1
|
Takahashi K, Yamada T, Katagiri H. Inter-Organ Communication Involved in Brown Adipose Tissue Thermogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:161-175. [PMID: 39289280 DOI: 10.1007/978-981-97-4584-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Brown and beige adipocytes produce heat from substrates such as fatty acids and glucose. Such heat productions occur in response to various stimuli and are called adaptive non-shivering thermogenesis. This review introduces mechanisms known to regulate brown and beige adipocyte thermogenesis. Leptin and fibroblast growth factor 21 (FGF21) are examples of periphery-derived humoral factors that act on the central nervous system (CNS) and increase brown adipose tissue (BAT) thermogenesis. Additionally, neuronal signals such as those induced by intestinal cholecystokinin and hepatic peroxisome proliferator-activated receptor γ travel through vagal afferent-CNS-sympathetic efferent-BAT pathways and increase BAT thermogenesis. By contrast, some periphery-derived humoral factors (ghrelin, adiponectin, plasminogen activator inhibitor-1, and soluble leptin receptor) act also on CNS but inhibit BAT thermogenesis. Neuronal signals also reduce BAT sympathetic activities and BAT thermogenesis, one such example being signals derived by hepatic glucokinase activation. Beige adipocytes can be induced by myokines (interleukin 6, irisin, and β-aminoisobutyric acid), hepatokines (FGF21), and cardiac-secreted factors (brain natriuretic peptide). Cold temperature and leptin also stimulate beige adipocytes via sympathetic activation. Further investigation on inter-organ communication involving adipocyte thermogenesis may lead to the elucidation of how body temperature is regulated and, moreover, to the development of novel strategies to treat metabolic disorders.
Collapse
Affiliation(s)
- Kei Takahashi
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Yamada
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Hideki Katagiri
- Department of Diabetes, Metabolism and Endocrinology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
2
|
Hosaka S, Yamada T, Takahashi K, Dan T, Kaneko K, Kodama S, Asai Y, Munakata Y, Endo A, Sugawara H, Kawana Y, Yamamoto J, Izumi T, Sawada S, Imai J, Miyata T, Katagiri H. Inhibition of Plasminogen Activator Inhibitor-1 Activation Suppresses High Fat Diet-Induced Weight Gain via Alleviation of Hypothalamic Leptin Resistance. Front Pharmacol 2020; 11:943. [PMID: 32670063 PMCID: PMC7327106 DOI: 10.3389/fphar.2020.00943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/10/2020] [Indexed: 12/22/2022] Open
Abstract
Leptin resistance is an important mechanism underlying the development and maintenance of obesity and is thus regarded as a promising target of obesity treatment. Plasminogen activator inhibitor 1 (PAI-1), a physiological inhibitor of tissue-type and urokinase-type plasminogen activators, is produced at high levels in adipose tissue, especially in states of obesity, and is considered to primarily be involved in thrombosis. PAI-1 may also have roles in inter-organ tissue communications regulating body weight, because PAI-1 knockout mice reportedly exhibit resistance to high fat diet (HFD)-induced obesity. However, the role of PAI-1 in body weight regulation and the underlying mechanisms have not been fully elucidated. We herein studied how PAI-1 affects systemic energy metabolism. We examined body weight and food intake of PAI-1 knockout mice fed normal chow or HFD. We also examined the effects of pharmacological inhibition of PAI-1 activity by a small molecular weight compound, TM5441, on body weight, leptin sensitivities, and expressions of thermogenesis-related genes in brown adipose tissue (BAT) of HFD-fed wild type (WT) mice. Neither body weight gain nor food intake was reduced in PAI-1 KO mice under chow fed conditions. On the other hand, under HFD feeding conditions, food intake was decreased in PAI-1 KO as compared with WT mice (HFD-WT mice 3.98 ± 0.08 g/day vs HFD-KO mice 3.73 ± 0.07 g/day, P = 0.021), leading to an eventual significant suppression of weight gain (HFD-WT mice 40.3 ± 1.68 g vs HFD-KO mice 34.6 ± 1.84 g, P = 0.039). Additionally, TM5441 treatment of WT mice pre-fed the HFD resulted in a marked suppression of body weight gain in a PAI-1-dependent manner (HFD-WT-Control mice 37.6 ± 1.07 g vs HFD-WT-TM5441 mice 33.8 ± 0.97 g, P = 0.017). TM5441 treatment alleviated HFD-induced systemic and hypothalamic leptin resistance, before suppression of weight gain was evident. Moreover, improved leptin sensitivity in response to TM5441 treatment was accompanied by increased expressions of thermogenesis-related genes such as uncoupling protein 1 in BAT (HFD-WT-Control mice 1.00 ± 0.07 vs HFD-WT-TM5441 mice 1.32 ± 0.05, P = 0.002). These results suggest that PAI-1 plays a causative role in body weight gain under HFD-fed conditions by inducing hypothalamic leptin resistance. Furthermore, they indicate that pharmacological inhibition of PAI-1 activity is a potential strategy for alleviating diet-induced leptin resistance in obese subjects.
