1
|
Liu F, Liang Q, Li L, Gong Y, Li M, Feng L, Chen A, Ye Y, Lan Z, Li Y, Ou JS, Lu L, Yan J. Thrombospondin-1 binds to integrin β3 to inhibit vascular calcification through suppression of NF-κB pathway. J Pathol 2025; 266:109-123. [PMID: 40084742 DOI: 10.1002/path.6417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/01/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Vascular calcification is an important risk factor related to all-cause mortality of cardiovascular events in patients with chronic kidney disease (CKD). Vascular extracellular matrix (ECM) proteins have been demonstrated to regulate vascular calcification. ECM protein thrombospondin 1 (THBS1/TSP-1) plays a critical role in the regulation of vascular diseases. However, whether THBS1 is involved in vascular calcification in CKD patients remains unclear. In this study, RNA sequencing datasets from the Gene Expression Omnibus (GEO) database GSE146638 showed that THBS1 was upregulated in the aortas of CKD rats. Enzyme-linked immunosorbent assay (elisa) revealed that serum THBS1 levels were increased in CKD patients with thoracic calcification. Western blotting and immunofluorescence analysis showed that THBS1 expression was increased in calcified vascular smooth muscle cells (VSMCs) and arteries. THBS1 knockdown exacerbated rat VSMC calcification induced by high phosphorus and calcium, as shown by Alizarin red staining and calcium content assays. Conversely, THBS1 overexpression attenuated VSMC calcification and abdominal aortic calcification in rats with CKD. Moreover, addition of recombinant THBS1 protein inhibited calcification of VSMCS and human arterial rings. Smooth muscle cell-specific knockout of THBS1 mice treated with vitamin D3 displayed aggravated aortic calcification. Mechanistically, the protein-protein interaction database STRING (http://string-db.org/) analysis and coimmunoprecipitation assays revealed THBS1 bound to integrin β3. Reduction of integrin β3 levels abrogated the protective effect of THBS1 on vascular calcification. RNA-seq analysis revealed that THBS1 overexpression modulated the nuclear factor-kappa B (NF-κB) signaling pathway. Of note, the inhibitory effect of THBS1 overexpression on the NF-κB signal was abolished by knockdown of integrin β3. In conclusion, THBS1 interacts with integrin β3 to inhibit vascular calcification through suppression of NF-κB signal, suggesting a promising therapeutic target for vascular calcification in CKD. © 2025 The Pathological Society of Great Britain and Ireland.
Collapse
MESH Headings
- Thrombospondin 1/metabolism
- Thrombospondin 1/genetics
- Animals
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/genetics
- Vascular Calcification/prevention & control
- Humans
- NF-kappa B/metabolism
- Signal Transduction
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Integrin beta3/metabolism
- Integrin beta3/genetics
- Male
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Rats
- Mice
- Rats, Sprague-Dawley
- Disease Models, Animal
- Cells, Cultured
- Mice, Inbred C57BL
- Female
- Middle Aged
Collapse
Affiliation(s)
- Fang Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Qingchun Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, PR China
| | - Li Li
- Department of Cardiology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, PR China
| | - Yuan Gong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Mingxi Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, PR China
| | - Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - An Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Yuanzhi Ye
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Zirong Lan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Yining Li
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| | - Jing-Song Ou
- Division of Cardiac Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Lihe Lu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, PR China
| | - Jianyun Yan
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Zhujiang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation; Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, PR China
| |
Collapse
|
2
|
Shi H, Song J, Gao L, Shan X, Panicker SR, Yao L, McDaniel M, Zhou M, McGee S, Zhong H, Griffin CT, Xia L, Shao B. Deletion of Talin1 in Myeloid Cells Facilitates Atherosclerosis in Mice. Arterioscler Thromb Vasc Biol 2024; 44:1799-1812. [PMID: 38899470 DOI: 10.1161/atvbaha.123.319677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 04/23/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Integrin-regulated monocyte recruitment and cellular responses of monocyte-derived macrophages are critical for the pathogenesis of atherosclerosis. In the canonical model, talin1 controls ligand binding to integrins, a prerequisite for integrins to mediate leukocyte recruitment and induce immune responses. However, the role of talin1 in the development of atherosclerosis has not been studied. Our study investigated how talin1 in myeloid cells regulates the progression of atherosclerosis. METHODS On an Apoe-/- background, myeloid talin1-deficient mice and the control mice were fed with a high-fat diet for 8 or 12 weeks to induce atherosclerosis. The atherosclerosis development in the aorta and monocyte recruitment into atherosclerotic lesions were analyzed. RESULTS Myeloid talin1 deletion facilitated the formation of atherosclerotic lesions and macrophage deposition in lesions. Talin1 deletion abolished integrin β2-mediated adhesion of monocytes but did not impair integrin α4β1-dependent cell adhesion in a flow adhesion assay. Strikingly, talin1 deletion did not prevent Mn2+- or chemokine-induced activation of integrin α4β1 to the high-affinity state for ligands. In an in vivo competitive homing assay, monocyte infiltration into inflamed tissues was prohibited by antibodies to integrin α4β1 but was not affected by talin1 deletion or antibodies to integrin β2. Furthermore, quantitative polymerase chain reaction and ELISA (enzyme-linked immunosorbent assay) analysis showed that macrophages produced cytokines to promote inflammation and the proliferation of smooth muscle cells. Ligand binding to integrin β3 inhibited cytokine generation in macrophages, although talin1 deletion abolished the negative effects of integrin β3. CONCLUSIONS Integrin α4β1 controls monocyte recruitment during atherosclerosis. Talin1 is dispensable for integrin α4β1 activation to the high-affinity state and integrin α4β1-mediated monocyte recruitment. Yet, talin1 is required for integrin β3 to inhibit the production of inflammatory cytokines in macrophages. Thus, intact monocyte recruitment and elevated inflammatory responses cause enhanced atherosclerosis in talin1-deficient mice. Our study provides novel insights into the roles of myeloid talin1 and integrins in the progression of atherosclerosis.
Collapse
Affiliation(s)
- Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (H.S., L.X.)
| | - Jianhua Song
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Liang Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Sumith R Panicker
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Meixiang Zhou
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Hui Zhong
- Lindsley F. Kimball Research Institute, New York Blood Center (H.Z., B.S.)
| | - Courtney T Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center (H.S., L.X.)
| | - Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (H.S., J.S., L.G., X.S., S.R.P., L.Y., M.M., M.Z., S.M., C.T.G., L.X., B.S.)
- Lindsley F. Kimball Research Institute, New York Blood Center (H.Z., B.S.)
| |
Collapse
|
3
|
Lin A, Brittan M, Baker AH, Dimmeler S, Fisher EA, Sluimer JC, Misra A. Clonal Expansion in Cardiovascular Pathology. JACC Basic Transl Sci 2024; 9:120-144. [PMID: 38362345 PMCID: PMC10864919 DOI: 10.1016/j.jacbts.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 02/17/2024]
Abstract
Clonal expansion refers to the proliferation and selection of advantageous "clones" that are better suited for survival in a Darwinian manner. In recent years, we have greatly enhanced our understanding of cell clonality in the cardiovascular context. However, our knowledge of the underlying mechanisms behind this clonal selection is still severely limited. There is a transpiring pattern of clonal expansion of smooth muscle cells and endothelial cells-and, in some cases, macrophages-in numerous cardiovascular diseases irrespective of their differing microenvironments. These findings indirectly suggest the possible existence of stem-like vascular cells which are primed to respond during disease. Subsequent clones may undergo further phenotypic changes to adopt either protective or detrimental roles. By investigating these clone-forming vascular cells, we may be able to harness this inherent clonal nature for future therapeutic intervention. This review comprehensively discusses what is currently known about clonal expansion across the cardiovascular field. Comparisons of the clonal nature of vascular cells in atherosclerosis (including clonal hematopoiesis of indeterminate potential), pulmonary hypertension, aneurysm, blood vessel injury, ischemia- and tumor-induced angiogenesis, and cerebral cavernous malformations are evaluated. Finally, we discuss the potential clinical implications of these findings and propose that proper understanding and specific targeting of these clonal cells may provide unique therapeutic options for the treatment of these cardiovascular conditions.
