression. The selection signature associated with THBS4 might not be related to AD pathogenesis, but rather to inflammatory responses.
Collapse
|
37
|
Lynch JM, Maillet M, Vanhoutte D, Schloemer A, Sargent MA, Blair NS, Lynch KA, Okada T, Aronow BJ, Osinska H, Prywes R, Lorenz JN, Mori K, Lawler J, Robbins J, Molkentin JD. A thrombospondin-dependent pathway for a protective ER stress response. Cell 2012; 149:1257-68. [PMID: 22682248 DOI: 10.1016/j.cell.2012.03.050] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/03/2012] [Accepted: 03/20/2012] [Indexed: 12/14/2022]
Abstract
Thrombospondin (Thbs) proteins are induced in sites of tissue damage or active remodeling. The endoplasmic reticulum (ER) stress response is also prominently induced with disease where it regulates protein production and resolution of misfolded proteins. Here we describe a function for Thbs as ER-resident effectors of an adaptive ER stress response. Thbs4 cardiac-specific transgenic mice were protected from myocardial injury, whereas Thbs4(-/-) mice were sensitized to cardiac maladaptation. Thbs induction produced a unique profile of adaptive ER stress response factors and expansion of the ER and downstream vesicles. Thbs bind the ER lumenal domain of activating transcription factor 6α (Atf6α) to promote its nuclear shuttling. Thbs4(-/-) mice showed blunted activation of Atf6α and other ER stress-response factors with injury, and Thbs4-mediated protection was lost upon Atf6α deletion. Hence, Thbs can function inside the cell during disease remodeling to augment ER function and protect through a mechanism involving regulation of Atf6α.
Collapse
Affiliation(s)
- Jeffrey M Lynch
- Department of Pediatrics, Cincinnati Children's Hospital, University of Cincinnati, OH 45247, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The term matricellular proteins describes a family of structurally unrelated extracellular macromolecules that, unlike structural matrix proteins, do not play a primary role in tissue architecture, but are induced following injury and modulate cell-cell and cell-matrix interactions. When released to the matrix, matricellular proteins associate with growth factors, cytokines, and other bioactive effectors and bind to cell surface receptors transducing signaling cascades. Matricellular proteins are upregulated in the injured and remodeling heart and play an important role in regulation of inflammatory, reparative, fibrotic and angiogenic pathways. Thrombospondin (TSP)-1, -2, and -4 as well as tenascin-C and -X secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin, and members of the CCN family (including CCN1 and CCN2/connective tissue growth factor) are involved in a variety of cardiac pathophysiological conditions, including myocardial infarction, cardiac hypertrophy and fibrosis, aging-associated myocardial remodeling, myocarditis, diabetic cardiomyopathy, and valvular disease. This review discusses the properties and characteristics of the matricellular proteins and presents our current knowledge on their role in cardiac adaptation and disease. Understanding the role of matricellular proteins in myocardial pathophysiology and identification of the functional domains responsible for their actions may lead to design of peptides with therapeutic potential for patients with heart disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Ave., Forchheimer G46B, Bronx, NY 10461, USA.
| |
Collapse
|
39
|
Corsetti JP, Ryan D, Moss AJ, McCarthy J, Goldenberg I, Zareba W, Sparks CE. Thrombospondin-4 polymorphism (A387P) predicts cardiovascular risk in postinfarction patients with high HDL cholesterol and C-reactive protein levels. Thromb Haemost 2011; 106:1170-8. [PMID: 22011848 DOI: 10.1160/th11-03-0206] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/24/2011] [Indexed: 11/05/2022]
Abstract
Few studies are available in human populations investigating involvement of vascular inflammation and oxidative stress-related dysfunctional transformation of high-density lipoprotein (HDL) in establishing cardiovascular disease (CVD) risk. To this end, the current work investigated a subgroup of post-infarction patients at high-risk for recurrent events defined by high levels of HDL cholesterol (HDL-C) and concurrently high levels of C-reactive protein (CRP). Thrombospondin-4 (TSP-4), a matricellular protein of vessel walls associated with inflammation, was investigated in terms of CVD risk using multivariable modelling with a well-characterised functional genetic polymorphism of THBS4 (A387P, rs1866389) along with previously demonstrated risk-related functional genetic polymorphisms of CYBA (C242T, rs4673) and CETP (TaqIB, rs708272), and a set of blood markers. Results revealed risk-association for the gain-of-function P-allele of the THBS4 polymorphism (hazard ratio 2.00, 95% confidence interval 1.10-3.65, p=0.024). Additionally, von Willebrand factor was associated with D-dimer levels in the higher-risk P allele patients suggestive of a connection between endothelial dysfunction and thrombogenesis. In conclusion, TSP-4, a matricellular protein involved in regulating vascular inflammation, plays a role in establishing recurrent coronary risk in post-infarction patients with high levels of HDL-C and CRP. Further studies should focus on additional effects of vascular inflammatory processes on anti-atherogenic functionality of HDL particles.