Collapse
Affiliation(s)
- Shinichiro Hosaka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kei Takahashi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Dan
- Department of Molecular Medicine and Therapy, United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shinjiro Kodama
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoichiro Asai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuichiro Munakata
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Endo
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroto Sugawara
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yohei Kawana
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junpei Yamamoto
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohito Izumi
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Toshio Miyata
- Department of Molecular Medicine and Therapy, United Center for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
3
|
Effects of Propolis Extract and Propolis-Derived Compounds on Obesity and Diabetes: Knowledge from Cellular and Animal Models. Molecules 2019; 24:molecules24234394. [PMID: 31805752 PMCID: PMC6930477 DOI: 10.3390/molecules24234394] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/23/2022] Open
Abstract
Propolis is a natural product resulting from the mixing of bee secretions with botanical exudates. Since propolis is rich in flavonoids and cinnamic acid derivatives, the application of propolis extracts has been tried in therapies against cancer, inflammation, and metabolic diseases. As metabolic diseases develop relatively slowly in patients, the therapeutic effects of propolis in humans should be evaluated over long periods of time. Moreover, several factors such as medical history, genetic inheritance, and living environment should be taken into consideration in human studies. Animal models, especially mice and rats, have some advantages, as genetic and microbiological variables can be controlled. On the other hand, cellular models allow the investigation of detailed molecular events evoked by propolis and derivative compounds. Taking advantage of animal and cellular models, accumulating evidence suggests that propolis extracts have therapeutic effects on obesity by controlling adipogenesis, adipokine secretion, food intake, and energy expenditure. Studies in animal and cellular models have also indicated that propolis modulates oxidative stress, the accumulation of advanced glycation end products (AGEs), and adipose tissue inflammation, all of which contribute to insulin resistance or defects in insulin secretion. Consequently, propolis treatment may mitigate diabetic complications such as nephropathy, retinopathy, foot ulcers, and non-alcoholic fatty liver disease. This review describes the beneficial effects of propolis on metabolic disorders.
Collapse
|
4
|
Physical Exercise Affects Adipose Tissue Profile and Prevents Arterial Thrombosis in BDNF Val66Met Mice. Cells 2019; 8:cells8080875. [PMID: 31405230 PMCID: PMC6721716 DOI: 10.3390/cells8080875] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 01/04/2023] Open
Abstract
Adipose tissue accumulation is an independent and modifiable risk factor for cardiovascular disease (CVD). The recent CVD European Guidelines strongly recommend regular physical exercise (PE) as a management strategy for prevention and treatment of CVD associated with metabolic disorders and obesity. Although mutations as well as common genetic variants, including the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism, are associated with increased body weight, eating and neuropsychiatric disorders, and myocardial infarction, the effect of this polymorphism on adipose tissue accumulation and regulation as well as its relation to obesity/thrombosis remains to be elucidated. Here, we showed that white adipose tissue (WAT) of humanized knock-in BDNFVal66Met (BDNFMet/Met) mice is characterized by an altered morphology and an enhanced inflammatory profile compared to wild-type BDNFVal/Val. Four weeks of voluntary PE restored the adipocyte size distribution, counteracted the inflammatory profile of adipose tissue, and prevented the prothrombotic phenotype displayed, per se, by BDNFMet/Met mice. C3H10T1/2 cells treated with the Pro-BDNFMet peptide well recapitulated the gene alterations observed in BDNFMet/Met WAT mice. In conclusion, these data indicate the strong impact of lifestyle, in particular of the beneficial effect of PE, on the management of arterial thrombosis and inflammation associated with obesity in relation to the specific BDNF Val66Met mutation.