Collapse
Affiliation(s)
- Alexander Lin
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H. Baker
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University Frankfurt, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), partner site Frankfurt Rhine-Main, Berlin, Germany
- Cardiopulmonary Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Edward A. Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, New York, USA
- Cardiovascular Research Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Judith C. Sluimer
- Centre for Cardiovascular Science, The Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), Maastricht, the Netherlands
| | - Ashish Misra
- Atherosclerosis and Vascular Remodeling Group, Heart Research Institute, Sydney, New South Wales, Australia
- Heart Research Institute, The University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Dergunov AD, Nosova EV, Rozhkova AV, Vinogradina MA, Baserova VB, Popov MA, Limborska SA, Dergunova LV. Differential Expression of Subsets of Genes Related to HDL Metabolism and Atherogenesis in the Peripheral Blood in Coronary Artery Disease. Curr Issues Mol Biol 2023; 45:6823-6841. [PMID: 37623250 PMCID: PMC10452992 DOI: 10.3390/cimb45080431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
Differential expression of genes (DEGs) in coronary artery disease (CAD) and the association between transcript level and high-density lipoprotein cholesterol (HDL-C) were studied with 76 male patients with CAD and 63 control patients. The transcript level of genes related to HDL metabolism (24 genes) and atherosclerosis-prone (41 genes) in RNA isolated from peripheral blood mononuclear cells was measured by real-time RT-PCR. Twenty-eight DEGs were identified. The expression of cholesterol transporters, ALB, APOA1, and LCAT was down-regulated, while the expression of AMN, APOE, LDLR, LPL, PLTP, PRKACA, and CETP was up-regulated. The systemic inflammation in CAD is evidenced by the up-regulation of IL1B, TLR8, CXCL5, and TNFRSF1A. For the controls, TLR8 and SOAT1 were negative predictors of the HDL-C level. For CAD patients, PRKACG, PRKCQ, and SREBF1 were positive predictors, while PRKACB, LCAT, and S100A8 were negative predictors. For CAD patients, the efficiency of reverse cholesterol transport is 73-79%, and intracellular free cholesterol seems to accumulate at hyperalphalipoproteinemia. Both atheroprotective (via S100A8) and proatherogenic (via SREBF1, LCAT, PRKACG, PRKACB, and PRKCQ) associations of gene expression with HDL-C determine HDL functionality in CAD patients. The selected key genes and involved pathways may represent HDL-specific targets for the diagnosis and treatment of CAD and atherosclerosis.
Collapse
Affiliation(s)
- Alexander D. Dergunov
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky Street 10, Moscow 101990, Russia;
| | - Elena V. Nosova
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (E.V.N.); (A.V.R.); (M.A.V.); (S.A.L.); (L.V.D.)
| | - Alexandra V. Rozhkova
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (E.V.N.); (A.V.R.); (M.A.V.); (S.A.L.); (L.V.D.)
| | - Margarita A. Vinogradina
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (E.V.N.); (A.V.R.); (M.A.V.); (S.A.L.); (L.V.D.)
| | - Veronika B. Baserova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigsky Street 10, Moscow 101990, Russia;
| | - Mikhail A. Popov
- Moscow Regional Research and Clinical Institute MONIKI, Moscow 129110, Russia;
| | - Svetlana A. Limborska
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (E.V.N.); (A.V.R.); (M.A.V.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Laboratory of Human Molecular Genetics, National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia; (E.V.N.); (A.V.R.); (M.A.V.); (S.A.L.); (L.V.D.)
| |
Collapse
|
5
|
Kabir I, Zhang X, Dave JM, Chakraborty R, Qu R, Chandran RR, Ntokou A, Gallardo-Vara E, Aryal B, Rotllan N, Garcia-Milian R, Hwa J, Kluger Y, Martin KA, Fernández-Hernando C, Greif DM. The age of bone marrow dictates the clonality of smooth muscle-derived cells in atherosclerotic plaques. NATURE AGING 2023; 3:64-81. [PMID: 36743663 PMCID: PMC9894379 DOI: 10.1038/s43587-022-00342-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aging is the predominant risk factor for atherosclerosis, the leading cause of death. Rare smooth muscle cell (SMC) progenitors clonally expand giving rise to up to ~70% of atherosclerotic plaque cells; however, the effect of age on SMC clonality is not known. Our results indicate that aged bone marrow (BM)-derived cells non-cell autonomously induce SMC polyclonality and worsen atherosclerosis. Indeed, in myeloid cells from aged mice and humans, TET2 levels are reduced which epigenetically silences integrin β3 resulting in increased tumor necrosis factor [TNF]-α signaling. TNFα signals through TNF receptor 1 on SMCs to promote proliferation and induces recruitment and expansion of multiple SMC progenitors into the atherosclerotic plaque. Notably, integrin β3 overexpression in aged BM preserves dominance of the lineage of a single SMC progenitor and attenuates plaque burden. Our results demonstrate a molecular mechanism of aged macrophage-induced SMC polyclonality and atherogenesis and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
- To whom correspondence should be addressed: or , 203-737-2040 (phone), 203-737-6118 (FAX)
| | - Xinbo Zhang
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Jui M. Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Raja Chakraborty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Rihao Qu
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Rachana R. Chandran
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Eunate Gallardo-Vara
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
| | - Binod Aryal
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Noemi Rotllan
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
| | - Rolando Garcia-Milian
- Department of Bioinformatics Support Program, Yale University, New Haven, CT 06511, USA
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Kathleen A. Martin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University, New Haven, CT 06511, USA
- Department of Pathology, Yale University, New Haven, CT 06511, USA
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University, New Haven, CT 06511, USA
- Department of Genetics, Yale University, New Haven, CT 06511, USA
- To whom correspondence should be addressed: or , 203-737-2040 (phone), 203-737-6118 (FAX)
| |
Collapse
|
6
|
Li H, Song D, Liu Q, Li L, Sun X, Guo J, Li D, Li P. miR-351 promotes atherosclerosis in diabetes by inhibiting the ITGB3/PIK3R1/Akt pathway and induces endothelial cell injury and lipid accumulation. Mol Med 2022; 28:120. [PMID: 36180828 PMCID: PMC9523959 DOI: 10.1186/s10020-022-00547-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/14/2022] [Indexed: 12/01/2022] Open
Abstract
Background The miR-351 gene is significantly upregulated in diabetic mice with atherosclerosis. However, the mechanism by which its presence is important for the overall disease has not been elucidated. Therefore, this study will investigate the mechanism of miR-351 in the process of diabetes mellitus with atherosclerosis through miR-351 gene knockout mice. Methods In this study, miR-351−/− C57BL/6 mice were first induced to form a type 2 diabetes mellitus model with atherosclerosis by STZ injection and a high-fat diet. Pathological tests (oil red O, HE, and Masson staining) combined with biochemical indices (TC, TG, LDL-C, HDL-C, TNF-α, hs-CRP, NO, SOD, MDA, CAT, and GSH-Px) were performed to evaluate the pathological degree of atherosclerosis in each group. Mouse aortic endothelial cells were treated with oxidized low-density lipoprotein (ox-LDL) and 30 mM glucose to establish a diabetic atherosclerosis cell model. Combined with cell oil red O staining and flow cytometry, the effects of silencing miR-351 on lipid accumulation and cell apoptosis in the diabetic atherosclerosis cell model were determined. Fluorescence in situ hybridization was used to detect the localization and transcription levels of miR-351 in cells. The target genes of miR-351 were predicted by bioinformatics and verified by dual-luciferase activity reporting. Western blotting was used to detect the expression levels of phosphorylated inosine 3-kinase regulatory subunit 1 (PIK3R1)/serine/threonine kinase 1 (Akt) and apoptosis-related proteins after transfection with integrin subunit β3 (ITGB3) small interfering ribonucleic acid (siRNA). Results The expression of the miR-351 gene was significantly increased in the high-fat wild-type (HWT) group, and its expression was significantly decreased in the knockout mice. Silencing miR-351 effectively alleviated atherosclerosis in mice. The levels of miR-351 expression, apoptosis, lipid accumulation, and oxidative stress in ox-LDL + high glucose-induced endothelial cells were significantly increased. These phenomena were effectively inhibited in lentivirus-infected miR-351-silenced cell lines. Bioinformatics predicted that miR-351-5p could directly target the ITGB3 gene. Transfection of ITGB3 siRNA reversed the downregulation of apoptosis, decreased oil accumulation, and decreased oxidative stress levels induced by miR-351 silencing. In addition, it inhibited the activation of the PIK3R1/Akt pathway. Conclusion Silencing miR-351 upregulates ITGB3 and activates the PIK3R1/Akt pathway, thereby exerting anti-apoptosis and protective effects on endothelial cells. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00547-9.