Collapse
Affiliation(s)
- James P Corsetti
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Lin XD, Chen SQ, Qi YL, Zhu JW, Tang Y, Lin JY. Polymorphism of THBS1 rs1478604 A>G in 5-untranslated region is associated with lymph node metastasis of gastric cancer in a Southeast Chinese population. DNA Cell Biol 2011; 31:511-9. [PMID: 22011138 DOI: 10.1089/dna.2011.1344] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Thrombospondin-1 plays an important role in cancer development and progression. This study investigated if a correlation exists between single-nucleotide polymorphisms (SNPs) in the Thrombospondin-1 gene (THBS1) and gastric cancer. We conducted a case-control study on a randomly recruited population of 283 patients and 283 healthy individuals from the city of Fuzhou in Southeast China. Individuals were genotyped for four SNPs (rs1478604 A>G, rs2228261 C>T, rs2292305 T>C, and rs3743125 C>T) in THBS1 using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. THBS1 genotypic distributions between the case and control groups were tested for correlations with cancer development. Comparisons between the case and control groups showed no significant differences in the genotypic distributions of rs1478604 A>G, rs2228261 C>T, and rs3743125 C>T. However, we found a statistically significant association between homozygous CC of THBS1 rs2292305 T>C and development of highly differentiated carcinoma (HDC). The rs1478604 A>G variant was found to be associated with invasion and lymph node metastasis in gastric cancer. After logistic regression and stratification analysis, rs1478604 A>G was more strongly associated with lymph node metastasis in HDC gastric cancer. The power to detect an effect for rs1478604 A>G in HDC was 90%. These findings indicate that the THBS1 rs1478604 A>G variant is linked with differential risks for gastric cancer nodal metastasis. These results support further investigation of THBS1 as a potential therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Xian-Dong Lin
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center of Molecular Medicine, Fujian Medical University, Fuzhou, China
| | | | | | | | | | | |
Collapse
|
41
|
Emerging functions of matricellular proteins. Cell Mol Life Sci 2011; 68:3133-6. [PMID: 21833584 DOI: 10.1007/s00018-011-0779-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
|
42
|
Ashokkumar M, Anbarasan C, Saibabu R, Kuram S, Raman SC, Cherian KM. An association study of thrombospondin 1 and 2 SNPs with coronary artery disease and myocardial infarction among South Indians. Thromb Res 2011; 128:e49-53. [PMID: 21762961 DOI: 10.1016/j.thromres.2011.05.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 04/27/2011] [Accepted: 05/30/2011] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Thrombospondin 1 and 2 are multidomain calcium-binding extracellular glycoproteins and they play a role in platelet aggregation, inflammatory response and assembly of connective tissue extracellular matrix. The association of thrombospondins (TSP) in the pathogenesis of coronary artery disease (CAD) and myocardial infarction (MI) is well established. The association of the TSP-1 (Asn700Ser, 2210A → G, rs2228262) and TSP-2 un-translated region (UTR) (3949T → G, rs8089) gene variations among South Indian CAD and MI patients has been examined in the present study. MATERIALS AND METHODS We analyzed the thrombospondin polymorphisms in unrelated CAD patients (n = 511) and a subgroup with an event of MI (n = 173) compared with controls (n = 522). The polymorphisms were assessed using polymerase chain reaction, restriction fragment length analysis and the circulating TSP concentration were measured using enzyme linked immune-sorbent assay. RESULTS The prevalence of TSP-1 and TSP-2 alleles did not show any significant difference statistically, when compared controls against CAD/MI patients. The rare GG genotype of the N700S polymorphism was not observed among the studied population. Further, multiple regression analysis revealed that there was no significant risk for CAD (OR = 1.68; 95% CI 0.927 - 3.055; p = 0.087) or MI (OR = 1.84; 95% CI 0.846 - 4.007; p = 0.124) for the GA genotype. The GA genotype showed no impact on clinical characteristics of the CAD patients and their circulating TSP-1 levels. A similar non-association was observed for the TSP-2 in 3949T → G polymorphism (GG genotype) for CAD (OR = 0.64; 95% CI 0.278 - 1.455; p = 0.636) and MI (OR = 0.53; 95% CI 0.166 - 1.675; p = 0.278). CONCLUSIONS Our data suggests that the presence of thrombospondin-1 (rs2228262) and thrombospondin-2 (rs8089) variants need not be considered a risk for coronary artery disease or myocardial infarction among South Indians.