Collapse
|
5
|
Mice with diet-induced obesity demonstrate a relative prothrombotic factor profile and a thicker aorta with reduced ex-vivo function. Blood Coagul Fibrinolysis 2018; 29:257-266. [PMID: 29624513 DOI: 10.1097/mbc.0000000000000713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
6
|
Resnyk CW, Carré W, Wang X, Porter TE, Simon J, Le Bihan-Duval E, Duclos MJ, Aggrey SE, Cogburn LA. Transcriptional analysis of abdominal fat in chickens divergently selected on bodyweight at two ages reveals novel mechanisms controlling adiposity: validating visceral adipose tissue as a dynamic endocrine and metabolic organ. BMC Genomics 2017; 18:626. [PMID: 28814270 PMCID: PMC5559791 DOI: 10.1186/s12864-017-4035-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 08/08/2017] [Indexed: 11/10/2022] Open
Abstract
Background Decades of intensive genetic selection in the domestic chicken (Gallus gallus domesticus) have enabled the remarkable rapid growth of today’s broiler (meat-type) chickens. However, this enhanced growth rate was accompanied by several unfavorable traits (i.e., increased visceral fatness, leg weakness, and disorders of metabolism and reproduction). The present descriptive analysis of the abdominal fat transcriptome aimed to identify functional genes and biological pathways that likely contribute to an extreme difference in visceral fatness of divergently selected broiler chickens. Methods We used the Del-Mar 14 K Chicken Integrated Systems microarray to take time-course snapshots of global gene transcription in abdominal fat of juvenile [1-11 weeks of age (wk)] chickens divergently selected on bodyweight at two ages (8 and 36 wk). Further, a RNA sequencing analysis was completed on the same abdominal fat samples taken from high-growth (HG) and low-growth (LG) cockerels at 7 wk, the age with the greatest divergence in body weight (3.2-fold) and visceral fatness (19.6-fold). Results Time-course microarray analysis revealed 312 differentially expressed genes (FDR ≤ 0.05) as the main effect of genotype (HG versus LG), 718 genes in the interaction of age and genotype, and 2918 genes as the main effect of age. The RNA sequencing analysis identified 2410 differentially expressed genes in abdominal fat of HG versus LG chickens at 7 wk. The HG chickens are fatter and over-express numerous genes that support higher rates of visceral adipogenesis and lipogenesis. In abdominal fat of LG chickens, we found higher expression of many genes involved in hemostasis, energy catabolism and endocrine signaling, which likely contribute to their leaner phenotype and slower growth. Many transcription factors and their direct target genes identified in HG and LG chickens could be involved in their divergence in adiposity and growth rate. Conclusions The present analyses of the visceral fat transcriptome in chickens divergently selected for a large difference in growth rate and abdominal fatness clearly demonstrate that abdominal fat is a very dynamic metabolic and endocrine organ in the chicken. The HG chickens overexpress many transcription factors and their direct target genes, which should enhance in situ lipogenesis and ultimately adiposity. Our observation of enhanced expression of hemostasis and endocrine-signaling genes in diminished abdominal fat of LG cockerels provides insight into genetic mechanisms involved in divergence of abdominal fatness and somatic growth in avian and perhaps mammalian species, including humans. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4035-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C W Resnyk
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA
| | - W Carré
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Laboratoire de Génétique Moléculaire et Génomique, CHU Pontchaillou, 35033, Rennes, France
| | - X Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.,Department of Biological Sciences, Tennessee State University, Nashville, TN, 37209, USA
| | - T E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - J Simon
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - E Le Bihan-Duval
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - M J Duclos
- UR83 Recherches Avicoles, Institut National de la Recherche Agronomique (INRA), F-37380, Nouzilly, France
| | - S E Aggrey
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - L A Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
7
|
Abstract
1. Leptin is a 16-kDa hormone, synthesized primarily by adipocyte, which acts as a key factor for maintenance of energy homeostasis in central and peripheral tissues. In most obese individuals, serum leptin levels are increased and correlate with the individual's body mass index. 2. Abundant investigations ranging from clinical and animal model studies to in vitro analyses show that leptin plays a pivotal role in obesity-related cardiovascular diseases (CVD). Hyperleptinaemia has been confirmed to be a predictor of acute cardiovascular events. However, some studies have shown that leptin has a cardioprotective effect in leptin-deficient models. These data suggest the influences of leptin on the pathophysiology of cardiovascular diseases are complex and not completely understood. 3. In the present review, we summarize the major leptin signalling pathways, including Janus-activated kinase/signal transducers and activators of transcription (Jak/STAT), mitogen-activated protein kinases (MAPK), and phosphatidylinositol 3-kinase (PI-3K) signalling pathways, and analyse the probable mechanisms of selective leptin resistance. We then provide a detailed review of the effects of leptin on the cardiovascular system, including sympathoactivation, oxidative stress, vascular inflammation, endothelial dysfunction, vascular cell proliferation, cardiomyocytes hypertrophy, as well as fatty acid metabolism, all of which contribute to the pathogenesis of cardiovascular diseases (e.g. ischaemic heart disease). The central premise of this review is to elucidate the mechanisms by which leptin affects the cardiovascular function and provide insight into obesity-related CVD.