Collapse
Affiliation(s)
- Hong Li
- Department of Cardiovascular, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dan Song
- School of Pharmacy, China Medical University, Shenyang, China
| | - Qihui Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Linlin Li
- Shenyang Open University, Shenyang, China
| | - Xiaoshi Sun
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Jiamei Guo
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Dianlian Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
7
|
Xi X, Li H, Chen S, Lv T, Ma T, Jiang R, Zhang P, Wong WH, Zhang X. Unfolding the genotype-to-phenotype black box of cardiovascular diseases through cross-scale modeling. iScience 2022; 25:104790. [PMID: 35992073 PMCID: PMC9386115 DOI: 10.1016/j.isci.2022.104790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/26/2022] [Accepted: 07/14/2022] [Indexed: 12/01/2022] Open
Abstract
Complex traits such as cardiovascular diseases (CVD) are the results of complicated processes jointly affected by genetic and environmental factors. Genome-wide association studies (GWAS) identified genetic variants associated with diseases but usually did not reveal the underlying mechanisms. There could be many intermediate steps at epigenetic, transcriptomic, and cellular scales inside the black box of genotype-phenotype associations. In this article, we present a machine-learning-based cross-scale framework GRPath to decipher putative causal paths (pcPaths) from genetic variants to disease phenotypes by integrating multiple omics data. Applying GRPath on CVD, we identified 646 and 549 pcPaths linking putative causal regions, variants, and gene expressions in specific cell types for two types of heart failure, respectively. The findings suggest new understandings of coronary heart disease. Our work promoted the modeling of tissue- and cell type-specific cross-scale regulation to uncover mechanisms behind disease-associated variants, and provided new findings on the molecular mechanisms of CVD.
Collapse
Affiliation(s)
- Xi Xi
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing 100084, China
| | - Haochen Li
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shengquan Chen
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing 100084, China
| | - Tingting Lv
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Tianxing Ma
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing 100084, China
| | - Rui Jiang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing 100084, China
| | - Ping Zhang
- Department of Cardiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Wing Hung Wong
- Departments of Statistics and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, BNRIST / Department of Automation, Tsinghua University, Beijing 100084, China
- School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Exercise training inhibits atherosclerosis progression and reduces VE-cadherin levels within atherosclerotic plaques in hypercholesterolemic mice. Biochem Biophys Res Commun 2022; 623:39-43. [PMID: 35870260 DOI: 10.1016/j.bbrc.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
Vascular endothelial-cadherin (VE-cadherin), matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) have emerged as key-factors of atherogenesis. The aim of this study was to evaluate the effects of exercise training (ET) on those key-factors in relation to the progression of atherosclerotic lesions in hypercholesterolemic mice. Thirty male, apoE knockout (apoE-/-) mice were randomly assigned to the following equivalent groups: 1) CO-control: High-fat diet (HFD) administration for 12 weeks. 2) EX-exercise: HFD administration as in CO, and during the last 4 weeks (9th -12th week) ET on treadmill (5sessions/week, 60min/session). At the end of study, blood samples were obtained and all mice were sacrificed. Aortic roots were excised and analysed regarding the percentage of aortic stenosis, and the relative concentrations of collagen, elastin, VE-cadherin, MMP-8,-9 and TIMP-1,-2 within the atherosclerotic lesions. Aortic stenosis was significantly lower in the EX than the CO group (39.63 ± 7.22% vs 62.04 ± 8.55%; p < 0.001), along with considerable increase in fibrous cap thickness and of collagen and elastin contents within plaques (p < 0.05). Compared to controls, exercised-treated mice showed reduced intra-plaque relative concentrations of VE-cadherin (15.09 ± 1.89% vs 23.49 ± 3.01%, p < 0.001), MMP-8 (8.51 ± 2.24% vs 18.51 ± 4.08%, p < 0.001) and MMP-9 (12.1 ± 4.86% vs 18.88 ± 6.23%, p < 0.001). Inversely, the relative concentrations of TIMP-1 and TIMP-2 in the ET group were considerably higher by 62.5% and 31.2% than in the EX group (p < 0.05), respectively. Finally, body weight and lipids concentrations did not differ between groups at the end of the study (p > 0.05). ET treatment induced regression of established atherosclerotic lesions in apoE-/- mice and improved their stability. Those effects seemed to be mediated by favourable modification of VE-cadherin, MMPs and TIMPs.
Collapse
|
9
|
Misra A, Rehan R, Lin A, Patel S, Fisher EA. Emerging Concepts of Vascular Cell Clonal Expansion in Atherosclerosis. Arterioscler Thromb Vasc Biol 2022; 42:e74-e84. [PMID: 35109671 PMCID: PMC8988894 DOI: 10.1161/atvbaha.121.316093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clonal expansion is a process that can drive pathogenesis in human diseases, with atherosclerosis being a prominent example. Despite advances in understanding the etiology of atherosclerosis, clonality studies of vascular cells remain in an early stage. Recently, several paradigm-shifting preclinical studies have identified clonal expansion of progenitor cells in the vasculature in response to atherosclerosis. This review provides an overview of cell clonality in atherosclerotic progression, focusing particularly on smooth muscle cells and macrophages. We discuss key findings from the latest research that give insight into the mechanisms by which clonal expansion of vascular cells contributes to disease pathology. The further probing of these mechanisms will provide innovative directions for future progress in the understanding and therapy of atherosclerosis and its associated cardiovascular diseases.
Collapse
Affiliation(s)
- Ashish Misra
- Heart Research Institute, Sydney, NSW 2042, Australia,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rajan Rehan
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia,Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Alexander Lin
- Heart Research Institute, Sydney, NSW 2042, Australia,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW 2042, Australia,Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Edward A Fisher
- Department of Medicine/Division of Cardiology, New York University Grossman School of Medicine, New York, NY, USA,Cardiovascular Research Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 2021; 85:100966. [PMID: 33775825 DOI: 10.1016/j.preteyeres.2021.100966] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Integrins are a class of transmembrane receptors that are involved in a wide range of biological functions. Dysregulation of integrins has been implicated in many pathological processes and consequently, they are attractive therapeutic targets. In the ophthalmology arena, there is extensive evidence suggesting that integrins play an important role in diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, dry eye disease and retinal vein occlusion. For example, there is extensive evidence that arginyl-glycyl-aspartic acid (Arg-Gly-Asp; RGD)-binding integrins are involved in key disease hallmarks of DR and neovascular AMD (nvAMD), specifically inflammation, vascular leakage, angiogenesis and fibrosis. Based on such evidence, drugs that engage integrin-linked pathways have received attention for their potential to block all these vision-threatening pathways. This review focuses on the pathophysiological role that RGD-binding integrins can have in complex multifactorial retinal disorders like DR, diabetic macular edema (DME) and nvAMD, which are leading causes of blindness in developed countries. Special emphasis will be given on how RGD-binding integrins can modulate the intricate molecular pathways and regulate the underlying pathological mechanisms. For instance, the interplay between integrins and key molecular players such as growth factors, cytokines and enzymes will be summarized. In addition, recent clinical advances linked to targeting RGD-binding integrins in the context of DME and nvAMD will be discussed alongside future potential for limiting progression of these diseases.