Collapse
|
43
|
van Loon JE, de Maat MPM, Hofman A, Witteman JCM, Leebeek FWG. Relationship between thrombospondin gene variations, von Willebrand factor levels and the risk of coronary heart disease in an older population. J Thromb Haemost 2011; 9:1415-7. [PMID: 21518247 DOI: 10.1111/j.1538-7836.2011.04314.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
van Schie MC, van Loon JE, de Maat MPM, Leebeek FWG. Genetic determinants of von Willebrand factor levels and activity in relation to the risk of cardiovascular disease: a review. J Thromb Haemost 2011; 9:899-908. [PMID: 21342431 DOI: 10.1111/j.1538-7836.2011.04243.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is well established that high plasma von Willebrand factor (VWF) levels are associated with an increased risk of arterial thrombosis, including myocardial infarction and ischemic stroke. As plasma VWF levels are, to a large extent, genetically determined, numerous association studies have been performed to assess the effect of genetic variability in the VWF gene (VWF) on VWF antigen and activity levels, and on the risk of arterial thrombosis. Genetic variations in other regulators of VWF, including the ABO blood group, ADAMTS-13, thrombospondin-1 and the recently identified SNARE protein genes, have also been investigated. In this article, we review the current literature as exploring the associations between genetic variations and the risk of arterial thrombosis may help elucidate the role of VWF in the pathogenesis of arterial thrombosis. However, as studies frequently differ in design, population and endpoint, and are often underpowered, it remains unclear whether VWF is causally related to the occurrence of arterial thrombosis or primarily mirrors endothelial dysfunction, which predisposes to atherosclerosis and subsequent arterial thrombosis. Nevertheless, current studies provide interesting results that do not exclude the possibility of VWF as causal mediator and justify further research into the relationship between VWF and arterial thrombosis. Large prospective studies are required to further establish the role of VWF in the occurrence of arterial thrombosis.
Collapse
Affiliation(s)
- M C van Schie
- Department of Haematology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
45
|
Mouse chromosome 17 candidate modifier genes for thrombosis. Mamm Genome 2010; 21:337-49. [PMID: 20700597 PMCID: PMC2923722 DOI: 10.1007/s00335-010-9274-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 06/14/2010] [Indexed: 12/14/2022]
Abstract
Two overlapping quantitative trait loci (QTLs) for clot stability, Hmtb8 and Hmtb9, were identified on mouse chromosome 17 in an F2 intercross derived from C57BL/6J (B6) and B6-Chr17(A/J) (B6-Chr17) mouse strains. The intervals were in synteny with a QTL for thrombotic susceptibility on chromosome 18 in a human study, and there were 23 homologs between mouse and human. The objective of this study was to determine whether any of these genes in the syntenic region are likely candidates as modifiers for clot stability. Seven genes, Twsg1, Zfp161, Dlgap1, Ralbp1, Myom1, Rab31, and Emilin2, of the 23 genes with single nucleotide polymorphisms (SNPs) in the mRNA-UTR had differential expression in B6 and A/J mice. Dlgap1, Ralbp1, Myom1, and Emilin2 also had nonsynonymous SNPs. In addition, two other genes had nonsynonymous SNPs, Lama1 and Ndc80. Of these nine candidate genes, Emilin2 was selected for further analysis since other EMILIN (Elastin Microfibril Interface Located Protein) proteins have known functions in vascular structure and coagulation. Differences were found between B6 and A/J mice in vessel wall architecture and EMILIN2 protein in plasma, carotid vessel wall, and thrombi formed after ferric chloride injury. In B6-Chr17(A/J) mice both clot stability and Emilin2 mRNA expression were higher compared to those in B6 and A/J mice, suggesting the exposure of epistatic interactions. Although other homologous genes in the QTL region cannot be ruled out as causative genes, further investigation of Emilin2 as a candidate gene for thrombosis susceptibility is warranted.