Collapse
Affiliation(s)
- Ning Hou
- Department of Pharmacology, Guangzhou institute of Cardiovascular Disease, Guangzhou key laboratory of Cardiovascular Disease, and Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | | |
Collapse
|
8
|
Adipocytokines in atherothrombosis: focus on platelets and vascular smooth muscle cells. Mediators Inflamm 2010; 2010:174341. [PMID: 20652043 PMCID: PMC2905911 DOI: 10.1155/2010/174341] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 03/14/2010] [Accepted: 04/29/2010] [Indexed: 12/11/2022] Open
Abstract
Visceral obesity is a relevant pathological condition closely associated with high risk of atherosclerotic vascular disease including myocardial infarction and stroke. The increased vascular risk is related also to peculiar dysfunction in the endocrine activity of adipose tissue responsible of vascular impairment (including endothelial dysfunction), prothrombotic tendency, and low-grade chronic inflammation. In particular, increased synthesis and release of different cytokines, including interleukins and tumor necrosis factor-α (TNF-α), and adipokines—such as leptin—have been reported as associated with future cardiovascular events. Since vascular cell dysfunction plays a major role in the atherothrombotic complications in central obesity, this paper aims at focusing, in particular, on the relationship between platelets and vascular smooth muscle cells, and the impaired secretory pattern of adipose tissue.
Collapse
|
9
|
Kamocka MM, Mu J, Liu X, Chen N, Zollman A, Sturonas-Brown B, Dunn K, Xu Z, Chen DZ, Alber MS, Rosen ED. Two-photon intravital imaging of thrombus development. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:016020. [PMID: 20210466 PMCID: PMC2844130 DOI: 10.1117/1.3322676] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 11/02/2009] [Accepted: 12/18/2009] [Indexed: 05/24/2023]
Abstract
Thrombus development in mouse mesenteric vessels following laser-induced injury was monitored by high-resolution, near-real-time, two-photon, intravital microscopy. In addition to the use of fluorescently tagged fibrin(ogen) and platelets, plasma was labeled with fluorescently tagged dextran. Because blood cells exclude the dextran in the single plane, blood cells appear as black silhouettes. Thus, in addition to monitoring the accumulation of platelets and fibrin in the thrombus, the protocol detects the movement and incorporation of unlabeled cells in and around it. The developing thrombus perturbs the blood flow near the thrombus surface, which affects the incorporation of platelets and blood cells into the structure. The hemodynamic effects and incorporation of blood cells lead to the development of thrombi with heterogeneous domain structures. Additionally, image processing algorithms and simulations were used to quantify structural features of developing thrombi. This analysis suggests a novel mechanism to stop the growth of developing thrombus.
Collapse
Affiliation(s)
- Malgorzata M Kamocka
- Indiana University School of Medicine, Department of Medical and Molecular Genetics, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Vachharajani V, Granger DN. Adipose tissue: a motor for the inflammation associated with obesity. IUBMB Life 2009; 61:424-30. [PMID: 19319966 DOI: 10.1002/iub.169] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Obesity is a worldwide epidemic that continues to grow at an alarming rate. This condition increases the morbidity and mortality associated with both acute and chronic diseases. Some of the deleterious consequences of obesity have been attributed to its induction of a low-grade chronic inflammatory state that arises from the production and secretion of inflammatory mediators from the expanded pool of activated adipocytes. This review focuses on the mechanisms that underlie the proposed link between obesity and inflammation, and it addresses how obesity-induced inflammation may account for increased morbidity and mortality that is associated with a diverse group of diseases.
Collapse
Affiliation(s)
- Vidula Vachharajani
- Department of Anesthesiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | |
Collapse
|
12
|
The severity of nonalcoholic fatty liver disease is associated with increased cardiovascular risk in a large cohort of non-obese Asian subjects. Atherosclerosis 2008; 203:581-6. [PMID: 18774133 DOI: 10.1016/j.atherosclerosis.2008.07.024] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Revised: 07/14/2008] [Accepted: 07/21/2008] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) has been linked to cardiovascular disease (CVD) but it is largely unknown if such a relationship between NAFLD and CVD risk relates to severity of liver disease or if it is independent. We aimed to study the severity of NAFLD in a well characterized non-obese population and to compare this to prevalence of CVD risk factors and Framingham risk score. METHODS This study included 30,172 subjects. Based on the presence or absence of steatosis on ultrasound and serum alanine aminotransferase (ALT), subjects were divided into controls, an increased serum ALT group without steatosis and a group with presumed nonalcoholic fatty liver disease (NAFLD), which included a steatosis alone group and a group with presumed nonalcoholic steatohepatitis (NASH) with steatosis and an elevated ALT. RESULTS The odds ratio for 10-year risk by total Framingham risk scores > or =10% was 5.3 times higher in NASH groups. The prevalence of diabetes, hypertension, elevated CRP and metabolic syndrome were all increased up to 15-fold over controls, independent of age, BMI, smoking and exercise habits. Overall CVD risk was significantly greater in NASH than in either steatosis or raised ALT alone. CONCLUSION Young, non-obese subjects with NAFLD are at significantly increased CVD risk, especially those with NASH. As well as specific therapy for liver disease, a diagnosis of NAFLD should lead to targeted risk assessment and risk factor modification.
Collapse
|