Collapse
|
11
|
Ntokou A, Dave JM, Kauffman AC, Sauler M, Ryu C, Hwa J, Herzog EL, Singh I, Saltzman WM, Greif DM. Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension. JCI Insight 2021; 6:139067. [PMID: 33591958 PMCID: PMC8026182 DOI: 10.1172/jci.insight.139067] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
Excess macrophages and smooth muscle cells (SMCs) characterize many cardiovascular diseases, but crosstalk between these cell types is poorly defined. Pulmonary hypertension (PH) is a lethal disease in which lung arteriole SMCs proliferate and migrate, coating the normally unmuscularized distal arteriole. We hypothesized that increased macrophage platelet-derived growth factor-B (PDGF-B) induces pathological SMC burden in PH. Our results indicate that clodronate attenuates hypoxia-induced macrophage accumulation, distal muscularization, PH, and right ventricle hypertrophy (RVH). With hypoxia exposure, macrophage Pdgfb mRNA was upregulated in mice, and LysM‑Cre mice carrying floxed alleles for hypoxia-inducible factor 1a, hypoxia-inducible factor 2a, or Pdgfb had reduced macrophage Pdgfb and were protected against distal muscularization and PH. Conversely, LysM‑Cre von-Hippel Lindaufl/fl mice had increased macrophage Hifa and Pdgfb and developed distal muscularization, PH, and RVH in normoxia. Similarly, Pdgfb was upregulated in macrophages from human idiopathic or systemic sclerosis-induced pulmonary arterial hypertension patients, and macrophage-conditioned medium from these patients increased SMC proliferation and migration via PDGF-B. Finally, in mice, orotracheal administration of nanoparticles loaded with Pdgfb siRNA specifically reduced lung macrophage Pdgfb and prevented hypoxia-induced distal muscularization, PH, and RVH. Thus, macrophage-derived PDGF-B is critical for pathological SMC expansion in PH, and nanoparticle-mediated inhibition of lung macrophage PDGF-B has profound implications as an interventional strategy for PH.
Collapse
Affiliation(s)
- Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine
- Department of Genetics
| | - Jui M. Dave
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine
- Department of Genetics
| | | | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, and
| | - Changwan Ryu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, and
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine
| | - Erica L. Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, and
- Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Inderjit Singh
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, and
| | | | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine
- Department of Genetics
| |
Collapse
|
12
|
Helmer P, Damm E, Schiekofer S, Roomp K, Schneider JG. β3-integrin Leu33Pro gain of function variant does not modulate inflammatory activity in human derived macrophages in diabetes. Int J Med Sci 2021; 18:2661-2665. [PMID: 34104098 PMCID: PMC8176178 DOI: 10.7150/ijms.55648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/21/2020] [Indexed: 11/05/2022] Open
Abstract
Objective: We aimed to investigate the association between the Leu33Pro (rs5918) polymorphism in β3-integrin with diabetic complications and inflammatory function of macrophages depending on the genotype in subjects with diabetes mellitus. Material and methods: We determined the Leu33Pro polymorphism in 186 diabetic subjects and collected laboratory data. Monocytes from 24 patients were collected for macrophage differentiation to determine the inflammatory activity by treating with different stimulants. Results: We could demonstrate that human derived differentiated macrophages expressed β3‑integrin. Their secretory capacity upon inflammatory stimulation did not reveal any differences depending on the Leu33Pro variant. We found trends for an association of the polymorphism with the presence of diabetic nephropathy (p = 0.071), as well as with creatinine [1.32 mg/dL (1) vs. 0.98 mg/dL (0)] (p = 0.029 in recessive model) and glomerular filtration rate [75.6 ml/min ± 22 vs. 62.3 ml/min ± 25] (p = 0.076 in recessive model) as quantitative markers of kidney function. Conclusion: Despite the expression of β3‑integrin in human macrophages, the Leu33Pro polymorphism in β3‑integrin does not modify the inflammatory response upon stimulation but might play a role in the progression of diabetic nephropathy. Further studies are necessary to substantiate such a hypothesis.
Collapse
Affiliation(s)
- Philipp Helmer
- Saarland University, Medical Center, Dpt. of Internal Medicine II, Homburg, Saar, Germany
| | - Ellen Damm
- Saarland University, Medical Center, Dpt. of Internal Medicine II, Homburg, Saar, Germany
| | - Stephan Schiekofer
- Zentrum für Altersmedizin, Klinik und Poliklinik für Psychiatrie und Psychotherapie der Universität Regensburg am Bezirksklinikum, Regensburg, Germany.,Sigmund Freud Privat-Universität, Wien, Austria
| | - Kirsten Roomp
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg, and Centre Hospitalier Emile Mayrisch, Esch/Alzette, Luxembourg
| | - Jochen G Schneider
- Saarland University, Medical Center, Dpt. of Internal Medicine II, Homburg, Saar, Germany.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg, and Centre Hospitalier Emile Mayrisch, Esch/Alzette, Luxembourg
| |
Collapse
|
13
|
Shu Y, Qin M, Song Y, Tang Q, Huang Y, Shen P, Lu Y. M2 polarization of tumor-associated macrophages is dependent on integrin β3 via peroxisome proliferator-activated receptor-γ up-regulation in breast cancer. Immunology 2020; 160:345-356. [PMID: 32311768 DOI: 10.1111/imm.13196] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022] Open
Abstract
Macrophages are particularly abundant and play an important role throughout the tumor progression process, namely, tumor-associated macrophages (TAM) in the tumor microenvironment. TAM can be polarized to disparate functional phenotypes, the M1 and M2 macrophages. M1-like type macrophages are defined as pro-inflammatory cells involved in killing cancer cells, while M2-like type cells can specially promote tumor growth and metastasis, tissue remodeling and immunosuppression. In this study, we first found that integrin β3 was highly expressed on the surface of TAM, both in vivo and in vitro, that displayed the M2-like characteristics. Under intervention of CYC or triptolide, the integrin β3 inhibitors, the M2 polarization of TAM could be inhibited. Moreover, in the cell model of M2 polarization, either blockade or knockout/knockdown of integrin β3 could also suppress macrophage M2 polarization, which suggested that the M2 polarization was dependent on integrin β3. Using knockdown of peroxisome proliferator-activated receptor-γ (PPARγ), an M2 regulator, we found that expression and activation of PPARγ participated in M2 polarization that was mediated by integrin β3. Finally, to verify the activity of integrin β3 inhibitors on TAM in vivo, 4T1 tumor-bearing mice were treated with CYC or triptolide; in response, the M1/M2 ratio of TAM was up-regulated, while the infiltration of total lymphocytes into tumor tissue was not altered. In general, our study found a connection between integrin β3 and macrophage polarization, which provides a strategy for facilitating M2 to M1 repolarization and reconstructing the tumor immune microenvironment.
Collapse
Affiliation(s)
- Yuxin Shu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Menghao Qin
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yue Song
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing Tang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yahong Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Integrin beta3 regulates clonality and fate of smooth muscle-derived atherosclerotic plaque cells. Nat Commun 2018; 9:2073. [PMID: 29802249 PMCID: PMC5970166 DOI: 10.1038/s41467-018-04447-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/10/2018] [Indexed: 01/16/2023] Open
Abstract
Smooth muscle cells (SMCs) play a key role in atherogenesis. However, mechanisms regulating expansion and fate of pre-existing SMCs in atherosclerotic plaques remain poorly defined. Here we show that multiple SMC progenitors mix to form the aorta during development. In contrast, during atherogenesis, a single SMC gives rise to the smooth muscle-derived cells that initially coat the cap of atherosclerotic plaques. Subsequently, highly proliferative cap cells invade the plaque core, comprising the majority of plaque cells. Reduction of integrin β3 (Itgb3) levels in SMCs induces toll-like receptor 4 expression and thereby enhances Cd36 levels and cholesterol-induced transdifferentiation to a macrophage-like phenotype. Global Itgb3 deletion or transplantation of Itgb3(−/−) bone marrow results in recruitment of multiple pre-existing SMCs into plaques. Conditioned medium from Itgb3-silenced macrophages enhances SMC proliferation and migration. Together, our results suggest SMC contribution to atherogenesis is regulated by integrin β3-mediated pathways in both SMCs and bone marrow-derived cells. Smooth muscle cells (SMCs) invade atherosclerotic lesions and expand, contributing to plaque progression. Here Misra et al. show that SMC-derived plaque cells come from a single SMC and integrin β3 in SMCs and macrophages regulate the fate, expansion and migration of SMCs during plaque formation.