Collapse
|
46
|
Goody MF, Henry CA. Dynamic interactions between cells and their extracellular matrix mediate embryonic development. Mol Reprod Dev 2010; 77:475-88. [DOI: 10.1002/mrd.21157] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Isenberg JS, Martin-Manso G, Maxhimer JB, Roberts DD. Regulation of nitric oxide signalling by thrombospondin 1: implications for anti-angiogenic therapies. Nat Rev Cancer 2009; 9:182-94. [PMID: 19194382 PMCID: PMC2796182 DOI: 10.1038/nrc2561] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In addition to long-term regulation of angiogenesis, angiogenic growth factor signalling through nitric oxide (NO) acutely controls blood flow and haemostasis. Inhibition of this pathway may account for the hypertensive and pro-thrombotic side effects of the vascular endothelial growth factor antagonists that are currently used for cancer treatment. The first identified endogenous angiogenesis inhibitor, thrombospondin 1, also controls tissue perfusion, haemostasis and radiosensitivity by antagonizing NO signalling. We examine the role of these and other emerging activities of thrombospondin 1 in cancer. Clarifying how endogenous and therapeutic angiogenesis inhibitors regulate vascular NO signalling could facilitate development of more selective inhibitors.
Collapse
Affiliation(s)
- Jeff S Isenberg
- Hemostasis and Vascular Biology Research Institute and the Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | |
Collapse
|
48
|
Moura R, Tjwa M, Vandervoort P, Van kerckhoven S, Holvoet P, Hoylaerts MF. Thrombospondin-1 Deficiency Accelerates Atherosclerotic Plaque Maturation in
ApoE
−/−
Mice. Circ Res 2008; 103:1181-9. [DOI: 10.1161/circresaha.108.185645] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Thrombospondin (TSP)1 is implicated in various inflammatory processes, but its role in atherosclerotic plaque formation and progression is unclear. Therefore, the development of atherosclerosis was compared in
ApoE
−/−
and
Tsp1
−/−
ApoE
−/−
mice kept on a normocholesterolemic diet. At 6 months, morphometric analysis of the aortic root of both mouse genotypes showed comparable lesion areas. Even when plaque burden increased ≈5-fold in
ApoE
−/−
and 10-fold in
Tsp1
−/−
ApoE
−/−
mice, during the subsequent 3 months, total plaque areas were comparable at 9 months. In contrast, plaque composition differed substantially between genotypes: smooth muscle cell areas, mostly located in the fibrous cap of
ApoE
−/−
plaques, both at 6 and 9 months, were 3-fold smaller in
Tsp1
−/−
ApoE
−/−
plaques, which, in addition, were also more fibrotic. Moreover, inflammation by macrophages was twice as high in
Tsp1
−/−
ApoE
−/−
plaques. This correlated with a 30-fold elevated incidence of elastic lamina degradation, with matrix metalloproteinase-9 accumulation, underneath plaques and manifestation of ectasia, exclusively in
Tsp1
−/−
ApoE
−/−
mice. At 9 months, the necrotic core was 1.4-fold larger and 4-fold higher numbers of undigested disintegrated apoptotic cells were found in
Tsp1
−/−
ApoE
−/−
plaques. Phagocytosis of platelets by cultured
Tsp1
−/−
macrophages revealed the instrumental role of TSP1 in phagocytosis, corroborating the defective intraplaque phagocytosis of apoptotic cells. Hence, the altered smooth muscle cell phenotype in
Tsp1
−/−
ApoE
−/−
mice has limited quantitative impact on atherosclerosis, but defective TSP1-mediated phagocytosis enhanced plaque necrotic core formation, accelerating inflammation and macrophage-induced elastin degradation by metalloproteinases, speeding up plaque maturation and vessel wall degeneration.
Collapse
Affiliation(s)
- Rute Moura
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| | - Marc Tjwa
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| | - Petra Vandervoort
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| | - Soetkin Van kerckhoven
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| | - Paul Holvoet
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| | - Marc F. Hoylaerts
- From the Center for Molecular and Vascular Biology (R.M., P.V., S.V.k., M.F.H.); Center for Transgene Technology and Gene Therapy (M.T.); and Atherosclerosis and Metabolism Unit (P.H.), Department of Cardiovascular Diseases, University of Leuven, Belgium
| |
Collapse
|
49
|
Li Y, Choi H, Zhou Z, Nolasco L, Pownall HJ, Voorberg J, Moake JL, Dong JF. Covalent regulation of ULVWF string formation and elongation on endothelial cells under flow conditions. J Thromb Haemost 2008; 6:1135-43. [PMID: 18433456 PMCID: PMC2532495 DOI: 10.1111/j.1538-7836.2008.02991.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVES The adhesion ligand von Willebrand factor (VWF) is a multimeric glycoprotein that mediates platelet adhesion to exposed subendothelium. On endothelial cells, freshly released ultra-large (UL) VWF multimers form long string-like structures to which platelets adhere. METHODS The formation and elongation of ULVWF strings were studied in the presence of the thiol-blocking N-ethylmaleimide (NEM). The presence of thiols in ULVWF and plasma VWF multimers was determined by maleimide-PEO(2)-Biotin labeling and thiol-chromatography. Finally, covalent re-multimerization of ULVWF was examined in a cell- and enzyme-free system. RESULTS We found that purified plasma VWF multimers adhere to and elongate ULVWF strings under flow conditions. The formation and propagation of ULVWF strings were dose-dependently reduced by blocking thiols on VWF with NEM, indicating that ULVWF strings are formed by the covalent association of perfused VWF to ULVWF anchored to endothelial cells. The association is made possible by the presence of free thiols in VWF multimers and by the ability of (UL) VWF to covalently re-multimerize. CONCLUSION The data provide a mechanism by which the thrombogenic ULVWF strings are formed and elongated on endothelial cells. This mechanism suggests that the thiol-disulfide state of ULVWF regulates the adhesion properties of strings on endothelial cells.
Collapse
Affiliation(s)
- Y Li
- Section of Thrombosis Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Adams JC, Bentley AA, Kvansakul M, Hatherley D, Hohenester E. Extracellular matrix retention of thrombospondin 1 is controlled by its conserved C-terminal region. J Cell Sci 2008; 121:784-95. [PMID: 18285447 DOI: 10.1242/jcs.021006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombospondins (TSPs) are an evolutionarily ancient family of extracellular calcium-binding glycoproteins. The five mammalian TSPs collectively have important roles in angiogenesis and vascular biology, synaptogenesis, wound repair and connective tissue organisation. Their complex functions relate to the multiple postsecretion fates of TSPs that can involve endocytic uptake, proteolysis or retention within the extracellular matrix (ECM). Surprisingly, the molecular and cellular mechanisms by which TSPs become retained within the ECM are poorly understood. We hypothesised that the highly conserved TSP C-terminal domain mediates ECM retention. We report that ECM incorporation as insoluble punctate deposits is an evolutionarily conserved property of TSPs. ECM retention of TSP1 is mediated by the C-terminal region in trimeric form, and not by C-terminal monomer or trimers of the N-terminal domain or type 1 repeats. Using a novel mRFP-tagged TSP1 C-terminal trimer, we demonstrate that ECM retention involves the RGD site and a novel site in the L-lectin domain with structural similarity to the ligand-binding site of cargo transport proteins. CD47 and beta1 integrins are dispensable for ECM retention, but beta1 integrins enhance activity. These novel data advance concepts of the molecular processes that lead to ECM retention of TSP1.
Collapse
Affiliation(s)
- Josephine C Adams
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|