Collapse
|
15
|
The arterial microenvironment: the where and why of atherosclerosis. Biochem J 2017; 473:1281-95. [PMID: 27208212 DOI: 10.1042/bj20150844] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
Abstract
The formation of atherosclerotic plaques in the large and medium sized arteries is classically driven by systemic factors, such as elevated cholesterol and blood pressure. However, work over the past several decades has established that atherosclerotic plaque development involves a complex coordination of both systemic and local cues that ultimately determine where plaques form and how plaques progress. Although current therapeutics for atherosclerotic cardiovascular disease primarily target the systemic risk factors, a large array of studies suggest that the local microenvironment, including arterial mechanics, matrix remodelling and lipid deposition, plays a vital role in regulating the local susceptibility to plaque development through the regulation of vascular cell function. Additionally, these microenvironmental stimuli are capable of tuning other aspects of the microenvironment through collective adaptation. In this review, we will discuss the components of the arterial microenvironment, how these components cross-talk to shape the local microenvironment, and the effect of microenvironmental stimuli on vascular cell function during atherosclerotic plaque formation.
Collapse
|
16
|
Nurden AT. Should studies on Glanzmann thrombasthenia not be telling us more about cardiovascular disease and other major illnesses? Blood Rev 2017; 31:287-299. [PMID: 28395882 DOI: 10.1016/j.blre.2017.03.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/23/2017] [Indexed: 12/17/2022]
Abstract
Glanzmann thrombasthenia (GT) is a rare inherited bleeding disorder caused by loss of αIIbβ3 integrin function in platelets. Most genetic variants of β3 also affect the widely expressed αvβ3 integrin. With brief mention of mouse models, I now look at the consequences of disease-causing ITGA2B and ITGB3 mutations on the non-hemostatic functions of platelets and other cells. Reports of arterial thrombosis in GT patients are rare, but other aspects of cardiovascular disease do occur including deep vein thrombosis and congenital heart defects. Thrombophilic and other risk factors for thrombosis and lessons from heterozygotes and variant forms of GT are discussed. Assessed for GT patients are reports of leukemia and cancer, loss of fertility, bone pathology, inflammation and wound repair, infections, kidney disease, autism and respiratory disease. This survey shows an urgent need for a concerted international effort to better determine how loss of αIIbβ3 and αvβ3 influences health and disease.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| |
Collapse
|
17
|
Integrin signaling in atherosclerosis. Cell Mol Life Sci 2017; 74:2263-2282. [PMID: 28246700 DOI: 10.1007/s00018-017-2490-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 02/07/2023]
Abstract
Atherosclerosis, a chronic lipid-driven inflammatory disease affecting large arteries, represents the primary cause of cardiovascular disease in the world. The local remodeling of the vessel intima during atherosclerosis involves the modulation of vascular cell phenotype, alteration of cell migration and proliferation, and propagation of local extracellular matrix remodeling. All of these responses represent targets of the integrin family of cell adhesion receptors. As such, alterations in integrin signaling affect multiple aspects of atherosclerosis, from the earliest induction of inflammation to the development of advanced fibrotic plaques. Integrin signaling has been shown to regulate endothelial phenotype, facilitate leukocyte homing, affect leukocyte function, and drive smooth muscle fibroproliferative remodeling. In addition, integrin signaling in platelets contributes to the thrombotic complications that typically drive the clinical manifestation of cardiovascular disease. In this review, we examine the current literature on integrin regulation of atherosclerotic plaque development and the suitability of integrins as potential therapeutic targets to limit cardiovascular disease and its complications.
Collapse
|
18
|
Fu Y, Gao C, Liang Y, Wang M, Huang Y, Ma W, Li T, Jia Y, Yu F, Zhu W, Cui Q, Li Y, Xu Q, Wang X, Kong W. Shift of Macrophage Phenotype Due to Cartilage Oligomeric Matrix Protein Deficiency Drives Atherosclerotic Calcification. Circ Res 2016; 119:261-276. [PMID: 27151399 DOI: 10.1161/circresaha.115.308021] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 05/05/2016] [Indexed: 12/29/2022]
Abstract
RATIONALE Intimal calcification is highly correlated with atherosclerotic plaque burden, but the underlying mechanism is poorly understood. We recently reported that cartilage oligomeric matrix protein (COMP), a component of vascular extracellular matrix, is an endogenous inhibitor of vascular smooth muscle cell calcification. OBJECTIVE To investigate whether COMP affects atherosclerotic calcification. METHODS AND RESULTS ApoE(-/-)COMP(-/-) mice fed with chow diet for 12 months manifested more extensive atherosclerotic calcification in the innominate arteries than did ApoE(-/-) mice. To investigate which origins of COMP contributed to atherosclerotic calcification, bone marrow transplantation was performed between ApoE(-/-) and ApoE(-/-)COMP(-/-) mice. Enhanced calcification was observed in mice transplanted with ApoE(-/-)COMP(-/-) bone marrow compared with mice transplanted with ApoE(-/-) bone marrow, indicating that bone marrow-derived COMP may play a critical role in atherosclerotic calcification. Furthermore, microarray profiling of wild-type and COMP(-/-) macrophages revealed that COMP-deficient macrophages exerted atherogenic and osteogenic characters. Integrin β3 protein was attenuated in COMP(-/-) macrophages, and overexpression of integrin β3 inhibited the shift of macrophage phenotypes by COMP deficiency. Furthermore, adeno-associated virus 2-integrin β3 infection attenuated atherosclerotic calcification in ApoE(-/-)COMP(-/-) mice. Mechanistically, COMP bound directly to β-tail domain of integrin β3 via its C-terminus, and blocking of the COMP-integrin β3 association by β-tail domain mimicked the COMP deficiency-induced shift in macrophage phenotypes. Similar to COMP deficiency in mice, transduction of adeno-associated virus 2-β-tail domain enhanced atherosclerotic calcification in ApoE(-/-) mice. CONCLUSIONS These results reveal that COMP deficiency acted via integrin β3 to drive macrophages toward the atherogenic and osteogenic phenotype and thereby aggravate atherosclerotic calcification.
Collapse
Affiliation(s)
- Yi Fu
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Cheng Gao
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Ying Liang
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Meili Wang
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Yaqian Huang
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Wei Ma
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Tuoyi Li
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Yiting Jia
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Fang Yu
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Wanlin Zhu
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Qinghua Cui
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Yanhui Li
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Qingbo Xu
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Xian Wang
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.)
| | - Wei Kong
- From the Department of Physiology and Pathophysiology (Y.F., C.G., Y.L., M.W., Y.H., T.L., Y.J., F.Y., X.W., W.K.), Department of Biomedical Informatics (W.M., Q.C.), Institute of Cardiovascular Sciences, School of Basic Medical Sciences (Y.L.), Peking University, Beijing, P. R. China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, P. R. China (Y.F., C.G., Y.L., M.W., Y.H., W.M., T.L., Y.J., F.Y., Q.C., Y.L., X.W., W.K.); School of Biological Science and Medical Engineering, International Research Institute for Multidisciplinary Science, Beihang University, Beijing, P. R. China (W.Z.); and Cardiovascular Division, King's College London BHF Centre, London, United Kingdom (Q.X.).
| |
Collapse
|
19
|
Misra A, Sheikh AQ, Kumar A, Luo J, Zhang J, Hinton RB, Smoot L, Kaplan P, Urban Z, Qyang Y, Tellides G, Greif DM. Integrin β3 inhibition is a therapeutic strategy for supravalvular aortic stenosis. J Exp Med 2016; 213:451-63. [PMID: 26858344 PMCID: PMC4813675 DOI: 10.1084/jem.20150688] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 01/08/2016] [Indexed: 02/03/2023] Open
Abstract
Misra et al. elucidate the origin of smooth muscle cells involved in supravalvular aortic stenosis and identify the integrin β3 pathway as a therapeutic target in this disease. The aorta is the largest artery in the body, yet processes underlying aortic pathology are poorly understood. The arterial media consists of circumferential layers of elastic lamellae and smooth muscle cells (SMCs), and many arterial diseases are characterized by defective lamellae and excess SMCs; however, a mechanism linking these pathological features is lacking. In this study, we use lineage and genetic analysis, pharmacological inhibition, explant cultures, and induced pluripotent stem cells (iPSCs) to investigate supravalvular aortic stenosis (SVAS) patients and/or elastin mutant mice that model SVAS. These experiments demonstrate that multiple preexisting SMCs give rise to excess aortic SMCs in elastin mutants, and these SMCs are hyperproliferative and dedifferentiated. In addition, SVAS iPSC-derived SMCs and the aortic media of elastin mutant mice and SVAS patients have enhanced integrin β3 levels, activation, and downstream signaling, resulting in SMC misalignment and hyperproliferation. Reduced β3 gene dosage in elastin-null mice mitigates pathological aortic muscularization, SMC misorientation, and lumen loss and extends survival, which is unprecedented. Finally, pharmacological β3 inhibition in elastin mutant mice and explants attenuates aortic hypermuscularization and stenosis. Thus, integrin β3–mediated signaling in SMCs links elastin deficiency and pathological stenosis, and inhibiting this pathway is an attractive therapeutic strategy for SVAS.
Collapse
Affiliation(s)
- Ashish Misra
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - Abdul Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - Jiesi Luo
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - Jiasheng Zhang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - Robert B Hinton
- Division of Cardiology, The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
| | - Leslie Smoot
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115
| | - Paige Kaplan
- Section of Metabolic Diseases, Children's Hospital of Pennsylvania, Philadelphia, PA 19104
| | - Zsolt Urban
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261
| | - Yibing Qyang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| | - George Tellides
- Department of Surgery, School of Medicine, Yale University, New Haven, CT 06511
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06511
| |
Collapse
|
20
|
Chen J, Green J, Yurdagul A, Albert P, McInnis MC, Orr AW. αvβ3 Integrins Mediate Flow-Induced NF-κB Activation, Proinflammatory Gene Expression, and Early Atherogenic Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2015. [PMID: 26212910 DOI: 10.1016/j.ajpath.2015.05.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Endothelial cell interactions with transitional matrix proteins, such as fibronectin, occur early during atherogenesis and regulate shear stress-induced endothelial cell activation. Multiple endothelial cell integrins bind transitional matrix proteins, including α5β1, αvβ3, and αvβ5. However, the role these integrins play in mediating shear stress-induced endothelial cell activation remains unclear. Therefore, we sought to elucidate which integrin heterodimers mediate shear stress-induced endothelial cell activation and early atherogenesis. We now show that inhibiting αvβ3 integrins (S247, siRNA), but not α5β1 or αvβ5, blunts shear stress-induced proinflammatory signaling (NF-κB, p21-activated kinase) and gene expression (ICAM1, VCAM1). Importantly, inhibiting αvβ3 did not affect cytokine-induced proinflammatory responses or inhibit all shear stress-induced signaling, because Akt, endothelial nitric oxide synthase, and extracellular regulated kinase activation remained intact. Furthermore, inhibiting αv integrins (S247), but not α5 (ATN-161), in atherosclerosis-prone apolipoprotein E knockout mice significantly reduced vascular remodeling after acute induction of disturbed flow. S247 treatment similarly reduced early diet-induced atherosclerotic plaque formation associated with both diminished inflammation (expression of vascular cell adhesion molecule 1, plaque macrophage content) and reduced smooth muscle incorporation. Inducible, endothelial cell-specific αv integrin deletion similarly blunted inflammation in models of disturbed flow and diet-induced atherogenesis but did not affect smooth muscle incorporation. Our studies identify αvβ3 as the primary integrin heterodimer mediating shear stress-induced proinflammatory responses and as a key contributor to early atherogenic inflammation.
Collapse
Affiliation(s)
- Jie Chen
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Jonette Green
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Arif Yurdagul
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Patrick Albert
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - Marshall C McInnis
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana
| | - A Wayne Orr
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana.
| |
Collapse
|
21
|
Gianazza E, Vegeto E, Eberini I, Sensi C, Miller I. Neglected markers: Altered serum proteome in murine models of disease. Proteomics 2012; 12:691-707. [DOI: 10.1002/pmic.201100320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 08/28/2011] [Indexed: 11/09/2022]
|
22
|
Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011; 118:5996-6005. [PMID: 21917754 DOI: 10.1182/blood-2011-07-365635] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Characterized by mucocutaneous bleeding arising from a lack of platelet aggregation to physiologic stimuli, Glanzmann thrombasthenia (GT) is the archetype-inherited disorder of platelets. Transmitted by autosomal recessive inheritance, platelets in GT have quantitative or qualitative deficiencies of the fibrinogen receptor, αIIbβ3, an integrin coded by the ITGA2B and ITGB3 genes. Despite advances in our understanding of the disease, extensive phenotypic variability with respect to severity and intensity of bleeding remains poorly understood. Importantly, genetic defects of ITGB3 also potentially affect other tissues, for β3 has a wide tissue distribution when present as αvβ3 (the vitronectin receptor). We now look at the repertoire of ITGA2B and ITGB3 gene defects, reexamine the relationship between phenotype and genotype, and review integrin structure in the many variant forms. Evidence for modifications in platelet production is assessed, as is the multifactorial etiology of the clinical expression of the disease. Reports of cardiovascular disease and deep vein thrombosis, cancer, brain disease, bone disorders, and pregnancy defects in GT are discussed in the context of the results obtained for mouse models where nonhemostatic defects of β3-deficiency or nonfunction are being increasingly described.
Collapse
|
23
|
Nurden A, Nurden P. Advances in our understanding of the molecular basis of disorders of platelet function. J Thromb Haemost 2011; 9 Suppl 1:76-91. [PMID: 21781244 DOI: 10.1111/j.1538-7836.2011.04274.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genetic defects of platelet function give rise to mucocutaneous bleeding of varying severity because platelets fail to fulfil their haemostatic role after vessel injury. Abnormalities of pathways involving glycoprotein (GP) mediators of adhesion (Bernard-Soulier syndrome, platelet-type von Willebrand disease) and aggregation (Glanzmann thrombasthenia) are the most studied and affect the GPIb-IX-V complex and integrin αIIbβ3, respectively. Leukocyte adhesion deficiency-III combines Glanzmann thrombasthenia with infections and defects of kindlin-3, a mediator of integrin activation. Agonist-specific deficiencies in platelet aggregation relate to mutations of primary receptors for ADP (P2Y(12)), thromboxane A(2) (TXA2R) and collagen (GPVI); however, selective abnormalities of intracellular signalling pathways remain better understood in mouse models. Defects of secretion from δ-granules are accompanied by pigment defects in the Hermansky-Pudlak and Chediak-Higashi syndromes; they concern multiple genes and protein complexes involved in secretory organelle biogenesis and function. Quebec syndrome is linked to a tandem duplication of the urokinase plasminogen activator (PLAU) gene while locus assignment to chromosome 3p has advanced the search for the gene(s) responsible for α-granule deficiency in the gray platelet syndrome. Defects of α-granule biosynthesis also involve germline VPS33B mutations in the ARC (arthrogryposis, renal dysfunction and cholestasis) syndrome. A mutation in transmembrane protein 16F (TMEM16F) has been linked to a defective procoagulant activity and phosphatidylserine expression in the Scott syndrome. Cytoskeletal dysfunction (with platelet anisotrophy) occurs not only in the Wiskott-Aldrich syndrome but also in filamin A deficiency or MYH9-related disease while GATA1 mutations or RUNX1 haploinsufficiency can affect expression of multiple platelet proteins.
Collapse
Affiliation(s)
- A Nurden
- Centre de Référence des Pathologies Plaquettaires, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| | | |
Collapse
|
24
|
ANTONOV ALEXANDERS, ANTONOVA GALINAN, MUNN DAVIDH, MIVECHI NAHID, LUCAS RUDOLF, CATRAVAS JOHND, VERIN ALEXANDERD. αVβ3 integrin regulates macrophage inflammatory responses via PI3 kinase/Akt-dependent NF-κB activation. J Cell Physiol 2011; 226:469-76. [PMID: 20672329 PMCID: PMC3235728 DOI: 10.1002/jcp.22356] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Controlling macrophage responses to pathogenic stimuli is critical for prevention of and recovery from the inflammatory state associated with the pathogenesis of many diseases. The adhesion receptor αVβ3 integrin is thought to be an important receptor that regulates macrophage differentiation and macrophage responses to external signaling, but it has not been previously identified as a contributor to macrophage-related inflammation. Using an in vitro model of human blood monocytes (Mo) and monocyte-derived macrophages (MDMs) we demonstrate that αVβ3 ligation results in sustained increases of the transcription factor NF-κB DNA-binding activity, as compared with control isotype-matched IgG(1). Activation of NF-κB parallels the increase of NF-κB-dependent pro-inflammatory cytokine mRNA expression in MDMs isolated from individual donors, for example, TNF-α (8- to 28-fold), IL-1β (15- to 30-fold), IL-6 (2- to 4-fold), and IL-8 (5- to 15-fold) whereas there is more than a 10-fold decrease in IL-10 mRNA level occurs. Upon ligation of the αVβ3 receptor, treatment with TNF-α (10 ng/ml) or LPS (200 ng/ml, 1,000 EU) results in the enhanced and synergistic activation of NF-κB and LPS-induced TNF-α secretion. As additional controls, an inhibitor of αVβ3 integrin, cyclic RGD (10 µg/ml; IC(50) = 7.6 µM), attenuates the effects of αVβ3 ligation, and the natural ligand of αVβ3 integrin, vitronectin, reproduces the effects of αVβ3 activation by an immobilizing anti-αVβ3 integrin mAb. We hypothesize that αVβ3 activation can maintain chronic inflammatory processes in pathological conditions and that the loss of αVβ3 ligation will allow macrophages to escape from the inflammatory state.
Collapse
Affiliation(s)
| | | | - DAVID H. MUNN
- Department of Pediatrics and Cancer Immunotherapy Program, Medical College of Georgia, Augusta, Georgia
| | - NAHID MIVECHI
- Center for Molecular Chaperone/Radiobiology and Cancer Virology, Medical College of Georgia, Augusta, Georgia
| | - RUDOLF LUCAS
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
- Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - JOHN D. CATRAVAS
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, Georgia
- Cancer Center, Medical College of Georgia, Augusta, Georgia
| | - ALEXANDER D. VERIN
- Vascular Biology Center, Medical College of Georgia, Augusta, Georgia
- Department of Medicine, Medical College of Georgia, Augusta, Georgia
| |
Collapse
|
25
|
Schneider JG, Amend SH, Weilbaecher KN. Integrins and bone metastasis: integrating tumor cell and stromal cell interactions. Bone 2011; 48:54-65. [PMID: 20850578 PMCID: PMC3010439 DOI: 10.1016/j.bone.2010.09.016] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/04/2010] [Indexed: 01/24/2023]
Abstract
Integrins on both tumor cells and the supporting host stromal cells in bone (osteoclasts, new blood vessels, inflammatory cells, platelets and bone marrow stromal cells) play key roles in enhancing bone metastasis. Tumor cells localize to specific tissues through integrin-mediated contacts with extracellular matrix and stromal cells. Integrin expression and signaling are perturbed in cancer cells, allowing them to "escape" from cell-cell and cell-matrix tethers, invade, migrate and colonize within new tissues and matrices. Integrin signaling through αvβ3 and VLA-4 on tumor cells can promote tumor metastasis to and proliferation in the bone microenvironment. Osteoclast (OC) mediated bone resorption is a critical component of bone metastasis and can promote tumor growth in bone and αvβ3 integrins are critical to OC function and development. Tumors in the bone microenvironment can recruit new blood vessel formation, platelets, pro-tumor immune cells and bone marrow stromal cells that promote tumor growth and invasion in bone. Integrins and their ligands play critical roles in platelet aggregation (αvβ3 and αIIbβ3), hematopoietic cell mobilization (VLA-4 and osteopontin), neoangiogenesis (αvβ3, αvβ5, α6β4, and β1 integrin) and stromal function (osteopontin and VLA-4). Integrins are involved in the pathogenesis of bone metastasis at many levels and further study to define integrin dysregulation by cancer will yield new therapeutic targets for the prevention and treatment of bone metastasis.
Collapse
Affiliation(s)
- Jochen G. Schneider
- Institute for Clinical Biochemistry and Pathobiochemistry, University of Wuerzburg, Germany, and Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Sarah H. Amend
- Department of Medicine and Division of Oncology, Washington University, School of Medicine, St. Louis, MO, USA
| | - Katherine N. Weilbaecher
- Department of Medicine and Division of Oncology, Washington University, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
26
|
Frolova E, Pluskota E, Krukovets I, Burke T, Drumm C, Smith JD, Blech L, Febbraio M, Bornstein P, Plow EF, Stenina OI. Thrombospondin-4 regulates vascular inflammation and atherogenesis. Circ Res 2010; 107:1313-25. [PMID: 20884877 PMCID: PMC2993182 DOI: 10.1161/circresaha.110.232371] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 09/22/2010] [Indexed: 12/31/2022]
Abstract
RATIONALE Thrombospondin (TSP)-4 is an extracellular protein that has been linked to several cardiovascular pathologies. However, a role for TSP-4 in vascular wall biology remains unknown. OBJECTIVE We have examined the effects of TSP-4 gene (Thbs4) knockout on the development of atherosclerotic lesions in ApoE(-/-) mice. METHODS AND RESULTS Deficiency in TSP-4 reduced atherosclerotic lesions: at 20 weeks of age, the size of the aortic root lesions in Thbs4(-/-)/ApoE(-/-) mice was decreased by 48% in females and by 39% in males on chow diets; in mice on Western diets, lesions in the descending aorta were reduced by 30% in females and 33% in males. In ApoE(-/-) mice, TSP-4 was abundant in vessel areas prone to lesion development and in the matrix of the lesions themselves. TSP-4 deficiency reduced the number of macrophages in lesions in all groups by ≥ 2-fold. In addition, TSP-4 deficiency reduced endothelial cell activation (expression of surface adhesion molecules) and other markers of inflammation in the vascular wall (decreased production of monocyte chemoattractant protein-1 and activation of p38). In vitro, both the adhesion and migration of wild-type macrophages increased in the presence of purified recombinant TSP-4 in a dose-dependent manner (up to 7- and 4.7-fold, respectively). These responses led to p38-MAPkinase activation and were dependent on β(2) and β(3) integrins, which recognize TSP-4 as a ligand. CONCLUSIONS TSP-4 is abundant in atherosclerotic lesions and in areas prone to development of lesions and may influence the recruitment of macrophages by activating endothelial cells and directly interacting with macrophages to increase their adhesion and migration. Our observations suggest an important role for this matricellular protein in the local regulation of inflammation associated with atherogenesis.
Collapse
Affiliation(s)
- Ella Frolova
- Department of Molecular Cardiology and Joseph J. Jacob Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Elzbieta Pluskota
- Department of Molecular Cardiology and Joseph J. Jacob Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Irene Krukovets
- Department of Molecular Cardiology and Joseph J. Jacob Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Tim Burke
- Department of Molecular Cardiology and Joseph J. Jacob Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Carla Drumm
- Department of Molecular Cardiology and Joseph J. Jacob Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jonathan D. Smith
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Lauren Blech
- Department of Molecular Cardiology and Joseph J. Jacob Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Maria Febbraio
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Paul Bornstein
- Departments of Biochemistry and Medicine, University of Washington, Seattle, WA 98195
| | - Edward F. Plow
- Department of Molecular Cardiology and Joseph J. Jacob Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Olga I. Stenina
- Department of Molecular Cardiology and Joseph J. Jacob Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| |
Collapse
|
27
|
Schneider JG, Yang Z, Chakravarthy MV, Lodhi IJ, Wei X, Turk J, Semenkovich CF. Macrophage fatty-acid synthase deficiency decreases diet-induced atherosclerosis. J Biol Chem 2010; 285:23398-409. [PMID: 20479009 DOI: 10.1074/jbc.m110.100321] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid metabolism is perturbed in atherosclerotic lesions, but whether it affects lesion formation is unknown. To determine whether fatty acid synthesis affects atherosclerosis, we inactivated fatty-acid synthase (FAS) in macrophages of apoE-deficient mice. Serum lipids, body weight, and glucose metabolism were the same in FAS knock-out in macrophages (FASKOM) and control mice, but blood pressure was lower in FASKOM animals. Atherosclerotic extent was decreased 20-40% in different aortic regions of FASKOM as compared with control mice on Western diets. Foam cell formation was diminished in FASKOM as compared with wild type macrophages due to increased apoAI-specific cholesterol efflux and decreased uptake of oxidized low density lipoprotein. Expression of the anti-atherogenic nuclear receptor liver X receptor alpha (LXRalpha; Nr1h3) and its downstream targets, including Abca1, were increased in FASKOM macrophages, whereas expression of the potentially pro-atherogenic type B scavenger receptor CD36 was decreased. Peroxisome proliferator-activated receptor alpha (PPARalpha) target gene expression was decreased in FASKOM macrophages. PPARalpha agonist treatment of FASKOM and wild type macrophages normalized PPARalpha target gene expression as well as Nr1h3 (LXRalpha). Atherosclerotic lesions were more extensive when apoE null mice were transplanted with LXRalpha-deficient/FAS-deficient bone marrow as compared with LXRalpha-replete/FAS-deficient marrow, consistent with anti-atherogenic effects of LXRalpha in the context of FAS deficiency. These results show that macrophage FAS deficiency decreases atherosclerosis through induction of LXRalpha and suggest that FAS, which is induced by LXRalpha, may generate regulatory lipids that cause feedback inhibition of LXRalpha in macrophages.
Collapse
Affiliation(s)
- Jochen G Schneider
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Morgan EA, Schneider JG, Baroni TE, Uluçkan O, Heller E, Hurchla MA, Deng H, Floyd D, Berdy A, Prior JL, Piwnica-Worms D, Teitelbaum SL, Ross FP, Weilbaecher KN. Dissection of platelet and myeloid cell defects by conditional targeting of the beta3-integrin subunit. FASEB J 2009; 24:1117-27. [PMID: 19933310 DOI: 10.1096/fj.09-138420] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The purpose of this work was to determine platelet and myeloid cell-specific requirements for beta3-containing integrins in hemostasis, bone resorption, and tumor growth. LoxP-flanked mice were generated to study the conditional deletion of beta3-integrin in platelets [knockout in platelets (KOP)] and myeloid cells [knockout in myeloid (KOM)]. Using the beta3KOP and beta3KOM strains of mice, we studied the role of beta3-integrin in hemostasis, bone resorption, and subcutaneous tumor growth. Tissue-specific deletion of platelet beta3-integrins in beta3KOP mice did not affect bone mass but resulted in a severe bleeding phenotype. No growth difference of tumor xenografts or in neoangiogenesis were found in beta3KOP mice, in contrast to the defects observed in germline beta3(-/-) mice. Conditional deletion of myeloid beta3-integrins in beta3KOM mice resulted in osteopetrosis but had no effect on hemostasis or mortality. Tumor growth in beta3KOM mice was increased and accompanied by decreased macrophage infiltration, without increase in blood vessel number. Platelet beta3-integrin deficiency was sufficient to disrupt hemostasis but had no effect on bone mass or tumor growth. Myeloid-specific beta3-integrin deletion was sufficient to perturb bone mass and enhance tumor growth due to reduced macrophage infiltration in the tumors. These results suggest that beta3-integrins have cell-specific roles in complex biological processes.-Morgan, E. A., Schneider, J. G., Baroni, T. E., Uluçkan, O., Heller, E., Hurchla, M. A., Deng, H., Floyd, D., Berdy, A., Prior, J. L., Piwnica-Worms, D., Teitelbaum, S. L., Ross, F. P., Weilbaecher, K. N. Dissection of platelet and myeloid cell defects by conditional targeting of the beta3-integrin subunit.
Collapse
Affiliation(s)
- Elizabeth A Morgan
- Department of Medicine, Mallinkrodt Institute of Radiology, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Patsenker E, Popov Y, Stickel F, Schneider V, Ledermann M, Sägesser H, Niedobitek G, Goodman SL, Schuppan D. Pharmacological inhibition of integrin alphavbeta3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology 2009; 50:1501-11. [PMID: 19725105 PMCID: PMC2779730 DOI: 10.1002/hep.23144] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED The vitronectin receptor integrin alphavbeta3 promotes angiogenesis by mediating migration and proliferation of endothelial cells, but also drives fibrogenic activation of hepatic stellate cells (HSCs) in vitro. Expecting antifibrotic synergism, we studied the effect of alphavbeta3 inhibition in two in vivo models of liver fibrogenesis. Liver fibrosis was induced in rats by way of bile duct ligation (BDL) for 6 weeks or thioacetamide (TAA) injections for 12 weeks. A specific alphavbeta3 (alphavbeta5) inhibitor (Cilengitide) was given intraperitoneally twice daily at 15 mg/kg during BDL or after TAA administration. Liver collagen was determined as hydroxyproline, and gene expression was quantified by way of quantitative polymerase chain reaction. Liver angiogenesis, macrophage infiltration, and hypoxia were assessed by way of CD31, CD68 and hypoxia-inducible factor-1alpha immunostaining. Cilengitide decreased overall vessel formation. This was significant in portal areas of BDL and septal areas of TAA fibrotic rats and was associated with a significant increase of liver collagen by 31% (BDL) and 27% (TAA), and up-regulation of profibrogenic genes and matrix metalloproteinase-13. Treatment increased gamma glutamyl transpeptidase in both models, while other serum markers remained unchanged. alphavbeta3 inhibition resulted in mild liver hypoxia, as evidenced by up-regulation of hypoxia-inducible genes. Liver infiltration by macrophages/Kupffer cells was not affected, although increases in tumor necrosis factor alpha, interleukin-18, and cyclooxygenase-2 messenger RNA indicated modest macrophage activation. CONCLUSION Specific inhibition of integrin alphavbeta3 (alphavbeta5) in vivo decreased angiogenesis but worsened biliary (BDL) and septal (TAA) fibrosis, despite its antifibrogenic effect on HSCs in vitro. Angiogenesis inhibitors should be used with caution in patients with hepatic fibrosis.
Collapse
Affiliation(s)
- E. Patsenker
- Department of Medicine I, University of Erlangen-Nuernberg, Germany, Institute of Clinical Pharmacology and Visceral Research, University of Bern, Bern, Switzerland
| | - Y. Popov
- Department of Medicine I, University of Erlangen-Nuernberg, Germany, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA, USA
| | - F. Stickel
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Bern, Switzerland
| | - V. Schneider
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Bern, Switzerland
| | - M. Ledermann
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Bern, Switzerland
| | - H. Sägesser
- Institute of Clinical Pharmacology and Visceral Research, University of Bern, Bern, Switzerland
| | - G. Niedobitek
- Department of Medicine I, University of Erlangen-Nuernberg, Germany
| | - S. L. Goodman
- Therapeutic area oncology Research, Merck KG, Darmstadt, Germany
| | - D. Schuppan
- Department of Medicine I, University of Erlangen-Nuernberg, Germany, Division of Gastroenterology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston MA, USA
| |
Collapse
|